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Abstract
As a two-sided marketplace, Airbnb brings together hosts who own

listings for rent with prospective guests from around the globe.

Results from a guest’s search for listings are displayed primarily

through two interfaces: (1) as a list of rectangular cards that contain

on them the listing image, price, rating, and other details, referred

to as list-results (2) as oval pins on a map showing the listing price,

calledmap-results. Both these interfaces, since their inception, have

used the same ranking algorithm that orders listings by their book-

ing probabilities and selects the top listings for display. But some of

the basic assumptions underlying ranking, built for a world where

search results are presented as lists, simply break down for maps.

This paper describes how we rebuilt ranking for maps by revising

the mathematical foundations of how users interact with search re-

sults. Our iterative and experiment-driven approach led us through

a path full of twists and turns, ending in a unified theory for the two

interfaces. Our journey shows how assumptions taken for granted

when designingmachine learning algorithmsmay not apply equally

across all user interfaces, and how they can be adapted. The net

impact was one of the largest improvements in user experience for

Airbnb which we discuss as a series of experimental validations.

CCS Concepts
•Retrievalmodels and ranking→ Learning to rank; •Human-
centered computing→ Graphical user interfaces; • Electronic
commerce→ Online shopping.
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1 Introduction
As of June 01, 2024, there are more than 7.7 million active Airbnb

listings in over 100 thousand cities and towns worldwide. The

total number of guest arrivals, contributed by guests all across the

world, now exceeds 1.5 billion. The vast majority of these guest

arrivals started with a search, the core mechanism that connects

guests to hosts. What makes Airbnb search a particularly strong

case for machine learning application is its global scale, coupled

with the individuality of each listing. Every listing has its unique

location, along with its own look and feel. Furthermore, even the

most popular listing can only be booked a maximum of 365 days in

a year, so memorizing top results and replaying them back is not

an option. Airbnb search demands a truly generalized learning of

what each listing is offering.

And true to expectations, artificial intelligence shines on this

occasion, far surpassing what human intelligence can achieve. As

part of an evaluation exercise, ranking engineers were shown pairs

Figure 1: Search box with destination, check-

in/checkout dates and guest count as inputs.

Figure 2: Search results as map pins.

Figure 3: Search results as list of

cards.

of listings and asked to identify which listing out of the pair was

booked by a searcher. The ranking model correctly identified the

booked listing 88% of the time, while ranking engineers could man-

age only 70%.

This level of performance wasn’t achieved overnight. The launch

of our first neural network model is described in [10], and its evo-

lution is captured by [11], [1], [16], and [9].

The ranking tech stack described in these publications powers

searches from two sources. First is the familiar search box, where

a destination location, check-in/checkout dates, and guest counts

are entered explicitly by the searcher (Figure 1). Results from the

search can be accessed as list-results (Figure 3), and map-results

(Figure 2). The user can then point the map to an area, and the

latitude and longitude boundaries of the map serve as a second

source of searches with implicit query parameters. Overall the

search box generates 20% of searches, the rest coming from maps.

The main goal of these interfaces is to maximize the number

of bookings—the key measure of success both from the guest and

the host perspective. To achieve this goal, listings are sorted by

their booking probabilities, and the top listings are selected for

display as cards in a list and as map pins. The algorithm works by

ensuring that the higher the booking probability of a listing, the

more attention it receives from users. A formal analysis is presented

ar
X

iv
:2

40
7.

00
09

1v
1 

 [
cs

.I
R

] 
 2

5 
Ju

n 
20

24



Figure 4: X-axis: Search rank for list-results. Y-axis: Normalized click-through rates.

in Section 3 of [9]. This algorithm remained the status quo for many

years. But as it happens, disruptions come unannounced.

2 Map ≠ List
Normalized discounted cumulative gain (NDCG) is our de facto tool

for evaluating ranking. To understand ranking performance in vari-

ous settings, we look at NDCG for that query segment. Comparing

the NDCG for queries from the search box against the NDCG for

map-generated queries uncovers a puzzle—a stubborn gap of 2%.

For many years, engineers suspected the tech stack powering

search through maps ought to include something unique to the

interface itself. But this mostly drove feature engineering focused

on maps, such as distance of the listing from the map center. The

general wisdom was that as long as all the necessary features were

supplied to the model, it would “do the right thing.” There wasn’t

much to explore beyond that.

Although map search interfaces are used by billions every day,

there is little mention of how to customize search for maps in the

machine learning literature. To the best of our knowledge, there

are some references from the early days of the internet, like [19],

but there seems to be no research trail for the last twenty years.

Discussion of ranking for products similar to Airbnb ([14], [4], [17])

give no special consideration tomaps. This lack of prior publications

further supports the thinking that map search is nothing special.

And yet, we have hints that searching usingmaps leads to a different

user behavior.

To shift tactics, we move away from trying to equate NDCG

across the two interfaces, and instead ask whether we should even

fixate on the NDCG for map-results? For list-results, our observa-

tions are in line with those reported in the past. A plot of click-

through rate per ranking position in Figure 4 visualizes the decay

of user attention for list-results, in agreement with established re-

search findings ([6], [15]). Section 3 in [9] describes how this mono-

tonic decay of user attention is key to the workings of NDCG.

But what about map-results, where the decay of attention is

no longer applicable? Since user attention decay is at the heart of

NDCG, the metric is no longer meaningful in the context of maps.

In fact, ranking itself is irrelevant for map-results, as there is no

sequential list involved.

To be clear, ranking still plays the crucial role of selecting the

top listings for display from all the listings available in the map

area. But once the top listings are selected, their relative ordering

is irrelevant. In the next section, we experimentally validate the

hypothesis that ranking doesn’t matter for map-results.

Figure 5: X-axis: Search rank for list-results and map-results. Y-axis: Normalized click-

through rates.

2.1 Experimental Results
The validation is a simple online A/B experiment where the treat-

ment randomly shuffles the top results for searches originating

from the map. The experiment is restricted to mobile platforms like

iOS™ and Android™ where users cannot interact with both list-

results and map-results at the same time. The case of desktop web

browsers, where concurrent access to list-results and map-results is

possible, will be discussed later in Section 6. From past experiments,

we know such a randomization applied to queries from the search

box can produce a jaw-dropping booking loss of 8% and degrade

NDCG by as much as 5%. The hypothesis is that for map searches,

randomization will produce no difference.

And this experiment indeed confirms the hypothesis. Metrics

in treatment are almost identical to control, and more specifically,

there is no difference in bookings across treatment and control.

This firmly establishes that for searches through the map, ranking

the top listings has no effect at all.

To show that ranking is irrelevant for map pins, an alternative

to the randomization experiment is to plot a rank vs. CTR plot

for map-results, along the lines of Figure 4. For map-results, we

expect the listing ranks to have no connection to user attention,

and hence the CTR for each position to be the same, making the

plot a straight horizontal line. Instead we get Figure 5! The CTR by

ranking position for map-results continues to slope downwards.

We resolve the mystery of this seeming contradiction in Sec-

tion 7. For now, let’s take the hypothesis we proved through the

randomization experiment and put it into action.

3 Less Is More
Consider a very simplified view of the probability of booking a list-

ing via a given query𝑄 . All listings eligible for the query are sorted

by their booking probabilities and the top 𝑁 selected for display.

We use the following notation:

{𝑙1, 𝑙2, . . . , 𝑙𝑁 }: Listings ranked 1 through 𝑁 .

𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) : The relative attention received at rank 𝑖 .

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ) : The probability of booking for 𝑙𝑖 .

We write the probability of booking a listing via 𝑄 using an

approach similar to Section 5.1 of [12] and Section 3 of [9]:

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄) =
𝑁∑︁
𝑖=1

𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) ∗ 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ) (1)



Figure 6: X-axis: Number of distinct map pins clicks. Y-axis: Percent of map clickers

covered. 95% of users click ≤ 12 map pins.

For list-results, 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) > 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ( 𝑗) ∀ 𝑖 < 𝑗 ([8], [13]).

Ordering the listings by 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ) maximizes 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄), as
it iteratively matches the largest probability of booking with the

largest user attention. Disrupting this ordering lowers 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄),
and hence lowers the observed bookings when tested online.

If 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) > 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ( 𝑗) ∀ 𝑖 < 𝑗 was true for map-results

as well, matching of 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ) with 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) would be sub-

optimal in the randomization experiment, causing 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄) to
drop, resulting in a bookings loss for the treatment. But since book-

ings didn’t drop in the randomization experiment, the property

𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) > 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ( 𝑗) ∀ 𝑖 < 𝑗 must be false for map-results.

Instead, the followingmust hold 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) = 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ( 𝑗) ∀ 𝑖, 𝑗 ∈
{1, . . . , 𝑁 }. To represent that user attention is distributed equally

across the top listings displayed asmap pins, we assign 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) =
1/𝑁 , which transforms Equation 1 for maps to:

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄) =
1

𝑁
∗

𝑁∑︁
𝑖=1

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ) (2)

Property 1. The probability of booking a listing from a map-
result is given by the average booking probability of the map pins.

Given that listings with the highest booking probabilities are

selected as map pins, and because of Property 1, the lower the

number of pins, the higher the average booking probability. This

leads to the Less Is More principle of map-results: the lesser the

number of pins shown, the more the bookings.

Applied by itself, the Less Is More principle drives down the

number of pins towards the degenerate case of a single pin on the

map, as that maximizes the average booking probability. So our

simplistic view needs a counterbalance which recognizes that users

often click through multiple pins. Figure 6 shows the distribution

of the number of distinct pins clicked by searchers. A 95% coverage

suggests around 12 pins. This indicates the optimal user experience

requires much fewer than 18 pins, the fixed number of pins in use

for years.

While the arguments above suggest that lowering the number

of pins below 18 might improve user experience, they leave the

important question unanswered—that is, how to determine the op-

timal number of pins for a particular map-result? Intuitively, to

construct a map-result we start with the listing that has the highest

booking probability, and hence must always be shown on the map.

If subsequent listings have comparable booking probabilities, then

adding them as map pins provides the user with choice, without

degrading the average booking probability too much. However, if

booking probabilities of the listings that follow drop significantly,

then adding such pins only increase the chance of the user exhaust-

ing their attention on such pins, and leaving without booking. We

put this intuition into action in Algorithm 1, which we refer to as

the Bookability Filter.
Given two listings 𝑙𝑥 and 𝑙𝑦 , their corresponding ranking model

outputs 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑥 ) and 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑦) are related to the booking probabil-

ities by Equation 3. An in-depth discussion of Equation 3 can be

found in Section 2 of [9].

𝑙𝑜𝑔𝑖𝑡 (𝑙𝑥 ) − 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑦) = 𝑙𝑜𝑔(𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑥 )/𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑦)) (3)

It is convenient to specify the filtering condition in terms of the

logits since they are directly available as outputs of the ranking

model.

Algorithm 1: Bookability Filter

Input :A set of 𝑇 listings 𝐿𝑖𝑛𝑝𝑢𝑡 = {𝑙1, 𝑙2, . . . , 𝑙𝑇 }
1 Filter parameter 𝛼

Output :A set of 𝑁 ≤ 𝑇 listings 𝐿𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑙1, 𝑙2, . . . , 𝑙𝑁 }
2 𝑙𝑚𝑎𝑥 ← argmax(𝑙𝑜𝑔𝑖𝑡 (𝑙𝑖 ) : 𝑖 = 1..𝑇 )
3 for 𝑘 ← 1 until 𝑇 do
4 if 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑚𝑎𝑥 ) − 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑘 ) < 𝛼 then
5 𝐿𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝐿𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑙𝑘
6 end if
7 end for

For an intuitive understanding of the condition on line 4 of

Algorithm 1, we rewrite it using Equation 3 as:

𝑙𝑜𝑔𝑖𝑡 (𝑙𝑚𝑎𝑥 ) − 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑘 ) < 𝛼

𝑙𝑜𝑔(𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑚𝑎𝑥 )/𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑘 )) < 𝛼

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑚𝑎𝑥 )/𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑘 ) < 𝑒𝛼

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑚𝑎𝑥 )/𝑒𝛼 < 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑘 )

(4)

The Bookability Filter admits a listing as a map pin only if its

booking probability is greater than 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑚𝑎𝑥 )/𝑒𝛼 . The smaller

the value of 𝛼 , the fewer the number of pins on the map; and hence

higher their average booking probability, but lower the number

of choices available. The 𝛼 parameter makes the number of map

pins dynamic and fine tuned for each map-result, taking into ac-

count the booking probabilities of the listings at hand. There is no

simple analytical way to infer the optimal value of 𝛼 that balances

both average booking probability and choice. Therefore we shift to

determining 𝛼 empirically using online experiments.

3.1 Experimental Results
In the first phase, we study the effects of the 𝛼 parameter through

offline simulation of the search system. Table 1 summarizes the ag-

gregate statistics of map-results corresponding to different values

of 𝛼 . The lower bound of the exploration is set by product experi-

ence considerations, and the upper bound the result of diminishing

effects. The baseline for all these comparisons is map-results with

no filtering and a fixed limit of 18 pins.

Table 1 validates that the Bookability Filter is having the intended

effect on map-results. The second phase of our testing investigates

how users react to various values of 𝛼 . We run multiple A/B experi-

ments online, where control applies no filtering on map-results, and



𝛼 1.0 2.0 4.0 8.0

Number of map pins −39% −25% −9% −1%
Average booking probability 47% 26% 8% 0.7%

Average total price −19% −16% −11% −3%
Average number of reviews 14% 10% 4% 0.7%

Average review rating 0.05% 0.09% 0.13% 0.03%

Table 1: Offline exploration of 𝛼 compared against a baseline with no filtering, which

is conceptually equivalent to 𝛼 = ∞.

treatments apply the Bookability Filter with different values of 𝛼 .

Table 2 summarizes the effect of 𝛼 on searchers. A brief explanation

of the key metrics evaluated in the online experiments:

• Uncanceled bookings: This is the top line metric, the number

of bookings made by searchers that were not cancelled.

• 5-star trips: Trips booked by searchers that resulted in 5-star

rating after checkout, evaluated 120 days after end of experi-

ment.

• Average impressions to discovery: The average number of dis-

tinct search results that a booker saw before clicking the listing

that was booked. This measures the cognitive load of making a

booking.

• Average clicks to discovery: The number of distinct search

results clicked by a booker before clicking the listing that was

booked. This is an alternative measure of the cognitive load of

making a booking.

𝛼 1.0 2.0 4.0

Uncanceled bookings 1.7% 1.1% 0.35%

5-star trips 1.6% 1.0% 0.2%

Avg impressions to discovery −14% −9.6% −4.0%
Avg clicks to discovery −5.7% −2.5% −0.25%

Table 2: Exploring 𝛼 through online A/B experiments.

In the final phase, we fix the value of 𝛼 to 1.0 corresponding to

maximum user benefit, and repeat the online A/B experiment at a

larger scale, allocating 34 million searchers worldwide to each of

control and treatment. This grinds the p-value of the key metrics

below 10
−5
. Uncanceled bookings increase by 1.9%, measured as

a percentage of overall global bookings at Airbnb, making it one

of the largest improvements launched over the last several years.

5-star trips increase by 2% indicating not only growth in bookings,

but a growth in quality bookings. Average number of results seen

by the searcher before clicking on the booked listing reduces by

−16%, while search results clicked drop by −6.8%. The reduction
in effort to locate the booked listing, due to removal of inferior

choices, is the key mechanism driving the gain in bookings.

4 Making It Robust
The Bookability Filter puts a lot of faith in the booking probability

of the topmost listing, denoted as 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑚𝑎𝑥 ) in Inequality 4.

We refer to it as the anchor booking probability. At times, the anchor

booking probability may be an outlier. An abnormally high anchor

booking probability can make it difficult for the rest of the listings

to pass through the Bookability Filter, limiting the choice of listings

and making searchers quit prematurely.

Figure 7: X-axis: Number of total listings ranked. Y-axis: Rank of the listing supplying

the anchor booking probability, tuned through empirical evaluations.

Gathering insights by debugging a few such cases, we test a

more robust way to compute the anchor booking probability—by

considering the average of top 3 listings instead of relying on the

topmost listing alone. Since median is more resilient to outliers

than averages, we further fortify the anchor booking probability to

be the median of the top 3 listings. This shifts the anchor booking

probability from the topmost listing to the second-highest listing.

4.1 Experimental Results
The online A/B test for improving robustness applies filtering with

𝛼 fixed at 1.0 for both control and treatment map searches. The

difference is that in control, the topmost listing supplies the anchor

booking probability, while in treatment it is the second listing from

the top. This increases the number of map pins in treatment by

6% compared to control, indicating a milder filtering. Searchers to

listing viewers conversion improves by 0.15% with a p-value less

than 10
−4

, with no negative effects on any of the other metrics. The

increase in searchers continuing their journey shows that correcting

for outliers moderates the cases where filtering was restricting

choice for searchers.

Inspired by the success of this experiment we do one final it-

eration: instead of fixing the anchor booking probability to the

second-highest listing, we make it dependent on the total number

of listings in the map area. The reasoning is that the larger the num-

ber of listings ranked, more the chances of getting hit by outliers.

A plot of the rank of anchor booking probability as a function of

the total listings ranked is shown in Figure 7. This further increases

the number of map pins by 2.6% without degrading any metrics,

thus balancing between optimizing average booking probability

and providing as many choices as possible.

5 Focus vs. Urgency?
The blockbuster results of Section 3.1 calls for celebration. But they

also raise some eyebrows in the room questioning the cause behind

such a humongous booking gain. While we can see users clicking

less to discover the booked listing, and overall bookings increasing,

the metrics don’t communicate what the users are experiencing.
The optimistic theory is that restricting the map pins is directing

the user’s attention to the most viable choices, reducing distraction.

So users are experiencing focus. This would mean we are on track

for the celebrations.



The alternative theory is that restricting the number of pins is

making the users think that not many choices are left for them to

book, and what the users are experiencing is urgency. This would
be enough to cancel the party.

The trouble is—how to tell apart the two possibilities?

5.1 Experimental Results
We answer the riddle through an online experiment. Let’s walk

through an example map-result to understand the experiment de-

sign. Suppose there are 1000 listings available in a map area. After

ranking these 1000 listings by their booking probability, the base-

line algorithm picks the top 18 to show as map pins. Consider the

case where the Bookability Filter restricts the number of pins to 14,

leading to a booking gain. The urgency hypothesis is that reducing

the number of pins from 18 to 14 makes the user panic, which is

the reason behind the booking increase. The focus hypothesis is
that the user has a much higher chance of discovering a bookable

listing among the 14 when compared to sifting through the 18. The

test to differentiate between the two hypotheses is as follows:

• 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 : Show the 18 map pins.

• 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 : Restrict the map pins to 14, select based on the

highest booking probabilities from the baseline 18.

• 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 : Restrict the map pins to 14, matching the number

of pins from𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1, but select randomly from the baseline

18.

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 reduce the number of pins by the

same amount, but their average booking probability of map pins is

different. There are three possible outcomes of this test, depending

on the causes underlying the booking gain:

• Urgency fully responsible for booking gain: If the booking

gain in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 is completely due to the user experiencing

urgency, then the user will experience the same urgency in

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2. Both 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 will show the

same booking gain over 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 in this scenario.

• Urgency partially responsible for booking gain: If urgency pro-

vides partial explanation for the booking gain in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1,

then a similar gain is expected in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 as well. We will

see a positive booking gain in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 over 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 , but

less than the gain in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1.

• Urgency not at all responsible for booking gain: If the user is

not experiencing any urgency in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1, then bookings

in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 will also be devoid of any urgency-based lift,

and will be determined by the quality of listings alone. The

bookings in 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 will therefore be equal to or less than

the bookings in 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 .

The verdict from the online A/B test is very clear—that urgency is

not at all responsible for the booking gain. Bookings for𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2

drop by 1.5% compared to 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 , with p-value below 10
−6
.

6 Tiered User Attention
When using Airbnb search on web browsers, the results are laid

out as a grid of listing cards on the left. On the right the results are

displayed on a map (Figure 8). Consistency of product experience

demands that all the listings shown in the grid, in total 18, must

have a corresponding pin on the map. Lowering the number of map

pins is not applicable in this scenario.

Figure 8: Simultaneous presentation of list-result and map-result on desktop browsers.

Figure 9: Map result with mix of regular pins and mini-pins.

We adapt the insights from Section 3 to the constraints imposed

by desktop browsers by creating two tiers of pins: in addition to

the ovals with price, we create a smaller oval pin without the price

display. We refer to them as mini-pins. Figure 9 depicts a map-

result with regular pins and mini-pins. The mini-pins draw less

user attention by design; click-through rates for mini-pins is 8 times

less than regular map pins. Differentiating the pins into two tiers

allow us to write 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) in Equation 1 as:

𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖) =


1 if 𝑙𝑖 a regular pin

1/8 if 𝑙𝑖 a mini-pin

0 otherwise

(5)

To optimize 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄) in Equation 1, listings with the highest

booking probabilities are assigned regular pins on desktop browsers,

while listings with relatively lower booking probabilities are as-

signed mini-pins. This prioritizes user attention towards the listings

with higher chances of getting booked. The 𝛼 parameter controls

the regular pin vs. mini-pin assignment, similar to the Bookability

Filter.

6.1 Experimental Results
We test the idea through an online A/B experiment where control

displays all 18 listings from the list-result as regular pins on the

desktop map. Treatment applies the Bookability Filter to assign

listings satisfying Inequality 4 as regular map pins. The remaining



listings from the list-result are assigned mini-pins. The results in

Table 3 show the effectiveness of tiered user attention.

𝛼 1.0

Uncanceled bookings 0.7%

5-star trips 0.5%

Avg impressions to discovery −21%
Avg clicks to discovery −1.7%

Table 3: Results from online A/B experiment applying

Bookability Filter to differentiate between regular pins

vs. mini-pins on desktop.

7 How Attention Flows On Maps
By distributing the user’s attention over all the map pins in equal

measure, Equation 2 led to the Less Is More principle and generated

strong improvements in user experience. Next, we refine our view

of how user attention flows across a map by taking inspiration from

the rank vs. CTR plots we constructed in Figure 4.

In Figure 4, the CTR by position on the list shows the decay of

user attention, going from the top towards the bottom. Explicit eye-

tracking based studies of search result pages by others ([15], [13])

report similar findings. What is the equivalent concept for a map? It

is the CTR by coordinates on the map. This generalizes the concept

of attention decay to two dimensions. Figure 10 shows these 2-D

plots of CTR on maps.

(a) iOS™ app (b) Android™ app

(c) Desktop web browser (d) Mobile web browser

Figure 10: The (𝑥, 𝑦) coordinates in each plot corresponds to coordinate on the map,

and the value at each coordinate represents the ratio of map pins clicked divided by

the number of map pins displayed.

The conclusion from Figure 10 leaps out immediately: user atten-

tion is maximum towards the center of the map, and decays radially

outwards. Figure 10c corresponding to the desktop platform has an

additional twist. There is a grid of listings displayed to the left of the

map (Figure 8), which exerts a leftward pull on the user’s attention.

Figure 10d for mobile web browsers exposes an issue: the topmost

Figure 11: X-axis: Normalized distance from the map center. Y-axis: For a given

distance on the x-axis, we compute the average rank 𝑅𝑎𝑣𝑔 of listings displayed at that

distance, then plot 𝑙𝑜𝑔 (2)/𝑙𝑜𝑔 (2 + 𝑅𝑎𝑣𝑔 ) on the y-axis.

listing card covers the bottom part of the map, making pins in this

region unreachable. The issue is fixed following this discovery.

By aggregating the click behavior of millions of searchers, these

plots give the relation between user attention and map coordinates

that is agnostic to the map’s contents. For any particular individual,

landmarks on the map influence the flow of attention as discussed

in [18].

These plots also solve the mystery posed in Section 2.1. Click-

through rates of map pins drop offwith increasing distance from the

map center. Listing booking probabilities also go down in a similar

manner, as distance of a listing is an important feature contribut-

ing to its booking probability (see Figure 11). As a consequence,

listing rank is correlated with distance from the map center, with

higher ranked listings likely to appear closer to the center. This

makes the CTR of map pins decay with listing rank, creating the

similarity between the map-result and list-result curves in Figure 5.

But this similarity is superficial because searchers using the map

are completely oblivious to the listing’s rank, as proven by the ran-

domization experiment in Section 2.1.

Given the two modes of user attention decay, in lists going from

top to bottom, and in maps going from center to periphery, the

question that arises naturally—how do they compare? But since

we plot the decay of user attention in lists as a curve in Figure 4,

and as a 2-D surface for maps in Figure 10, a direct comparison

is problematic. To make the comparison, we take map-results and

order the map pins by their distance from the map center. This

ordering by distance assigns a rank to each map pin, which we use

to construct a rank vs. CTR plot for maps. Figure 12 puts the search

rank vs. CTR plot for lists next to the distance rank vs. CTR plot

for maps.

Search results presented as a list of cards look nothing like pins

scattered across a map. Yet, the manner in which user attention

decays across the two interfaces in Figure 12 look the same. This

suggests that the physical aspect of attention decay may be tied to

the particular interface, for instance 1-D vs. 2-D decay. But the rate
of the attention decay may strongly depend on how much cognitive

load users are willing to take to process successive items, a factor

independent of the interface.

Figure 10 also suggests opportunity to optimize map-results tak-

ing into account the decay in user attention. We generalize Equa-

tion 1 for map-results as:



Figure 12: X-axis: For list-results, the search rank of listings. For map-results, the

rank of the map pin by distance from the map center. Y-axis: For list-results the click-

through rates of listing cards in search results. For map-results, click-through rates of

map pins.

{𝑥 (𝑙𝑖 ), 𝑦 (𝑙𝑖 )}: Map coordinates for listing 𝑙𝑖 .

{𝑥0, 𝑦0}: Map center coordinates.

𝑐𝑡𝑟 (𝑖, 𝑗): Click-through rate at offset {𝑖, 𝑗} w.r.t {𝑥0, 𝑦0}.
𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑙𝑖 ): Relative attention for 𝑙𝑖 .

𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑙𝑖 ) =
𝑐𝑡𝑟 (𝑥 (𝑙𝑖 ) − 𝑥0, 𝑦 (𝑙𝑖 ) − 𝑦0)

𝑐𝑡𝑟 (0, 0)

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄) =
𝑁∑︁
𝑖=1

𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑙𝑖 ) ∗ 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 )
(6)

Looking back at Equation 2, it is a simplified approximation of

Equation 6, although a very effective one in practice. The ques-

tion now is—how to generate additional improvements based on

the insight from Figure 10? But optimizing map-results based on

Equation 6 turns out to be significantly harder than optimizing list-

results based on Equation 1. In Equation 1, relative attention only

depends on rank 𝑖 and is independent of the listing. When deter-

mining the optimal listing for rank 𝑖 , the ranking algorithm need

not worry about altering the user attention associated with rank 𝑖 .

In Equation 6, selecting listing 𝑙𝑖 influences both the booking prob-

ability 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ), as well as user attention 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑙𝑖 ), because
the user attention is tied to the coordinates of 𝑙𝑖 . If we have in to-

tal 𝑡 listings eligible for the query 𝑄 , and have to find the optimal

choice of 𝑘 listings that maximizes 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄) in Equation 6, then

the brute force way would be to evaluate Equation 6 for all
𝑡𝐶𝑘

subsets. Given the stringent latency budgets for search, crunching

this combinatorial complexity is simply impractical.

We make the problem tractable by first considering the queries

originating from the search box, where we have the freedom to con-

struct the map boundaries. Algorithm 2 presents a greedy heuristic

as a solution. The heuristic first fixes the choice of listings by se-

lecting them based on booking probabilities alone. It then explores

different map centers that optimize for user attention. Figure 13

gives a pictorial view of Algorithm 2. The heuristic simplifies the

problem by optimizing 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ) and 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑙𝑖 ) in a disjoint

manner. Overall complexity of the heuristic is 𝑂 (𝑘2𝑛), where 𝑘 is

the map width divided by the 𝜖 parameter, and 𝑛 is the number of

output map pins.

Implicit search queries generated by the user while pointing the

map to an area are simpler to optimize, as they have fewer degrees

Algorithm 2: Greedy heuristic for map-result optimization

Input :A set of 𝑡 listings 𝐿𝑖𝑛𝑝𝑢𝑡 = {𝑙1, 𝑙2, . . . , 𝑙𝑡 }
1 Iteration step size 𝜖

Output :A set of 𝑛 ≤ 𝑡 listings 𝐿𝑚𝑎𝑝 = {𝑙1, 𝑙2, . . . , 𝑙𝑛}
2 Map center {𝑥0, 𝑦0}
3 𝐿𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑆𝑜𝑟𝑡𝐵𝑦 (𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 ), 𝑙𝑖 ∈ 𝐿𝑖𝑛𝑝𝑢𝑡 )
4 𝐿𝑚𝑎𝑝 ← {𝑙1, 𝑙2, . . . , 𝑙𝑛, 𝑙𝑖 ∈ 𝐿𝑠𝑜𝑟𝑡𝑒𝑑 }
5 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ←𝑚𝑖𝑛(𝑥 (𝑙𝑖 )),𝑚𝑎𝑥 (𝑥 (𝑙𝑖 )), 𝑙𝑖 ∈ 𝐿𝑚𝑎𝑝

6 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ←𝑚𝑖𝑛(𝑦 (𝑙𝑖 )),𝑚𝑎𝑥 (𝑦 (𝑙𝑖 )), 𝑙𝑖 ∈ 𝐿𝑚𝑎𝑝

7 𝑚𝑎𝑥𝐵𝑜𝑜𝑘𝑖𝑛𝑔, 𝑥0, 𝑦0 ← −∞
8 for 𝑖 ← 𝑥𝑚𝑖𝑛 ; 𝑖 < 𝑥𝑚𝑎𝑥 ; 𝑖 ← 𝑖 + 𝜖 do
9 for 𝑗 ← 𝑦𝑚𝑖𝑛 ; 𝑗 < 𝑦𝑚𝑎𝑥 ; 𝑗 ← 𝑗 + 𝜖 do
10 𝑃𝑎𝑡𝑡𝑛 (𝑙𝑘 ) ←

𝑐𝑡𝑟 (𝑥 (𝑙𝑘 )−𝑖,𝑦 (𝑙𝑘 )− 𝑗 )
𝑐𝑡𝑟 (0,0) , 𝑙𝑘 ∈ 𝐿𝑚𝑎𝑝

11 𝑏𝑘𝑁𝑒𝑤 ← ∑
𝑃𝑎𝑡𝑡𝑛 (𝑙𝑘 ) ∗ 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑘 ), 𝑙𝑘 ∈ 𝐿𝑚𝑎𝑝

12 if 𝑚𝑎𝑥𝐵𝑜𝑜𝑘𝑖𝑛𝑔 < 𝑏𝑘𝑁𝑒𝑤 then
13 𝑥0 ← 𝑖

14 𝑦0 ← 𝑗

15 𝑚𝑎𝑥𝐵𝑜𝑜𝑘𝑖𝑛𝑔← 𝑏𝑘𝑁𝑒𝑤

16 end if
17 end for
18 end for

(a) Initial selection. (b) Evaluate potential centers.

(c) Locate optimal center. (d) Update center.
Figure 13: An example to illustrate the working of Algorithm 2. (a) Start with an initial

bounding box covering the map pins selected based on highest booking probabilities.

(b) Iterate evaluate candidates centers over a grid. (c) Locate the center that maximizes

𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑄 ) in Equation 6. (d) Update the bounding box and the map center.

of freedom. The map area and the position of the candidate map

pins are fixed in such cases. Including a ranking model feature for

the distance of a pin from the map center is able to factor in the

decay of attention in Figure 10, since the booking label already



contains the information. To study this aspect, we compare ranking

models with and without the feature in the next section.

7.1 Experimental Results
For queries generated by the user’s map movements, the control of

the online A/B experiment is a ranking model that does not have

the distance of a pin from the map center as a feature. Treatment

is a ranking model including that feature. Uncanceled bookings

increase by 0.27% in treatment, along with an increase of 2% in

click-through rates of map pins.

For queries originating from the search box, we do an online

A/B experiment with Algorithm 1 as the control and the treatment

applies Algorithm 2 to further optimize the map. We observe an

increase of 0.39% in uncanceled bookings for new guests with a p-

value of 0.006. Users new to Airbnb find the placement of the most

bookable listings at the map center particularly helpful as their map

moves decrease by 1.5%, and their chance of encountering areas

with very few listings decrease by 0.8%.

The results indicate that the techniques discussed in Section 3

and Section 6 provide the biggest opportunities for optimization,

with the techniques discussed in Section 7 providing further incre-

mental gains.

8 Insights And Future Work
Models of user attention developed for lists do not apply for map

interfaces. This opens up a new research area where user attention

on maps can be modeled as:

• Distributed uniformly: Summarized as Equation 2, it leads to

Property 1 and the Bookability Filter in Section 3.

• Distributed discretely: Applicable for differentiated map pins

that are useful when outright filtering is not desirable. Captured

by Equation 5 in Section 6.

• Distributed continuously: Based on Figure 10 in Section 7, Equa-

tion 6 forms the basis for Algorithm 2.

Equation 1 is the foundation tying all these insights together. The

literature on improving ranking mostly focuses on the 𝑃𝑏𝑜𝑜𝑘𝑖𝑛𝑔 (𝑙𝑖 )
term in Equation 1, whereas this paper refines the 𝑃𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑖)
term for maps. This multi-year track of research generated some

of the most impactful launches in the history of search ranking at

Airbnb.

And yet, this is merely a start that points to several exciting re-

search potentials for the future. To name a few, significant work

has gone into making learning to rank unbiased for list-results

([12], [2], [3]). A similar need exists for map-results. Section 6

proved the effectiveness of separating the map pins into two tiers.

This suggests scope to further demarcate the map pins to direct

the user attention towards more relevant ones. For map-results,

the relative ordering of the top results is not as consequential. It

is possible that loss functions that take advantage of this aspect

and optimize for top-k precision ([5], [7]) outperform the straight-

forward pairwise cross-entropy loss. In Section 7 we described a

heuristic that was able to improve upon the baseline, raising hopes

for other heuristics that might generate further improvements.

Given this is a completely new area, the lack of established public

benchmarks is a challenge. Creating a dataset to help research in

this area is on our roadmap.
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