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ABSTRACT
Accurate solar power forecasting is crucial to integrate photovoltaic

plants into the electric grid, schedule and secure the power grid

safety. This problem becomes more demanding for those newly

installed solar plants which lack sufficient data. Current research

predominantly relies on historical solar power data or numerical

weather prediction in a single-modality format, ignoring the com-

plementary information provided in different modalities. In this

paper, we propose a multi-modality fusion framework to integrate

historical power data, numerical weather prediction, and satellite

images, significantly improving forecast performance.We introduce

a vector quantized framework that aligns modalities with varying

information densities, striking a balance between integrating suffi-

cient information and averting model overfitting. Our framework

demonstrates strong zero-shot forecasting capability, which is espe-

cially useful for those newly installed plants. Moreover, we collect

and release a multi-modal solar power (MMSP) dataset from real-

world plants to further promote the research of multi-modal solar

forecasting algorithms. Our extensive experiments show that our

model not only operates with robustness but also boosts accuracy

in both zero-shot forecasting and scenarios rich with training data,

surpassing leading models. We have incorporated it into our eFore-

caster platform and deployed it for more than 300 solar plants with

a capacity of over 15GW. Our code and dataset are accessible at

https://anonymous.4open.science/r/FusionSF-770F/.

∗
authors contributed equally to this research.

†
The author now works at Meta Platforms, Inc.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/XXXXXXX.XXXXXXX

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Solar Power Forecasting, Modality Fusion, Vector Quantization,

Zero-Shot Learning

ACM Reference Format:
ZiqingMa,WenweiWang, Tian Zhou, Chao Chen, Bingqing Peng, Liang Sun,

and Rong Jin. 2024. FusionSF: Fuse Heterogeneous Modalities in a Vector

Quantized Framework for Robust Solar Power Forecasting. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 14 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Solar photovoltaic (PV) plants serve as important contributors to

the renewable energy sector, offering significant potential for sus-

tainable energy generation [7, 10, 35]. Accurate solar power fore-

casting is crucial to balance the electricity supply and demand, and

integrate the PV plants into the electricity grid [26].

Solar power forecasting differs from the traditional time series

(TS) forecasting problem due to its heavy reliance on weather con-

ditions, especially solar irradiation, cloud cover, temperature, and

other meteorological factors [35]. The dynamic processes of these

factors follow several physical principles, which are intrinsically

complicated and unobserved or only partially observed, thus diffi-

cult to be captured by solely historical power series. This indicates

that learning only from the historical pattern is usually insufficient

in this scenario [5]. On the other hand, a critical problem in solar

power forecasting is the noisy historical data and even lack of his-

torical data [26], which is especially true for those newly installed

PV plants. In this case, how to build and deploy accurate forecasting

models given limited data remains challenging.

To address such challenges, the introduction of additional modal-

ities in addition to historical power data becomes essential. In the

realm of solar power forecasting, we deal primarily with three

types of information: historical observed inputs, historical observed

covariates, and future predicted covariates. Among these, future
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predicted covariates, such as numerical weather predictions (NWP),

are often considered the most crucial for accurate solar power fore-

casting [14]. Additionally, historical covariates, including ground-

based all-sky camera images, data collected by instruments onboard

satellite, and remote-sensing data [35], prove to be extremely valu-

able. However, the practical application of these technologies is

sometimes constrained, as sky cameras and remote sensors are

not universally available at solar power plants. On the other hand,

satellite images are photos of the Earth taken by imaging satellites,

usually in a high resolution and broad geographic area, and several

weather phenomena, such as cloud thickness, can be retrieved from

this observed data [3]. Although satellite images capture the true

contextual information about the Earth in real-time, they cannot

provide future predictions for subsequent days. Conversely, NWP

data, generated by physics-informed weather models, offer future

predictions of meteorological variables. However, they are usually

of coarse granularity, and their precision may vary over different

variables and weather conditions [35]. Consequently, for practical

deployment, we select a combination of NWP, satellite imagery, and

historical power data to serve as complementary data sources that

effectively address the challenging day-ahead (short-term) solar

power forecasting problem.

The next challenge arising in fusing multi-modal data is how to

effectively extract and combine valuable information from hetero-

geneous sources, each with distinct characteristics. For instance,

the satellite images are characterized by high volume, yet contain

sparse information [29]. Conversely, NWP data are dense in infor-

mation but often come with systematic biases [35]. Solar power

historical data typically suffer from noise contamination [18, 35].

To address this challenge, we propose a Transformer-based architec-

ture that exploits vector quantization (VQ). Our empirical studies

in Section 5.4 verified that the VQ layers help align the distribu-
tions of different modalities for better fusion and help reduce
noise.

The deployment on numerous newly established solar plants

often presents another challenge in terms of limited historical

data availability [26, 35]. One appealing feature of our proposed

Transformer-based framework is its capability of zero-shot learning

by leveraging data from various solar plants. A detailed experiment

in Section 5.2 demonstrates heterogeneous modality might be
the key to zero-shot learning. The complementary nature of

diverse data modalities bolsters the model’s robustness, as they

provide a more comprehensive understanding of the underlying

patterns that a single modality alone may not capture.

Moreover, we conduct an in-depth study in Section 5.5 to demon-

strate the necessity and efficacy of our trimodality fusion paradigm,

even in the context of high-accuracy numerical weather predictions.

In Section 5.6, we provide a detailed description of the extensive

deployment of FusionSF based on our eForecaster platform [44].

Our contributions are summarized as follows:

(1) We present a multi-modality fusion framework (FusionSF)

for short-term solar power forecasting which outperforms

contemporary SOTAmodels and our latest deployed baseline

model with an improvement of 30.6% and 9.5%, respectively.

(2) We show our model’s strong potential for zero-shot fore-

casting, thanks to the integration and alignment of multiple

modalities. This strategy allows emerging solar plants with

insufficient historical data to achieve accurate predictions.

(3) We incorporate a vector quantized design that, through in-

depth analysis, demonstrates to facilitate the modality fusion.

(4) We release aMulti-modal Solar Power (MMSP) dataset, which

integrates solar power generation records from numerous

plants, satellite imagery, and numerical weather predictions.

This rich dataset is collected from 88 diverse plants spread

over an area of 157,100 square kilometers, covering a dura-

tion of 1.5 years.

(5) Our FusionSF is incorporated into our eForecaster platform [44],

and provides short-term (day-ahead) solar power forecasting

service for more than 300 solar plants with a capacity of over

15GW across three provinces in China.

2 RELATEDWORK
There are two main approaches for solar power forecasting, in-

cluding the physical approach and statistical approach [20]. The

physical approach basically uses a deterministic model with mathe-

matical equations to describe the input and output. As statistical

models are becoming more popular, in this section we mainly focus

on the latest developments in statistical approach, i.e., deep learning

based methods.

2.1 Deep networks for time series and
spatiotemporal forecasting

Solar power generation forecasting can be approached by pure

TS forecasting or spatiotemporal forecasting, with the latter in-

corporating geographical information. Deep neural networks, es-

pecially Transformers, have garnered significant attention in the

realm of TS forecasting [32]. Several efficient and high-performance

Transformers have been developed for this purpose, such as In-

former [40], Autoformer [34], FEDformer [42], FiLM [41], and

PatchTST [23]. Concurrently, fully connected models (like Dlin-

ear [37] and LightTS [38]) and convolution-based models (like

TimesNet [33]) have also emerged as competitive alternatives in

TS forecasting.

In the domain of spatiotemporal forecasting, SimVP model [9]

employs convolution for spatial and temporal data processing. Al-

ternatively, ConvLSTM [27] utilizes a recurrent network to capture

temporal dependencies. Transformer-based models represent an-

other family of methods that possess the potential to address both

temporal and spatial dependencies. To handle a large amount of

data, Earthformer [8] divides images into smaller patches, as also

demonstrated by models such as Pangu [4], which has developed a

large-scale global weather forecasting model and yielded superior

performance compared to conventional NWP methods. Despite the

remarkable success in TS and spatiotemporal forecasting achieved

by deep neural networks, handling solar power forecasting still

poses challenges, especially when there is a lack of multi-modal

data sources to support the predictions. Furthermore, these mod-

els are typically designed to process inputs structured in a grid

formation and, consequently, face difficulties when modeling an

irregular network of stations, where each individual station may

not correspond to a grid point.
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Figure 1: Left: An illustration of our proposed multi-modal framework. The three modalities include solar power historical data, satellite
images, and NWP data. Right: Geographical locations of the 88 solar power plants and the zero-shot learning setting. The plants are grouped
into sets of 10 and are represented in different colors.

2.2 Multi-modal solar forecasting
NWP, satellite, and sky camera are commonly utilized as key data

sources to support solar forecasting [35]. Traditional techniques

that rely on NWP data often employ regression-based approaches,

as showcased in theGlobal Energy Forecasting Competition 2014 [14].

However, the effectiveness of these methods heavily depends on the

accuracy of weather prediction. CrossViVit [5] integrates the satel-

lite images as surrounding physical context. CorssViVit employs a

cross-attention mechanism to effectively combine satellite images

and solar power, and incorporates ROPE [28] to handle the coordi-

nates information. Sky images are frequently leveraged to enhance

ultra-shot-term solar forecasting [35]. Several studies [1, 19, 21]

incorporate sky images as an auxiliary modality to improve solar

power prediction. [21] utilizes a Vision Transformer to analyze

sky images, coupled with an Informer [40] to process solar power

TS. When considering short-term forecasting, the employment of

satellite imagery and NWP is both essential and practical as het-

erogeneous modalities. These modalities offer expansive coverage

and are more widely accessible as shown in Figure 1.

2.3 Zero-shot learning for time series
Despite the existence of robust zero-shot learners for natural lan-

guage, achieving zero-shot learning for time series remains chal-

lenging. This difficulty primarily arises from the distribution dispar-

ities among TS originating from different domains. However, zero-

shot learning within the same domain is possible. N-BEATS [24]

acts as a meta-learning adaptation and demonstrates remarkable

zero-shot performance in the domain of finance (M3 & M4 dataset).

OneFitsAll [43] proves that deep Transformer structure (GPT2)

excels as zero-shot learners. CrossViVit [5] proves the zero-shot

ability for multi-modality solar forecasting.

3 METHODOLOGY
3.1 FusionSF overall architecture
The overall architecture of our proposed FusionSF is illustrated

in Figure 2. We develop a multi-modal framework featuring three

encoder branches to handle historical observed solar power inputs

Xts : [𝑇in, Cts], historical observed context Xctx : [𝑇in, Cctx, 𝐻,𝑊 ],
and future predicted covariates Xaux : [𝑇out, Caux], paired with a

single decoder branch. Here𝑇in and𝑇out denote the temporal length

of inputs and outputs. 𝐻 and𝑊 denote the spatial dimensions of

the contextual images; Cts, Cctx, and Caux represent the number of

features.

Given that historical observed contexts often include voluminous

data sources like satellite imagery and the historical observed inputs

are typically characterized by noisy TS data, we implement a vector-

quantized (VQ) encoder branch for them. This approach offers two

primary benefits: it not only reduces noise in the original data which

enhances the robustness of the extracted features, but also facilitates

the alignment of modalities with varying information densities. In

contrast, future predicted covariates such as the weather prediction

generally manifest as smoother signals with less noise. As a result,

we can directly input the unprocessed signal into its designated

encoder branch without VQ.

We also integrate a Cross Transformer based fusion module

before the decoder, employing a key-value/query (KV/Q) cross-

attention mechanism to fuse the three modalities. It is important

to note that our example only utilizes satellite imagery, numerical

weather prediction (NWP), and historical solar power data for illus-

trative purposes. However, the model’s design is versatile and can

readily incorporate additional data sources such as sky images or

other covariates, using analogous fusion or concatenation modules.

3.2 Feature encoding
Rotary Positional encoding. To accurately model relative dis-

tances, we employ the Relative Positional Encoding (RoPE) [28]
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Figure 2: FusionSF architecture. The contextual images are tokenized, randomly masked, vector quantized, and processed with Vision
Transformer. The vector quantized solar power TS and NWP covariates are processed with Temporal Transformer. The three modalities are
fused with Cross Transformer. In the decoder, the mixed latent representation is processed with Temporal Transformer to make the final
output.

which encodes the position with a rotation matrix and meanwhile

incorporates the explicit relative position dependency in the self-

attention formulation. More details of RoPE can be found in Ap-

pendix B.

Patching & Masking. Building upon the approach pioneered in

the widely recognized Vision Transformer (ViT) [6], we implement

patching to encapsulate small, localized regions of an image. The

satellite image modalityXctx : [𝐵,𝑇in, Cctx, 𝐻,𝑊 ] is divided into 𝑁𝑝
non-overlapping patches and subsequently projected into tokens

with Multi-Layer Perceptron (MLP):

Xembed

ctx
= MLP(Patching(Xctx)). (1)

The shape of Xembed

ctx
is [(𝐵 ∗𝑇 ), 𝑁𝑝 , 𝑑], where 𝐵 is the batch size,

𝑁𝑝 is the number of patches, and 𝑑 is the hidden dimension. Note

that the temporal dimension 𝑇 is permuted into batch dimension.

The time series Xts and auxiliary series Xaux are embedded with-

out patching: Xembed

ts
= 𝑀𝐿𝑃 (Xts), Xembed

aux
= 𝑀𝐿𝑃 (Xaux), where

the shapes of Xembed

aux
and Xembed

aux
are [(𝐵 ∗𝑇 ), 1, 𝑑]. Following [5],

we mask a portion of the tokens in the context during the train-

ing phase. A masking ratio is randomly sampled from a uniform

distribution, and the corresponding tokens and their positional

embedding are masked. During inference, no masking is applied.

Vector quantization (VQ). Vector quantization (VQ) is proposed

in VQVAE [30] to represent the image features in discrete space. By

viewing quantization as a denoising procedure to improve model

robustness, we adopt VQ to limit the patterns of encoding vectors

and attain strong generalization. Formally, we initialize a codebook

𝑒 ∈ R𝐾∗𝐷 , where 𝐾 is the size of the codebook, and 𝐷 is the di-

mension of the encoding vector. The encoding vector is denoted as

𝑧𝑒 (𝑥), which is then replaced by the closest code in 𝑒:

𝑧𝑞 (𝑥) = 𝑒𝑘 ,where 𝑘 = argmin𝑗 | |𝑧𝑒 (𝑥) − 𝑒 𝑗 | |2 . (2)

The replacement of vectors interrupts gradient propagation. To

address this, VQ employs the straight-through estimator [2] to

approximate the gradient by simply copying gradients from the

quantized outputs 𝑧𝑞 (𝑥) to the encoding vectors 𝑧𝑒 (𝑥).
To balance the trade-off between detail preserving and noise

removal, we use residual VQ [36] to recursively quantize the encod-

ing vectors. Following VQVAE [30], we introduce a commitment

loss to ensure that the encoding vectors are close to the codebook:

𝐿𝑐𝑚𝑡 = | |𝑧𝑒 (𝑥) − sg[𝑒] | |2
2
, where sg refers to the stop-gradient oper-

ator, which functions as an identity during the forward process but

has zero partial derivatives during backpropagation. The codebook

is learned through exponential moving averages (EMA) as proposed

in [30]. The residual VQ layer (RVQ) is applied on Xembed

ts
and

Xembed

ctx
: Xquantized

ctx
= RVQ(Xembed

ctx
), Xquantized

ts
= RVQ(Xembed

ts
).

Transformer-based Encoder. In the encoder stage, the quantized

context Xquantized

ctx
is first processed using the Vision Transformer

(VIT) architecture. TVT consists of several components, including

layer normalization, multi-head self-attention, MLP, and residual

connection:

Xlatent

ctx
= VisionTransformer(Xquantized

ctx
) . (3)

Additionally, the quantized time series data: Xquantized

ts
and Xembed

aux

are processed with Temporal Transformer:

Xlatent

ts
= TemporalTransformer(Xquantized

ts
), (4)

Xlatent

aux
= TemporalTransformer(Xembed

aux
) . (5)

Note that within our proposed framework, any alternative vision-

based Transformer or temporal Transformer model can be inte-

grated as a plug-in component to enhance performance.



FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting Conference’17, July 2017, Washington, DC, USA

3.3 Modality mixing
After encoding, it becomes necessary to mix the three modalities.

Xlatent

ts
and Xlatent

aux
are concatenated on hidden dimension, which

allows the data aligned according to the hour of the day: Xlatent

cat
=

concat(Xlatent

ts
,Xlatent

aux
).

Furthermore, we employ the Cross Transformer mechanism to

integrate the image and (TS) modalities. Within this framework,

the image modality is designated as the query (Q), while the TS

modality serves as the key (K) and value (V):

Xlatent

mixed
= CrossAttention(Xlatent

ctx
,Xlatent

cat
,Xlatent

cat
) . (6)

Xlatent

mixed
is the final output of the encoder. In the decoder stage,

Xlatent

mixed
is first processed with anMLP layer and subsequently a Tem-

poral Transformer to output the final prediction
ˆY : [𝐵,𝑇out, Cts].

4 BENCHMARK DATASET
This section presents an overview of our proposed Multi-modal So-

lar Power (MMSP) dataset, which has been made publicly available.

For more details, please refer to Appendix A. The statistics of the

dataset are summarized in Table 1.

Table 1: Dataset statistics.

Dataset Data type Length Dim Freq

MMSP(S)

Satellite 25540≈2 years 64×64×1 1h

NWP 12864 ≈1.5 years 79grid × 15 1h

solar power ts 12840 ≈1.5 years 10plants × 1 1h

MMSP(L)

Satellite 25540≈2 year 64×64×4 1h

NWP 12864 ≈1.5 years 79grid × 15 1h

solar power ts 12840 ≈1.5 years 88plants × 1 1h

Historical time series modality. MMSP dataset encompasses a

comprehensive TS dataset of solar power generation, obtained

from a network of 88 geographically dispersed solar power plants

spanning across a province in China measuring 157,100 square

kilometers. The dataset has been downsampled to a resolution of

60 minutes and covers a temporal range from Jan 2021 to June 2022.

To facilitate parameter tuning and benchmarking, we select the

initial 10 plants to create a smaller dataset MMSP(S).

Historical satellite image modality. The Himawari-8/9 satellites,

operated by the Japan Meteorological Agency (JMA), provide in-

valuable satellite imagery data that has revolutionized weather

monitoring and analysis in the Asia-Pacific region.

Future numerical weather prediction modality. The European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) offers valuable

NWP data that plays a pivotal role in advancing weather forecasting

and related research.

5 EXPERIMENT
5.1 Benchmark

Baselines. We perform a thorough evaluation by comparing Fu-

sionSFwith various SOTA time series baselines, namely Informer [40],

Table 2: Comparative analysis of model performance on MMSP(S)
dataset across "All", "Easy", and "Hard" scenarios. We use MAE(↓) and
RMSE(↓) as metrics. The best results are highlighted in bold, and the
second best results are highlighted with underline.

Models

All (25210) Easy (18014) Hard (7196)

MAE RMSE MAE RMSE MAE RMSE

Persistence 0.06500 0.13909 0.04763 0.10279 0.10838 0.20319

Mean 0.07632 0.12849 0.07674 0.12614 0.07528 0.13417

Clear sky 0.07347 0.15682 0.05589 0.12196 0.11748 0.22119

Informer [40] 0.07973 0.13086 0.07952 0.12867 0.08025 0.13613

Autoformer [34] 0.07830 0.11702 0.07015 0.09876 0.10285 0.15505

Crossformer [39] 0.06599 0.11259 0.06201 0.10173 0.08440 0.14645

PatchTST [23] 0.06575 0.11755 0.06056 0.10192 0.08320 0.14783

FiLM [41] 0.06995 0.12529 0.05783 0.09468 0.10474 0.18154

Dlinear [37] 0.07609 0.12310 0.06364 0.09762 0.10682 0.17035

LightTS [38] 0.06474 0.11048 0.05724 0.09347 0.08324 0.14413

CrossViVit [5] 0.05789 0.11818 0.04891 0.09924 0.08007 0.15535

FusionSF 0.04020 0.08881 0.03891 0.08359 0.04980 0.10690

Autoformer [34], Crossformer [39], PatchTST [23], FiLM [41], Dlin-

ear [37], and LightTS [38], which are specifically designed for pure

TS forecasting tasks. CrossViVit [5] leverages satellite imagery as

contextual information to enhance solar forecasting outcomes. Ad-

ditionally, we introduce some naive statistic methods specifically

tailored for solar power forecasting, which turn out to be practically

useful and widely applied in industry [26]. Persistence [26] uses the
past day’s true values as the prediction for the current day. Mean
uses the average power of all historical series in the training set

as the prediction. Clear Sky computes the theoretical Global Hori-

zontal Irradiance (GHI) at a specific location by its temporal and

geographic information, which implies the total irradiance reaches

the ground in the absence of clouds [13, 15], and then maps it to

solar power. The dataset is divided into training, validation, and

test sets with a ratio of [0.6: 0.2: 0.2].

We recognize that exclusively using our benchmark could be

perceived as a limitation. Nevertheless, the modality fusion strat-

egy presented here is central to our work and merits further in-

vestigation. Lacking a suitable existing benchmark to illustrate

our approach, we have released our dataset to the public and con-

centrated our analysis on it. Testing on alternative two-modality

datasets would not sufficiently highlight our principal contribution

nor ensure real-world applicability.

Full benchmark. As shown in Table 2, it is observed that the

performance of naive baselines is comparable to that of TS base-

lines, as the weather system is chaotic and the input series from

the past 24 hours provides limited guidance. Among the TS fore-

casting algorithms, LightTS performs the best. However, our pro-

posed trimodality framework demonstrates superior performance

to LightTS, with an improvement of 37.9% and 19.6% in terms of

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Moreover, our proposed framework outperforms the CrossViVit

model, which utilizes two modalities, by 30.6% and 24.9% in terms

of MAE and RMSE, respectively.

‘Easy’ vs ‘Hard’ scenario. Since GHI exhibits similarity between

consecutive days, Persistence shows good performance over the
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Figure 3: Prediction visualization from FusionSF and other baselines. The first row shows two ‘Hard’ cases and the second row shows two ‘Easy’
cases.

full test dataset. We categorize samples into ‘Easy’ and ‘Hard’ sub-

sets based on the prediction difficulty metric outlined in [5]. This

metric assesses the challenge posed by a sample in terms of its

susceptibility to a persistence model. If straightforward “copying

and pasting" leads to a high accuracy, the sample is considered as

an ‘Easy’ case. Conversely, if this approach fails to yield accurate

predictions, we designate the sample as a ‘Hard’ one. Specifically,

we calculate the ratio of the area under the power curve for the two

days, i.e., 𝑟 = | log 𝑦
𝑦𝑝𝑟𝑒𝑣

|, where 𝑦 represents the power over 24

hours and 𝑦𝑝𝑟𝑒𝑣 represents the power over the previous 24 hours.

Accordingly, a sample is categorized as ‘Easy’ if 𝑟 < | log( 2
3
) | and

‘Hard’ otherwise. From Table 2, we can observe that FusionSF ex-

hibits more significant improvement in ‘Hard’ scenarios than the

‘Easy’ ones. This outcome underscores the importance of leveraging

NWP data (compared with CrossViVit [5]) in handling scenarios

with fluctuating weather conditions. To investigate why FusionSF

performs well, we plot the prediction of FusionSF, several baselines,

and the ground truth in Figure 3, for both ‘Hard’ and ‘Easy’ scenar-

ios. It can be observed that FusionSF outperforms other methods

significantly in the peak hours when general accurate prediction is

most challenging. We present a complete case study with details in

Appendix D.

5.2 Zero-shot performance on stations outside
the training distribution

Table 3: Comparison of zero-shot performance for different data
modality using MAE(↓) as the evaluation metric. (-) indicates im-
provements on MAE, and (+) indicates degraded performance.

non-zero-shot zero-shot

Plants for training #0-#9 #10-#19 #10-#29 #10-#39

Satellite+TS 0.05789 +34% +14% +32%

Satellite+NWP+TS 0.04020 +4.0% -0.5% -1.2%

To demonstrate the zero-shot learning capability of our model,

we evaluate its performance on stations that lie outside the training

distribution as shown in Figure 4. In Scenario No. 2, we utilized the

Figure 4: Radar plots for analyzing the model performance for zero-
shot learning. The test set includes data from solar plants #0 to #9
and the training set varies. The metrics are rescaled for visual clarity.
A larger radar plot indicates better performance.

data from plants #10 to #19 for training purposes, while reserving

the data from plants #0 to #9 for testing. Our investigation revealed

a performance degradation of 4.0% in the zero-shot learning setting

when compared to the scenario where training and testing are

executed on the same plants (Scenario No. 1).

To further investigate the impact of training set size, we ex-

panded the training set to include data from 50 plants (plants #10 to

#59). Notably, the performance of our model demonstrated an im-

provement, outperforming the non-zero-shot learning approach by

1.3%. These findings underscore the importance of a larger training

set and its positive influence on overall performance.

Note that the non-zero-shot setting (Scenario No. 1) performs

better in the ‘Easy’ scenario while other zero-shot settings (Scenario

No. 2 to No. 5) perform better in ‘Hard’. This distinction arises from

the fact that the former settings can access the patterns present in

the target plants and consequently overfit them. While the zero-

shot models, especially those trained with more plants, are capable

of acquiring a deeper understanding of the relationship between

weather conditions and solar power generation.

As shown in Table 3, the introduction of NWP as a third modality

demonstrates more robust performance in zero-shot learning com-

pared with the two-modality version. This finding emphasizes the
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importance of modality fusion in achieving solidity and reliability

in the zero-shot learning context.

5.3 Ablation study
Ablation of data. By incorporating satellite images as a secondary

modality (No. 2), we observed approximately a 10.6% improvement

in MAE compared to the best TS baseline (No. 1), which aligns with

the findings reported by [5]. Additionally, with the inclusion of

NWP data in conjunction with the TS data (No. 3), we observed a

further 30.6% improvement in MAE compared to the setting No. 2.

This indicates that the NWP data offers a more direct and precise

prediction of weather conditions within the desired time horizon,

while the modeling of the relationship between satellite context

and the target series presents challenges.

The trimodality setting (No. 6) exhibits superior performance

compared to the NWP+TS (No. 3) setting, with an improvement

of 10.7%. This observation suggests that the NWP and context

modalities complement each other, leading to enhanced predictive

capabilities.

In our research, various resolutions of satellite contexts are ex-

amined. We initially employ a resolution of 50km and 64x64 pixels

(No. 6). Finer resolutions of 25km (No. 4) and 10km (No. 5) are also

evaluated. Notably, the degradation of performance is observed

when utilizing the 10km resolution, primarily due to the limited

spatial coverage of the context area at this resolution.

Table 4: Ablation study on MMSP(S) dataset for analyzing the impact
of data modalities and model structures.

Methods MAE RMSE

Ablation

of data

No. 1 TS (LightTS) 0.06474 0.11048

No. 2 TS+Satellite 0.05789 0.11818

No. 3 TS+NWP 0.04503 0.09890

No. 4 TS+NWP+Satellite(25km) 0.04144 0.09046

No. 5 TS+NWP+Satellite(10km) 0.04267 0.08862

Ours:

FusionSF

No.6 TS+NWP+Satellite

w/VQ on Satellite&TS

0.04020 0.08881

Ablation

of module

No.7 w/o VQ 0.04124 0.09222

No.8 w/ VQ only on Satellite 0.04289 0.08875

No.9 w/ VQ only on TS 0.04266 0.09213

No.10 w/ VQ on Satellite&TS&NWP 0.04152 0.08985

No.11 w/o Random Masking 0.04369 0.09139

Ablation of module. We conduct an ablation study on various

VQ modules within our proposed framework. Employing VQ on

both TS and satellite (not on NWP) leads to the best performance.

Additionally, it is noteworthy that the application of random mask-

ing to the satellite modality results in a performance enhancement

of approximately 8.0%.

5.4 How does VQ adjust distributions?
To elucidate the mechanisms by which vector quantization (VQ)

layers contribute to enhanced model performance, we visualize the

latent values with and without the VQ layers. In Figure 5 Upper,

we observe that the VQ layer functions as a normalizing agent,

condensing the distribution of latent values for satellite images. We

employ the Kullback-Leibler (KL) divergence as a metric to assess

the similarity between the latent distributions of images and TS

data. In the absence of VQ, the KL divergence is 0.264. However,

the implementation of VQ results in a significant reduction of the

KL divergence to 0.080, thereby indicating a substantial alignment

and enhancement of distributional proximity between the latent

representations of different modalities.

In the t-SNE visualizations (Figure 5 Lower), the application

of VQ delineates each cluster more distinctly and makes different

tokens evenly distributed across these clusters.

Figure 5: Comparison of latent value distributions employing VQ
for satellite images and TS data. The upper panels display the distri-
butions with and without VQ for satellite images (Upper Left) and
TS (Upper Right). Lower panels illustrate t-SNE visualizations of
latent values corresponding to satellite images with (Lower Left) and
without (Lower Right) VQ. Distinct colors denote disparate tokens.

5.5 Where is the limit?
Even with access to the most precise weather forecasts or actual

meteorological conditions, our research indicates that multi-modal

approaches remain essential.

In the experiments shown in Table 5, we utilized SolarTCN, a

lightweight CNN-based backbone model that has been extensively

deployed in our real-world solar forecasting projects. This model

mainly relies on NWP to build a regression model for solar power

forecasting, which is a widely adopted approach [14]. Addition-

ally, we introduce the 5th generation of ECMWF Reanalysis data

(ERA5) [12], which combines model data with observation data

using data assimilation and is recognized as the best estimation of

the state of the atmosphere [11, 17]. It provides a dataset of several

weather fields on 0.25◦ latitude-longitude resolution and 1 hour

time step. Recent AI-based weather forecasting models like Four-

CastNet [25], Pangu-Weather [4], and GraphCast [16] all use ERA5

as the ground truth.

In scenario No. 3, by training and testing SolarTCN with ERA5

as input, the performance is improved (0.0422 on MAE) compared

to using NWP (0.0444 on MAE). This MAE value of 0.0422 can be

considered as the theoretical upper bound that SolarTCN can reach

by continuously enhancing the accuracy of the weather prediction.

Note that the coarseness of ERA5 data, which has a resolution of

roughly 0.25◦, and the lack of actual observed meteorological data

for calibration, prevents ERA5 from accurately reflecting real-world

weather conditions at solar power stations.
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Table 5: Analysis of forecasting error due to NWP inaccuracy. An as-
sessment using ERA5 data as ideal weather reports and Satellite(Real)
observations for actual cloud conditions, with SolarTCN serving as
the backbone.

Scenario No. No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

Method

FusionSF ✓ - - - - -

SolarTCN - ✓ ✓ ✓ ✓ ✓

Data

TS: -24h→0h ✓ - - - - -

NWP: 0h→24h ✓ ✓ - - ✓ -

ERA5: 0h→24h - - ✓ - - ✓
Satellite: -24h→0h ✓ - - - - -

Satellite(Real): 0h→24h - - - ✓ ✓ ✓

Metric MAE 0.0402 0.0444 0.0422 0.0502 0.0406 0.0399

Similarly, in scenario No. 4, we utilize the satellite images in

the future horizon (0h→24h) to represent real cloud conditions

(Satellite (Real)). SolarTCN achieves 0.0502 on MAE, indicating sub-

par performance. This observation highlights the fact that relying

solely on a single modality (No. 2, No. 3, and No. 4), even when

using ground truth weather conditions (No. 3 and No. 4), does not

lead to satisfactory performance.

While an enhanced weather prediction may improve accuracy,

it is not sufficient to achieve perfect predictions. Instead, our ex-

perimental results indicate that introducing a new modality might

be more promising. In our approach (No. 1), by combining two

exogenous modalities including satellite and NWP, our solution

can utilize data sources that complement each other and bring more

significant improvement.

In future research, by introducing more sources of information

pertaining to weather conditions as input, for example, sky images

and remote sensing data, we expect to achieve even greater im-

provements in the accuracy and performance of the solar power

prediction model.

5.6 Real-world deployment
As of Jan. 2024, FusionSF has been deployed to predict day-ahead

solar power for more than 300 solar plants across three provinces

in China. These plants have a total capacity of over 15 GW and gen-

erate more than 1.5 × 1010 kWh per year. Our system outperforms

the previous forecasting systems (SolarTCN) with a consistent im-

provement of 1.5% in accuracy. According to [45], minor forecasting

errors can lead to a 30-fold increase in imbalance fees in Scandi-

navian energy markets. While the dynamics of China’s electricity

market differ, enhancing forecast accuracy is expected to yield sig-

nificant cost savings, especially considering the diversities among

these deployed plants.

In the deployment phase, FusionSF is incorporated into our eFore-

caster platform [44]. This platform stands as a versatile, modular,

and cohesive artificial intelligence framework designed to facili-

tate diverse applications for electrical forecasting, such as electric

load forecasting, wind power forecasting, and solar power fore-

casting. As illustrated in Figure 6, with eForecaster, developers can

implement an end-to-end forecasting pipeline composed of Pre-

processing, Feature engineering, Modelling, and Post-processing

stages. In terms of data, a database that contains historic solar

power, ECMWF high-resolution 10-day forecast (HRES) NWP data,

and Himawari satellite data are maintained in the backend, where

all these data are retrieved from their source, and pushed into the

database in real-time. When making day-ahead forecasting, the

trimodal data, along with other extra data like temporal or season

information, constitute the raw input. Specifically, for solar power

forecasting, we establish a Pre-processing module where outliers

are removed through our robust anomaly detection methods [31],

and then imputations are made for missing values. The Feature En-

gineering module extracts temporal and coordinate features, while

the Modeling module allows for the selection and application of spe-

cific forecasting algorithms. Finally, users can ensemble and adjust

the results in the Post-processing module. Since station capacity

changes, power curtailments, and extreme events (e.g., sandstorms,

snowstorms) all greatly influence the actual solar power penetra-

tion into the power grid, this procedure is crucial in reality. For

example, the user can adjust the predicted power directly when

equipment maintenance happens.

Notably, FusionSF is trained offline and necessitates only the

inference process in online environments. This attribute enables the

model to operate with minimal computational resources, obviating

the need for GPU support. Benefiting from the zero-shot learning

capacity, our algorithm remains competitive in prediction accuracy

even though approximately 30% of the solar stations utilizing it have

insufficient historical data. Moreover, when new stations are set up,

the cold start challenge is eased thanks to FusionSF’s advantage in

zero-shot learning.

Figure 6: Solar forecasting platform.

6 CONCLUSION
In summary, we aim to propel advancements in solar power fore-

casting by utilizing a refined VQ (Vector Quantized) multi-modality

fusion framework and incorporating multi-modal data sources. This

approach is designed to enhance both accuracy and zero-shot learn-

ing capabilities for practical and real-world deployment. Through

our widespread applications across numerous solar power plants,

we demonstrate that this interdisciplinary approach harbors con-

siderable potential for optimizing renewable energy utilization and

promoting sustainable energy practices.
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A DETAILS OF THE DATASET
This section provides a comprehensive overview of our proposed

Multi-modal Solar Power (MMSP) dataset. Table 1 details critical

aspects of the dataset, including the type of data, the temporal span

of the data collection, the dimensions of the data, and the resolu-

tion of individual modality. We provide a comprehensive version

denoted as MMSP(L) and a smaller version as MMSP(S). We have

made this dataset publicly accessible to facilitate knowledge sharing

and collaborative research. To ensure confidentiality, we employ

anonymization techniques on geographical information (latitude

and longitude) of the power plants, NWP data, and satellite data.

We also normalize solar power measurements based on capacity.

A.1 Solar power time series

Figure 7: Geographical locations of the 88 solar power plants. The
plants are grouped by sets of 10 and represented in different colors.

Figure 8: Correlation heatmap of 88 solar power plants.

The MMSP dataset is a comprehensive multi-modal dataset com-

prising time series of solar power generation. This dataset has been

collected from a network of 88 solar power plants located across a
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province in China, covering a vast area of 157,100 square kilometers.

The geographical locations of these solar plants are illustrated in

Figure 7. The correlation among the 88 plants is depicted in Figure 8.

It is observed that the plants located in close proximity exhibit a

higher correlation, indicating a stronger relationship between solar

power generation and the weather conditions specific to a partic-

ular location. The dataset covers a temporal range from January

2021 to June 2022, allowing for a comprehensive analysis of solar

power trends.

The original resolution of the dataset is 10 minutes, but for

convenience, it has been downsampled to a resolution of 60 minutes.

The time series data has undergone a removal process to eliminate

abnormal samples. However, it still includes instances of power

restriction conditions, where the power generation of the plants is

limited to a very low level despite favorable solar conditions. It is

important to note that such conditions are infrequent within the

dataset, and although they may be considered as noise, we have

chosen to retain these samples for further analysis. To facilitate

parameter tuning, we have chosen the initial 10 plants to construct

a smaller dataset called MMSP(S).

Note that the dataset spans a duration of only 1.5 years, which

may be considered relatively short for training a large-scale weather

system model. However, this is a common scenario for many solar

plants, as they are newly deployed and have limited historical data

available. To address the challenge of insufficient data, we propose

FusionSF as a joint model for all plants instead of creating individual

models for each plant. By doing so, we aim to capture and establish

the relationship between complex weather patterns and solar power

generation.

A.2 Satellite image
The geostationary satellites Himawari-8 andHimawari-9 are equipped

to capture high-resolution imagery across East Asia, Oceania, and

select regions of the Pacific Ocean. These satellites provide an

extensive data resource, proving invaluable for advancements in

meteorological and climate research. The Himawari-8/9 data en-

compasses various satellite products, including visible, infrared, and

water vapor imagery, enabling scientists to investigate atmospheric

phenomena, monitor severe weather events, and study cloud dy-

namics. The availability of Himawari-8/9 satellite image data has

greatly contributed to advancements inweather forecasting, climate

research, and the understanding of regional weather patterns.

The Advanced Himawari Imagers (AHIs) on the Himawari8/9

satellite capture complete views of the Earth’s surface in 16 different

observation bands. These bands consist of three for visible light,

three for near-infrared, and ten for infrared wavelengths. These

observations are taken every 10 minutes and provide a spatial

resolution that varies between 0.5 to 2 kilometers [3].

Himawari-8/9 are geostationary satellites that jointly offer unin-

terrupted coverage of the target region. Figure 9 showcases a series

of images depicting the transition from morning to night within

a single day. From these visuals, it is evident that the imagery is

dependent on sunlight reflection, resulting in clouds being unde-

tectable during the night. It is only during the daytime that satellite

imagery can capture visible cloud formations.

We conducted a preliminary experiment to determine the optimal

number of bands required for solar power forecasting. After careful

consideration, we select the three visible bands (blue: Albedo_01,

0.47 𝜇𝑚, green: Albedo_02, 0.51 𝜇𝑚, red: Albedo_03, 0.64 𝜇𝑚) and

one near-infrared band (Albedo_04, 0.86 𝜇𝑚) as the context satellite

image. Our analysis demonstrated that utilizing these four bands is

sufficient for accurate solar power forecasting. A sample of selected

4 channels is demonstrated in Figure 10. In the MMSP(s) dataset,

we use the satellite image of 64x64 pixels and only keep the first

channel. In the MMSP(L) dataset, we keep all 4 channels.

We employ a spatial and temporal downsampling approach to

effectively manage the resolution and frequency of our dataset.

Specifically, on the spatial dimension, we initially select an area

of 640x640 pixels, corresponding to a 5km resolution. However, to

reduce computational complexity, we downsample the input image

to 64x64 pixels, equivalent to a 50km resolution. The selected area

and the locations of plants of interest are shown in Figure 11. On

the temporal dimension, we downsample the data to a frequency

of every 60 minutes. This downsampling approach allowed us to

maintain essential temporal information while reducing the overall

volume of data. The dataset spans January 1, 2021, to December 31,

2022, encompassing the entire timeline of solar power data used in

our study.

A.3 Numerical weather prediction
We rely on the Numerical Weather Prediction (NWP) data offered

by The European Centre for Medium-Range Weather Forecasts

(ECMWF). Renowned for its expertise in global atmospheric mod-

elling, ECMWF grants access to high-resolution NWP datasets.

These datasets are generated using the state-of-the-art Integrated

Forecasting System (IFS), which empowers researchers with com-

prehensive and reliable information for medium-range weather

predictions.

This data is streamed as an online service and is regularly up-

dated four times a day. It offers global weather predictions for

several days in advance, with a temporal resolution of 60 minutes.

This real-time and regularly updated nature of the dataset allows

for accurate and up-to-date forecasting of weather patterns at a

global level.

The NWP dataset contains essential meteorological information

that plays a crucial role in forecasting and understanding weather

patterns. From the NWP dataset, we select 17 columns that contain

crucial weather features. These features encompass a range of vari-

ables including wind, temperature, pressure, cloud cover, and solar

radiation. The selected feature names are as follows:

(1) Clear-sky direct solar radiation at surface,

(2) Direct solar radiation

(3) Downward UV radiation at the surface

(4) Surface solar radiation downwards

(5) Surface net solar radiation

(6) Surface pressure

(7) Sunshine duration

(8) Low cloud cover

(9) Total cloud cover

(10) 2 metre temperature

(11) 2 metre dewpoint temperature
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Figure 9: The cloud optical thickness over the daytime.

Figure 10: Visualization of satellite data on Himawari8/9 (first 4
bands: Aldebo 01 to Aldebo 04).

(12) Skin temperature

(13) Total precipitation

(14) 100 metre U wind component

(15) 100 metre V wind component

The NWP data is provided at a resolution of 10km. To align

the NWP data with the solar power plant, we assign the plant to

the nearest point on the NWP grid. Before inputting the weather

features into the model, we perform a normalization process. This

step ensures that all the weather variables are on a consistent scale.

B ROTARY POSITION EMBEDDING (ROPE)
Positional encoding has been proven to be an effective component

within Transformer architectures. In our specific scenario, relative

positional encoding is more suitable than absolute positional en-

coding. This is due to the fact that the relevance of a solar station

is largely determined by the proximity.

Rotary Positional Encoding (RoPE) [28] is an efficacious method

for encoding relative position information. The fundamental objec-

tive of RoPE is to devise a mechanism whereby the inner product

Figure 11: The selected coverage area of satellite imagery data and
the locations of the solar power plants.

inherently captures and represents positional data in terms of rela-

tive distances and relationships:

⟨𝑓𝑞 (x𝑚,𝑚), 𝑓𝑘 (x𝑛, 𝑛)⟩ = 𝑔(x𝑚, x𝑛,𝑚 − 𝑛), (7)

where x𝑚 and x𝑛 are the embeddings of query (Q) and key (K).

Their relative distance is𝑚 −𝑛. So the goal is to solve the functions
𝑓𝑞 (x𝑚,𝑚) and 𝑓𝑘 (x𝑛, 𝑛) to conform the aforementioned relation.

Following a thorough mathematical derivation as outlined in

[28], we arrive at the formulation of 𝑓𝑞,𝑘 that adheres to the previ-

ously mentioned relation. The expression in a d-dimensional space

is given by:

𝑓𝑞,𝑘 (x𝑚,𝑚) = R𝑑Θ,𝑚W𝑞,𝑘x𝑚, (8)

where
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R𝑑Θ,m =
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is the rotary matrix with pre-defined parameters Θ = {𝜃𝑖 =

10000
−2(𝑖−1)/𝑑 }, 𝑖 ∈ [1, 2, ..., 𝑑/2].

Leveraging the sparsity of R𝑑Θ,m, a more computationally efficient

realization could be implemented in the code [28], as follows:
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So given input 𝑥 and its positional embeddings 𝑠𝑖𝑛 and 𝑐𝑜𝑠 , the

algorithm for employing RoPE in a self-attention mechanism is

shown in Algorithm 1.

Algorithm 1 Self Attention with Rotary Positional Encoding

Input: 𝑥 of shape [B, N, D], 𝑠𝑖𝑛 of shape [B, N, D], 𝑐𝑜𝑠 of

shape [B, N, D]

Output: 𝑜𝑢𝑡 of shape [B, N, D]
1: procedure ForwardPass(𝑥 , 𝑠𝑖𝑛, 𝑐𝑜𝑠)
2: 𝑞 ← to_q(𝑥) ⊲ Project input to query

3: 𝑘, 𝑣 ← to_kv(𝑥) .chunk(2) ⊲ Project input to key and

value

4: 𝑞 ← 𝑞 ∗ 𝑐𝑜𝑠 + rotate_every_two(𝑞) ∗ 𝑠𝑖𝑛 ⊲ Function of

R𝑑Θ,𝑚𝑥 defined in (9)

5: 𝑘 ← 𝑘 ∗ 𝑐𝑜𝑠 + rotate_every_two(𝑘) ∗ 𝑐𝑜𝑠 ⊲ Function of

R𝑑Θ,𝑚𝑥 defined in (9)

6: 𝑑𝑜𝑡𝑠 ← einsum(”𝑏𝑖𝑑, 𝑏 𝑗𝑑− > 𝑏𝑖 𝑗”, 𝑞, 𝑘) ⊲ Compute

attention matrix

7: 𝑎𝑡𝑡𝑛 ← softmax(𝑑𝑜𝑡𝑠)
8: 𝑎𝑡𝑡𝑛 ← dropout(𝑎𝑡𝑡𝑛)
9: 𝑜𝑢𝑡 ← einsum(”𝑏𝑖 𝑗, 𝑏 𝑗𝑑− > 𝑏𝑖𝑑”, 𝑎𝑡𝑡𝑛, 𝑣)
10: 𝑜𝑢𝑡 ← to_out(𝑜𝑢𝑡) ⊲ Project output with linear layer

11: return 𝑜𝑢𝑡
12: end procedure

C IMPLEMENTATION DETAILS
The training of FusionSF is conducted on a single Nvidia V100

GPU, utilizing a batch size of 16. During the training phase, the

AdamW optimizer [22] was leveraged, accompanied by a weight

decay parameter set to 0.05. The following list delineates the hy-

perparameters configured for FusionSF:

patch_size: [8, 8]
image_size: [64, 64]
ctx_channels: 1
ts_channels: 1
pe_type: rope
use_glu: True
freq_type: lucidrains
max_freq: 128
ctx_masking_ratio: 0.99
ts_masking_ratio: 0
dim: 64
depth: 12
heads: 8
mlp_ratio: 4
dim_head: 64
dropout: 0.4
num_mlp_heads: 1
decoder_dim: 128
decoder_depth: 4
decoder_heads: 6
decoder_dim_head: 128
vq_in_ts: True ,
vq_in_ctx: True ,
vq_in_guide: False ,

Listing 1: Hyperparameters of FusionSF

D A CASE STUDY

Figure 12: An example of 24h power predictions. The left figure
shows the true power curve over two consecutive days and predic-
tions by FusionSF (TS+NWP+Satellite) and SolarTCN (TS+NWP). The
right figure shows the cloud optical thickness over the daytime of
the second day. The site position is marked by a red triangle.

In this section, we provide an example to demonstrate how the

multi-modality data helps to improve the predictions on ‘hard’

cases. As shown in Figure 12 (Left), the target day is not a typical

sunny day, where power increases with a clear-sky pattern before

noon and then decreases sharply in the afternoon. There is a bias

in weather prediction, as a result, the predicted power curve (by

SolarTCN) with only TS and NWP as input deviates from the true

curve. Usually, such a phenomenon is owed to the motion of clouds,

where some thick cloud covers the site in the afternoon. Figure 12

(Right) shows the cloud coverage during the daytime, in which the

red triangle marks the site position. Notice that a cloud cluster is

moving northeast, and the site is on its edge before noon and then

obscured. This explains why the scale of power is slightly smaller
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Table 6: Comparative analysis of model performance on MMSP(S) dataset across "All", "Easy", and "Hard" scenarios. We use MAE(↓) and RMSE(↓)
as metrics, including parameter size and floating point operations (FLOPs) to measure model efficacy. The best results are highlighted in bold,
and the second best results are highlighted with underline.

Models Parameters FLOPs

All (25210) Easy (18014) Hard (7196)

MAE RMSE MAE RMSE MAE RMSE

Persistence - - 0.06500 0.13909 0.04763 0.10279 0.10838 0.20319

Mean - - 0.07632 0.12849 0.07674 0.12614 0.07528 0.13417

Clear sky - - 0.07347 0.15682 0.05589 0.12196 0.11748 0.22119

Informer [40] 7.5M 175M 0.07973 0.13086 0.07952 0.12867 0.08025 0.13613

Autoformer [34] 7.1M 204M 0.07830 0.11702 0.07015 0.09876 0.10285 0.15505

Crossformer [39] 58M 328M 0.06599 0.11259 0.06201 0.10173 0.08440 0.14645

PatchTST [23] 9.5M 85.3M 0.06575 0.11755 0.06056 0.10192 0.08320 0.14783

FiLM [41] 4.7M 42.5M 0.06995 0.12529 0.05783 0.09468 0.10474 0.18154

Dlinear [37] 1.2K 34.6K 0.07609 0.12310 0.06364 0.09762 0.10682 0.17035

LightTS [38] 0.11M 321K 0.06474 0.11048 0.05724 0.09347 0.08324 0.14413

CrossViVit [5] 3.8M 1.24B 0.05789 0.11818 0.04891 0.09924 0.08007 0.15535

FusionSF 4.3M 1.25B 0.04020 0.08881 0.03891 0.08359 0.04980 0.10690

than the previous day and a significant cutdown occurs in the early

afternoon.

E FULL BENCHMARK
In Table 6, we provide the performance along with an analysis of

the computational complexity in the benchmark. While FusionSF

introduces additional modalities, the resultant increase in compu-

tational complexity remains acceptable in comparison to baseline

models.
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