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Abstract
Next Set Recommendation (NSRec), encompassing related tasks
such as next basket recommendation and temporal sets prediction,
stands as a trending research topic. Although numerous attempts
have been made on this topic, there are certain drawbacks: (i) Ex-
isting studies are still confined to utilizing objective functions com-
monly found in Next Item Recommendation (NIRec), such as binary
cross entropy and BPR, which are calculated based on individual
item comparisons; (ii) They place emphasis on building sophisti-
cated learning models to capture intricate dependency relationships
across sequential sets, but frequently overlook pivotal dependency
in their objective functions; (iii) Diversity factor within sequential
sets is frequently overlooked. In this research, we endeavor to un-
veil a universal and Sets-level optimization framework for Next Set
Recommendation (SNSRec), offering a holistic fusion of diversity
distribution and intricate dependency relationships within tempo-
ral sets. To realize this, the following contributions are made: (i)
We directly model the temporal set in a sequence as a cohesive en-
tity, leveraging the Structured Determinantal Point Process (SDPP),
wherein the probabilistic DPP distribution prioritizes collections of
structures (sequential sets) instead of individual items; (ii) We intro-
duce a co-occurrence representation to discern and acknowledge
the importance of different sets; (iii) We propose a sets-level opti-
mization criterion, which integrates the diversity distribution and
dependency relations across the entire sequence of sets, guiding the
model to recommend relevant and diversified set. Extensive experi-
ments on real-world datasets show that our approach consistently
outperforms previous methods on both relevance and diversity.

CCS Concepts
• Information systems→ Data stream mining.
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1 Introduction
Next Item Recommendation (NIRec), also widely recognized as se-
quential recommendation [1, 28, 48], is a predictive model inferring
the next likely item of interest from a user’s previous temporal
item sequence. Extending this concept, Next Set Recommendation
(NSRec) aims to predict a subsequent set of items or products by
analyzing previous set sequence. Such mechanisms are applica-
ble in various real-world scenarios, including predicting a user’s
next purchase based on his/her historical transaction records or
recommending a new playlist derived from the analysis of his/her
daily music listening patterns over several days. Within this field
of study, relevant topics encompass Next Basket Recommendation
(NBRec) [44, 53] and Temporal Sets Prediction (TSP) [25, 56]. NBRec
is derived from the pattern of consumers repeatedly buying assort-
ments of items across different times. In contrast, temporal sets
prediction is a newer and broader task that does not solely focus on
item baskets but also extends to predicting set sequences in various
domains, such as academic courses over semesters or daily online
behaviors (clicking or adding products to shopping carts) [47]. This
approach is fundamentally a sequential sets to sequential sets learn-
ing problem, which initially does not emphasize the personalization
aspect inherent in recommendation tasks [15]. However, current re-
search in the field [54, 55] frequently incorporates user preferences
into the equation, thereby aligning certain temporal sets prediction
tasks with the scope of NSRec.

Figure 1 clearly illustrates the distinction between NIRec and
NSRec, with NSRec being the more complex task as it involves pre-
dicting the next set based on set-level temporal sequence, compared
to NIRec’s prediction of the next item from item-level sequence.
The complexity of NSRec is further amplified by the presence of
an arbitrary number of items within a temporal set, necessitating
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Figure 1: Illustration of next item/set recommendation.

sophisticated models that can discern both dependencies within
sets (DinS) and across sets (DacSs). These advanced models typ-
ically enhance sequence processing architectures like Recurrent
Neural Networks (RNNs) [3, 13, 25] and Transformer [14, 47, 57] to
obtain item- and set-level representations. However, it is puzzling
that despite the sophisticated model designs, the development of
specialized objective functions for NSRec has been overlooked. In-
stead, there is a tendency to employ objective functions common
in NIRec, primarily pointwise loss [10] (e.g., weighted mean square
loss [25], binary cross-entropy loss [33, 47, 57], and the multi-label
soft margin loss [22, 27, 56]) and pairwise Bayesian Personalized
Ranking (BPR) [45, 53], which are all based on individual item com-
parisons. We argue that these functions may not adequately address
the complexities inherent in NSRec. Specifically, individual item-
level loss functions presume the estimated items to be mutually
independent [36]. For instance, the calculation of pointwise loss is
achieved by contrasting the predicted values of items (in target and
negative sets) against their true labels, and BPR accumulates the
margins between each positive item and its negative counterpart.
As Figure 1 shows, such an approach to calculating loss neglects
both the DinS within the 𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦 set and the DacSs across the
sequence of 𝐶𝑙𝑜𝑡ℎ𝑒𝑠 → 𝐵𝑒𝑎𝑢𝑡𝑦 → 𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦 temporal sets.

In this work, we are committed to the development of an univer-
sal optimization framework at the temporal sets level specifically
for next set recommendation. Our use of the term ‘sets’ stems from
the intention to capture and represent the dependencies that exist
not only within the individual set but also among sets over time. An
intuitive approach is to treat the temporal set as a singular element,
thus enabling a shift away from individual item comparisons to-
wards direct set entity comparisons. Representing a set, irrespective
of the number of items it contains, as a whole inherently accounts
for DinS and facilitates the high-level formulation of DacSs. How-
ever, three primary challenges arise in the pursuit of this vision:
• Considering a set as an element renders the task of discerning
sequence preferences among distinct sets more complex. For
example, when faced with set preferences such as {0.3, 0.4, 0.3}
and {0.5, 0.2, 0.3}, it becomes a challenge to evaluate which set
holds greater importance in the context of preference learning.

• Existing optimization methods in NSRec have centered on item-
level relevance comparison, neglecting the diversity metric. Our
optimization framework expands this focus to evaluate sets as
a whole, thus confronting the dual challenge of modeling set
sequences and maintaining their diversity.

• Synthesizing multiple crucial components, such as dependency,
relevance, and diversity, into a comprehensive optimization frame-
work presents a formidable challenge, particularly given the in-
tricacies of addressing NSRec.

To address these identified challenges, we make the following
key contributions:
• C1: Supplementing the sequence preference representation com-
monly employed in NIRec and NSRec, we introduce an innovative
co-occurrence representation. This representation measures the
cohesion among items within the temporal set, thereby discern-
ing and validating the differential impact of a specific set.

• C2: In line with the objective to conceptualize temporal sets as
elements, our optimization framework directly models the struc-
tural properties of temporal sets by leveraging the Structured
Determinantal Point Process (SDPP), wherein the probabilistic
DPP distribution prioritizes collections of structures. A structural
similarity measurement approach is proposed for considering
diversity in the formulation of optimization criterion.

• C3: In response to the complex requirements of NSRec, we make
the very first attempt to propose a specialized sets-level opti-
mization criterion, which formulates and captures the DinS and
DacSs dependencies. Guided by this criterion, we develop a uni-
versal and Sets-level optimization framework for Next Set
Recommendation (SNSRec), which promotes an informed learn-
ing process that synergizes preference and co-occurrence repre-
sentations, and preserving diversity in the set sequences.

• C4: SNSRec stands out for its generality applicability and prac-
ticality, allowing mainstream NSRec methods to be deployed
within it. This integration, in conjunction with SNSRec’s three
core components (C1-C3), leads to improvements in both accu-
racy and diversity of NSRec.

2 Preliminary
This section provides some preliminaries, including the formaliza-
tion of NSRec and DPP.

2.1 Problem Formalization
Next set recommendation can be formalized as follows: Let U ={
𝑢1, · · · , 𝑢 |𝑈 |

}
and V =

{
𝑣1, · · · , 𝑣 |𝑉 |

}
be the entirety of users and

items (items or products), respectively. 𝑆𝑡 with an arbitrary number
of interacted elements is adopted to denote a user interaction set,
𝑆𝑡 ⊂ V. Given a user’s historical user-set interactions represented
as a temporal sequence of sets 𝑺 = {𝑆1, 𝑆2, · · · , 𝑆𝑡 }, the goal of
NSRec is to predict the subsequent set according to the historical
records, that is, 𝑆𝑡+1 = 𝑓 (𝑺) .

2.2 Determinantal Point Processes
As elegant probabilistic models, determinantal point processes
(DPPs) have beenwidely employed for diversification [20, 30, 31, 36].
A DPP P over a ground set Y = {1, 2, . . . , 𝑀}, namely the item or
product catalog, is a probability measure on 2Y (the set of all sub-
sets of Y ). If 𝑌 ⊆ Y is a random subset drawn according to P, the
probability is P(𝑌 ) ∝ det (L𝑌 ), where L ∈ R𝑀×𝑀 is a real, positive
semi-definite kernel matrix indexed by the elements of 𝑌 . The mar-
ginal probability of including one element 𝑌𝑖 is P (𝑌𝑖 ) = L𝑖𝑖 . That
is, the diagonal of L gives the marginal probabilities of inclusion for
individual elements of Y. The probability of selecting two items
𝑌𝑖 and 𝑌𝑗 is L𝑖𝑖L𝑗 𝑗 − L2

𝑖 𝑗
= P (𝑌𝑖 ) P

(
𝑌𝑗
)
− L2

𝑖 𝑗
. The entries of the

kernel L usually measure similarity between pairs of elements in
Y. Thus, highly similar elements are unlikely to appear together.
In this way, the repulsive characteristic (i.e., diversity) with respect
to a similarity measure is captured.
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3 Methodology
In this section, we introduce SNSRec by first modeling the temporal
set as a structure, and then introduce preference and co-occurrence
representations, which are used to measure the structure’s quality.
Finally, we present our sets-level optimization criterion.

3.1 Structural Temporal Set Modeling
Reviewing the formalization of NSRec, i.e., forecasting the subse-
quent sets given previous set sequence, the basic component of this
prediction task is the set instead of individual items or products,
which is also the point that makes this problem apart from NIRec.
This implies that standard DPPs are inadequate for the complex
relations in set sequence, leading us to consider the structured
determinantal point process (SDPP) [30] for its proficiency in mod-
eling sets with inherent structures, such as temporal sets in this
work. In SDPP case, elements of a ground set Y are structures,
which means that we will no longer think of Y = {1, 2, . . . , 𝑀};
instead, each element 𝑌𝑖 ∈ Y is a structure given by a collection of
𝑅 parts

(
𝑌
(1)
𝑖

, 𝑌
(2)
𝑖

, . . . , 𝑌
(𝑅)
𝑖

)
, and each part takes a value from a

finite set of𝑀𝑅 possibilities. In the context of NSRec, each structure
element is a user interaction set 𝑆𝑡 at time 𝑡 containing 𝑅 items or
products in V. Thus, a temporal set can be explicitly represented
as an integrated structure. A random subset drawn from a SDPP
P can be a temporal sequence of sets, i.e., 𝑺 . In this setting, we
can regard NSRec as a problem of drawing salient (accurate and
diversified) sets of temporal structures according to the SDPP dis-
tribution. SDPP directly treats the temporal set as a united element
(DinS) and possesses powerful ability of capturing dependencies
across sets (DacSs) incorporating notions of quality and diversity
by means of global probabilistic measure, and thus naturally fits
the NSRec problem. As a result, introducing SDPP into NSRec will
push the corresponding research into a new frontier.

However, we need to note that when the number of elements
in Y is exponential, structured DPPs actually model a distribution
over the doubly exponential number of subsets of an exponentialY
[20]. An immediate challenge is that it is difficult to explicitly write
down the SDPP kernel L. In this work, we therefore conduct SDPP
distribution calculation based on the set sequence specified SDPP
kernel L(𝑺 ) , i.e., a kernel over sequence ground set that only involves
structures (sets) of a set sequence 𝑺 instead of over all structures.
3.1.1 Quality Modeling. We use the quality/diversity decomposi-
tion to define the entries of SDPP kernel L,

𝐿𝑎𝑏 = 𝑞(𝑆𝑎)𝜙 (𝑆𝑎)⊤𝜙 (𝑆𝑏 )𝑞(𝑆𝑏 ), (1)

where 𝑞 (𝑆𝑎) is a nonnegative measure of the quality of a structure
(set) 𝑆𝑎 , and 𝜙 (𝑆𝑎) represents a vector of diversity features so that
𝜙 (𝑆𝑎)⊤ 𝜙 (𝑆𝑏 ) is a measure of the similarity between structures 𝑆𝑎
and 𝑺𝑏 . SDPPs assume a factorization of the quality score 𝑞 (𝑆𝑎)
and similarity score 𝜙 (𝑆𝑎)⊤ 𝜙 (𝑆𝑏 ) into parts for allowing efficient
normalization and sampling. Formally, SDPP decomposes quality
multiplicatively and similarity additively:

𝑞 (𝑆𝑎) =
𝑅∏
𝑟=1

𝑞

(
𝑆
(𝑟 )
𝑎

)
𝜙 (𝑆𝑎) =

𝑅∑︁
𝑟=1

𝜙

(
𝑆
(𝑟 )
𝑎

)
. (2)

For temporal sets, the part 𝑆 (𝑟 )𝑎 denotes the 𝑟 th item in set 𝑆𝑎 that
contains 𝑅 items.

To measure the importance or salience of items and the relative
strength of relationships between them, we calculate the weight of
a temporal set (i.e., quality) for constructing SDPP structure as

𝑤 (𝑆𝑎) =
𝑅∑︁
𝑟=1

𝑤

(
𝑆
(𝑟 )
𝑎

)
+

∑︁
𝑆
(𝛼 )
𝑎 ∈𝑆𝑎,𝑆 (𝛽 )

𝑎 ∈𝑆𝑎

𝑤

(
𝑆
(𝛼 )
𝑎 , 𝑆

(𝛽 )
𝑎

)
, (3)

where 𝛼 ≠ 𝛽 . The first term denotes the accumulation of items’
importance. For NSRec tasks, the importance of part 𝑆 (𝑟 )𝑎 , i.e.
𝑤

(
𝑆
(𝑟 )
𝑎

)
of an item, can be represented by its predicted relevance

score w.r.t. the sequence 𝑺 , which is:

�̂�𝑃𝑖 = p(𝑺 )
⊤
e𝑃𝑖 , (4)

where p(𝑺 ) is the final sequence preference representation (detailed in
Section 3.2.1) of a sequence 𝑺 , and e𝑃

𝑖
denotes the preference em-

bedding of item 𝑣𝑖 in V (i.e., the 𝑟 th part 𝑆 (𝑟 )𝑎 in 𝑆𝑎). The second
term in Equation 3 is used to represent the strength of edges in 𝑆𝑎 .
SDPP is originally designed to build structures of threads or paths
[20], which means that there is an ordering in the structure. There-
fore, only the strength of edges of adjacent elements in the path
(structure) is considered. As for NSRec, items in the same set usually
do not have an inherent ordering. We therefore propose to capture
co-occurrence patterns of items on set level. Specifically, this work
considers the cohesion between any two items of a set. In this sense,
the edge weight of any two items in a set, i.e.𝑤

(
𝑆
(𝛼 )
𝑎 , 𝑆

(𝛽 )
𝑎

)
, used

to represent the strength of cohesion between them,

�̂�𝐶
𝛼𝛽

= c(𝑺 )𝛼

⊤
c(𝑺 )
𝛽
, (5)

where c(𝑺 )𝛼 and c(𝑺 )
𝛽

are the final co-occurrence representations
(detailed in Section 3.2.2) of items with respect to temporal sets
sequence 𝑺 , learned based on co-occurrence embeddings.
3.1.2 Diversity Modeling. We have detailed how to calculate the
quality of a SDPP structure above. Here we present the approach
of structural set similarity measurement (𝜙 (𝑆𝑎)⊤ 𝜙 (𝑆𝑏 )), which
contributes to the diversity component of NSRec. Aligning with
Equation 1 and Equation 2, the set similarity function can be fac-
torized into the item similarity function as follows (C2):

𝑆𝑖𝑚(𝑆𝑎, 𝑆𝑏 ) = 𝜙 (𝑆𝑎)⊤𝜙 (𝑆𝑏 )

=
©«

∑︁
𝑆
(𝛼 )
𝑎 ∈𝑆𝑎

𝜙𝛼

(
𝑆
(𝛼 )
𝑎

)⊤ª®®¬
©«

∑︁
𝑆
(𝛽 )
𝑏

∈𝑆𝑏

𝜙𝛽

(
𝑆
(𝛽 )
𝑏

)ª®®¬
=
∑︁
𝛼,𝛽

𝜙𝛼

(
𝑆
(𝛼 )
𝑎

)⊤
𝜙𝛽

(
𝑆
(𝛽 )
𝑏

)
.

(6)

Here, 𝜙𝛼
(
𝑆
(𝛼 )
𝑎

)
and 𝜙𝛼

(
𝑆
(𝛽 )
𝑎

)
represent 𝑘-dimensional features

of two items belong to 𝑆𝑎 and 𝑆𝑏 , respectively. This factorization
indicates that the diversity measurement of two structures for each
SDPP kernel entry is built by accumulating the similarity of any
two items from different structures.

To connect the common diversity concept (i.e., scope of cat-
egories) in recommendation fields [18, 32, 50, 52] and diversity
measurement in SDPP, we propose a category-aware diverse kernel
K. The number of items |V| in NSRec dataset is usually large, which
means that learning a nonparametric full-rank diverse kernel K
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is computationally expensive. Referring to [19], we use the low-
rank factorization of the 𝑁 × 𝑁 K matrix as: K = AA⊤. In this
setting, a learning optimization criterion is built by maximizing
the log-likelihood of sampling observed diverse subsets 𝑇 (+) and
minimizing the log-likelihood of sampling negative subsets 𝑇 (+) ,

ℓ =
∑︁

(𝑇 (+) ,𝑇 (−) )∈T
log det

(
K𝑇 (+)

)
− log det

(
K𝑇 (−)

)
, (7)

where T denotes the collection of paired sets used for training. To
obtain the observed diverse subsets, we select as many items belong-
ing to different categories as possible from an observed temporal set.
For example, there are four items from three categories (𝑐1, 𝑐2, 𝑐3) in
a set {𝑣𝑐1

5 , 𝑣
𝑐2
6 , 𝑣

𝑐3
7 , 𝑣

𝑐3
8 }, and two diverse subsets {𝑣𝑐1

5 , 𝑣
𝑐2
6 , 𝑣

𝑐3
7 } and

{𝑣𝑐1
5 , 𝑣

𝑐2
6 , 𝑣

𝑐3
8 } can be selected. For each selected diverse subset, a

same-sized negative subset with randomly selected items will be
provided. Considering the dependency among items and computa-
tional efficiency, observed temporal sets with item size in the range
of 5 to 20 are used for selecting diversified subsets, and a subset
should contain at least 3 items. Based on this, a category-aware
diverse kernel K can be learned, which tends to make the corre-
sponding DPP-distributed samples containing diverse categories.
Namely, the items drawn based on pre-learned K are diversified.
Reviewing the description of DPPs in Section 2.2, the diversity char-
acteristic is contributed by the entries of DPP kernel that measure
the similarity between pairs of elements. Since K facilitates sam-
pling diversified subsets, we can directly take the corresponding
entries of K into Equation 6 as the similarity measurement of two
items, which means that the corresponding vectors of items in A
(low-rank factorization) represent their diversity features.

3.2 Representation Learning
As we aim to introduce a universal optimization framework NSRec
that optimizes both the novel co-occurrence representations and
the common preference representation, we simply introduce the
set sequence preference representation and detail exposition of our
co-occurrence learning method.
3.2.1 Preference Representation. Learningpreference representation
(PFR) based on previous set sequence is a critical step to capture
relevance between candidate items (that likely appear in next set)
and users’ dynamic interests. To learn expressive PFR for NSRec,
we model preference learning on both item-level and set-level rep-
resentations. The item-level PFR h𝑃𝑣 is learned based on the popular
standard multi-head self-attention. Learning set-level PFR means
computing a vector representation for each set in the temporal set
sequence based on the preference embeddings of items in those
sets. The set-level PFR h𝑃𝑺 is computed using multi-head attention
referring to [47]. To obtain the final sequence preference represen-
tation p(𝑺 ) ∈ R𝑑 w.r.t. the temporal sets sequence 𝑺 for anticipating
relevance (item importance), we apply a gated fusion module
[40, 41, 47] to integrate preference from item level and set level.
3.2.2 Co-occurrence Representation. Temporal set sequence stands
apart from other sequence data, as the relationships among items
within the set-level element complicate the task of anticipating
next set. Previous studies in NSRec focus only on learning PFR of a
temporal sequence [25, 44, 56], similar to above p(𝑺 ) , which is also
the common technique of NIRec [28, 36]. Two consequent limita-
tions of this approach are evident: (i) When we model a set as a

structured element, the relevance of individual items within the set
(determined by PFR) is insufficient to distinguish and acknowledge
the unique importance of different sets; (ii) A crucial factor of the
set, i.e., the level of cohesion among the items in it, is neglected,
which is a characteristic that is specific to NSRec. For example, in
a set where smartphone is known with high relevance, and there
are other two candidates, iPad and screen protector, present similar
levels of relevance. This similarity makes it challenging to deter-
mine which item should be paired with the smartphone to form
a set. However, by analyzing existing temporal sets, it could be
found that the screen protector more frequently co-occurs with the
smartphone in various baskets or daily activities. This indicates a
stronger cohesion within {smartphone, screen protector} compared
to {smartphone, iPad}. Utilizing this insight about cohesive strength
enables a more effective differentiation between sets and facilitates
completing or complementing an accurate set.

To learn the cohesive strength behind set-level behaviors, we
propose a new type of representation (C1), i.e., co-occurrence
representation (COR), which is learned based on the co-occurrence
embedding matrix E𝐶 ∈ R𝑑×|𝑉 | for entire items. Unlike preference
representation, COR is not directly associated with personalization,
but provides extra evidence in the stage of computing relevance
score for a candidate item via estimating the probability of the can-
didate co-occurring with other ones in the same set. In this work,
we propose to learn COR using the item-oriented attention network,
which adaptively learns each candidate’s representation with re-
spect to sets in the sequence [47, 62]. Co-occurrence embeddings of
items in a set sequence are fed into a multi-head self-attention layer
to obtain the hidden item representations that consider sequence
dependency, i.e., H𝐶 =

[
h𝐶1 , · · · , h

𝐶
𝑛

]
∈ R𝑑×𝑛 with 𝑛 items in a

temporal sequence. The co-occurrence representations for all items
derived based on the sequence 𝑺 , from the item-oriented attention
layer, can be formulated:

C(𝑺 ) = W𝑉
𝐼
H𝐶 Softmax

((
W𝐾
𝐼 H

𝐶
)⊤

W𝑄

𝐼
E𝐶

)
, (8)

whereW𝑄

𝐼
,W𝐾

𝐼
,W𝑉

𝐼
∈ R𝑑×𝑑 are learnablematrices;C(𝑺 ) ∈ R𝑑×|𝑉 |

contains sequence 𝑺 specified item-level co-occurrence representa-
tions (final co-occurrence representations) for each candidate in V;
and E𝐶 represents candidates’ co-occurrence embeddings.

To introduce COR learning, we can calculate the cohesion strength
(edge strength) of any two items co-occurring in the same set based
on the co-occurrence patterns of sets in training sequences (previ-
ous sets and target sets). In this setting, the learning process of COR
will be guided to consider the co-occurrence patterns among candi-
dates in entire training sets. In the evaluation procedure, CORs of
entire items with respect to a specific set sequence can be obtained
from the item-oriented attention network, which will engage in
ranking all candidate items for suggesting next sets. The learned
CORs are supposed to offer high co-occurrence scores for item pairs
that actually co-occur in the subsequent set, and thus provide extra
evidence for set recommendation.

3.3 Sets-level Optimization Criterion
In this work, we attempt to capture the dependency in both repre-
sentation learning and optimization criterion. We therefore define
a dedicated sets-level conditional likelihood function by defining
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Figure 2: An elaborate depiction for formulating the SNSRec optimization framework.

conditional SDPP probability,

P (𝑺 ) (𝒀 = 𝐴 ∪ 𝐵 | 𝒀 = 𝐴) =
det

(
L(𝑺 )
𝐴∪𝐵

)
det

(
L(𝑺 ) + I𝐴

) . (9)

In this equation, 𝒀 is distributed as a SDPP with temporal sets
sequence 𝑺 specified kernel L(𝑺 ) ; 𝐴 denotes a subset containing
previous sets, and 𝐴 ∪ 𝐵 represents a subset comprised of sets
of the complete training sequence (previous sets and target sets).
P (𝑺 ) (𝒀 = 𝐴 ∪ 𝐵 | 𝒀 = 𝐴) means the probability of if the previous
sets is drawn as a SDPP subset of structures, how likely it is that sets
of the complete training sequence is SDPP-distributed. This means
that the specialized probabilistic function is naturally appropriate to
the concept of NSRec, i.e., recommending the next sets conditioned
on previous ones. As mentioned in Section 2.2, we cannot afford
to construct kernel L over all possible structures. Fortunately, the
training instance in the process of NSRec learning is a definite set
sequence. It means that we can form the sequence-specified ground
set Y (𝑺 ) that only involves the sequence related structures, i.e.,
previous sets (𝐴), target sets (𝐵), and randomly selected negative
sets (𝑍 ) that correspond to the target ones. Thus L(𝑺 ) represents the
sequence-specified kernel on the ground set Y (𝑺 ) . In the normal-
ization constant, I𝐴 is the matrix with ones in the diagonal entries
indexed by elements of Y (𝑺 ) −𝐴 and zeros everywhere else.

We then reach the optimization criterion for NSRec training by
taking the logarithm of the likelihood function formulated by

L(Θ) =
∏
𝑢∈U

∏
𝑺∈D𝑢

P (𝑺 ) =
∑︁
𝑢∈U

∑︁
𝑺∈D𝑢

log
(
P (𝑺 )

)
, (10)

where 𝑺 denotes an observed temporal sets sequence of user 𝑢,
and D𝑢 is the compilation of training sequences from 𝑢; P (𝑺 ) indi-
cates the conditional likelihood (Equation 9) specified by a training
sequence of user 𝑢. Θ represents model parameters including at-
tention matrices, parameters of gated fusion module, preference
embeddings, and co-occurrence embeddings. It can be noted that

DinS and DacSs are both considered in this dedicated optimization
criterion, as the corresponding calculation is not solely reliant on
independent items or independent sets, but directly treats each
temporal set as a SDPP structure and formulates the true set se-
quence as a SDPP-distributed subset (C3). This criterion enables
us to transform the goal of NSRec into maximizing the probability
of drawing the complete set sequence as a SDPP, given the con-
dition where previous sets are distributed as a SDPP, making the
SNSRec framework rather intuitive. Looking at the architecture of
SNSRec as depicted in Figure 2, it is evident that all preparatory
tasks, from learning representations to measuring diversity, are
inherently aligned with this intuitive criterion. This suggests that
SNSRec is purposefully designed with its goal at the core. Figure 2
also demonstrates that SNSRec is a general framework, as it can
be built upon other types of representation forms for constructing
SDPP structure, thus reinforcing its adaptability (C4).

3.3.1 Optimization. To perform optimization for learning parame-
ters Θ of SNSRec, we can maximize the log-likelihood

L(Θ) =
∑︁
𝑢∈U

∑︁
𝑺∈D𝑢

[
log

(
det

(
L(𝑺 )
𝐴∪𝐵 (Θ)

))
− log

(
det

(
L(𝑺 ) (Θ) + I𝐴

))]
.

(11)
Gradient-based learning methods, such as gradient descent and
stochastic gradient descent, provide rigorous foundation for opti-
mization because of their theoretical guarantees [2], but require
knowledge of the gradient of L(Θ). In the discrete DPP setting,
this gradient can be computed straightforwardly, and we provide
the computation process as follows

𝜕L(Θ)
𝜕Θ

=
∑︁
𝑢∈U

∑︁
𝑆∈D𝑢

tr (L𝐴∪𝐵 (Θ))−1 𝜕L𝐴∪𝐵 (Θ)
𝜕Θ

−
∑︁
𝑢∈U

∑︁
𝑆∈D𝑢

tr
(
L(Θ) + I𝐴

)−1 𝜕L(Θ)
𝜕Θ

.

(12)
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For brevity, we drop the superscript (𝑺) of the sequence specified
SDPP kernel. In order to convert the weight function defined in
Equation 3 to the multiplicative form, a simple log-linear model is
used. Consequently, the entry of SDPP kernel is formulated as

𝐿𝑎𝑏 = exp (𝑤 (𝑆𝑎)) 𝑆𝑖𝑚(𝑆𝑎, 𝑆𝑏 ) exp (𝑤 (𝑆𝑏 )) . (13)

As a structure is regarded as an element in SDPP, we can directly
compute the gradient with respect to the quality of an element 𝑆𝑎

𝜕𝐿𝑎𝑏

𝜕𝑞𝑎
= exp (𝑞𝑎) 𝑆𝑖𝑚(𝑆𝑎, 𝑆𝑏 ) exp (𝑞𝑏 ) . (14)

𝑞𝑎 is used to denote the quality of structure 𝑆𝑎 .
In Equation 13, we derive similarity measure 𝑆𝑖𝑚(𝑆𝑎, 𝑆𝑏 ) using

diverse kernelK, as outlined in Equation 6. This kernel has been pre-
learned and does not require further learning during the SNSRec
optimization process. Furthermore, the qualities of the structures
(𝑆𝑎 and 𝑆𝑏 ) are computed by accumulating the weights of their
elements as shown in Equation 3, a simple process that ensures all
components are differentiable and thus allows for the computation
of gradients at each location [2]. We can simplify the computation
of the gradient of 𝑞𝑎 with respect to its parameters within the SDPP
kernel by applying the chain rule to decompose the quality weight
for calculating gradients of each component [7] . These parame-
ters, which include parameterized preference and co-occurrence
representations in Equation 4 and Equation 5, respectively, form
the SDPP optimization criterion, denoted as 𝜃𝑎 , and

𝜕𝑞𝑎
𝜕𝜃𝑎

=
𝜕𝑤 (𝑆𝑎 )
𝜕𝜃𝑎

.
Substitute decomposed gradients back into the previous gradient
formula Equation 12, and we can further receive the final results.
That is, the SDPP-based sets-level optimization criterion is differ-
entiable with respect to its parameters. To obtain the gradients of
entire model parameters, the attractive backpropagation algorithm
[46] can be applied. Finally, the gradient-based algorithms are al-
lowed to be applied for optimization. In experiments, Adam (an
variant of stochastic gradient descent) [29] is used.

3.3.2 Prediction. Nowwe can introduce how to synthetically apply
the learned co-occurrence representations C(𝑺 ) of entire items
and the sequence preference representation p(𝑺 ) for predicting the
subsequent set of temporal sets sequence 𝑺 . For an item 𝑣𝑖 , the final
predicted score for evaluation is

�̂�𝑖 = (1 − 𝜆)p(𝑺 )⊤e𝑃𝑖 + 𝜆 1
|𝑉 |

|𝑉 |∑︁
𝑛=1

c(𝑺 )
𝑖

⊤
c(𝑺 )𝑛 . (15)

The co-occurrence score of 𝑣𝑖 in the subsequent set given previous
sequence is measured by averaging the co-occurrence strength
between 𝑣𝑖 and any one of other items in V. In this setting, we
expect the cohesion score for a target item 𝑣𝑡 in the subsequent set
to be relatively high. This is because CORs are learned to reflect
co-occurrence patterns, thereby enhancing the cohesion strength
between 𝑣𝑡 and other target items of the next set. These cohesion
scores are aggregated as shown in Equation 15. Furthermore, we
use the parameter 𝜆 to balance the contribution of co-occurrence
and preference scores when evaluating predictions.

4 Experiments
This section comprehensively evaluates and compares our universal
optimization framework, SNSRec.

Table 1: Statistics of the datasets.
Dataset #Users #Items #Sets #Categories
TaoBao 12.0K 14.2K 85.9K 68
JD-buy 13.5K 19.6K 76.8K 77
JD-add 3.4K 12.1K 16.1K 75
TaFeng 10.3K 8.7K 73.3K 650

4.1 Experimental Settings
4.1.1 Datasets. Experiments are conducted on four real-world
datasets from three application scenarios. These datasets are com-
monly found in two topics (NBRec and TSP) related to NSRec, (i)
TaoBao1 denotes a public online e-commerce dataset provided by
Ant Financial services. It contains the interactions about which
items are purchased or clicked by each user with the timestamp.
The items purchased in the same day are treated as temporal sets
[47, 55] or baskets [8, 45]; (ii) JingDong2 is comprised of user
action records, including browsing, purchasing, following, com-
menting and adding to shopping carts, which are widely used in
TSP [54, 56] and NBRec [35]. Two datasets are extracted from Jing-
Dong, that is, JD-buy and JD-add, which contain purchasing and
adding to shopping carts records respectively. We treat all the items
purchased/added in the same day as a set; (iii) TaFeng3 dataset
contains the transactions about which items are bought by each cus-
tomer in each basket with the time stamp. This dataset is commonly
used in both of NBRec and TSP tasks. We treat products purchased
in the same day by the same customer as a set. The statistics of all
the datasets are shown in Table 1.

For each user in dataset, we can get a series of training instances.
As indicated in Figure 2, a training set instance (i.e., the set sequence
specified ground set Y (𝑺 ) ) for the SDPP optimization criterion is
comprised of previous sets, target sets, and negative sets, whose
sizes (number of sets) are denoted using 𝐴, 𝐵, and 𝑍 , respectively
in subsequent discussions. If a temporal set contains only one item,
the edge weight is omitted. Following previous TSP or NBRec work
[16, 45, 47, 56], each dataset is divided into three parts. The last set,
the second last set, and the remaining sets of each user are used for
testing, validation, and training, respectively.
4.1.2 Baselines. To validate the superiority of our framework, mul-
tiple state-of-the-art models in NBRec and TSP fields built based
on different techniques are selected as baselines, which are related
to this work and are competitive. DREAM [53] is a RNN-based
method that uses a pooling layer to represent a basket for next bas-
ket recommendation. CDSL [36] uses the standard DPP likelihood
as the loss function of sequential recommendation. To implement
CDSL for NSRec, we treat the preference representation and kernel
K of SNSRec as the quality and diversity components of DPP in
CDSL. FPMC [44] designs a hybrid model to take temporal depen-
dencies between items and user’s general interests into account.
DIN [62] proposes a DNN-based method used for click-though
rate prediction, which uses attention mechanism to learn the repre-
sentations of candidate items w.r.t. historical behaviors. Sets2Sets
[25] is the seminal work for TSP. The average pooling operation is
used to obtain the representations for sets. DSNTSP [47] designs
a attention-based network to learn item-level and set-level repre-
sentations of user sequences for TSP. ETGNN [57] is a competitive
1https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2https://jdata.jd.com/html/detail.html?id=
3https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
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TSP work. It uses graph neural network to propagate set-level infor-
mation for obtaining collaborative signals for temporal sets. SFCN
[55] anticipates the next set (transactions or daily behaviors) based
on specialized neural networks.
4.1.3 Configuration. We implement our optimization framework
using PyTorch on a NVIDIA Quadro P2000 GPU. Adam is adopted
as the optimizer in our experiments. The number of heads (𝐻 ) in our
representation learning module is set to 4, and 4 trainable queries
(𝐾) are used. We tune the hyper parameters in all the compared
methods with grid search to choose the best performance for com-
parison. To keep the comparison fair, the dimension of embeddings
in baselines is set to 128, and the PFR and COR are both represented
by 64-dimensional vectors.
4.1.4 Evaluation Metrics. To comprehensively evaluate the quality
and diversity of SNSRec, three groups of evaluation metrics are
adopted: (i) Accuracy. We evaluate the accuracy of set prediction
using Recall@𝑁 and NDCG@𝑁 . To check the relevance of the
predicted set in different ranking positions of the ranking list, we
evaluate𝑁 = 20 and𝑁 = 50; (ii)Diversity. The Category Coverage
(CC) [42, 52] and Intra-List Distance (ILD) [42, 59] are prevalent
and intuitive diversity evaluation metrics, which are appropriate to
the diversity concept in recommendation area. (iii) Trade-off. To
evaluate the balance performance between accuracy and diversity,
the harmonic metric F-score (F1) [11, 38] is used. F1@𝑁 = 2 ×
Q@𝑁 × D@𝑁 /(Q@𝑁 + D@N), where Q@𝑁 and D@𝑁 are the
averaged value of accuracy and diversity metrics of Top-𝑁 list.

4.2 Experimental Results
4.2.1 Overall Comparison. The overall comparison is reported in
Table 2. The relative improvement (Improv) of SNSRec over the
highest performance out of baselines is also listed. The main obser-
vations obtained from the overall comparison are:
• In most cases, the improvements of quality performance (Recall
and NDCG) over the best baselines are greater than 10% (some
cases even achieve > 20%, e.g., NDCG@50 on JD-add). The con-
vincing outcomes of our experiments affirm the value of our
primary innovations, including direct modelling temporal sets as
structures, the formulation of a specialized optimization criterion,
and the exploration of DinS and DacSs. These results provide
compelling evidence that our proposed SNSRec contributes sig-
nificantly to improve performances (C3) in NSRec.

• SNSRec exhibits superior diversity performance (CC and ILD)
compared to the baselines (including CDSL that considers the
diversity of individual items). This highlights the effectiveness
of utilizing set-level diversity measurements for NSRec tasks
(C2). Notably, promoting the diversity of the subsequent set
holds significant practical value. For instance, in a real-world
application scenario such as a retail store, diversifying predictions
enables the store to offer bundles with a variety of products,
thereby increasing consumers’ potential purchasing desire.

• Our method exhibits advantages in both quality and diversity
when comparing the overall metric F1. This demonstrates the
comprehensive effectiveness of our approach in balancing the
relevance and diversity aspects of predictions.

4.2.2 Generality Study (C4). To validate the universality of SNSRec,
we deploy original NSRec models into it. Specifically, we combine
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Figure 3: Performance comparison between representative
baselines and their SNSRec reworked counterparts.
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Figure 4: Performance trends with parameter 𝜆.

our co-occurrence learning with an existing NSRec model (i.e., set-
level sequence preference representation learning), coupled with
the pre-learned diverse kernel to represent sets as SDPP structures,
and replace the original model’s loss function with our specially
designed sets-level optimization criterion, thereby forming a re-
worked model. We aim to integrate SNSRec with the most popular
sequence learning algorithms (attention-based, RNN-based, and
neural graph-based methods) to underscore its adaptability and
wide applicability in the realm of modern techniques. Given that
our preference learning primarily employs attention-based meth-
ods with notable effectiveness, we select RNN-based DREAM and
graph-based ETGNN as the other two representative models. Fig-
ure 3 illustrates the comparison between the original models and
and their versions integrated into the SNSRec framework (denoted
by ‘Re-’). The results indicate a significant enhancement in recom-
mendation performance for both representative models, thereby
substantiating the generality and practicality of SNSRec.
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Table 2: Overall performance comparisons. The best performing model is boldfaced, while the second best is marked with an
asterisk. Improvements over baselines are statistically significant with 𝑝 < 0.01.

Dataset Metric DREAM CDSL FPMC DIN Sets2Sets ETGNN DSNTSP SFCN SNSRec Improv (%)

TaoBao

Recall@20 0.1053 0.1306 0.1032 0.1160 0.1286 0.1503 0.1457 0.1544∗ 0.1716 11.14
Recall@50 0.1526 0.1855 0.1639 0.1795 0.1920 0.2138 0.2046 0.2152∗ 0.2549 18.45
NDCG@20 0.0885 0.1092 0.0850 0.0915 0.1001 0.1170∗ 0.1095 0.1084 0.1247 6.58
NDCG@50 0.1033 0.1184 0.1007 0.1090 0.1211 0.1294 0.1363∗ 0.1343 0.1490 9.32

CC@20 0.0905 0.1253∗ 0.0912 0.1001 0.0986 0.1104 0.1187 0.1126 0.1360 8.54
CC@50 0.1921 0.2201∗ 0.1938 0.1993 0.1953 0.1870 0.2188 0.1924 0.2278 3.50
ILD@20 0.6613 0.6668∗ 0.6028 0.6435 0.6492 0.6190 0.6105 0.6400 0.6957 4.33
ILD@50 0.6870 0.7012∗ 0.6531 0.6720 0.6890 0.6557 0.6617 0.6705 0.7299 4.09

F1@20 0.1541 0.1841 0.1481 0.1622 0.1751 0.1956∗ 0.1890 0.1948 0.2185 11.68
F1@50 0.1982 0.2285 0.2016 0.2167 0.2312 0.2439 0.2458 0.2487∗ 0.2841 14.21

JD-add

Recall@20 0.1047 0.1107 0.0973 0.1027 0.1085 0.1306∗ 0.1291 0.1250 0.1640 25.57
Recall@50 0.1416 0.1562 0.1332 0.1407 0.1476 0.1734∗ 0.1616 0.1705 0.1910 10.15
NDCG@20 0.0810 0.0957 0.0737 0.0794 0.0843 0.1027 0.1160∗ 0.1085 0.1430 23.28
NDCG@50 0.0902 0.1043 0.0850 0.0918 0.0967 0.1165 0.1252∗ 0.1190 0.1521 21.49

CC@20 0.1105 0.1118∗ 0.0937 0.1067 0.0918 0.1085 0.1112 0.1090 0.1125 6.30
CC@50 0.1824 0.1976 0.1780 0.1967 0.1952 0.1812 0.1990∗ 0.1889 0.2002 0.60
ILD@20 0.6220 0.6384∗ 0.6152 0.6380 0.6200 0.6214 0.6352 0.6209 0.6535 2.37
ILD@50 0.6434 0.6502 0.6437 0.6513∗ 0.6503 0.6499 0.6510 0.6431 0.6918 6.22

F1@20 0.1481 0.1619 0.1378 0.1463 0.1517 0.1768 0.1845∗ 0.1769 0.2192 18.78
F1@50 0.1810 0.1993 0.1724 0.1825 0.1895 0.2149∗ 0.2144 0.2147 0.2478 15.29

JD-buy

Recall@20 0.3122 0.3106 0.3015 0.3298 0.3158 0.3325 0.3406∗ 0.3374 0.3812 11.92
Recall@50 0.3460 0.3779 0.3528 0.3829 0.3781 0.4153∗ 0.4090 0.4146 0.4634 11.58
NDCG@20 0.2157 0.2510 0.2172 0.2453 0.2312 0.2637∗ 0.2576 0.2619 0.2804 6.33
NDCG@50 0.2465 0.2683 0.2350 0.2627 0.2542 0.2759 0.2825∗ 0.2702 0.3080 9.03

CC@20 0.0942 0.0954∗ 0.0929 0.0913 0.0950 0.0914 0.0947 0.0910 0.0974 2.10
CC@50 0.1802 0.1936∗ 0.1783 0.1896 0.1873 0.1826 0.1910 0.1815 0.1996 3.10
ILD@20 0.6411 0.6430 0.6381 0.6443∗ 0.6276 0.6410 0.6289 0.6340 0.6712 4.18
ILD@50 0.6926 0.6977∗ 0.6743 0.6831 0.6683 0.6791 0.6705 0.6838 0.7180 2.91

F1@20 0.3073 0.3190 0.3034 0.3228 0.3113 0.3287∗ 0.3275 0.3281 0.3555 8.18
F1@50 0.3529 0.3746 0.3479 0.3711 0.3636 0.3835 0.3836∗ 0.3823 0.4191 9.25

TaFeng

Recall@20 0.0593 0.0682 0.0617 0.0652 0.0648 0.0718∗ 0.0676 0.0703 0.0814 13.37
Recall@50 0.0985 0.1095 0.0979 0.1008 0.1082 0.1103 0.1156∗ 0.1123 0.1264 9.34
NDCG@20 0.0512 0.0548 0.0516 0.0497 0.0509 0.0562∗ 0.0531 0.0527 0.0630 12.10
NDCG@50 0.0609 0.0655 0.0617 0.0622 0.0641 0.0691∗ 0.0680 0.0667 0.0754 9.12

CC@20 0.0210 0.0221∗ 0.0206 0.0220 0.0217 0.0197 0.0213 0.0218 0.0223 0.90
CC@50 0.0452 0.0489 0.0484 0.0497∗ 0.0475 0.0464 0.0491 0.0420 0.0500 0.60
ILD@20 0.5771 0.5938∗ 0.5692 0.5837 0.5710 0.5781 0.5812 0.5796 0.6153 3.62
ILD@50 0.6074 0.6126∗ 0.5934 0.6091 0.5970 0.6098 0.6122 0.6101 0.6416 4.73

F1@20 0.0933 0.1025 0.0950 0.0966 0.0968 0.1054∗ 0.1006 0.1021 0.1177 11.68
F1@50 0.1281 0.1384 0.1278 0.1307 0.1360 0.1409 0.1437∗ 0.1404 0.1562 8.71

4.2.3 Representations Analysis. We conduct experiments under
specialized settings to respectively analyze the importance of pref-
erence and co-occurrence representations. Figure 4 shows the trends
of quality performance (Recall and NDCG) with parameter 𝜆 (in-
troduced in Equation 15) on TaoBao and JD-add. We describe two
extreme cases at first, i.e., 𝜆 = 0 and 𝜆 = 1. In the case of 𝜆 = 1,
only co-occurrence score is used for calculating prediction score,
and thus the learning of preference representation is deprecated
from SNSRec. When 𝜆 = 0, the co-occurrence score is not activated,
and the learning of co-occurrence representations is not involved
in the training process, i.e., the weight of a set (structure) is repre-
sented only using relevance. These two extreme settings can serve
as a form of ablation study. We aim to use Figure 4 to analyze the
following two aspects: (i) Importance of Co-occurrence. When
𝜆 equals 0 (without using co-occurrence), SNSRec does not reach
its full capacity. With the joining of co-occurrence (𝜆 > 0), impres-
sive improvements are achieved, and SNSRec gradually reaches
the peak (when 𝜆 is around 0.4) of quality performance. These
improvements are obvious evidence of co-occurrence pattern’s im-
portance for SNSRec (C1). As the involvement of co-occurrence

becomes deeper (𝜆 > 0.4), the prediction performance declines. This
is mainly because that an item’s co-occurrence score is determined
by calculating its co-occurrence patterns with all other items in V.
As the parameter value increases, the co-occurrence score becomes
more susceptible to the influence of unrelated items, which in turn,
adversely affects the final prediction scores. This adverse effect
can potentially overshadow the relevance aspect of the predictions,
resulting in a decrease in overall effectiveness. However, it is im-
portant to note that we cannot dismiss the role of co-occurrence
due to the subsequent decline in performance, as the significant
improvement in the earlier stage has already demonstrated the
effectiveness and importance of co-occurrence pattern; (ii) Impor-
tance of Preference. We can treat the performances in the cases of
𝜆 = 0 and 𝜆 = 1 as the capabilities of preference and co-occurrence
respectively, as only one of them is involved in SNSRec in the cor-
responding case. We can see that the preference representations
dominate the quality performance of SNSRec, which is a quite com-
mon phenomenon in recommendation tasks [26, 28]. This is also
the reason why we mention that the co-occurrence pattern is used
to complement items for prediction instead of playing a leading role.
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Figure 5: Performance trends w.r.t. different sizes of Y (𝑺 ) .

While co-occurrence information provides valuable insights, it is
not as influential as preference representations in terms of improv-
ing the quality of predictions. This can further explain the reason
of subsequent decline, when the 𝜆 value becomes excessively large,
the co-occurrence component gradually outweighs the preference
component, leading to a decline in prediction performance. As the
trends on CC with 𝜆 is not quite obvious and similar trends can be
found on other situations (different datasets and metrics), we omit
corresponding presentations to save some space.
4.2.4 Characteristic Analysis. Figure 5 is used to analyze the char-
acteristics of SNSRec, in which NDCG performance trends of Top-
20 and Top-50 on TaoBao with varying 𝐵 and 𝐴 introduced in
Equation 9 are presented. A consistent trend can be observed in
both sub-figures of Figure 5, i.e., NDCG performances improve at
first and then tend towards stability with the increase of 𝐵 and
𝐴 when fixing the other two factors (𝐴 and 𝑍 in Figure 5(a), and
𝐵 and 𝑍 in the other subfigure). This trend suggests that by con-
sidering more target sets or previous sets in our sets-level opti-
mization criterion, more dependencies across the sets sequence
can be captured, leading to substantial performance improvements.
This effectively validates the importance of sequence dependencies
for NSRec and demonstrates that our proposed optimization crite-
rion is effective at capturing these dependencies. To demonstrate
the generality and applicability of SNSRec framework, results on
different datasets displayed in this section are all obtained with
𝜆 = 0.2, 𝐵 = 1, 𝐴 = 3, and 𝑍 = 1.

5 RELATEDWORK
Temporal Sets Prediction. Unlike widely studied time series fore-
casting [51, 63] and sequence prediction [6, 12], temporal sets pre-
diction is proposed to untangle complicated relationships among
items in the set and dependencies across temporal sets for pre-
dicting subsequent sets. Hu et al. [25] first formulate this task and
propose a set-to-set method for temporal sets prediction. To capture
the dependencies across temporal sets, popular sequence-related
models are employed, e.g., multi-heads self-attention [47] and RNN
[25]. Recently, some studies have attempted to propagate infor-
mation between sets to model the complicated relationships. For
example, Yu et al. [56] perform graph convolutions on dynamic
relationships graph to learn comprehensive set representations.
Another study [57] attempts to integrate collaborative signals into
temporal sets by propagating element-guided message in a graph
format. Although this work claims that the propagation is on set-
level, the user-set interaction graph is actually constructed based on
interactions between individual items and users instead of directly

via set to set. In addition, previous TSP studies still use the item-
level loss function (e.g., weighted mean square loss [25] and binary
cross-entropy loss [47, 57] ) for training, in which the complicated
relationships among sets are ignored.

Next Basket Recommendation.Next Basket Recommendation
is a relatively complex task compared to next item recommendation.
This research problem originates from real-world shopping scenar-
ios where users purchase a batch of items at a time. Initial studies
primarily employed traditional methods such as markov chains
[44] and hierarchical representation model [49]. In recent years,
sequence learning approaches based on deep learning have become
mainstream, including the application and expansion of RNN-based
[53], attention-based [5, 60], neural graph-based [39], and hybrid
[34, 60] methods, which have further enhanced the effectiveness
of NBRec. Additionally, the integration of contrastive learning in
basket recommendation has recently garnered attention [24, 43].

DPP for Diversification. Determinantal point process has been
a trending research topic in machine learning area, largely because
of the repulsive property and efficient algorithms. Applying the
maximum a posteriori (MAP) to generate DPP samples as sugges-
tions is the most common and direct manner [17, 23]. However,
MAP is NP-hard and is computationally expensive even using the
popular greedy algorithm. Chen et al. [9] develop a novel algorithm
to accelerate the MAP inference for DPP, which contributes to a
flourishing phenomenon of employing DPP MAP in traditional
Top-N recommendation models for generating diverse results, such
as the studies [38, 52]. Besides using MAP inference, normalized
probability and approximate likelihood of DPP distribution are also
studied for working as an optimization criterion for item recom-
mendation [36, 37] and basket completion [50], respectively. There
also exist multiple models considering using DPP for diversification
of sequence data, e.g., addressing the bundle list recommendation
problem by the sequence generation approach [4], considering
video summarization as a supervised DPP subset selection prob-
lem [61], and learning a diversity sampling function to generate a
diverse yet likely set of future trajectories [58].
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7 CONCLUSION
In this work, we focus on addressing the problem of next set rec-
ommendation via untangling naturally complicated relationships
based on means of SDPP. Two types of dependencies (i.e., within a
set DinS and across sequence sets DacSs) are formulated in the spe-
cialized sets-level optimization framework. To effectively achieve
this, we try to explicitly formulate temporal sets as SDPP struc-
tures by introducing a novel co-occurrence representation and a
pre-learned diversity kernel. The integrated and sets-level optimiza-
tion criterion contribute to the construction of the general SNSRec
framework and to impressive performance on both accuracy and
diversity. It would be interesting to extend our framework to other
research problems that are constrained in terms of performance
due to the structural complexity, e.g., video summarization [21] and
bundle list recommendation [4]. The CORs show impressive poten-
tial in our experiments, and it is worth the effort to explore further
formulation and exploitation of COR for set-level prediction.
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