Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3626772.3657939acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
short-paper

Neural Click Models for Recommender Systems

Published: 11 July 2024 Publication History

Abstract

We develop and evaluate neural architectures to model the user behavior in recommender systems (RS) inspired by click models for Web search but going beyond standard click models. Proposed architectures include recurrent networks, Transformer-based models that alleviate the quadratic complexity of self-attention, adversarial and hierarchical architectures. Our models outperform baselines on the ContentWise and RL4RS datasets and can be used in RS simulators to model user response for RS evaluation and pretraining.

References

[1]
Mohammad Mehdi Afsar, Trafford Crump, and Behrouz H. Far. 2021. Reinforcement learning based recommender systems: A survey. CoRR, Vol. abs/2101.06286 (2021). showeprint[arXiv]2101.06286 https://arxiv.org/abs/2101.06286
[2]
Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215. Santiago, Chile, 487--499.
[3]
Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. 2018. RecGAN: Recurrent Generative Adversarial Networks for Recommendation Systems. In Proceedings of the 12th ACM Conference on Recommender Systems (Vancouver, British Columbia, Canada) (RecSys '18). Association for Computing Machinery, New York, NY, USA, 372--376. https://doi.org/10.1145/3240323.3240383
[4]
Jesús Bobadilla, Abraham Gutiérrez, Raciel Yera, and Luis Mart'inez. 2023. Creating Synthetic Datasets for Collaborative Filtering Recommender Systems using Generative Adversarial Networks. arXiv preprint arXiv:2303.01297 (2023).
[5]
Alexey Borisov, Ilya Markov, Maarten De Rijke, and Pavel Serdyukov. 2016. A neural click model for web search. In Proceedings of the 25th International Conference on World Wide Web. 531--541.
[6]
Alexey Borisov, Martijn Wardenaar, Ilya Markov, and Maarten De Rijke. 2018. A click sequence model for web search. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 45--54.
[7]
Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jaeho Choi. 2019. Rating Augmentation with Generative Adversarial Networks towards Accurate Collaborative Filtering. In The World Wide Web Conference (San Francisco, CA, USA) (WWW '19). Association for Computing Machinery, New York, NY, USA, 2616--2622. https://doi.org/10.1145/3308558.3313413
[8]
Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN: A Generic Collaborative Filtering Framework Based on Generative Adversarial Networks. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (Torino, Italy) (CIKM '18). Association for Computing Machinery, New York, NY, USA, 137--146. https://doi.org/10.1145/3269206.3271743
[9]
Olivier Chapelle and Ya Zhang. 2009. A dynamic bayesian network click model for web search ranking. In Proceedings of the 18th international conference on World wide web. 1--10.
[10]
Jia Chen, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. A context-aware click model for web search. In Proceedings of the 13th International Conference on Web Search and Data Mining. 88--96.
[11]
Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi. 2018. Top-K Off-Policy Correction for a REINFORCE Recommender System. CoRR, Vol. abs/1812.02353 (2018). showeprint[arXiv]1812.02353 http://arxiv.org/abs/1812.02353
[12]
Xiaocong Chen, Lina Yao, Julian McAuley, Guanglin Zhou, and Xianzhi Wang. 2023. Deep reinforcement learning in recommender systems: A survey and new perspectives. Knowledge-Based Systems, Vol. 264 (2023), 110335. https://doi.org/10.1016/j.knosys.2023.110335
[13]
Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). Association for Computational Linguistics, Doha, Qatar, 1724--1734. https://doi.org/10.3115/v1/D14--1179
[14]
Aleksandr Chuklin, Ilya Markov, and Maarten De Rijke. 2022. Click models for web search. Springer Nature.
[15]
Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang, Xiuqiang He, Jianye Hao, Jun Wang, and Yong Yu. 2021. An adversarial imitation click model for information retrieval. In Proceedings of the Web Conference 2021. 1809--1820.
[16]
Romain Deffayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten de Rijke. 2023. SARDINE: A Simulator for Automated Recommendation in Dynamic and Interactive Environments. arxiv: 2311.16586 [cs.IR]
[17]
María del Carmen Rodríguez-Hernández, Sergio Ilarri, Ramón Hermoso, and Raquel Trillo Lado. 2017. Towards Trajectory-Based Recommendations in Museums: Evaluation of Strategies Using Mixed Synthetic and Real Data. In EUSPN/ICTH. https://api.semanticscholar.org/CorpusID:1812507
[18]
Mar'ia del Carmen Rodr'iguez-Hernández, Sergio Ilarri, Raquel Trillo, and Ramón Hermoso. 2017. Context-Aware Recommendations Using Mobile P2P. In Proceedings of the 15th International Conference on Advances in Mobile Computing & Multimedia (Salzburg, Austria) (MoMM2017). Association for Computing Machinery, New York, NY, USA, 82--91. https://doi.org/10.1145/3151848.3151856
[19]
Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Transactions on Information Systems (TOIS), Vol. 22, 1 (2004), 143--177.
[20]
Nan Gao, Hao Xue, Wei Shao, Sichen Zhao, Kyle Kai Qin, Arian Prabowo, Mohammad Saiedur Rahaman, and Flora D. Salim. 2022. Generative Adversarial Networks for Spatio-Temporal Data: A Survey. ACM Trans. Intell. Syst. Technol., Vol. 13, 2, Article 22 (feb 2022), bibinfonumpages25 pages. https://doi.org/10.1145/3474838
[21]
Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Zhengxing Chen, Yuchen He, Zachary Kaden, Vivek Narayanan, and Xiaohui Ye. 2018. Horizon: Facebook's Open Source Applied Reinforcement Learning Platform. arXiv preprint arXiv:1811.00260 (2018).
[22]
Fan Guo, Chao Liu, and Yi Min Wang. 2009. Efficient multiple-click models in web search. In Proceedings of the second acm international conference on web search and data mining. 124--131.
[23]
Guibing Guo, Huan Zhou, Bowei Chen, Zhirong Liu, Xiao Xu, Xu Chen, Zhenhua Dong, and Xiuqiang He. 2022. IPGAN: Generating Informative Item Pairs by Adversarial Sampling. IEEE Transactions on Neural Networks and Learning Systems, Vol. 33, 2 (2022), 694--706. https://doi.org/10.1109/TNNLS.2020.3028572
[24]
Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015. Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015).
[25]
Kenneth Houkjær, Kristian Torp, and Rico Wind. 2006. Simple and realistic data generation. In Very Large Data Bases Conference. https://api.semanticscholar.org/CorpusID:14579195
[26]
Jin Huang, Harrie Oosterhuis, Maarten De Rijke, and Herke Van Hoof. 2020. Keeping dataset biases out of the simulation: A debiased simulator for reinforcement learning based recommender systems. In Proceedings of the 14th ACM Conference on Recommender Systems. 190--199.
[27]
I. M. Huijben, W. Kool, M. B. Paulus, and R. G. van Sloun. 2023. A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning. IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol. 45, 02 (feb 2023), 1353--1371. https://doi.org/10.1109/TPAMI.2022.3157042
[28]
Eugene Ie, Chih-Wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu, and Craig Boutilier. 2019a. RecSim: A Configurable Simulation Platform for Recommender Systems. CoRR, Vol. abs/1909.04847 (2019). showeprint[arXiv]1909.04847 http://arxiv.org/abs/1909.04847
[29]
Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019b. SLATEQ: A Tractable Decomposition for Reinforcement Learning with Recommendation Sets. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (Macao, China) (IJCAI'19). AAAI Press, 2592--2599.
[30]
Sergio Ilarri, Ramón Hermoso, Raquel Trillo-Lado, and María del Carmen Rodríguez-Hernández. 2015. A Review of the Role of Sensors in Mobile Context-Aware Recommendation Systems. International Journal of Distributed Sensor Networks, Vol. 11, 11 (2015), 489264. https://doi.org/10.1155/2015/489264
[31]
Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with Gumbel-Softmax. In International Conference on Learning Representations. https://openreview.net/forum?id=rkE3y85ee
[32]
Olivier Jeunen and Bart Goethals. 2021. Lessons Learned from Winning the RecoGym Challenge. https://olivierjeunen.github.io/recogym/.
[33]
Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques for Recommender Systems. IEEE Computer, Vol. 42, 8 (2009), 30--37.
[34]
Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang, Xiuqiang He, Jianye Hao, and Yong Yu. 2021a. A graph-enhanced click model for web search. In Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval. 1259--1268.
[35]
Yuanguo Lin, Yong Liu, Fan Lin, Pengcheng Wu, Wenhua Zeng, and Chunyan Miao. 2021b. A Survey on Reinforcement Learning for Recommender Systems. CoRR, Vol. abs/2109.10665 (2021). showeprint[arXiv]2109.10665 https://arxiv.org/abs/2109.10665
[36]
Yan Lyu, Sunhao Dai, Peng Wu, Quanyu Dai, Yuhao Deng, Wenjie Hu, Zhenhua Dong, Jun Xu, Shengyu Zhu, and Xiao-Hua Zhou. 2022. A Semi-Synthetic Dataset Generation Framework for Causal Inference in Recommender Systems. arXiv preprint arXiv:2202.11351 (2022).
[37]
Benjamin M Marlin, Sam T Roweis, and Richard S Zemel. 2005. Unsupervised learning with non-ignorable missing data. In International Workshop on Artificial Intelligence and Statistics. PMLR, 222--229.
[38]
Fernando B. Pé rez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scriminaci, and Paolo Cremonesi. 2020. ContentWise Impressions. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM. https://doi.org/10.1145/3340531.3412774
[39]
James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara. 2021. Accordion: a trainable simulator for long-term interactive systems. In Proceedings of the 15th ACM Conference on Recommender Systems. 102--113.
[40]
Martin Mladenov, Chih-Wei Hsu, Vihan Jain, Eugene Ie, Christopher Colby, Nicolas Mayoraz, Hubert Pham, Dustin Tran, Ivan Vendrov, and Craig Boutilier. 2021. RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems. CoRR, Vol. abs/2103.08057 (2021). showeprint[arXiv]2103.08057 https://arxiv.org/abs/2103.08057
[41]
Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014. Recurrent Models of Visual Attention. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS'14). MIT Press, Cambridge, MA, USA, 2204--2212.
[42]
Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. 2019. All you need is ratings: A clustering approach to synthetic rating datasets generation. arXiv preprint arXiv:1909.00687 (2019).
[43]
Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and Youngmin Kim. 2018. Data Synthesis Based on Generative Adversarial Networks. Proc. VLDB Endow., Vol. 11, 10 (jun 2018), 1071--1083. https://doi.org/10.14778/3231751.3231757
[44]
Alexandrin Popescul, David M. Pennock, and Steve Lawrence. 2001. Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (Seattle, Washington) (UAI'01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 437--444.
[45]
María del Carmen Rodríguez Hernández, Sergio Ilarri, Ramon Hermoso, and Raquel Trillo. 2016. DataGenCARS: A generator of synthetic data for the evaluation of context-aware recommendation systems. Pervasive and Mobile Computing, Vol. 38 (10 2016). https://doi.org/10.1016/j.pmcj.2016.09.020
[46]
David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou. 2018. RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising. CoRR, Vol. abs/1808.00720 (2018). showeprint[arXiv]1808.00720 http://arxiv.org/abs/1808.00720
[47]
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-Resolution Image Synthesis With Latent Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10684--10695.
[48]
Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019. Virtual-taobao: Virtualizing real-world online retail environment for reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 4902--4909.
[49]
Zhongchuan Sun, Bin Wu, Yunpeng Wu, and Yangdong Ye. 2019. APL: Adversarial Pairwise Learning for Recommender Systems. Expert Syst. Appl., Vol. 118, C (mar 2019), 573--584. https://doi.org/10.1016/j.eswa.2018.10.024
[50]
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS'14). MIT Press, Cambridge, MA, USA, 3104--3112.
[51]
Jonathan Traupman and Robert Wilensky. 2004. Collaborative quality filtering: Establishing consensus or recovering ground truth?. In International Workshop on Knowledge Discovery on the Web. Springer, 73--86.
[52]
Karen Tso and Lars Schmidt-Thieme. 2006 a. Empirical Analysis of Attribute-Aware Recommender System Algorithms Using Synthetic Data. Journal of Computers, Vol. 1 (07 2006). https://doi.org/10.4304/jcp.1.4.18--29
[53]
Karen H. L. Tso and Lars Schmidt-Thieme. 2006 b. Empirical Analysis of Attribute-Aware Recommendation Algorithms with Variable Synthetic Data. In Data Science and Classification, Vladimir Batagelj, Hans-Hermann Bock, Anuvs ka Ferligoj, and Alevs vZ iberna (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 271--278.
[54]
Kai Wang, Zhene Zou, Minghao Zhao, Qilin Deng, Yue Shang, Yile Liang, Runze Wu, Xudong Shen, Tangjie Lyu, and Changjie Fan. 2023. RL4RS: A Real-World Dataset for Reinforcement Learning based Recommender System. arxiv: 2110.11073 [cs.IR]
[55]
Qinyong Wang, Hongzhi Yin, Hao Wang, Quoc Viet Hung Nguyen, Zi Huang, and Lizhen Cui. 2019b. Enhancing Collaborative Filtering with Generative Augmentation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Anchorage, AK, USA) (KDD '19). Association for Computing Machinery, New York, NY, USA, 548--556. https://doi.org/10.1145/3292500.3330873
[56]
Zongwei Wang, Min Gao, Xinyi Wang, Junliang Yu, Junhao Wen, and Qingyu Xiong. 2019a. A Minimax Game for Generative and Discriminative Sample Models for Recommendation. In Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14--17, 2019, Proceedings, Part II (Macau, China). Springer-Verlag, Berlin, Heidelberg, 420--431. https://doi.org/10.1007/978--3-030--16145--3_33
[57]
Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. 2019. Modeling Tabular Data Using Conditional GAN. Curran Associates Inc., Red Hook, NY, USA.
[58]
Sirui Yao, Yoni Halpern, Nithum Thain, Xuezhi Wang, Kang Lee, Flavien Prost, Ed H. Chi, Jilin Chen, and Alex Beutel. 2021. Measuring Recommender System Effects with Simulated Users. CoRR, Vol. abs/2101.04526 (2021). showeprint[arXiv]2101.04526 https://arxiv.org/abs/2101.04526
[59]
Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui Ling, and Yongdong Zhang. 2021. Causal Intervention for Leveraging Popularity Bias in Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (Virtual Event, Canada) (SIGIR '21). Association for Computing Machinery, New York, NY, USA, 11--20. https://doi.org/10.1145/3404835.3462875
[60]
Wei Zhao, Benyou Wang, Jianbo Ye, Yongqiang Gao, Min Yang, and Xiaojun Chen. 2018. PLASTIC: Prioritize Long and Short-term Information in Top-n Recommendation using Adversarial Training. 3676--3682. https://doi.org/10.24963/ijcai.2018/511

Index Terms

  1. Neural Click Models for Recommender Systems

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGIR '24: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
    July 2024
    3164 pages
    ISBN:9798400704314
    DOI:10.1145/3626772
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 July 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. adversarial learning
    2. recommender systems
    3. user response function

    Qualifiers

    • Short-paper

    Funding Sources

    Conference

    SIGIR 2024
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 792 of 3,983 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 157
      Total Downloads
    • Downloads (Last 12 months)157
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 03 Oct 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media