
ar
X

iv
:2

40
5.

11
98

6v
1

 [
cs

.D
S]

 2
0

M
ay

 2
02

4

Scheduling Jobs with Work-Inefficient Parallel Solutions

William Kuszmaul∗

Harvard University
Cambridge, MA, USA

william.kuszmaul@gmail.com

Alek Westover
Massachusetts Institute of Technology

Cambridge, MA, USA
alekw@mit.edu

ABSTRACT

This paper introduces the serial-parallel decision problem. Consider

an online scheduler that receives a series of tasks, where each task

has both a parallel and a serial implementation. The parallel im-

plementation has the advantage that it can make progress concur-

rently onmultiple processors, but the disadvantage that it is (poten-

tially) work-inefficient. As tasks arrive, the scheduler must decide

for each task which implementation to use.

We begin by studying total awake time. We give a simple decide-

on-arrival scheduler that achieves a competitive ratio of 3 for to-

tal awake time—this scheduler makes serial/parallel decisions im-

mediately when jobs arrive. Our second result is an parallel-work-

oblivious scheduler that achieves a competitive ratio of 6 for total

awake time—this scheduler makes all of its decisions based only

on the size of each serial job and without needing to know any-

thing about the parallel implementations. Finally, we prove a lower

bound showing that, if a scheduler wishes to achieve a competitive

ratio of $ (1), it can have at most one of the two aforementioned

properties (decide-on-arrival or parallel-work-oblivious). We also

prove lower bounds of the form 1 + Ω(1) on the optimal competi-

tive ratio for any scheduler.

Next, we turn our attention to optimizing mean response time.

Here, we show that it is possible to achieve an $ (1) competitive

ratio with $ (1) speed augmentation. This is the most technically

involved of our results. We also prove that, in this setting, it is not

possible for a parallel-work-oblivious scheduler to do well.

In addition to these results, we present tight bounds on the opti-

mal competitive ratio if we allow for arrival dependencies between

tasks (e.g., tasks are components of a single parallel program), and

we give an in-depth discussion of the remaining open questions.

CCS CONCEPTS

• Theory of computation→ Parallel algorithms.

KEYWORDS

Scheduling, Parallel, Work-Inefficient, Competitive-Analysis

∗William Kuszmaul is funded by the Rabin Postdoctoral Fellowship in Theoretical
Computer Science at Harvard University. Large parts of this researchwere completed
while William was a PhD student at MIT, where he was funded by a Fannie and John
Hertz Fellowship and an NSF GRFP Fellowship. William Kuszmaul was also partially
sponsored by the United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation herein.

1 INTRODUCTION

There are many tasks g for which the best parallel algorithms are

work inefficient. This can leave engineers with a surprisingly sub-

tle choice: either implement a serial version g⊚ of the task, which is

work efficient but has no parallelism, or implement a parallel ver-

sion gq of the task, which is work inefficient but has ample paral-

lelism. The serial version g⊚ of the task takes some amount of time

f to execute on a single processor; the parallel version gq takes

time c ≥ f to execute on a single processor, but can be scaled to

run on any number : ≤ ? processors with a:-fold speedup.Which

version of the task should the engineer implement?

If the task is running in isolation on a ?-processor system, and

assuming that c/? ≤ f , then the answer is trivial: use the paral-

lel implementation gq. But what if the system is shared with many

other tasks that are arriving/completing over time? Intuitively, the

engineer should use gq if the system can afford to allocate at least

c/f processors to the task, and should use g⊚ otherwise. But this

choice is complicated by two factors, since the number of proces-

sors that the system can afford to allocate to g may both (1) change

over time as g executes and (2) depend on whether other tasks g ′

were executed using their serial or parallel implementations. The

second factor, in particular, creates complicated dependencies—the

right choice for one task depends on what choices have been and

will be made for others.

In this paper, we propose an alternative perspective:What if the

engineer implements both a serial and parallel version of each task,

and then leaves it to the scheduler to decide which version to use?

Formally, we define the serial-parallel decision problem as

follows: a set T = {g1, . . . , g=} of tasks arrive over time. Each task

g8 ∈ T arrives at some start time C8 , and comes with two imple-

mentations: a serial implementation g⊚8 with work f8 and a parallel

implementation gq8 with work c8 > f8 . In order for the scheduler

to begin executing a task g8 , it must choose (irrevocably) between

which of the two implementations to use. If the serial job g⊚8 is cho-

sen, then the job can execute on up to one processor at a time (the

processor can change), and g8 completes once f8 work has been

performed on g⊚8 . If the parallel job g
q

8 is chosen, then the job can

execute on up to ? processors over time (now both the set of proces-

sors and the number of processors can change), and g8 completes

once the total work performed on gq8 (by all processors) reaches c8 .

Two natural objectives for the scheduler are to minimize the

mean response time (MRT), which is the average amount of time

between when a task arrives and when it completes; and the total

awake time, which is the total amount of time during which there

is at least one job executing. We emphasize that, in both cases, our

task is fundamentally to solve an online decision problem. If the

scheduler was told for each task g8 whether to use g⊚8 or gq8 , then

the problem would become straightforward. But actually making

these decisions is potentially difficult.

1

http://arxiv.org/abs/2405.11986v1

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

Results

In addition to formalizing the Serial-Parallel Scheduling Problem,

we give upper and lower bounds for how well online schedulers

can perform on both awake time and average completion time.

Optimizing awake time. Our first result is a very simple sched-

uler that optimizes awake time with a competitive ratio of 3. This

is a decide-on-arrival scheduler , meaning that it makes its se-

rial/parallel decisions immediately when a job arrives. We also give

lower bounds preventing a competitive ratio of 1 + Y : we show

that any deterministic scheduler must incur competitive ratio at

least q − > (1) ≈ 1.62; and that any deterministic decide-on-arrival

scheduler must incur competitive ratio at least 2 − > (1); and that

even randomized schedulers must incur competitive ratios at least

(3 +
√
3)/4 − > (1) ≈ 1.18.

Our second result studies whatwe callparallel-work-oblivious

schedulers, which are schedulers that get to know the serial work

of each job but not the parallel work.We show that, even in this set-

ting, it is possible to construct a 6-competitive scheduler for awake

time. On the other hand, we show that there is a fundamental ten-

sion between decide-on-arrival and parallel-work-oblivious sched-

ulers: any scheduler that achieves both properties has competitive

ratio at least Ω(√?).

Optimizingmean response time.Next, we turn our attention to

mean response time (MRT). We construct an online scheduler that

achieves a competitive ratio of $ (1) for MRT using $ (1) speed
augmentation. This is our most technical result, and is achieved

through three technical components. First, in Section 6.1, we prove

two technical lemmas for comparing the optimal schedule for a set

of serial jobs to the optimal schedule for perfectly scalable versions

of the same jobs. Then, in Section 6.2 we build on this to construct

a scheduler that is$ (1) competitive if it is permitted to sometimes

cancel parallel tasks and restart them as serial ones. This cancella-

tion ‘superpower’ would seem to make the decision problem sig-

nificantly easier (as decisions are no longer irrevocable). However,

in Section 6.3, we show how to take our $ (1)-competitive sched-

uler (with cancellation) and transform it into a $ (1)-competitive

scheduler (without cancellation).

Our MRT scheduler is neither a decide-on-arrival scheduler nor

an parallel-work-oblivious scheduler. We prove that, if a sched-

uler is decide-on-arrival and uses $ (1) speed augmentation, then

it must incur competitive ratio Ω(?1/4).

Extending toTaskswithDependencies. In Section 7, we extend

our model to support arrival dependencies between tasks: Each

task g8 has a set �8 ⊆ [=] of other tasks that must complete before

g8 can arrive. Dependencies must be acyclic, but besides that, they

can be arbitrary.

In this setting, it is helpful to think of the tasks as represent-

ing components of a single parallel program. Each component has

both a serial and parallel implementation, that the runtime sched-

uler can choose between. The goal is to minimize the completion

time of the entire program—this corresponds to the awake time

objective function.

In Section 7, we show that the optimal online competitive ra-

tio for this problem (even for randomized schedulers) is Θ(√?).

The upper bound holds for any set of dependencies, and the lower

bound holds even when the dependencies form a tree (this means

that the lower bound applies, for example, even to fork-join paral-

lel programs [3]).

Openquestions. Finally, in Section 10, we conclude with a discus-

sion of open questions.

2 RELATED WORK

There is a vast literature on multiprocessor scheduling problems.

For an excellent (but now somewhat dated) survey, see [4]. Past

work has often categorized sets of jobs � = { 91, . . . , 9=} as being

composed of jobs 98 which are either rigid, moldable, or malleable.

Both rigid andmoldable jobs have the property that once a job 98
begins on some number ? 98 of processors, it must continue on that

same set of ? 98 processors without interruption until completion.

Rigid and moldable jobs differ in that for rigid jobs the number ? 98
of processors which task 98 is to be run on is pre-specified, whereas

for moldable jobs ? 98 may be chosen by the scheduler. Finally, if

the number (and set) of processors on which a job is executed is

permitted to vary over time, then the job is said to be malleable.

In the contexts of moldable and malleable jobs, the jobs often come

with speedup curves determining how quickly the job can make

progress on a given number of processors. If the speedup curve is

proportional to the number of processors onwhich the job runs (as

is the case for the parallel jobs associated with the tasks described

in this paper) then the job is said to be perfectly scalable.

Much of the work in this area focuses on optimizing awake time,

which as discussed earlier, is the total amount of time duringwhich

any jobs are present. Here, there has been a great deal of work on

both offline schedulers [12, 14–17] and online schedulers [1, 5, 9–

11, 18, 19].

For moldable jobs with arbitrary speedup curves, Ye, Chen, and

Zhang [18] show an online competitive ratio of $ (1) for awake
time. Of special interest to this paper would be the speedup curve

where job 98 takes timef8 to complete on 1 processor and time c8/:
to complete on : > 1 processors. In this case, the scheduler’s com-

mitment to a fixed number of processors would also implicitly rep-

resent a commitment to running the job in serial or parallel. One

difference between this and the problem studied here is that the

scheduler (and the OPT to which it is compared) are non-preemptive:

they are required to execute the tasks on a fixed set of processors

(without interruption). Nonetheless, it is not too difficult to show

that Ye, Chen, and Zhang’s algorithm actually does yield an $ (1)
competitive awake-time algorithm for our problem—we empha-

size, however, that this algorithm is neither decide-on-arrival nor

parallel-work-oblivious, and would achieve a quite large constant

competitive ratio. Interestingly, in the context of mean response

time (MRT), we show in Section 9 that preemption is necessary:

in the context of our serial-parallel decision problem, any online

scheduler that rigidly assigns jobs to fixed numbers of processors

will necessarily incur a worst-case competitive ratio of l (1) for
MRT (even with$ (1) resource augmentation).

There is of course also a great deal of interest MRT, i.e., the av-

erage amount of time between when tasks arrive and when they

are completed. Besides work on offline approximation algorithms

2

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

[15, 16], most of the major successes in this area have been for mal-

leable jobs [6–8]. The seminal result in this area is due to Edmonds

[7], who considered malleable jobs with arbitrary sub-linear non-

decreasing speedup curves, and showed that the so-called EQUI

scheduler, which divides the processors evenly among all of the

jobs present (using time sharing if there are more than ? jobs),

achieves a competitive ratio of $ (1) with 2 + Y speed augmen-

tation (subsequent work only requires speed augmentation 1 + Y
with different schedulers [6, 8]). A remarkable feature of the EQUI

scheduler is that it is oblivious to the precise speedup curve of each

job. In Section 9, we show that such a scheduler is not possible in

our setting—any oblivious online scheduler forMRT (or, even any

parallel-work-oblivious scheduler) must incur a worst-case com-

petitive ratio of l (1).
The tasks studied in this paper do not fit neatly into the

rigid/moldable/malleable framework. They represent instead a di-

rection that until now seems to have been unexplored: deciding for

each task between the two extremes of (1) a fast algorithm with no

parallelism and (2) a slower algorithm with ample parallelism and

perfect scalability. Interestingly, several parts of the analysis end

up making use of EQUI as an analytical tool. Thus, for complete-

ness, we restate Theorem 1.1 of [8] (with parameters V = 1 and

Y = 1) below:

Theorem 2.1 (Theorem 1.1 of [8]). EQUI with 3 speed augmen-

tation is$ (1) competitivewith OPT for MRT on any set � of malleable

jobs with arbitrary (nondecreasing sublinear) speedup curves.

3 PRELIMINARIES

Problem Specification. In this sectionwe introduce our terminol-

ogy and notation for describing the problem. A task is some com-

putation that must be performed. Tasks can be performed using a

serial or parallel job implementing the task. In the Serial-Parallel

Scheduling Problem a scheduler receives tasksT = {g1, g2, . . . , g=}
over time, with = unknown beforehand in the on-line case. Task

g8 has an associated serial job g⊚8 with work f8 and an associated

parallel job gq8 with work c8 . Finally, task g8 arrives at time C8 with

C1 ≤ C2 ≤ · · · ≤ C= . Thus one should think of g8 as being determined

by a triple (f8 , c8 , C8).
The scheduler must decide whether to perform each task g8 us-

ing the serial or parallel implementation. By default the scheduler

need not decide which implementation to run for a task exactly

when the task arrives, sometimes it may be beneficial to wait be-

fore starting a task. We also consider the alternative model where

the scheduler must decide on arrival which implementation to use.

For convenience, we treat time steps as being small enough that

time is essentially continuous. At each time step, the scheduler al-

locates its ? processors to the unfinished jobs present. In a given

time step multiple processors can be allocated to a parallel job, but

only a single processor can be allocated to each serial job (and, of

course, some jobs may be allocated 0 processors). Sometimes it is

convenient to treat a job as being assigned to a fractional number

of processors; this can be accomplished by time-sharing the pro-

cessor over multiple steps. A serial job g⊚8 finishes once it has been

allocatedf8 time (not necessarily contiguously) on a processor (not

necessarily the same one over time). A parallel job gq8 finishes once

it has been allocated c8 total time on processors—i.e., the integral

over time of the number of processors allocated to gq8 reaches c8 .

We refer to a set of tasks T = {g1, g2, . . . , g=} specifying an in-

stance of the Serial-Parallel Scheduling Problem as a task arrival

process or TAP . We use [=] to denote {1, 2, . . . , =}, and T 9
8 to de-

note
{
g8 , . . . , g 9

}
Objective.We say that a task is alive if it has arrived but not yet

been completed. We consider two objective functions:

• minimizemean response time (MRT): the average amount

of time that tasks are alive. If task g8 finishes at time 58 , then

the MRT is 1
=

∑ (58 − C8). It is equivalent, but generally more

convenient, to work with a scaled version of MRT called

total response time (TRT)—the sum of the amounts of time

that tasks are alive. We denote the TRT of a scheduler ALG

on a TAP T by TRTT
ALG

.

• minimize awake time (T): the total amount of time that

there are alive tasks. If there are tasks alive on intervals

[01, 11] ⊔ [02, 12] ⊔ · · · , then the awake time is
∑(18 − 08).

We denote the awake time of a scheduler ALG on TAP T by

TT
ALG

.

We measure a scheduler’s performance by comparison to the

optimal off-line scheduler OPT, who can see the sequence of tasks

in advance. The competitive ratio of a scheduler ALG on TAP T is

the ratio of its performance to OPT’s, e.g. TRTT
ALG

/TRTT
OPT

for TRT.

More generally, wewill say ALG is k competitive if the competitive

ratio of ALG is bounded by : on all TAPs. Sometimes we will also

say ALG is: competitivewith another scheduler ALG′ , meaning that

the MRT (or awake time) of ALG is never more than a factor of :

larger than theMRT (or awake time, respectively) of ALG′ .
Finally, when comparing two schedulers ALG1 and ALG2 in the

context of MRT we will often assume c speed augmentation for

some 2 ∈ $ (1). This means that ALG1 gets to use processors that

are 2 times faster than those used by ALG2. Let 2 · T denote the

TAP T but with every job’s work multiplied by 2; similarly define

2 · � for a set of jobs � as the jobs from � with work multiplied

by 2 . Then, the statement ALG1 with 2 speed augmentation is$ (1)
competitive with ALG2 on TAP T (or jobs �) can be written as

TRTTALG1 ≤ $ (TRT2 ·TALG2
).

Our goal is to create a scheduler that is $ (1) competitive with

OPT, potentially with use of $ (1) speed augmentation in the case

ofMRT.

Technical Details.We emphasize that our focus is on schedulers

that are allowed to preempt running tasks, i.e. pause running tasks

and continue later on a potentially different set of processors. For

MRT, in particular, preemption is provably necessary—we show in

Section 9 that a non-preemptive scheduler cannot be$ (1)-competitive

for MRT. It is sometimes theoretically helpful to consider sched-

ulers that are allowed to cancel running tasks, i.e. stop a running

task, erasing all progress made on the task, and restart the task

using a different implementation (e.g., a parallel task can be can-

celled and restarted as a serial task). Our final schedulers will not

require cancelling. However, in designing/analyzing our scheduler,

it will be helpful to be able to imagine what would have happened

if cancelling were possible. We say “ALG, with use of cancelling”

3

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

to denote that a scheduler ALG has been augmented with the ability

to cancel.

We consider only TAPswhere the cost ratio c8/f8 satisfies c8/f8 ∈
[1, ?] for all tasks g8 . If c8/f8 < 1 then the scheduler clearly should

never run g8 in serial so we can replace the serial implementation

with the parallel implementation to get cost ratio 1. Similarly, if

c8/f8 > ? then the scheduler should never run g8 in parallel and

we can replace the parallel implementation with the serial imple-

mentation to get cost ratio ? .

Throughout the paper we will assume ? ≥ Ω(1) is at least a suf-
ficiently large constant. We are more interested in the asymptotic

behavior of our schedulers as a function of ? than the behavior on

small values of ? .

4 A 3-COMPETITIVE AWAKE-TIME

SCHEDULER THAT MAKES DECISIONS ON

ARRIVAL

The scheduler we describe in this section belongs to a simple class

of schedulers called decide-on-arrival schedulers. Whenever a

decide-on-arrival scheduler receives a task it must immediately

make an irrevocable decision about whether to run the serial or

parallel job associated with the task. Our scheduler will run its

chosen serial jobs via most-work-first, i.e., run up to ? of the se-

rial jobs with the most remaining work at each time step and run a

parallel job on any remaining processors. Clearly this is an optimal

method for scheduling any given set of jobs. Thus, in the decide-

on-arrival model the Serial-Parallel Scheduling Problem is really

not a scheduling problem but rather a decision problem: once the

scheduler chooses which job to run for each task it is clear how

to schedule the jobs. We define OPT to also be a decide-on-arrival

scheduler. This is without loss of generality: OPT does not benefit

from delaying its decisions because OPT has all the information in

advance. Thinking of OPT as a decide-on-arrival scheduler will sim-

plify the terminology. We now define specialized notation that is

helpful in describing the decisions of decide-on-arrival schedulers:

Definition 4.1. A scheduler ALG is saturated on time step C if

ALG has no idle processors at time C . We say that ALG is balanced

after the arrival of =0 tasks if ALG would be saturated immediately

before completing these =0 tasks, assuming no further tasks arrive.

In other words, being balancedmeans that ALG’s current set of jobs

could be distributed so that, assuming no additional tasks arrive,

all processors would be in use at each time step until ALG has com-

pleted all the currently present jobs. If ALG is not balanced we say

that ALG is jagged.

We say that ALG incurs work, on a task g if it takes a job

requiring, work to complete. We say that ALG incurs work,

on a TAP T if ALG does, total work to handle the tasks in T .

We now present our simple 3-competitive scheduler.

Theorem 4.2. There is a 3-competitive decide-on-arrival sched-

uler for awake time.

Proof. Wepropose the scheduler BALwhich is always balanced.

Whenever a task g arrives

• If taking g⊚ would cause BAL to become jagged BAL takes gq.

• Otherwise BAL takes g⊚.

To analyze BAL it suffices to analyze TAPs where BAL always has

at least one uncompleted task present at any time from the start of

time until the completion of the final task. Thus, the awake time

of BAL is the same as its completion time. OPT’s awake time may

be less than OPT’s completion time; we call the intervals of time

when OPT has already completed all arrived tasks gaps. We call

the maximal intervals of time when OPT has uncompleted tasks

which have already arrived OPT-awake-intervals.

Our main technical lemma is the following:

Lemma 4.3. Fix some OPT-awake-interval � . Let T (�) denote the
set of tasks that arrive during � and let T ′ denote the tasks that

arrive before � . Assume that immediately before the start of � BAL

has � work present (and is of course balanced). Let CALG for ALG ∈
{BAL, OPT} denote the time from the start of � until when ALG would

complete on the TAP T (�) ∪ T ′ . Then

CBAL ≤ �/? + 3COPT .

Proof. Let T (� , 8) denote the first 8 tasks in T (�). Let K8
OPT

denote the work that OPT incurs on T (� , 8). Let C8
ALG

for ALG ∈
{BAL, OPT} denote completion time of ALG on the TAP T ′ ∪T (� , 8)
minus the start time of the OPT-awake-interval � . We will prove

the lemma by induction on 8 , i.e., how many of the tasks in) (�) to
consider. One complication with the proof is that OPT’s schedule

on T (� , 8) can be very far from optimal; for instance, OPT might

schedule a very large task g ∈ T (� , 8) in serial if it knows that

future tasks in T (�) cause g to not bottleneck completion time.

Nonetheless with an appropriately constructed invariant we can

control the evolution of the work profiles of BAL and OPT as we

increase 8 .

In particular, we will inductively show the following claim: For

each 8 ∈ {0, 1, . . . , |T (�) |} we have the invariant:
C8BAL ≤ �/? + 2C8OPT +K

8
OPT/?. (1)

When 8 = 0 we have C0
BAL

= �/? and the invariant is satisfied.

Now we assume the invariant is true for some 8 > 0 and consider

how the addition of the the (8 + 1)-th task g ′ impacts the invariant.

We use f′, c ′ to denote the serial and parallel works of g ′. If BAL
chooses an implementation of g ′ requiring ∈ {f′, c ′} work and

OPT chooses an implementation ofg ′ requiring at least work then

C8+1BAL −C8BAL = /? ≤ K8+1OPT/? − K8OPT/?
and so the invariant for 8 implies the invariant for 8 + 1.

The only remaining case is if OPT runs g ′ in serial while BAL runs
g ′ in parallel. However, in this case g ′ must have relatively large

serial work. In particular, if we let C ′0 denote the time at the begin-

ning of � and C ′8+1 denote arrival time of g ′ then f′ > C8
BAL

+C ′0−C
′
8+1

or else BAL would have chosen to run g ′ in serial. Thus we have

C8+1BAL = C8BAL +c
′/? ≤ C8BAL +f

′ ≤ C ′8+1− C
′
0 +2f

′ ≤ 2(C ′8+1− C
′
0 +f

′).
(2)

On the other hand, OPT ran g ′ in serial and does not have any gaps

between C ′0, C
′
8+1 because these times occur during the same OPT-

awake-interval � . Thus

C8+1OPT ≥ C ′8+1 − C
′
0 + f

′ .

Combined with Equation (2) this gives

C8+1BAL ≤ 2C8+1OPT,

4

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

and so the invariant holds in this case as well. This completes the

proof of the inductive claim.

To conclude the lemma we use 8 = |T (�) | in the inductive claim,

which gives:

CBAL ≤ �/? + 2COPT +K | T (�) |
OPT

/?. (3)

Using the fact K
| T (I) |
OPT

/? ≤ COPT in Equation (3) completes the

proof of the lemma. �

To finish our analysis of BAL we inductively show that BAL is

3-competitive on any prefix of the OPT-awake-intervals. As a base-

case we can take the first OPT-awake-interval. Applying Lemma 4.3

with � = 0 shows that BAL is 3-competitive on the first OPT-awake-

interval. The inductive step is:

Corollary 4.4. Let T (8) denote the set of tasks that arrive dur-
ing the first 8 OPT-awake-intervals. Assume that BAL is 3-competitive

with OPT on T (8) . Then BAL is 3-competitive with OPT on T (8+1) .

Proof. Let � denote the (8 + 1)-th OPT-awake-interval and let

T (�) denote the set of tasks that arrive during � . Let , be the

work performed by BAL before � and let � denote the work that BAL

has remaining immediately before the start of � . By assumption we

have

(� +,)/? ≤ 3 TT
(8)

OPT
. (4)

Let CALG for ALG ∈ {BAL, OPT} denote the completion time of ALG

on the tasks T (8+1) measured from the start of � ; i.e., if ALG com-

pletesT (8+1) at time CALG and � starts at time C� thenCALG = CALG−C� .
By Lemma 4.3 we have

CBAL ≤ �/? + 3COPT . (5)

Combining Equation (4), Equation (5) gives

TT
(8+1)

BAL
=, /? + CBAL

≤, /? + 3COPT +�/?

≤ 3(TT (8)
OPT +TT(�)

OPT
)

= 3 TT
(8+1)

.

�

Using Corollary 4.4 on all the OPT-awake-intervals shows that

BAL is 3-competitive on T .

�

5 A 6-COMPETITIVE AWAKE-TIME

SCHEDULER THAT IS PARALLEL-WORK

OBLIVIOUS

Nowwe turn our attention to designing a parallel-work-oblivious

scheduler, which is a scheduler that is not allowed to see the paral-

lel works of each task. We show that it is still possible to construct

an $ (1)-competitive scheduler for awake time in this model; this

contrasts withMRT where Proposition 9.1 asserts that knowledge

of the parallel works is necessary to achieve a good competitive

ratio for MRT. In particular, we show:

Theorem 5.1. There is a deterministic parallel-work-oblivious 6-

competitive scheduler for awake time.

We call our scheduler UNK. Whenever there are idle processors,

UNK takes any not-yet-started (but already arrived) task g8 and:

• If g8 arrived more than f8 time ago UNK runs g⊚8 .

• Otherwise UNK runs gq8 .

At each time step UNK allocates a processor to each of the at-most-

? running serial jobs. There will be at most one parallel task run-

ning at a time. If there is a running parallel job UNK allocates any

processors not being used to run serial jobs to this single running

parallel job. At any time some tasks may have arrived but not yet

been started; that is, UNK is not a decide-on-arrival scheduler.

Now we analyze UNK using two lemmas. As in Section 4 we say

UNK is saturated on a time step if all ? processors are in use, and

unsaturated otherwise. Also, as in the previous section, it suffices

to analyze TAPs where UNK always has at least one uncompleted

task present at any time from the start of time until the completion

of the final task. We will make this assumption wlog for the rest

of the section, meaning that the awake time of UNK is equal to the

completion time.

Lemma 5.2. UNK is unsaturated at most 1/2 of the time.

Proof. Let,1,,2, . . . denote themaximal intervals of timewhen

UNK is saturated; we call these saturated intervals. Similarly we

refer to maximal intervals where UNK is unsaturated as unsatu-

rated intervals. Observe that, whenever we are in an unsaturated

interval, every task that has arrived so far either must have already

completed or must be currently running in serial. That is, during

an unsaturated interval there are never parallel jobs running and

there are never jobs sitting around without being started.

For each saturated interval,8 let,
′
8 denote an interval of the

same length as,8 but shifted to start exactly at the end of interval

,8 . We claim that
⋃
8,

′
8 covers all unsaturated intervals.

Fix some unsaturated interval [0, 1]. Let g 9 be the serial task

with the most remaining work present at time 0. Let,8 be the sat-

urated interval when g 9 was started.Wewill show that [0, 1] ⊆, ′
8 .

Let C denote the time when g 9 is started. Observe that UNKmust be

saturated for all of [C 9 , C] or else g 9 would have been started in par-

allel. Thus, [C 9 , C] ⊆,8 . Further, observe that C − C 9 ≥ f 9 , because

UNKmust wait f 9 time before starting g 9 in serial. In particular this

means that |,8 | ≥ f 9 .

Next, we claim that at all times in [C, 1], UNK allocates a processor
to g 9 . Indeed, suppose that at some time step in [C, 1] g 9 was not
allocated a processor. This would mean that there are ? other serial

tasks with at least as much remaining work as g 9 . But in this case

UNK would remain saturated until g 9 is completed, contradicting

the fact that UNK is not saturated during times [0, 1]. Thus, 1 ≤
C + f 9 , and so [0,1] ⊆ [C, C + f 9]. Finally, recall that |,8 | ≥ f8 so

[0,1] ⊆ [C, C + |,8 |] and consequently [0,1] ⊆, ′
8 .

Of course
��⋃
8,

′
8

�� ≤ ∑
8 |,8 |. Thus UNK is unsaturated at most

1/2 of the time.

�

Lemma 5.3. The amount of time that UNK is saturated is at most

3 TOPT .

Proof. For each task g , let �g be the interval of time between

when g arrives and when OPT completes g . Let � =

⋃
g∈T �g be

the set of times when OPT has uncompleted tasks, and let � denote

5

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

the set of times when OPT has no uncompleted tasks present. We

divide tasks g into four categories 1:

(1) UNK runs g⊚.

(2) UNK runs gq starting at some time after the end of �g .

(3) UNK runs gq entirely within time steps in �.

(4) UNK starts gq during �g , but part of g ’s execution time by

UNK occurs during �.

We now analyze the performance of UNK on each category of

task.

Claim 1. UNK’s total work on tasks of category (1) and (2) is at

most ? TOPT.

Proof. For each task g8 of category (1) OPT must have incurred

at least f8 work; this is true of all tasks. For each task g8 of category

(2) g8 has not yet been available for f8 time steps when UNK starts

g8 in parallel. Thus, for OPT to have already finished g8 by the time

that UNK starts g8 OPT must have also run g8 in parallel. Thus, OPT

incurs work c8 for task g8 . Therefore, OPT incurs at least as much

work as UNK on all tasks of categories (1) and (2). The amount of

work that OPT performs is at most ? TOPT , which then bounds UNK’s

work on tasks of category (1) and (2). �

Claim 2. UNK’s work on tasks of category (3) is at most ? TOPT.

Proof. Tasks of category (3) all run during time steps in �, so

the work spent on such tasks is at most ? · |�| = ? TOPT. �

Claim 3. UNK’s work on tasks of category (4) is at most ? TOPT.

Proof. Let , OPT
1 ,, OPT

2 , . . . denote the (maximal) intervals of

time when OPT has uncompleted tasks. For each, OPT
8 there is at

most one task g:8 that UNK starts in parallel during, OPT
8 whose

execution time overlaps with �: this is because UNK only runs a

single parallel task at a time. Let denote the set of category (4)

tasks. For each category (4) task g:8 ∈ , the corresponding, OPT
8

must have size at least c:8 /? because OPT completes task g:8 during

, OPT
8 . Thus,

TOPT =

∑
8

|, OPT
8 | ≥

∑
g:8 ∈

c:8 /?. (6)

The right hand side of Equation (6) is UNK’s work on the category

(4) tasks, giving the desired bound. �

Combining the previous three claims, the total work completed

by UNK during saturated steps is at most 3? TOPT. At each saturated

step ? units of work are performed. Thus, the total number of sat-

urated time steps is at most 3 TOPT. �

Combined, the previous lemmas prove Theorem 5.1.

6 MINIMIZING MRT

In this section we present our main result: a scheduler that, with

$ (1) speed augmentation, is $ (1) competitive for MRT (or equiv-

alently TRT).

1The categories are not mutually exclusive. If a task g falls in multiple categories we
over-charge UNK for g ’s work.

6.1 Two Technical Lemmas

In our analyses, it will be helpful to compare two settings: one in

which a set of jobs � must be executed with every job in serial, and

the other in which the same set of jobs � must be executed but

where every job is perfectly scalable (i.e., c8 = f8).

Lemma 6.1. Let �⊚ be a set of serial jobs with arbitrary arrival

times. Let �q be jobs of the same work as jobs in �⊚ but that are per-

fectly scalable. Then

TRT
�⊚
OPT

≤ $ ©
«
TRT

$ (1) ·�q
OPT

+
∑
98 ∈ �⊚

work(98)ª®¬
.

Proof. We prove the lemma by constructing a scheduler SSS

that achieves mean response time at most

$
©
«
TRT

12�q
OPT

+
∑

98 ∈12�⊚
work(98)ª®¬

.

The Silly-Serious scheduler SSS operates in 2 modes: silly mode,

where there are less than ? unfinished jobs alive, and seriousmode,

where there are at least ? unfinished jobs alive. Define serious in-

tervals and silly intervals to be maximal contiguous sets of time

where SSS is in the respective modes. When discussing SSS, we

will assume that it has access to 2? processors (rather than just ?).

This can be simulated using a factor-of-2 speed augmentation and

time sharing.

During silly mode SSS schedules each job on a single processor.

As new jobs arrive, once the total number of jobs present reaches

? , SSS enters serious mode. As a boundary condition, we consider

any jobs that arrive in that moment to have arrived during the

serious interval. We refer to the jobs that arrive during the serious

interval as scary (for this serious interval).

During a given serious interval, SSS uses 2? total processors: it

puts the at-most-? non-scary jobs from the prior silly interval onto

? processors, and it schedules the scary jobs via EQUI on the other

? processors.

We remark that there may be fewer than ? scary jobs, in which

case EQUI may want to allocate multiple processors to a single job.

In this case SSS does not actually schedule the (serial) job on mul-

tiple processors but simply runs it on its own processor. Because

the jobs that SSS is running are serial only, we can think of them

as having flat speedup curves, i.e. they require the same amount of

time to run regardless of howmany processors they are run on. So,

when EQUI tries to run a job on multiple processors, the progress

is the same as if we were to run it on a single processor. Thus we

can think of SSS as faithfully simulating EQUI on the scary jobs.

We bound the TRT incurred by SSS with 6 speed augmentation

by partitioning the TRT into three parts and bounding each part.

We can bound the total TRT incurred by SSS during silly inter-

vals by
∑
98 ∈ �⊚ work(98), because every job has a dedicated proces-

sor at all times during a silly interval. Thus we will focus the rest

of the proof on serious intervals.

Now we fix a serious interval � = [C0 , C1] to analyze. Let -⊚ be

the scary jobs for � , but with each job’s work truncated to be the

amount of work that the job completes during � . Similarly, let.⊚ be

the non-scary jobs that run during � , but with each of their works

also reduced to be the work completed by that job during � . We

6

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

claim the following chain of inequalities holds for the jobs in the

serious interval � :

TRT
-⊚∪.⊚
SSS

≤ TRT
2(-⊚∪.⊚)
EQUI

(7)

= TRT
2(-q∪.q)
EQUI

(8)

≤ TRT
6(-q∪.q)
OPT

(9)

≤ TRT12-q
OPT

+
∑

98 ∈12.q
work(98). (10)

Note that the first expression TRT
-⊚∪.⊚
SSS

represents the TRT for SSS

during serious interval � .

Inequality (7): SSS’s treatment of-⊚∪.⊚ on 2? processors (which
it is granted via factor-of-2 speed augmentation) is at least as good

as running EQUI on -⊚ ∪ .⊚ with ? processors, because SSS runs

EQUI on -⊚ and then separately allocates one processor to each

job in .⊚.

Inequality (8): We denote by -q, .q perfectly scalable versions of

the jobs in -⊚, .⊚. Since there are at least ? jobs at all times dur-

ing a serious interval, EQUI’s treatment of 2(-⊚ ∪ .⊚) and EQUI’s

treatment of 2(-q ∪.q) are actually the same: it equally partitions

the processors amongst the available jobs, potentially using time

sharing; crucially EQUI never assigns more than 1 processor to any

job because there are a sufficiently large number of jobs.

Inequality (9): By Theorem 2.1 EQUI on 2(-q ∪ .q) is $ (1) com-

petitive with OPT on 6(-q ∪ .q).
Inequality (10): OPT on 6(-q ∪ .q) using ? processors is at least

as good as OPT on 12(-q∪.q) using 2? processors. This, in turn, is

at least good as the TRT incurred by OPT on 12-q using ? proces-

sors plus the TRT incurred by OPT on 12.q using ? processors, i.e.,

TRT6-q
OPT

+TRT6.q
OPT

. Finally, since TRT12.q
OPT

≤ ∑
98 ∈12.q work(98), we

get (10) as desired.

Total TRT incurred by serious intervals:We can now bound the

total TRT incurred by serious intervals as follows. Let �1, �2, . . . be

the serious intervals, and define -
(1)
q , -

(2)
q , . . . and .

(1)
q , .

(2)
q , . . .

so that -
(:)
q is -q for interval �: and .

(:)
q is .q for interval �: . The

jobs in each -
(:)
q and each .

(:)
q represent portions of jobs from �q.

Note that, although a given job from �q could appear in multiple

.
(:)
q ’s, each job appears in at most one -

(:)
q since each job can be

scary in at most one serious interval.

By the inequalities above, we have that the total response time

spent in serious intervals is at most

∑
:

©
«
TRT

12-
(:)
q

OPT
+

∑
98 ∈12. (:)

q

work(98)
ª®®
¬
.

Since each job in �q appears in at most one -
(:)
q , we have that∑

:

TRT
12-

(:)
q

OPT
≤ TRT

12�q
OPT

.

Moreover, since the jobs in the .
(:)
q ’s each represent disjoint por-

tions of the jobs in �q, we have that∑
:

∑
98 ∈12. (:)

q

work(98) ≤
∑
98 ∈12�q

work(98) ≤ TRT
12�q
OPT

.

Thus the total response time spent in serious intervals is at most

2 TRT
12�q
OPT

, which completes the proof.

�

It will also be helpful to consider the setting in which we are

comparing a set of perfectly scalable jobs to a set of serial jobs that

arrive slightly later.

Lemma 6.2. Let � = { 91, . . . , 9=} be a set of perfectly scalable jobs,
where job 98 has work 2F8 and arrival time C8 . Let = {:1, . . . , :=}
be a set of serial jobs where job :8 has work at most F8 and arrival

time C8 +F8 . Then,

TRT OPT ≤ $
(
TRT

$ (1) ·�
OPT

+
∑
8

F8

)
.

Proof. Define � ′ to be the set of jobs � , but where each job is

serial rather than perfectly scalable. Then

TRT OPT ≤ TRT
� ′

OPT
,

since when scheduling a serial job with 2F8 work, we would rather

the job haveF8 less work than have the same job show up at time

F8 earlier. Finally, by Lemma 6.1,

TRT
� ′

OPT
≤ $

(
TRT

12·�
OPT

+
∑
8

F8

)
.

This completes the proof. �

6.2 A Cancelling Scheduler

In this subsection we define and analyze a scheduler CANC to prove

Theorem 6.3. Note that CANC uses cancelling, i.e. can kill tasks and

restart them with a different implementation; in Theorem 6.6 we

remove the need for cancelling.

Theorem 6.3. There is an online scheduler which, using $ (1)
speed augmentation and cancelling, is $ (1) competitive for MRT.

Wenow describe the operation of CANC onTAPT . CANC starts by

defining a set of “relaxed jobs” � ′ which incorporate the serial and
parallel jobs from T into their speed-up curves; CANCwill simulate

running jobs � ′ as a subroutine to determine how to schedule T .

In particular, for each task g8 ∈ T we form a relaxed job 9 ′8 ∈ � ′

with total work 2f8 and the following speedup curve:

• 9 ′8 receives no speedup on G < c8/f8 processors.
• 9 ′8 receives speedup G · f8/c8 on G ≥ c8/f8 processors.

When describing CANC we will assume that it has access to 2?

processors; this can be simulated using a factor-of-2 speed augmen-

tation. CANC schedules T as follows:

• CANC maintains a pool of ? processors for running parallel

jobs and a pool of ? processors for running serial jobs.

• Initially tasks are placed in the parallel pool and will be run

with their parallel implementation.

• CANC manages the parallel pool by simulating EQUI on the

relaxed jobs 9 ′8 and then actually running gq8 during the sim-

ulated execution slots for 9 ′8 .
• Whenever a task g8 been in the parallel pool for time at least

f8 , CANC cancels task g8 (which was running as job gq8) and

restarts g8 as job g
⊚

8 in the serial pool.

7

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

• CANC manages the serial pool with the EQUI strategy.

First we must establish that CANC is a valid schedule, i.e. each

task g8 is completed by CANC. This is a concern because CANC com-

putes a schedule for the relaxed jobs, and assumes that the actual

tasks are completed by running during the time slots of their cor-

responding relaxed job.

Proposition 6.4. CANC completes all tasks.

Proof. Tasks placed in the serial pool are clearly completed.We

proceed to argue that tasks never placed in the serial pool are fin-

ished in the parallel pool. Consider some job 9 ′8 that finishes in the

parallel pool, i.e. finishes in time less than f8 ; this corresponds to

a task g8 that is never placed in the serial pool because its corre-

sponding relaxed job finishes in the parallel pool. We say that 9 ′8
executes in “parallel mode” when executing on at least c8/f8 pro-
cessors, and in “serial mode” otherwise.

For each G ∈ [?], define 5G to be the amount of time that 9 ′8
spends executing on (exactly) G processors. Then the progress com-

pleted by job 9 ′8 is ∑
G<c8 /f8

5G +
∑

G>c8 /f8
5G · G · f8/c8 .

Job 9 ′8 completes once it has made 2f8 progress. At least half of

the progress on 9 ′8 must have been made in parallel mode, because

there is insufficient time to achieve f8 progress in serial mode. But

this implies that ∑
G>c8 /f8

5G · G · f8/c8 ≥ f8

and thus that ∑
G>c8 /f8

5G · G ≥ c8 .

This implies that gq8 , which also spends 5G time on G processors for

each G ∈ [?], successfully completes.

�

The reason that we refer to relaxed jobs as “relaxed” is because

there is a sense in which they are strictly easier to schedule than

T . We formalize this in the following lemma.

Proposition 6.5.

TRT
� ′

OPT
≤ TRT2T

OPT
.

Proof. A schedule for completing 2T can be used to to perform

� ′ by running 9 ′8 in the time slot for 2g8 . �

We now bound the cost of CANC, thereby proving Theorem 6.3.

Proof of Theorem 6.3. Let � 1
⊚
denote the serial jobs that end

up in the serial pool. Let � 2q denote the jobs in � 1
⊚
but modified to

be perfectly scalable. And let � 2
⊚
denote the jobs in � 1

⊚
but with the

arrival time of each job 9 ′8 arrival time delayed byf8 (i.e., delayed to

be the time at which 9 ′8 is placed in the serial pool by CANC). CANC’s

TRT is bounded by:

TRTT
CANC

≤ TRT
� ′

EQUI
+TRT�

2
⊚

EQUI
.

By Theorem 2.1, this is at most

TRT
3� ′

OPT
+TRT3�

2
⊚

OPT
.

By Lemma 6.2,

TRT
3� 2
⊚

OPT
≤ $

©
«
TRT

$ (1) ·� 1q
OPT

+
∑
9∈ � 2
⊚

work(9)
ª®®
¬
.

Since TRT
$ (1) ·� 1q
OPT

≤ TRT
$ (1) ·� ′
OPT

, it follows that

TRTT
CANC

≤ $
©
«
TRT

$ (1) ·� ′
OPT

+
∑
9∈ � 2
⊚

work(9)
ª®®
¬
.

In other words, defining T ′ to be the set of tasks in T that CANC

runs in serial mode, we have

TRTTCANC ≤ $ ©
«
TRT

$ (1) ·� ′
OPT

+
∑
g8 ∈T′

f8
ª®
¬
.

Notice, however, that by design, TRTCANC only runs a task g8 in

serial mode if, when we run EQUI on � ′, the job 9 ′8 incurs at least
f8 response time. Thus ∑

g8 ∈T′
f8 ≤ TRT

� ′

EQUI
,

which by Theorem 2.1 implies that∑
g8 ∈T′

f8 ≤ $
(
TRT

$ (1) ·� ′
OPT

)
.

Thus

TRTT
CANC

≤ $
(
TRT

$ (1) ·� ′
OPT

)
,

which by Proposition 6.5 completes the proof. �

6.3 A Non-Cancelling Scheduler

Now we show how to convert CANC from Theorem 6.3 to a non-

cancelling scheduler. This is the most technically difficult section

of the paper.

Theorem 6.6. There is an online scheduler that, with $ (1) speed
augmentation and without use of cancelling, is$ (1) competitive

for MRT.

Up to a factor of 2 in speed augmentation, we can assume with-

out loss of generality that every f8 and c8 is a power of two—to sim-

plify our exposition, we shall make this wlog assumption through-

out the rest of the section.

We say that a task g: is of type (2
j , 2i) if logf: = 8 and logc: =

8 + 9 . In other words, the job has parallelism 2 9 and serial work 28 .

We also partition the jobs into parallelism classes, where the 2j

parallelism class consists of tasks satisfying c:/f: = 2 9 .

Our first lemma shows that we can modify the scheduler CANC

from Theorem 6.3 to obtain a “just as good” scheduler which only

runs one task of each type in parallel at a time.

Lemma 6.7. There exists an online scheduler � that, with can-

celling and $ (1) speed augmentation is $ (1) competitive for MRT.

Furthermore, � guarantees that at most one task of each type is run

via its parallel implementation at any time. Moreover, for any task

8

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

g8 that � completes in parallel, � is guaranteed to complete that task

within time f8 of the task arriving.

Proof. Recall that CANC runs EQUI on tasks in the parallel pool

until their serial time has elapsed. If a task g: is in the parallel pool

for longer than f: , CANC cancels g: and restarts it in the serial pool

via g⊚
:
.

Our task is to construct � so that

TRTT� ≤ TRTTCANC . (11)

� runs CANC on the parallel pool, except it concentrates all of

CANC’s work on each task type into a single task of that type. That

is, if CANC allocates : processors to tasks of type (2 9 , 28) in the par-

allel pool on a certain time step, then � will allocate : processors

to the current running task of type (2 9 , 28) (if � has a task of this

type). The scheduler � also copies CANC’s cancellation behavior as

follows: when CANC cancels a task of type (2 9 , 28), � attempts to

cancel a task of the same type that is not currently running, and

then restart that task in the serial pool; if there is only one task

of the type (2 9 , 28) running in �, then � cancels the running task

and restarts it in the serial pool; and finally, if there are no tasks of

this type in �, then � does nothing and places a fake task of type

(2 9 , 28) in the serial pool. This behavior ensures that the serial pool
for � receives tasks of exactly the same types (and at exactly the

same times) as the serial pool for CANC.

The point of this construction is that, at any given moment the

number of tasks of each type that � has either completed or evicted

from the parallel pool is trivially guaranteed to be at least as large

as that of CANC. The serial pools of CANC and � are identical (with

the fake tasks included). Hence the number of tasks alive for � at

any given moment is at most as large as in CANC. So � achieves

MRT at least as good as CANC on T . �

Now we present a non-cancelling scheduler � that, with $ (1)
speed augmentation, is $ (1) competitive with � for TRT.

Up to a factor of 4 speed augmentation, we can assume that �

has 4? processors. We will make this assumption (without loss of

generality) throughout the rest of the proof and keep the speed

augmentation implicit. Thus, for the rest of the proof, we assume

both that for every task g ∈ T , f8 and c8 are powers of two, and

that � is given 4? processors.

To clarify our exposition, when discussing �, we will make a

distinction parallel work (i.e., work on parallel jobs) and serial

work (i.e., work on serial jobs) performed by �. Note that the par-

allel work on a job in a time interval [0, 1] is defined as the integral
over [0, 1] of the number of processors allocated to the job at each

point in time.

As we run the scheduler � , we will also simulate � running 3T
with ? processors. The scheduler� will attempt to use ? of its pro-

cessors to copy �’s behavior. Of course, as � is a cancelling sched-

uler,� will not be able to precisely copy �. The challenge will be to

somehow achieve anMRT competitive with �’sMRT, but without

cancelling.

Call a task in � vested if it has actually started executing in

parallel in � .� can copy �’s behavior except for when � cancels a

vested task (to be restarted in serial). Whenever � cancels a vested

task g , the task g enters ballistic mode. Whenever a task g enters

ballistic mode, we say that its parallelism class enters emergency

mode (although the class may already be in emergency mode due

to other tasks in the class already being in ballistic mode). When

a parallelism class is in emergency mode, all of the parallel work

that � performs is allocated by� to the smallest ballistic task in the

parallelism class (we will see later that there are no ties here, but

as we have not proven that yet, assume ties are broken arbitrarily).

Note that non-ballistic tasks lose work in� compared to � when

their parallelism class is in emergency mode (i.e., when a non-

ballistic task g ’s parallelism class is in emergency mode, it is possi-

ble that � does work on g while � does not). If a non-ballistic task

g8 loses @ total parallel work to some ballistic task g: , then we say

that g: stole @ work from g8 . We emphasize that this stolen work

is not queued up to be done later by g8 , it is just lost. Thus it is pos-

sible for a task g to finish running in parallel in � without finishing

in � . If this happens, and g is already vested in � , then the task

g also enters ballistic mode; otherwise, if g is not yet vested in � ,

then the task g enters what we call semi-ballistic mode. Thus, a

task g enters ballistic mode if it is already vested and is then either

cancelled or completed by �; and a task g enters semi-ballistic mode

if � completes it in parallel, but if, at that point in time, � has not

even vested it.

The tasks in semi-ballistic mode are executed as serial jobs on

? processors using EQUI. Finally, the remaining 2? processors are

allocated by � as follows: � allocates ?/28 processors to each par-

allelism class 28 . Whenever the parallelism class is in emergency

mode, those processors are allocated as extra processors to the

smallest ballistic task in the class. This completes the description

of � .

Now let us turn to the analysis of � . Let T0 denote the set of

tasks that enter ballistic mode and T1 denote the set of tasks that
enter semi-ballistic mode.

Lemma 6.8. Each task g8 ∈ T0 spends at most 2f8 time in ballistic

mode.

Proof. Whenever g8 in parallelism class 2 9 is actually executing

in ballistic mode (i.e., it is the smallest ballistic task from its par-

allelism class), it is given at least ?/2 9 processors. Thus it spends
at most c8/(?/2 9) = f8 time executing in ballistic mode. Addition-

ally, g8 may spend time in ballistic mode waiting on other (smaller)

ballistic tasks to complete.

Once a parallelism class enters emergency mode, it stops vesting

new tasks. Let C be the time at which g8 entered ballistic mode, and

let C ′ be the most recent time C ′ ≤ C at which the 2 9 parallelism

class entered emergency mode. Any tasks in parallelism class 2 9

that are ballistic at the same time as g8 must have been running

in � at time C ′ . There can be at most one such task (including g8)

of each parallel power-of-two serial size f′ ≤ f8 . Since each task

in ballistic mode of some size f′ spends at most f′ time actually

executing in ballistic mode, the total time that g8 spends waiting

on smaller ballistic tasks to finish is at most

∞∑
A=1

f8/2A ≤ f8 .

This complete the proof. �

9

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

Lemma 6.9. The total response time incurred by the tasks T1 while
in semi-ballistic mode in � is at most

$
©
«
TRT

$ (1) ·T
OPT

+
∑
g8 ∈T0

f8
ª®
¬
.

Proof. For each job g8 ∈ T1, define G8 to be a serial job of size 3f8
whose arrival time is the time at which g8 goes semi-ballistic in � ;

and define~8 to be a perfectly scalable job of size 18f8 whose arrival

time is simply C8 . Let - = {G8 | g8 ∈ T1} and let . = {~8 | g8 ∈ T1}.
The total response time incurred by the tasks T1 while in semi-

ballistic mode in � is at most TRT-
EQUI

. By Theorem 2.1, this is at

most TRT3-
OPT

. By Lemma 6.2, this is at most

$
©
«
TRT18.OPT +

∑
g8 ∈T0

f8
ª®
¬
.

Since TRT18.
OPT

≤ TRT
$ (1) ·T
OPT

, the lemma follows.

�

The only way that a task can be present in � but not in � is if

the task is either in ballistic or semi-ballistic mode. It follows by

Lemmas 6.7, 6.8, and 6.9 that

TRTT� ≤ $ ©«
TRT

$ (1) ·T
OPT

+
∑

g8 ∈T0∪T1
f8

ª®¬
. (12)

Thus, to complete the analysis of � , it suffices to bound∑
g8 ∈T0∪T1

f8 .

This is achieved through a charging argument in the following

lemma.

Lemma 6.10. ∑
g8 ∈T0∪T1

f8 ≤ $ (TRT3T
OPT

).

Proof. If a task g enters ballistic or semi-ballistic mode because

� placed g into serial mode (i.e., g was either canceled by � or was

never even run in parallel mode by �), then call g easy. By the

analysis of CANC the sum of the serial lengths of the easy tasks is

$ (TRT$ (1) ·T
OPT

).
Call the other tasks that enter ballistic or semi-ballistic mode

hard. The hard tasks are the ones thatwent ballistic or semi-ballistic

only because of other ballistic jobs stealing their parallel process-

ing times—this causes the task to complete in the parallel pool for

� without completing for � .

Each easy task g8 is paid 2f8 tokens upfront. Whenever any task

g8 in� has its parallel work (that � wishes to perform on it) stolen

by a ballistic task g: , the ballistic task g: pays tokens to the task

g8 proportionally to the work that is stolen: if both tasks are in the

2 9 parallelism class, and task g: stole @ parallel processing time

from task g8 (here we are defining parallel processing time to be

the integral over time of the number of processors that g: stole

from g8), then g: pays g8 a total of @/2 9 tokens. Finally, whenever a
task g8 enters either ballistic or semi-ballistic mode, the task pays

f8 tokens to the scheduling algorithm.

Since the sumof the serial lengths of the easy tasks is$ (TRT$ (1) ·T
OPT

),
the number of tokens paid to easy tasks upfront is $ (TRT$ (1) ·T

OPT
).

On the other hand, the number of tokens paid by ballistic and semi-

ballistic tasks to the scheduler is∑
g8 ∈T0∪T1

f8 .

Thus, to complete the proof, it suffices to show that no task has a

negative number of tokens when it completes.

For each task g8 that goes ballistic or semi-ballistic in some par-

allelism class 2 9 , the total number of tokens that it ever spends is

at most f8 (paid to the scheduler) plus c8/2 9 = f8 (paid to other

tasks that g8 stole work from while being ballistic). Thus it suffices

to show that every task g8 that goes ballistic or semi-ballistic earns

at least 2f8 tokens during its lifetime.

If the task g8 is easy, then it trivially receives 2f8 tokens upfront.

Otherwise, if a non-easy task g8 in some parallelism class 2 9 goes

ballistic or semi-ballistic, then it must have had at least 2c8 par-

allel work stolen from it by ballistic tasks in its parallelism class

(because � completed 3c8 parallel work on the task, but � com-

pleted less than c8). This means that the task was paid at least

2c8/2 9 = 2f8 tokens, which completes the proof.

�

Combining Lemma 6.10 with (12), we have completed the proof

of Theorem 6.6.

7 GENERALIZATION: TAPS WITH

DEPENDENCIES

We now consider a generalization of the serial-parallel decision

problem inwhich tasks can have dependencies—a given task g8 will

not arrive until all of the other tasks on which it depends are com-

plete. For this section, we focus exclusively on optimizing awake

time—note that, if the tasks correspond to components of a paral-

lel program, the awake time corresponds to the completion time

of the parallel program.

A DTAP D (TAP with dependencies) is a set of tasks g8 spec-

ified by f8 , c8 , C8 along with an associated set �8 ⊂ [=] (poten-

tially empty) of tasks that must be completed before task g8 can

be started. That is, task g8 becomes available only when the time C

satisfies C > C8 and furthermore all tasks g 9 ∈ �8 have already been
completed. Of course, the dependency structure must form a DAG,

or else it is impossible to run all tasks. We are interested in an on-

line scheduler, which in this case means that the scheduler does

not know anything about task g8 until the task becomes available

to run.

The following propositions establish a tight bound of Θ(√?) on
the optimal competitive ratio achievable by an online scheduler.

The lower bound holds even for the case where the DTAP depen-

dencies are required to form a tree.

Proposition 7.1. For any (potentially randomized) online sched-

uler ALG, there exists a DTAP where ALG’s awake-time competitive

ratio is Ω(√?) with high probability in ? .

Proof. For convenience, we will discuss the DTAP as being ran-

domly chosen from a set of DTAPs. Of course, if all schedulers ALG

have competitive ratio Ω(√?) with high probability for randomly

10

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

chosen DTAPs from a class, then there exists some DTAP in the

class for which a given ALG is very likely to perform poorly on.

We consider a class of DTAPswhich consist of
⌊√
?
⌋
levels. Each

level of these DTAPs consists of
⌊√
?
⌋
tasks with serial work 1

and parallel work
√
?. Of the

⌊√
?
⌋
tasks on each level exactly one

randomly chosen task spawns
⌊√
?
⌋
more tasks which form the

next level. In particular, this single task is the sole dependency for

all tasks on the next level. All the tasks in the DTAP have C8 = 0, so

each task arrives immediately once all the tasks it depends on are

completed.

OPT, knowing the dependencies, could first run all the spawning

tasks via their parallel implementations to unlock all tasks after

time
⌊√
?
⌋ √

?/? ≤ 1. Next, OPT can schedule the remaining ⌊?⌋2−⌊√
?
⌋
serial tasks via their serial implementations. Doing so OPT

achieves awake time of at most 2.

However, a scheduler ALG that is unaware of the dependencies

will likely require much longer on this DTAP. If ALG is not willing

to run more than 1/2 of the tasks in a level via parallel implemen-

tations then there is at least a 1/2 chance that it requires time 1 to

pass the level due to running the spawning task in serial. However,

if the ALG is willing to run at least 1/2 of the tasks in parallel then

in expectation it requires at least 1/4 time to uncover the spawn-

ing task. Either way, with constant probability ALG spends Ω(1)
time on each level. Thus, with high probability in ? the scheduler

requires Ω(√?) total time to complete the DTAP. �

Proposition 7.2. There exists an online DTAP scheduler that is

$ (√?) competitive for awake-time.

Proof. Fix a DTAP D with = tasks. It suffices to consider a

DTAP where our scheduler always has at least one available un-

completed task, i.e., the case where its awake time and completion

time are the same.

We say that a task g8 is fairly-parallel if c8/? < f8/
√
?, and

not-very-parallel otherwise. The TURTLE scheduler runs fairly-

parallel tasks in parallel and not-very-parallel tasks in serial. TURTLE

schedules the available tasks as follows:

• Whenever there is an available fairly-parallel task allocate

all processors to a fairly-parallel task.

• If all available tasks are not-very-parallel, and there are :

such tasks, then allocate a processor to each of the min(?, :)
present jobs with the largest remaining serial works.

Now we analyze the performance of the TURTLE scheduler. First

we consider the time that TURTLE spends running fairly-parallel

tasks. LetDq ⊆ D be the fairly-parallel tasks. The time that TURTLE

spends running tasks in Dq is∑
8 |g8 ∈Dq

c8/? ≤
∑

8 |g8 ∈Dq
f8/

√
? ≤ √

?
∑
8∈[=]

f8/? ≤ √
? TDOPT .

Thus, in order to prove TD
TURTLE

≤ $ (√?) TD
OPT

it remains to bound

the time that TURTLE spends executing not-very-parallel tasks. Let

D′ be a new DTAP where we set the size of all fairly-parallel tasks

to 0. Observe that the time that TURTLE spends executing not-very-

parallel tasks is the same in both D,D′ because in D we always

preempt not-very-parallel tasks if fairly-parallel tasks are available

and run fairly-parallel tasks. Thus, it suffices to analyze TD
′

TURTLE
.

Let (be the amount of time that TURTLE onD′ is saturated (i.e.,
has at least ? tasks) and * be the amount of time that TURTLE is

unsaturated. Let TD
′

∞ be the time that it would take to performD′

by running each task in serial on its own processor (i.e., imagining

that we had infinitely many processors). Observe that

* ≤ TD
′

∞ ≤ √
? TD

′
OPT

where the second inequality is due to the fact that tasks in D′

are not-very-parallel; in particular, if we ran each task in serial

on its own
√
?-speed-augmented processor then the tasks would

certainly complete no later than OPT. We also have

(≤
∑
8∈[=]

f8/? ≤ TD
′

OPT

because because total work is a lower bound on OPT’s awake time.

Combining our bounds on * , (we have we have

TD
′

TURTLE
≤ $ (√?) · TD′

OPT
.

�

8 AWAKE-TIME LOWER BOUNDS

In this section we present several lower bounds for awake time.

Proposition 8.1. Nodeterministic online scheduler can have com-

petitive ratio smaller than q − 1/? .2

Proof. Fix a deterministic scheduler ALG. Consider a TAP with

f1 = q, c1 = ?. If ALG schedules g1 in serial ALG fails to be better

than q competitive in the case that no more tasks arrive. If ALG

waits at least 1/q time before scheduling g1 then ALG also fails to

be better than q competitive if no more tasks ever arrive. If instead

ALG schedules g1 in parallel at some time C0 < 1/q and then ? − 1

un-parallelizable tasks arrive right after C0 with f8 = q − C0, then
OPT achieves awake time q due to having chosen to run every task

in serial while ALG’s awake time is at least

C0 +
? + (? − 1)(q − C0)

?
≥ C0 +

? + ? (q − C0)
?

− q/?

= 1 + q − q/?
= q2 − q/?.

So ALG’s competitive ratio is at least q − 1/? . �

Now we consider the decide-on-arrival model. We can prove

a stronger lower bound in the decide-on-arrival model than the

Proposition 8.1, and we conjecture that this separation is real.

Proposition 8.2. Nodeterministic decide-on-arrival scheduler has

competitive ratio better than 2 − Ω

(
log?
?

)
.

Proof. Fix a deterministic scheduler ALG. Let : = ⌊log?⌋. Con-
sider the TAP T ?

1 where f8 = 28 , c8 = 28−1? for 8 ∈ [:]. In T:1
tasks run twice as fast as their serial run time if they are fully par-

allelized. Furthermore task g8 is twice as large as task g8−1. The
arrival times for tasks in this TAP are separated by infinitesimal

amounts of time. The final ? − : tasks of T ?
1 are un-parallelizable

tasks with f8 = 2: which all arrive instantly after g: .

2q ≈ 1.618 denotes the golden ratio, i.e. the positive root of G + 1 = G2.

11

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

First we consider the truncation of T ?
1 to T 9

1 for some 9 ≤ : .

OPTwill complete T 9
1 by running tasks g1, g2, . . . , g 9−1 in serial and

task g 9 in parallel. Then, OPT’s awake time on T 9
1 is

1

?

(
2 + 4 + · · · + 2 9−1 + 2 9−1?

)
≤ (1 + 2/?)2 9−1. (13)

Now assume that ALG runs g 9 in serial. Then g 9 ’s awake time is at

least 2 9 , which by Equation (13) means that ALG has competitive

ratio at least 2−Ω(1/?) on T 9
1 . That is, for ALG to have any chance

of achieving competitive ratio better than 2 − Ω(1/?), ALG must

schedule the first : tasks in parallel.

Now we consider the performance of ALG on T ?
1 assuming that

ALG schedules the first: tasks in parallel. Here ALGwill have awake

time at least
1

?

(
1? + 2? + · · · + 2:−1? + (? − :) · 2:

)
≥ 2: (2 − :/?) − 1. (14)

On the other hand, OPT will run all ? tasks in serial and complete

in time 2: . Thus, ALG’s awake time is at least (2 − Ω(:/?))-times

larger than OPT’s on T ?
1 . Plugging in our choice : = Θ(log?) gives

the desired bound on ALG’s competitive ratio. �

Although the lower bound of Proposition 8.1 does not obviously

translate to randomized schedulers we can still show a 1 + Ω(1)
lower bound for such schedulers as follows.

Proposition 8.3. Let RAND be a randomized scheduler. There ex-

ists a TAP onwhich RAND has competitive ratio at least 3+
√
3

4 −Θ(1/?)
with probability arbitrarily close to 1.

Proof. In T� a single task with f1 =

√
3 + 1, c1 = 2? arrives

at time 0. TAP T� starts the same as T� , but in T� ? − 1 addi-

tional maximally un-parallelizable tasks arrive at time 1 with se-

rial work
√
3. A simple calculation shows that no deterministic al-

gorithm can achieve competitive ratio better than 1+
√
3

2 − Θ(1/?)
on both T� and T� . Furthermore RAND cannot have better than a

1/2 chance of performing well on both T� and T� . Thus, RAND’s
expected competitive ratio on at least one of these TAPs is at least

1+ 1+
√
3

2
2 − Θ(1/?) = 3+

√
3

4 − Θ(1/?).
Let B1, B2, . . . , B= be a random string of�’s and �’s. Nowwe form

a TAP T by placing TB8 at time 108 . On T RAND handles each choice

between T�,T� correctly with probability at most 1/2. Thus, for
any Y > 0 if we make the sequence sufficiently long (i.e., take =

large enough) then RAND has arbitrarily low probability of handling

more than a (1/2+Y)-fraction of the T�,T� choices correctly. Thus,

RAND has competitive ratio at least at least 3+
√
3

4 − Θ(1/?) with
probability arbitrarily close to 1. �

Now we consider parallel-work-oblivious schedulers. We show

that, even if all tasks arrive at a single time, there is a lower bound

of 2 − > (1) on the optimal competitive ratio.

Proposition 8.4. There is no deterministic parallel-work-oblivious

scheduler that achieves competitive ratio better than 2 − Ω(1/?) for
awake time, even in the single-arrival-time setting.

Proof. Fix a deterministic parallel-work-oblivious scheduler ALG.

Consider a TAP with two tasks g1, g2 both of serial size 1. Techni-

cally there are many different ways that ALG can handle g1, g2. We

will reduce the space of possible strategies that ALG can employ by

showing that certain strategies are dominant over other strategies.

Combined with some case analysis this will allow us to show that

there must be some TAP on which ALG performs poorly.

Without loss of generality ALG instantly starts (at least) one of

the tasks. If ALG starts a serial job at time 0 then ALG has competitive

ratio at least Ω(?) on the TAP where g1, g2 are perfectly scalable.

Thus, it suffices to consider the case where ALG starts by running

one of the tasks in parallel; call this instantly started task g1.

Without loss of generality ALG runs g1 on all processors at each

time step until it starts g2. If g1 completes before ALG starts g2 then

without loss of generality ALG instantly starts g2 in parallel.

Nowwe can describe ALG as follows: at each time C ∈ [0, 1] until
g1 finishes ALG can decide whether to start g2 at time C and which

implementation of g2 to use when starting it. Let GALG ∈ [0, 1] be
the earliest time when ALG is willing to start g2 even if g1 is not yet

completed by this time. If ALG chooses to schedule g2 in parallel

at time GALG then there is a TAP on which ALG has competitive

ratio at least 2: namely, the TAP where g1, g2 are both completely

un-parallelizable. Thus, it suffices to consider the case where ALG

would choose to run g2 in serial at time GALG assuming that g1 has

not yet finished by time GALG .

By now we have substantially simplified the description of ALG.

In particular, we have shown that ALG is completely parameterized

by a single value GALG ∈ [0, 1]. Given GALG, we have reduced to the
case where ALG’s strategy is

(1) Run gq1 from the start.

(2) If g1 finishes before time GALG start gq2 immediately once g1
finishes.

(3) Otherwise, start g⊚2 at time GALG .

To conclude we consider two cases on the value of G . If GALG <

1 − 1/? then ALG performs poorly on a TAP where c1/? = G + 1/?
and c2/? = 1/? . Indeed, for this TAP OPT has awake time G +
2/? whereas ALG has awake-time at least G + 1. Thus that ALG’s

competitive ratio here is at least

G + 1

1 + 2/? ≥ 2 − Ω(1/?)

If instead GALG ≥ 1 − 1/? then ALG performs poorly on the TAP

where g1, g2 are both completely un-parallelizable. In this case OPT

achieves awake time 1 by running the tasks in serial from the start

whereas ALG has awake time at least 2 − 1/? .
Thus, regardless of GALG , ALG has competitive ratio at least 2 −

Ω(1/?) on some TAP. �

Finally, we show that if we simultaneously restrict to the decide-

on-arrival model and the parallel-work-oblivious model then the

scheduler cannot perform well.

Proposition 8.5. Any deterministic scheduler ALG that is both

decide-on-arrival and parallel-work-oblivious must have competitive

ratio Ω(√?).

Proof. Consider the following two TAPs:

(a)
⌈√
?
⌉
identical scalable tasks arrive at the start.

(b)
⌈√
?
⌉
identical un-scalable tasks arrive at the start.

To ALG these two TAPs look identical. However, if ALG decides to

run any task in serial then it’s competitive ratio on (a) is Ω(√?).
12

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

Otherwise, if ALG decides to run all tasks in parallel then its com-

petitive ratio on (b) is Ω(√?). Note that this simple decomposition

into two cases is made possible by the assumption that ALG is a

decide-on-arrival scheduler. �

9 MRT LOWER BOUNDS

In this section we prove two lower bounds on schedulers forMRT.

These bounds show that any $ (1) competitive scheduler must (1)

make decisions at least partially based on the values of {c8 }; and
(2) must be willing to vary the number of processors assigned to

a given job over time. Thus these properties cannot be relaxed in

the schedulers presented in the previous sections.

We remark that our first lower bound applies not just to sched-

ulers that achieve worst-case competitive ratios, but also to sched-

ulers that use randomization in order to achieve a bounded ex-

pected competitive ratio.

Proposition 9.1. Fix an online scheduler ALG that is oblivious

to the parallel works of tasks, and fix some 2 ∈ Θ(1). There exists
a TAP on which the expected competitive ratio of ALG with 2 speed

augmentation is at least Ω(?
1
4) for MRT.

Proof. Consider a TAPwith
√
?+?1/4 tasks, all with serial work

1. Suppose that
√
? of the tasks have parallel work 1, and that (a

random subset of) ?1/4 of the tasks have parallel work ? . Call these
the cheap and expensive tasks, respectively. All of the tasks arrive

at time 0.

If the cheap tasks are run in parallel, and then the expensive

tasks are run in serial, then the TRTwill be$ (√? · 1√
?
+?1/4 · 1) =

?1/4.
Now suppose for contradiction that ALG also achieves $ (?1/4)

TRT using $ (1) speed augmentation. Let X be the expected frac-

tion of the tasks that ALG runs in serial. The expected number of

cheap jobs that are executed in serial is X
√
? . Thus, in order for

ALG to be$ (1)-competitive (even with$ (1) speed augmentation),

we would need X ≤ $ (?−1/4). But this means that the expected

number of expensive jobs that are executed in parallel is at least

(1 − X)?1/4 ≥ Ω(?1/4). If : expensive jobs are executed in par-

allel, their TRT will be at least Ω(:2). By Jensen’s inequality, the

expected TRT of expensive jobs executed in parallel is therefore at

least Ω((?1/4)2) = Ω(√?). This contradicts the assumption that

ALG achieves TRT $ (?1/4). �

Proposition 9.2. Consider an online scheduler ALG that is non-

preemptive (i.e., the number of processors that it assigns to each task

is fixed for the full duration of time that the task executes). Fix some

2 ∈ Θ(1), and any ' ∈ N. There exists a TAP T on which the worst-

case competitive ratio of ALG with 2 speed augmentation is Ω(') for
MRT. That is, ALG with performs arbitrarily worse than OPT.

Proof. As we are interested in the worst-case competitive ra-

tio of ALG, we may assume without loss of generality that ALG is

deterministic.

Let ?0 be the maximum number of processors that ALG ever si-

multaneously gives work over all input TAPs. We claim that there

is some input TAP on which ALG does arbitrarily poorly compared

to OPT in terms of mean response time.

Consider a sequence of tasks T that causes ALG to choose to

have ?0 processors in use at some point in time C . Without loss of

generality, we may assume that all ?0 processors that are in use at

time C each have at least 1 remaining work. Let ℎ be the TRT that

OPTwould incur onT . Now, suppose that at time C , we have ⌈' · ℎ⌉
additional tasks arrive, each with 0 work.

The TRT of OPT on this TAP is 0 +ℎ, whereas the TRT of ALG on

this TAP is at least ℎ + 1 · ' · ℎ, since all ⌈' · ℎ⌉ of the new tasks

will have to wait for time at least 1 before ALG begins them. Hence

ALG’s competitive ratio on this TAP is at least '. �

10 OPEN QUESTIONS

We conclude by discussing open questions and conjectures.

Questions about awake time.Weconjecture that Proposition 8.1

should be tight.

Conjecture 10.1. There exists a deterministicq-competitive sched-

uler for awake time.

More concretely, let us propose a scheduler GoldenAlg that we

suspect is q competitive. For simplicity of exposition we assume

that OPT’s awake time is its completion time on the TAP in ques-

tion, i.e., OPT does not have “gaps” of time when there are no avail-

able uncompleted jobs. It is straightforward to adapt GoldenAlg

to handle TAPs with OPT gaps because GoldenAlg will simulate

OPT and in particular will know when these gaps are. With this

knowledge an appropriatelymodified version of GoldenAlgwould

be q competitive on arbitrary TAPs assuming that the version of

GoldenAlg described below isq competitive on TAPswithout gaps.

Let OPT= be an optimal offline schedule for the first = tasks T=1 .

Note that OPT=, OPT=+1 may make very different decisions, which

is part of the challenge for an online scheduler. The GoldenAlg

scheduler makes decisions by comparing to OPT= .

GoldenAlg maintains a serial pool of tasks that it has decided

to run in serial, and a parallel pool of tasks that it has tentatively

decided to run in parallel. GoldenAlg manages the serial pool by

running the jobs with the most remaining work first at each time

step. Crucially, GoldenAlg only runs a single task from the parallel

pool at a time, so all but one of the tasks in the parallel pool have

not actually been started. Thus, if GoldenAlg desires, it can freely

move one of these not-yet-started tasks to the serial pool. Tasks

default to the parallel pool but GoldenAlg greedily moves tasks to

the serial pool as soon as it is sure that this will not instantly cause

the awake time to be too large. Formally, if the awake time incurred

so far is C , if = tasks have arrived so far, and if g8 is some not-yet-

started task in the parallel pool, then GoldenAlg uses the following

logic: If f8 +C < q ·T=OPT= , move g8 to the serial pool. Finally, if there

is no parallel job running but there are tasks present in the parallel

pool GoldenAlg schedules the earliest arrived task (if any) from

the parallel pool in parallel. At each time step this parallel job is

allocated any processors not allocated to serial jobs.

GoldenAlg is clearly q-competitive on any TAP that results in

GoldenAlg being jagged. However, TAPs that result in GoldenAlg

being balanced are more difficult. An inductive argument seems

challenging because we can re-arrange our work. A more direct

combinatorial argument seems more promising but has eluded us.

13

SPAA ’24, June 17–21, 2024, Nantes, France William Kuszmaul and Alek Westover

We also pose open questions regarding the optimal competitive

ratios for different types of awake-time schedulers. We begin by

considering decide-on-arrival schedulers:

�estion 1. Does there exist a deterministic decide-on-arrival 2-

competitive scheduler for awake time?

Such a scheduler would imply that Proposition 8.2 is tight. More

broadly, as noted in Section 8, we conjecture that there should be

a separation between arbitrary deterministic schedulers and deter-

ministic decide-on-arrival schedulers.

Next, we consider parallel-work-oblivious schedulers:

�estion 2. What is the optimal awake-time competitive ratio

achievable by a deterministic parallel-work-oblivious scheduler?

We suspect that, for Question 2, the optimal competitive ratio

is 4 − > (1).
Finally, we consider randomized schedulers:

Conjecture 10.2. Is the optimal awake-time competitive ratio

achievable by a randomized scheduler better than the optimal com-

petitive ratio achievable by a deterministic scheduler?

Note, in particular, that if our lower bounds are tight, then a sep-

aration should exist: the optimal competitive ratio for determinis-

tic schedulers would beq ≈ 1.62, and the optimal competitive ratio

for randomized ones would be (3 +
√
3)/4 ≈ 1.18.

Questions aboutmean response time. In the context of optimiz-

ing MRT, there are even more basic questions that remain open.

We conjecture that speed augmentation is necessary to achieve

a competitive ratio of$ (1):

Conjecture 10.3. 1 + Ω(1) speed augmentation is necessary in

an $ (1)-competitive scheduler.

Althoughwe have shown that (deterministic) parallel-work-oblivious

schedulers performpoorlyonMRT, it remains openwhether decide-

on-arrival schedulers can do well.

�estion 3. Can a decide-on-arrival scheduler, with$ (1) speed
augmentation, achieve $ (1) competitive ratio?

Finally, if algorithms for this problem are to be made practical,

then one important direction to focus on is simplicity. This moti-

vates the following question:

�estion 4. Is there a simpler scheduler that is still $ (1) com-

petitive for MRT with $ (1) speed?

An anonymous reviewer suggested one possible direction that

would could try, which is to (1) virtually simulate running both

jobs at once, and then (2) actually runwhichever finishes first (with

speed augmentation). The challenge that arises from this approach

is that, by the time we finally decide which job to run, we may be

significantly past the task’s original arrival time. Thus, tomake this

approach work, one would likely need a much stronger version of

Lemma 6.2, allowing one to analyze settings in which every job has

its arrival time delayed based on its simulated completion time. It

is conceivable that, in order to prove such a lemma, we could take

technical inspiration fromwork on other scheduling problems (see,

e.g., Theorem 3.1 of [2] or Theorem 5 of [13]).

Questions about offline scheduling algorithms. We conclude

with two open problems about offline scheduling algorithms.

The first question concerns the scheduling of DTAPS (i.e., TAPS

with job-arrival dependencies) to optimize awake time. Our results

in Section 7 establish that the optimal online competitive ratio is

Θ(√?) for this problem. However, in some settings, even an offline

scheduler could be useful, for example, if a compiler understands

the parallel structure of the program that it is compiling and needs

to decide for each component of the program whether to compile

a serial version or a parallel version.

�estion 5. Is there a polynomial-time offline algorithm that

produces an $ (1)-competitive DTAP schedule?

Our final question concerns the offline scheduling of TAPS. We

know from Section 8 that any online awake-time scheduler must

incur a competitive ratio of 1 + Ω(1). But what is the best compet-

itive ratio achievable by a polynomial-time offline scheduler?

Conjecture 10.4. Constructing an optimal (offline) schedule for

awake time is NP-hard.

REFERENCES
[1] Brenda S Baker and Jerald S Schwarz. 1983. Shelf algorithms for two-

dimensional packing problems. SIAM J. Comput. 12, 3 (1983), 508–525.
[2] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan. 2010. Bet-

ter scalable algorithms for broadcast scheduling. In Automata, Languages and
Programming: 37th International Colloquium, ICALP 2010, Bordeaux, France, July
6-10, 2010, Proceedings, Part I 37. Springer, 324–335.

[3] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leis-
erson, Keith H Randall, and Yuli Zhou. 1995. Cilk: An efficient multithreaded
runtime system. ACM SigPlan Notices 30, 8 (1995), 207–216.

[4] P. Dutot, G. Mounié, and D. Trystram. 2004. Sched-
uling Parallel Tasks Approximation Algorithms.
https://www.semanticscholar.org/paper/Scheduling-Parallel-Tasks-Approximation-Algorithms-Dutot-

[5] Richard A. Dutton and Weizhen Mao. 2007. Online scheduling of malleable par-
allel jobs. In Proceedings of the 19th IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS ’07). ACTA Press, USA, 136–141.

[6] Roozbeh Ebrahimi, Samuel McCauley, and Benjamin Moseley. 2018. Scheduling
Parallel Jobs Online with Convex and Concave Parallelizability. Theory Comput
Syst 62, 2 (Feb. 2018), 304–318. https://doi.org/10.1007/s00224-016-9722-0

[7] Jeff Edmonds. 2000. Scheduling in the dark. Theoretical Computer Science 235, 1
(March 2000), 109–141. https://doi.org/10.1016/S0304-3975(99)00186-3

[8] Jeff Edmonds and Kirk Pruhs. 2009. Scalably Scheduling Processes with Arbitrary
Speedup Curves. Vol. 8. https://doi.org/10.1145/1496770.1496845 Journal Ab-
breviation: ACM Transactions on Algorithms Pages: 692 Publication Title: ACM
Transactions on Algorithms.

[9] R. L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM
J. Appl. Math. 17, 2 (1969), 416–429. https://doi.org/10.1137/0117039
arXiv:https://doi.org/10.1137/0117039

[10] Shouwei Guo and Liying Kang. 2010. Online scheduling of malleable parallel
jobswith setup times on two identicalmachines. European Journal of Operational
Research 206, 3 (Nov. 2010), 555–561. https://doi.org/10.1016/j.ejor.2010.03.005

[11] Johann L Hurink and Jacob Jan Paulus. 2008. Online algorithm for parallel job
scheduling and strip packing. InApproximation and Online Algorithms: 5th Inter-
national Workshop, WAOA 2007, Eilat, Israel, October 11-12, 2007. Revised Papers
5. Springer, 67–74.

[12] Walter Ludwig and Prasoon Tiwari. 1994. Scheduling malleable and nonmal-
leable parallel tasks. In Proceedings of the fifth annual ACM-SIAM symposium on
Discrete algorithms. 167–176.

[13] Benjamin Moseley, Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. 2011. On
scheduling in map-reduce and flow-shops. In Proceedings of the twenty-third an-
nual ACM symposium on Parallelism in algorithms and architectures. 289–298.

[14] Gregory Mounie, Christophe Rapine, and Dennis Trystram. 1999. Efficient
approximation algorithms for scheduling malleable tasks. In Proceedings of
the eleventh annual ACM symposium on Parallel algorithms and architectures
(SPAA ’99). Association for Computing Machinery, New York, NY, USA, 23–32.
https://doi.org/10.1145/305619.305622

[15] John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer, Prasoon Tiwari, Ja-
son Glasgow, Uwe Schwiegelshohn, and Philip S. Yu. 1994. Scheduling par-
allelizable tasks to minimize average response time. In Proceedings of the
sixth annual ACM symposium on Parallel algorithms and architectures (SPAA

14

https://www.semanticscholar.org/paper/Scheduling-Parallel-Tasks-Approximation-Algorithms-Dutot-Mouni%C3%A9/9131b282e1b2fac6bc4de358471b8dc14094f852
https://doi.org/10.1007/s00224-016-9722-0
https://doi.org/10.1016/S0304-3975(99)00186-3
https://doi.org/10.1145/1496770.1496845
https://doi.org/10.1137/0117039
https://arxiv.org/abs/https://doi.org/10.1137/0117039
https://doi.org/10.1016/j.ejor.2010.03.005
https://doi.org/10.1145/305619.305622

Scheduling Jobs with Work-Inefficient Parallel Solutions SPAA ’24, June 17–21, 2024, Nantes, France

’94). Association for Computing Machinery, New York, NY, USA, 200–209.
https://doi.org/10.1145/181014.181331

[16] John Turek, Uwe Schwiegelshohn, Joel L Wolf, and Philip S Yu. 1994. Schedul-
ing parallel tasks to minimize average response time. In Proceedings of the fifth
annual ACM-SIAM symposium on Discrete algorithms. 112–121.

[17] John Turek, Joel L Wolf, and Philip S Yu. 1992. Approximate algorithms schedul-
ing parallelizable tasks. In Proceedings of the fourth annual ACM symposium on

Parallel algorithms and architectures. 323–332.
[18] Deshi Ye, Danny Z. Chen, and Guochuan Zhang. 2018. Online sched-

uling of moldable parallel tasks. Journal of Scheduling 21, 6 (2018), 647–654.
https://ideas.repec.org//a/spr/jsched/v21y2018i6d10.1007_s10951-018-0556-2.html
Publisher: Springer.

[19] Deshi Ye, Xin Han, and Guochuan Zhang. 2009. A note on online strip packing.
Journal of Combinatorial Optimization 17, 4 (2009), 417–423.

15

https://doi.org/10.1145/181014.181331
https://ideas.repec.org//a/spr/jsched/v21y2018i6d10.1007_s10951-018-0556-2.html

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A 3-Competitive Awake-Time Scheduler That Makes Decisions on Arrival
	5 A 6-Competitive Awake-Time Scheduler That is Parallel-Work Oblivious
	6 Minimizing `3́9`42`"̇613A``45`47`"603AMRT
	6.1 Two Technical Lemmas
	6.2 A Cancelling Scheduler
	6.3 A Non-Cancelling Scheduler

	7 Generalization: TAPs with Dependencies
	8 Awake-Time Lower Bounds
	9 `3́9`42`"̇613A``45`47`"603AMRT Lower Bounds
	10 Open Questions
	References

