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Abstract
Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of
research has focused on polynomial-time algorithms that compute ε-approximate Nash equilibria.
Finding the best possible approximation guarantee that we can have in polynomial time has been a
fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a
significant amount of effort, the algorithm of Tsaknakis and Spirakis [36], with an approximation
guarantee of (0.3393+δ), remains the state of the art over the last 15 years. In this paper, we propose
a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that
computes a ( 1

3 + δ)-Nash equilibrium, for any constant δ > 0. The main idea of our approach is to go
beyond the use of convex combinations of primal and dual strategies, as defined in the optimization
framework of [36], and enrich the pool of strategies from which we build the strategy profiles that
we output in certain bottleneck cases of the algorithm.
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1 Introduction

The notion of Nash equilibrium has been undoubtedly a fundamental solution concept in
strategic games, ever since the seminal result of Nash [33], on the existence of equilibria
for all finite games. Nash’s theorem however is only existential; it only shows that such an
equilibrium always exists, but it does not provide an efficient algorithm to find one. In fact,
many years after the work of Nash, in a series of breakthrough results, it was proven that
computing a Nash equilibrium is PPAD-complete [16], even for bimatrix games [10], which
provides strong evidence that computing an equilibrium is an intractable problem.

These negative results have naturally led to the study of approximate Nash equilibria. In
an ε-approximate Nash equilibrium (ε-NE), no player can increase her payoff more than ε,
by unilaterally changing her strategy. In contrast to exact Nash equilibria, the relaxation
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to ϵ-NE does admit subexponential algorithms. More precisely, the quasi polynomial-time
approximation scheme (QPTAS) of [27] can find an ε-NE in time nO(log n/ϵ2), for a game
with n available pure strategies per player. One can then wonder whether the QPTAS could
be improved to a PTAS or even a FPTAS. Unfortunately this does not seem to be the case,
as the result of Chen, Deng, and Teng [10] already ruled out the existence of an FPTAS,
unless PPAD=P. Some years later, in another breakthrough result, Rubinstein [35] showed
that, assuming the exponential-time hypothesis for PPAD, there exists a very small, yet
unspecified, constant ε⋆ such that finding an ε-NE requires quasi polynomial time for every
constant ε < ε∗. This would rule out a PTAS too.

Although it seems unlikely to have a polynomial time algorithm for any ϵ > 0, it is
still important to identify the best constant ϵ for which we can have an efficient algorithm.
In fact, this has been one of the fundamental questions of algorithmic game theory, that
is still unresolved. Soon after the initial PPAD-hardness results of [10, 16], there was a
flourish of works along this direction. Kontogiannis, Panagopoulou, and Spirakis [23] derived
a polynomial-time algorithm for ε = 3/4; Daskalakis, Mehta, and Papadimitriou [17, 18]
improved it to ε = 1/2 and ε ≈ 0.382; Bosse, Byrka, and Markakis [7] achieved ε = 0.364;
and finally Tsaknakis and Spirakis [36] attained a bound of ε = 0.3393 + δ, for any constant
δ > 0. Ever since this last work however, the progress on this front has stalled, and the result
of Tsaknakis and Spirakis (referred to as the TS algorithm from now on) remains the state of
the art over the last 15 years. It is particularly puzzling that so far, it has remained an open
problem to even improve the approximation to 1/3 + δ (even though it has been conjectured
that such an approximation should be feasible). To make things worse, in the very recent
work of [12], it was shown that the TS algorithm and its analysis are tight.

In order to beat the 0.3393-guarantee of the TS algorithm, it is instructive to understand
first its bottleneck cases. At a high level, we can think of the algorithm as consisting of
two phases: the Descent phase and the Strategy-construction phase. In the Descent phase,
it performs “gradient descent” on the maximum regret among the two players, i.e., the
maximum additional gain that a player can have by a unilateral deviation to another strategy.
This process terminates at an approximate “stationary” point, i.e., a strategy profile such
that any local change does not decrease the value of the maximum regret. When we reach a
δ-stationary point for some small constant δ, the Strategy-construction phase begins. This
phase performs a case analysis, based on certain relevant parameters of the game, and tries
to decide which strategy profile to output in each of the five cases that arise.

In doing so, the algorithm has at its disposal the δ-stationary profile, along with a “dual”
strategy profile (produced by solving the dual of the linear program used in the Descent
phase). A close inspection reveals that one of these two profiles suffices to guarantee a
( 1

3 + δ)-NE in three out of the five cases. In the remaining two cases, the algorithm outputs a
convex combination of the stationary and the dual strategies, and this is where the bottleneck
occurs, causing the algorithm to output a (0.3393 + δ)-NE.

Our contribution

We improve upon the state of the art and provide a polynomial-time algorithm for computing
a ( 1

3 + δ)-NE in bimatrix games, for any constant δ > 0. More specifically, we modify
sufficiently the TS algorithm by designing an improved Strategy-construction phase to handle
the problematic cases of TS. Our main insights in doing so are as follows:

Apart from convex combinations between primal (stationary) and dual strategies, we
also consider best response strategies to such convex combinations. Hence, we enrich the
pool of strategies, out of which we choose the profile to output in each case. As a result,
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in the cases where the δ-stationary point or the dual profile (or their combinations) do
not have the desired guarantee, we have one of the players use a carefully chosen convex
combination between our newly defined strategies and her dual strategy.
We produce a more refined case analysis, that is based on the values of some new auxiliary
parameters (e.g., the quantities vr, tr and µ̂, defined in Section 4). These parameters
encode payoff differences or regrets of the players for using specific strategies, and they
help us in two ways. First, they are used to obtain improved upper bounds on the
maximum regret of the δ-stationary profile (Section 4.1). Secondly, their values greatly
help us in decomposing our analysis into convenient subcases in order to establish the
approximation guarantee.

Further related work

A different notion of approximation of NE is that of ε-well-supported NE (ε-WSNE). In
an ε-WSNE every player is required to place positive probability only to actions that are
within ε of being best responses. Hence, ε-WSNE are more constrained than ε-NE, where
the players can place a positive probability on any strategy. After a series of papers on the
topic [24, 21], the currently best approximation is for ε = 0.6528 due to [14].

Another line of research has focused on more structured classes of bimatrix games such
as: constant-rank games, where the matrix defined by the sum of the two payoff matrices has
constant rank [1, 22, 31]; win-lose games, where the payoff for every pure action is either 0
or 1 [11, 13, 28]; sparse games, where there are only “a few” outcomes that yield a non-zero
payoff for each player [9], imitation games, where the payoff matrix for one of the players
is the identity matrix [29, 30, 32]; random games, where the payoff entries are drawn from
certain distributions [4, 34]; symmetric games, where the payoff matrix of one player is
the transpose of the other [15, 25]. In most of these classes, it has been possible to obtain
improved approximation guarantees and have a better understanding of how to construct
approximate equilibria.

Concerning quasi-polynomial algorithms, in addition to the QPTAS of [27], three new
QPTASs have been obtained, which contain the original result of [27] as a special case: [5]
gave a refined, parameterized, approximation scheme; [3] gave a QPTAS that can be applied
to multi-player games as well; [19] gave a more general approach for approximation schemes
for the existential theory of the reals. More recently, more negative results for ε-NE were
derived: [26] gave an unconditional lower bound, based on the sum of squares hierarchy; [6]
proved PPAD-hardness in the smoothed analysis setting; [8, 20, 2] gave quasi-polynomial
time lower bounds for constrained ε-NE, under the exponential time hypothesis.

2 Preliminaries

In what follows, let [n] := {1, 2, . . . , n}, and let ∆n denote the (n− 1)-dimensional simplex.
We focus on n× n bimatrix games, where n denotes the number of available pure strategies
per player. Such games are defined by a pair (R, C) ∈ [0, 1]n×n of two matrices: R and C

are the payoff matrices for the row player and the column player respectively. We follow
the usual assumption in the relevant literature that the matrices are normalized, so that all
entries are in [0, 1]. It is also assumed without loss of generality, that both players have the
same number of pure strategies, since otherwise one can add dummy strategies to equalize
the rows and columns. The semantics of the payoff matrices are that when the row player
picks a row i ∈ [n], and the column player picks a column j ∈ [n], then they receive a payoff
of Rij and Cij respectively.

ESA 2022
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A mixed strategy is a probability distribution over [n]. We use x ∈ ∆n to denote a mixed
strategy for the row player and xi to denote the probability the player assigns to the pure
strategy i. For the column player, we use y ∈ ∆n and yi, respectively. If x and y are mixed
strategies for the row and the column player, then we call (x, y) a (mixed) strategy profile. It
is often also convenient to represent pure strategies as vectors. Hence, we will use the vector
ei, which has 1 at index i and zero elsewhere, to denote the i-th pure strategy, in other words
the distribution where a player assigns probability one to play the pure strategy i.

Given a strategy profile (x, y), the expected payoff of the row player is R(x, y) := xT Ry,
and the expected payoff of the column player is C(x, y) := xT Cy. Thus, for a pure strategy
ei, the term R(ei, y) :=

∑
j Rijyj , denotes the expected payoff of the row player, when she

plays the pure strategy i against strategy y of the column player. Similarly, C(x, ej) is the
expected payoff of the column player when she plays the pure strategy j against x. We say
that a pure strategy is a best-response strategy for a player if it maximizes her expected payoff
against a chosen strategy of her opponent. So, under a strategy profile (x, y), the set of pure
best responses for the row player is Br(y) := {i ∈ [n] : R(ei, y) = maxi′∈[n]R(ei′ , y)}, and
for the column player, it is Bc(x) := {j ∈ [n] : C(x, ej) = maxj′∈[n] C(x, ej′)}.

The regret of the row player at a profile (x, y), is regr(x, y) = maxiR(ei, y) −R(x, y)
and the regret of the column player is regc(x, y) = maxj C(x, ej) − C(x, y). The strategy
profile (x, y) is an ε-Nash equilibrium, or ε-NE, if the regret of both players is bounded by
ε ∈ [0, 1], formally max{regr(x, y), regc(x, y)} ≤ ε. If ε = 0, then the strategy profile (x, y)
is an exact Nash equilibrium.

3 The Tsaknakis-Spirakis algorithm

In this section we give a description of the algorithm by [36] and we highlight the bottleneck
cases, where it fails to provide a ( 1

3 + δ)-approximation. In order to have a self-contained
exposition, we also present some of the lemmas that are used in the analysis of [36], which
are needed for our work as well.

The core of the algorithm is to consider the function g(x, y) = max{regr(x, y), regc(x, y)},
i.e., the maximum regret among the two players. Clearly, if we arrive at a profile (x, y) such
that g(x, y) ≤ ε, then (x, y) is an ε-Nash equilibrium. At a high level, one can think of TS
as consisting of two phases: the Descent phase, and the Strategy-construction phase.

Descent Phase. During this phase, TS performs “gradient descent” on the function g(x, y),
until it reaches a “stationary” point, i.e., a strategy profile such that any local change does
not decrease the value of g. More concretely, every iteration of the Descent phase performs
a series of steps: given the current profile under consideration, it equalizes the regrets of
the players, then it solves an appropriate linear program to identify a feasible direction,
and finally depending on the solution of the LP, it either updates the strategy profile, or it
decides that it has reached an approximate stationary point.

The first step runs the RegretEqualization procedure described below. This procedure is
based on solving a single linear program to equalize the regrets of the two players, and most
importantly, it guarantees that the maximum regret does not increase.
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RegretEqualization(x0, y0)

Input: A strategy profile (x0, y0).
Output: A strategy profile (x, y) such that regr(x, y) = regc(x, y) ≤ g(x0, y0).
1. If regr(x0, y0) ≥ regc(x0, y0), keep y0 fixed and solve the following linear program:

Minimize regr(x, y0)
Such that regr(x, y0) ≥ regc(x, y0) and x ∈ ∆n.

Return (x, y0), where x is the solution of the linear program.
2. If regr(x0, y0) < regc(x0, y0), keep x0 fixed and solve the following linear program:

Minimize regc(x0, y)
Such that regc(x0, y) ≥ regr(x0, y) and y ∈ ∆n.

Return (x0, y), where y is the solution of the linear program.

Given the output (x, y) of RegretEqualization, the next step is to either find a feasible
direction to follow so as to decrease the maximum regret, or to decide that (x, y) is an
approximate stationary point. This is enforced by solving the following linear program.

Primal Linear Program: Primal(x, y)

minimize γ

s.t. γ ≥ R(ei, y′) − R(x, y′) − R(x′, y) + R(x, y), ∀i ∈ Br(y),
γ ≥ C(x′, ej) − C(x′, y) − C(x, y′) + C(x, y), ∀j ∈ Bc(x),
x′ ∈ ∆n, y′ ∈ ∆n.

It is proved in [36] that the solution of Primal(x, y) guarantees one of the following:
1. it either identifies a strategy profile (x′, y′) such that the maximum regret can be strictly

decreased by a constant fraction, if we move from (x, y) towards (x′, y′);
2. or it decides that (x, y) is a δ-stationary point1, which is the termination criterion of the

descent.
Putting everything together, the Descent phase of the TS algorithm is described below,
starting from some arbitrary initial strategy profile, and its main properties are captured by
the following lemma.

▶ Lemma 1 ([36]). For any constant δ > 0, the Descent phase computes a δ-stationary point,
in time polynomial in 1/δ and in the size of the game.

Descent Phase

Input: A strategy profile (x, y), a small constant δ > 0 (δ << 1/3).
Output: A δ-stationary profile (xs, ys) with equal regrets.
1. Equalize the regrets of the two players, i.e., set (x, y)← RegretEqualization(x, y).
2. Solve Primal(x, y) and compute x′, y′, and γ.
3. If γ − g(x, y) ≥ −δ, set xs ← x, ys ← y and stop.
4. Else, set x← (1− δ

δ+2 ) · x + δ
δ+2 · x

′, y← (1− δ
δ+2 ) · y + δ

δ+2 · y
′ and go to Step 1.

1 This means that the directional derivative of g(x, y) is at least −δ. For the definition of directional
derivative, see [36].

ESA 2022
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Strategy-construction Phase. In this phase, the algorithm utilizes the dual linear program
of Primal(x, y), in order to identify some alternative candidate strategies for the players.

Dual Linear Program: Dual(x, y)

maximize P · R(x, y) + Q · C(x, y) + a + b

s.t. pi ≥ 0, i ∈ Br(y),
qj ≥ 0, j ∈ Bc(x),
P =

∑
i∈Br(y) pi, Q =

∑
j∈Bc(x) qj ,

P + Q = 1,
a ≤

∑
i∈Br(y) −R(ek, y) · pi +

∑
j∈Bc(x)[−C(ek, y) + Ckj ] · qj , 1 ≤ k ≤ n

b ≤
∑

j∈Bc(x) −C(x, el) · qj +
∑

i∈Br(y)[−R(x, el) + Ril] · pi, 1 ≤ l ≤ n.

Given the δ-stationary profile (xs, ys) from the Descent phase, the algorithm solves
Dual(xs, ys) and computes the following (from the optimal dual variables).

The dual strategy w for the row player, where wi = pi/
∑

j∈Br(ys) pj , for i ∈ Br(ys), and
0 elsewhere; note that by construction, w is a best-response strategy against ys.
The dual strategy z for the column player, where zi = qi/

∑
j∈Bc(xs) qj , for i ∈ Br(xs),

and 0 elsewhere; by construction, z is a best-response strategy against xs.
The dual variables P, Q ∈ [0, 1], that are useful for the approximation analysis.

In addition, we define the following two quantities λ and µ, that help in parameterizing
the maximum regret bound. These quantities are equal to the payoff difference of a player
between the dual and the primal strategies, when the other player uses her dual strategy:

λ = R(w, z)−R(xs, z), µ = C(w, z)− C(w, ys). (1)

Fact. Obviously, λ ≤ 1, and µ ≤ 1 and furthermore, R(w, z) ≥ λ, and C(w, z) ≥ µ.
The algorithm then constructs and outputs a strategy profile as follows.

Strategy-Construction Phase

Input: A δ-stationary strategy profile (xs, ys) from the Descent phase, the dual
strategies w, z, and the parameters λ, µ.
1. If min{λ, µ} ≤ 1

2 , then return (xs, ys).
2. If min{λ, µ} ≥ 2

3 , then return (w, z).
3. If min{λ, µ} > 1

2 and max{λ, µ} ≤ 2
3 , then return (xs, ys).

4. Else if λ ≥ µ, then return the strategy profile with the minimum regret between(
1

1+λ−µ ·w + λ−µ
1+λ−µ · xs, z

)
and (xs, ys).

5. Else if λ < µ, then return the strategy profile with the minimum regret between(
w, 1

1+µ−λ · z + µ−λ
1+µ−λ · ys

)
and (xs, ys).

▶ Theorem 2 ([36]). For any constant δ > 0, the TS algorithm computes in polynomial time
a (0.3393 + δ)-NE.

▶ Remark 3. One could also check all the proposed profiles of this phase at every iteration
of the Descent phase, as presented in [36], and stop if we have reached already the desired
approximation. But this does not affect the worst-case running time, which occurs when the
Descent phase terminates at a δ-stationary point.

We present below some important lemmas from [36] that are needed in our analysis too.
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The first, and most important, lemma below shows how Primal(xs, ys) and Dual(xs, ys)
can be used to bound the value of the maximum regret, g(xs, ys).

▶ Lemma 4 (implied by [36]). Let (xs, ys) be a δ-stationary point produced by the Descent
Phase, for a constant δ > 0. Let also w, z and P , be derived by an optimal solution to
Dual(xs, ys), as seen before. Then, for any strategy profile (x′, y′), it holds that

g(xs, ys) ≤ P · (R(w, y′)−R(x′, ys)−R(xs, y′) +R(xs, ys))+
(1− P ) · (C(x′, z)− C(x′, ys)− C(xs, y′) + C(xs, ys)) + δ.

Lemma 4 plays a crucial role as it allows us to bound g(xs, ys) in terms of λ, µ and P ,
by making appropriate choices for x′ and y′. This is used both in the following lemma and
in Lemma 11 of Section 4.

▶ Lemma 5 ([36]). Let (xs, ys) be a δ-stationary point produced by the Descent phase, for a
constant δ > 0, and let P be obtained by an optimal solution of Dual(xs, ys). It holds that
g(xs, ys) ≤ min{P · λ, (1− P ) · µ}+ δ ≤ λ·µ

λ+µ + δ ≤ λ+µ
4 + δ.

One may worry that the bound λ·µ
λ+µ is not well-defined when λ + µ = 0. However, as we

explain below, this is not a concern.

▶ Corollary 6. We can assume that both λ > 0 and µ > 0, otherwise (xs, ys) is a δ-Nash
equilibrium.

The definitions of λ and µ, along with Lemma 5 can immediately be used to prove that
Cases 1-3 from the Strategy-construction phase return a ( 1

3 + δ)-Nash equilibrium. Hence,
the bottleneck of the TS algorithm comes from Cases 4 and 5. In fact, it was also recently
shown in [12] that the analysis of these cases in [36] is tight, and therefore one needs to come
up with a different construction in order to obtain an improvement.

▶ Lemma 7 ([36]). Cases 1-3 from the Strategy-construction phase return a ( 1
3 + δ)-Nash

equilibrium.

Proof. We will consider every case independently.
If min{λ, µ} ≤ 1

2 , by Lemma 5 we have that g(xs, ys) ≤ λ·µ
λ+µ + δ ≤ min{λ,µ}

min{λ,µ}+1 + δ ≤
1/2

1/2+1 + δ ≤ 1
3 + δ. Here, the second inequality comes from the fact that λ·µ

λ+µ is an
increasing function of max{λ, µ}, and also max{λ, µ} ≤ 1.
If min{λ, µ} ≥ 2

3 , then g(w, z) ≤ max{1−R(w, z), 1− C(w, z)}. But since R(w, z) ≥ λ

and C(w, z) ≥ µ, we have that the regret is at most 1−min{λ, µ} ≤ 1
3 .

If min{λ, µ} > 1
2 and max{λ, µ} ≤ 2

3 , by Lemma 5 we have g(xs, ys) ≤ λ·µ
λ+µ + δ ≤

2
3 · 2

3
2
3 + 2

3
+ δ ≤ 1

3 + δ, since λ·µ
λ+µ is an increasing function of λ and µ.

◀

Thus, in the next section, we will focus on the remaining cases, when min{λ, µ} ∈ ( 1
2 , 2

3 ]
and max{λ, µ} ∈ ( 2

3 , 1].

4 Improved Strategy-construction Phase

In this section we replace Cases 4 and 5 from the original TS algorithm in order to bypass
the bottleneck in the approximation. To do so, we utilize the δ-stationary point (xs, ys),
the dual strategies w, z, their convex combinations and best-response strategies to such

ESA 2022
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combinations. We then perform a more refined analysis and prove that in every case we can
efficiently construct a tailored strategy profile that is a ( 1

3 + δ)-Nash equilibrium. We note
that all missing proofs from this section can be found in the full version of our work.

Our new Strategy-construction phase works as follows.

Improved Strategy-construction Phase

Input: A δ-stationary point (xs, ys) from the Descent phase, the dual strategies w,
z, and the parameters λ, µ.
1. If min{λ, µ} ≤ 1

2 , then return (xs, ys).
2. If min{λ, µ} ≥ 2

3 , then return (w, z).
3. If min{λ, µ} > 1

2 and max{λ, µ} ≤ 2
3 , then return (xs, ys).

4. If 1
2 < λ ≤ 2

3 < µ:
Set ŷ = 1

2 · ys + 1
2 · z.

Find a best response ŵ against ŷ.
Set tr = R(ŵ, ŷ)−R(w, ŷ); vr = R(w, ys)−R(ŵ, ys); µ̂ = C(ŵ, z)−C(ŵ, ys).

4.1 If vr + tr ≥ µ−λ
2 and µ̂ ≥ µ− vr − tr, then set p = 2·(vr+tr)−(µ−λ)

2·(vr+tr) and return
the strategy profile with the minimum regret among (p ·w + (1− p) · ŵ, z) and
(xs, ys).

4.2 Else, set q = 1−µ/2−tr

1+µ/2−λ−tr
and return the strategy profile with the minimum

regret among (w, (1− q) · ŷ + q · z) and (xs, ys).

5. If 1
2 < µ ≤ 2

3 < λ (symmetric to Case 4):
Set x̂ = 1

2 · xs + 1
2 ·w.

Find a best response ẑ against x̂.
Set tc = C(x̂, ẑ)− C(x̂, z); vc = C(xs, z)− C(xs, ẑ); λ̂ = R(w, ẑ)−R(xs, ẑ).

5.1 If vc + tc ≥ λ−µ
2 and λ̂ ≥ λ− vc − tc, then set p = 2·(vc+tc)−(λ−µ)

2·(vc+tc) and return
the strategy profile with the minimum regret among (w, p · z + (1− p) · ẑ) and
(xs, ys).

5.2 Else, set q = 1−λ/2−tc

1+λ/2−µ−tc
and return the strategy profile with the minimum

regret among ((1− q) · x̂ + q ·w, z) and (xs, ys).

Note that Cases 1-3 are identical to the Strategy-construction phase of the TS algorithm.
Thus, by Lemma 7 they return a ( 1

3 + δ)-Nash equilibrium. The new part concerns Cases 4
and 5. The analysis in both cases is based on certain auxiliary parameters (vr, tr and µ̂ for
Case 4 and analogously for Case 5), that we define in the statement of the algorithm. These
parameters encode payoff differences or regrets of the players for using specific strategies,
and they help us decompose the problem into convenient subcases, so as to obtain better
upper bounds on the maximum regret.

Our main result is as follows:

▶ Theorem 8. For any constant δ > 0, we can compute in polynomial-time a ( 1
3 + δ)-Nash

equilibrium.

To prove the theorem, it suffices to analyze Case 4, where 1
2 < λ ≤ 2

3 < µ, since Case 5 is
symmetric to Case 4 and is analyzed in exactly the same way.



A. Deligkas, M. Fasoulakis, and E. Markakis 41:9

Intuition and Roadmap. The overall analysis in the sequel looks rather technical, therefore,
we will first provide some elaboration on the choices that the algorithm makes in Case 4.
The first crucial component in the design of the new algorithm is that the upper bounds on
the regret of the δ-stationary point (xs, ys), obtained in Lemma 5, can be further refined
based on the values of the parameters λ, µ, µ̂, vr. This is precisely implemented in Section 4.1
with Lemmas 11, 12, and 13. Once this is done, we then try to answer the following
question: Whenever (xs, ys) does not provide a ( 1

3 + δ)-approximation, which profiles can
form alternative candidates for a better performance? One idea is to exploit the dual
strategies w, and z, as was also done in [36]. However, the profile (w, z) may not be a
( 1

3 + δ)-equilibrium either (in most cases). A next attempt then is to consider appropriate
convex combinations of the primal and the dual strategy for each player, i.e., a combination
of xs and w for the row player and ys and z for the column player. Unfortunately, this again
does not work in all cases. But one next step is to also take into consideration best-response
strategies against such convex combinations. E.g., the strategy ŵ defined in Case 4 is a best
response to the equiprobable combination of ys and z. This completes our weaponry, and at
the end, in all subcases of Case 4, we consider profiles where the row player uses a convex
combination of w and ŵ, and the column player selects a combination between her primal
and dual strategies, ys and z. Analogous profiles with the roles of the players reversed are
constructed for Case 5 too. Finally, we also know that whenever (xs, ys) does not attain
a ( 1

3 + δ)-approximation, this restricts the relation between the parameters λ, µ, µ̂ and vr

due to the lemmas of Section 4.1. This is exploitable for us in the sense that it allows us to
construct the exact coefficients for the convex combinations that we use so as to have the
desired approximation.

To proceed, we start with two helpful observations, which are used repeatedly for the
analysis of Cases 4.1 and 4.2.

▶ Lemma 9. It holds that R(ŵ, z) ≥ λ + vr + 2tr.

Proof. By the definition of tr, inside Case 4, we have that it holds thatR(ŵ, ŷ) = R(w, ŷ)+tr.
Hence,

R(ŵ, ys)
2 + R(ŵ, z)

2 = R(ŵ, ŷ) = R(w, ys)
2 + R(w, z)

2 + tr ⇒

R(ŵ, z) = (R(w, ys)−R(ŵ, ys)) +R(w, z) + 2tr ≥ λ + vr + 2tr,

since R(w, ys)−R(ŵ, ys) = vr, and R(w, z) ≥ λ (by the fact after Equation (1)). ◀

▶ Corollary 10. It holds that vr ≤ 1− λ− 2tr, or equivalently tr ≤ 1−λ−vr

2 .

Proof. By the previous lemma we have R(ŵ, z) ≥ λ + vr + 2tr ⇒ vr ≤ 1 − λ − 2tr, since
R(ŵ, z) ≤ 1. ◀

4.1 Bounding the regret of δ-stationary points
In this subsection, we establish three important lemmas that provide different ways of
bounding the maximum regret of any δ-stationary point. The first of these lemmas is an
improvement over [36], where we add a third upper bound for the δ-stationary point, in
addition to the bounds stated in Lemma 5 from Section 3.

▶ Lemma 11. Let (xs, ys) be a δ-stationary point with δ ≥ 0, and let P be obtained by an
optimal solution of Dual(xs, ys), as the sum of the dual variables: P =

∑
i∈Br(ys) pi. It holds

that g(xs, ys) ≤ min{P · λ, (1− P ) · µ, P · vr + (1− P ) · µ̂}+ δ.
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Proof. By Lemma 5 it holds that g(xs, ys) ≤ min{P ·λ, (1−P )·µ}+δ. So, it suffices to prove
that g(xs, ys) ≤ P ·vr+(1−P )·µ̂+δ. This follows from Lemma 4 when we set (x′, y′) = (ŵ, ys).
Indeed, in this case we have g(xs, ys) ≤ P · (R(w, ys)−R(ŵ, ys)−R(xs, ys) +R(xs, ys)) +
(1−P ) · (C(ŵ, z)−C(ŵ, ys)−C(xs, ys)+C(xs, ys)) = P ·vr +(1−P ) · µ̂+δ, by the definitions
of vr and µ̂. ◀

The remaining two lemmas help in attaining a more fine-grained analysis on upper
bounding the regret of the players, under the restrictions on the values of λ and µ in Case 4.

▶ Lemma 12. Let (xs, ys) be a δ-stationary point with δ ≥ 0, and let µ̂ ≥ vr, and λ > 1
2 .

Then, it holds that g(xs, ys) ≤ µ̂·λ
λ+µ̂−vr

+ δ.

Proof. By Lemma 11 we have g(xs, ys) ≤ min{P ·λ, P · vr + (1−P ) · µ̂}+ δ. Note that P ·λ
is an increasing linear function of P , and P · vr + (1− P ) · µ̂ is a decreasing linear function
of P , because µ̂ ≥ vr. Therefore, the maximum of the minimum of these two functions is
achieved at the point where they are equal, which is for P ′ = µ̂

λ+µ̂−vr
, as long as P ′ ∈ [0, 1]

(recall that P is constrained to belong to this interval). To check that P ′ is a valid point,
observe first that since λ > 1

2 and µ̂ ≥ vr, the denominator of P ′ is positive. Also, again
using that λ > 1

2 , Corollary 10 implies that vr ≤ 1− λ ≤ 1
2 , hence λ > vr, which means that

P ′ ∈ [0, 1]. Thus, g(xs, ys) ≤ λ · P ′ + δ = µ̂·λ
λ+µ̂−vr

+ δ. ◀

▶ Lemma 13. Let (xs, ys) be a δ-stationary point with δ ≥ 0, and let µ̂ < vr, λ > 1
2 , and

µ > 2
3 . Then, it holds that g(xs, ys) ≤ vr·µ

µ−µ̂+vr
+ δ.

4.2 Case 4.1 of the Improved Strategy-construction Phase

We now analyze the approximation we obtain, when we fall into Case 4.1 of the algorithm.
We establish that either the δ-stationary point has the desired approximation or otherwise,
this is achieved by having the row player use an appropriate convex combination of w and ŵ
and the column player play the dual strategy z.

▶ Lemma 14. If vr + tr ≥ µ−λ
2 , and µ̂ ≥ µ− vr − tr, then for the strategy profile (p ·w +

(1− p) · ŵ, z), with p = 2·(vr+tr)−(µ−λ)
2·(vr+tr) , the payoff of both the row and the column player is

at least λ+µ
2 .

Proof. Note first that under the assumptions of the lemma, and since µ > λ, the parameter
p is a valid probability. For the row player, we have that her payoff is

R(p ·w + (1− p) · ŵ, z) = p · R(w, z) + (1− p) · R(ŵ, z)
≥ p · λ + (1− p) · λ + (1− p) · (vr + tr) (from Lemma 9)
= λ + (1− p) · (vr + tr)

= λ + (µ− λ)
2

(
since 1− p = µ− λ

2 · (vr + tr)

)
= λ + µ

2 .
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For the column player we have that her payoff is

C(p · w + (1 − p) · ŵ, z) = p · C(w, z) + (1 − p) · C(ŵ, z)
≥ p · µ + (1 − p) · µ̂ (Since µ̂ = C(ŵ, z) − C(ŵ, ys) ≤ C(ŵ, z))
≥ p · µ + (1 − p) · µ − (1 − p) · (vr + tr) (Since µ̂ ≥ µ − vr − tr)

= µ − (µ − λ)
2

(
since 1 − p = µ − λ

2 · (vr + tr)

)
= µ + λ

2 . ◀

▶ Lemma 15. Let p ∈ [0, 1], be such that R(p ·w + (1− p) · ŵ, z) ≥ λ+µ
2 , and C(p ·w + (1−

p) · ŵ, z) ≥ λ+µ
2 . Then, either (xs, ys) is a ( 1

3 + δ)-Nash equilibrium, or (p ·w + (1− p) · ŵ, z)
is a 1

3 -Nash equilibrium.

Proof. The regret of either player at the strategy profile (p ·w + (1− p) · ŵ, z) is at most
1− λ+µ

2 , since the payoff of any player is no less than λ+µ
2 and the best-response payoff is

at most 1. On the other hand, by Lemma 5 the regret of each player at the δ-stationary
point (xs, ys) is at most λ+µ

4 + δ. Thus, if λ + µ ≤ 4
3 , then g(xs, ys) ≤ 1

3 + δ. Otherwise,
the maximum regret at the profile (p ·w + (1− p) · ŵ, z) is at most 1− λ+µ

2 ≤ 1
3 . ◀

4.3 Case 4.2 of the Strategy-construction phase
In this case it holds that either vr + tr < µ−λ

2 or µ̂ < µ− vr − tr. It turns out that this is a
technically more intriguing case, and the reason is that the parameters are less constrained,
compared to Case 4.1. As a result, we need to consider different subcases in order to have
tighter upper bounds. We recall that the algorithm in this case outputs either (xs, ys), or a
profile where the row player selects her dual strategy w, which is a best response against ys,
and the column player plays a convex combination between ŷ and z, which by the definition
of ŷ, is a convex combination of her primal strategy ys and her dual strategy z.

▶ Lemma 16. The regret of the row player at (w, ŷ) is tr, and the regret of the column
player is at most 1− µ

2 .

Proof. By definition, the regret of the row player is tr, since ŵ is a best-response strategy
against ŷ. On the other hand, recall by the definition of µ, that C(w, z) ≥ µ. So, we have
that C(w, ŷ) = C(w,ys)

2 + C(w,z)
2 ≥ C(w,z)

2 ≥ µ
2 . Thus, since the maximum payoff is less than

or equal to 1, we have that the regret of the column player is at most 1− µ
2 . ◀

We now quantify the regret of the players at the profile (w, (1 − q) · ŷ + q · z), that is
considered by the algorithm. In particular, we obtain an upper bound as a function of the
parameters λ, µ, and tr.

▶ Lemma 17. Consider the strategy profile (w, (1− q) · ŷ + q · z) with q = 1−µ/2−tr

1+µ/2−λ−tr
. Then,

the regret of each player is no greater than q · (1− λ) + (1− q) · tr = 1−µ/2−tr−λ+µ·λ/2+µ·tr

1+µ/2−λ−tr
.

We now come to the core of the proof and establish that either the δ-stationary point, or
the strategy profile (w, (1− q) · ŷ + q · z) yields a good approximation. This is established by
the following lemma.

▶ Lemma 18. Under the assumptions of Case 4.2, either (xs, ys) is a ( 1
3 +δ)-Nash equilibrium,

or (w, (1− q) · ŷ + q · z) with q = 1−µ/2−tr

1+µ/2−λ−tr
, is a 1

3 -Nash equilibrium.
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Proof. Since we are in Case 4.2, where either vr + tr < µ−λ
2 , or µ̂ < µ − vr − tr, we will

split the analysis into further subcases, so that we have a more concrete relation between
the relevant parameters in each subcase. More precisely, we will consider the following three
subcases.

4.2(i) vr + tr < µ−λ
2 .

4.2(ii) µ̂ < µ− vr − tr, and µ̂ ≥ vr.
4.2(iii) µ̂ < µ− vr − tr, and µ̂ < vr.

So far, we have not been able to have a unifying argument for all these different subcases.
Consequently, we need to proceed with a separate analysis for each of them. Due to space
constraints, we defer the first two subcases to the full version of this work, and we present
here only Subcase 4.2(iii). We note also that among them, it was Subcase 4.2(ii) that turned
out to be the lengthier and technically most subtle in obtaining the approximation bound.

Subcase 4.2(iii). Let us begin by observing that if vr ≤ 1
3 , then the strategy profile (xs, ys)

is a ( 1
3 + δ)-NE. Indeed, from Lemma 13, and since µ̂ < vr, we get that the approximation

guarantee of the stationary strategy profile is vr·µ
µ−µ̂+vr

+ δ ≤ vr + δ ≤ 1
3 + δ. Hence, in what

follows, we will assume that vr > 1
3 . So, from Corollary 10 we have that

tr ≤
1− λ− vr

2 <
2
3 − λ

2 = 1
3 −

λ

2 . (2)

Assume now for the sake of contradiction, that (w, (1− q) · ŷ + q · z) is not a 1
3 -NE, i.e., the

maximum regret is higher than 1/3. Combining this with the bound of Lemma 17 on the
regret, and by simplifying the resulting expression, we get the following inequality:

λµ

2 −
2µ

3 −
2λ

3 +
(
µ− 2

3
)
· tr + 2

3 > 0. (3)

We will focus on the LHS of (3) and we will upper bound it by a non-positive value. Suppose
that the regret at the stationary point (xs, ys) is greater than ( 1

3 + δ). This means from
Lemma 5 that λ·µ

λ+µ > 1
3 , which implies that µ > λ

3λ−1 . In addition, observe that since
µ > 2/3, the LHS of (3) is increasing with tr. Hence, if we use Inequality (2), we get that
the LHS of (3) is upper bounded by

λµ

2 −
2µ

3 −
2λ

3 + (µ− 2
3) · (1

3 −
λ

2 ) + 2
3 = −µ

3 −
λ

3 + 4
9

< − λ

9λ− 3 −
λ

3 + 4
9

(
since µ >

λ

3λ− 1

)
.

It is easy to verify though that this quantity is non-positive for every λ ∈ [ 1
2 , 2

3 ], which in
turn contradicts Inequality (3). ◀

5 Discussion

Our algorithm is the first improvement for a foundational problem after 15 years, during
which progress had stalled. We hope that our result will again ignite the spark for actively
studying ε-NE in bimatrix games. There is still a large gap between the quasi polynomial-time
lower bound for some very small constant ε⋆ from [35], and our newly-established upper
bound of 1/3. We conjecture that closing this gap requires radically new ideas.



A. Deligkas, M. Fasoulakis, and E. Markakis 41:13

Our result has some extra positive consequences for games with more than two players.
In [7] it was shown that if we have an algorithm that finds an α-Nash equilibrium in a
(k − 1)-player game, then in polynomial time we can compute a ( 1

2−α )-NE for any k-player
game. Thus, our algorithm improves the state of the art for k-player normal-form games,
for any k > 2. Namely, we get a (0.6 + δ)-NE for three-player games, a (5/7 + δ)-NE for
four-player games, and so on.
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