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ABSTRACT
Graph Neural Networks (GNNs) have achieved state-of-the-art
performance in recommender systems. Nevertheless, the process
of searching and ranking from a large item corpus usually requires
high latency, which limits the widespread deployment of GNNs in
industry-scale applications. To address this issue, many methods
compress user/item representations into the binary embedding
space to reduce space requirements and accelerate inference. Also,
they use the Straight-through Estimator (STE) to prevent vanishing
gradients during back-propagation. However, the STE often causes
the gradient mismatch problem, leading to sub-optimal results.

In this work, we present the Hessian-aware Quantized GNN
(HQ-GNN) as an effective solution for discrete representations of
users/items that enable fast retrieval. HQ-GNN is composed of two
components: a GNN encoder for learning continuous node embed-
dings and a quantized module for compressing full-precision em-
beddings into low-bit ones. Consequently, HQ-GNN benefits from
both lower memory requirements and faster inference speeds com-
pared to vanilla GNNs. To address the gradient mismatch problem
in STE, we further consider the quantized errors and its second-
order derivatives for better stability. The experimental results on
several large-scale datasets show that HQ-GNN achieves a good
balance between latency and performance.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Recommender systems play an important role for e-commerce,
such as display advertising and ranking products [5, 15]. Among
different recommender models, Graph Neural Networks (GNNs)
have achieved cutting-edge performance on top-𝑘 recommenda-
tions [14, 16, 30, 36]. For instance, Pinterest deploys a GNNmodel to
train on a graph with 3 billion nodes and 18 billion edges, which has
delivered state-of-the-art performance [36]. Despite the superior
ability of GNNs, node representations are often stored in continu-
ous embedding space (e.g., 32-bit floating point (FP32)). This often
requires huge memory consumption [23]. For example, the FP32
embeddings of 10 million items with a dimensional size of 256 will
take up over 9.5 GB of storage space, which is hard to be deployed
into devices with limited memory, especially under the federated
learning settings [25, 37]. Therefore, searching and ranking from
a large item corpus to generate top-𝑘 recommendations become
intractable at scale due to their high latency [4, 26, 28, 29, 33].

Low-bit quantization [3, 12, 17, 21, 22] is a promising method
to save the memory footprint and accelerate model inference for
large-scale systems. By replacing FP32 values with lower precision
values, e.g., 8-bit integer (INT8), quantization can shrink down
the size of embeddings without modifying the original network
architectures. Also, quantized operators are widely supported by
modern hardwares, which allows to deploy very large networks to
resource-limited devices [4, 17]. For example, NVIDIA Turing GPU
architecture1 supports the INT8 arithmetic operations.

Recently, several studies have adopted quantization in large-scale
recommender systems [3, 20, 28, 32]. However, existing methods
suffer from two drawbacks: 1) Most of them employ binary hash
techniques to compress user/item embeddings into 1-bit quantized
representations. Nevertheless, recent studies show that ultra low-
bit quantizations (e.g., 1 or 2 bits) can be much more challenging
due to their significant degradation in the accuracy [12, 38]; 2)

1https://www.nvidia.com/en-us/geforce/turing/

ar
X

iv
:2

30
9.

01
03

2v
1 

 [
cs

.I
R

] 
 2

 S
ep

 2
02

3

https://doi.org/10.1145/3604915.3608826
https://doi.org/10.1145/3604915.3608826


RecSys ’23, September 18–22, 2023, Singapore, Singapore Huiyuan Chen et al.

They often use the Straight-through Estimator (STE) [2] to avoid
zero gradients during the back-propagation. Specifically, the non-
differentiable quantized function is replaced with a surrogate: the
identity function [28] or the scaled tanh function [3, 20]. However,
the use of different forward and backward functions results in a
gradient mismatch problem, i.e., the modified gradient is certainly
not the gradient of loss function, which makes the network training
unstable [8, 35].

In this work, we propose the Hessian-aware Quantized GNN
(HQ-GNN) for effective discrete representations of users and items
for fast retrieval. Specifically, HQ-GNN consists of two components:
a GNN encoder for learning continuous user/item embeddings, and
a quantized module for compressing the full-precision embeddings
into low-bit ones. Instead of 1-bit, HQ-GNN allows arbitrary bit
quantization for better trade-offs between latency and performance.
To address the gradient mismatch problem, we tailor the STE by fur-
ther considering the quantized errors and second-order derivatives
(e.g. Hessian) for better stability and accuracy. As such, HQ-GNN
can benefit from both lower memory footprint and faster inference
speed comparing to vanilla GNN. Experimental results on several
large-scale datasets show the superiority of our HQ-GNN.

2 RELATEDWORK
GNN-based Recommenders. GNNs have received a lot of atten-
tion in graph domains. GNNs learn how to aggregate messages
from local neighbors using neural networks, which have been suc-
cessfully applied to user-item bipartite graphs [6, 7, 14, 30, 31, 36].
Some representative models include PinSage [36], NGCF [30], Light-
GCN [14], etc. Although GNNs have great ability of capturing high-
order collaborative signals between users and items, their node
embeddings are stored in continuous space (e.g., FP32), which is
the major bottleneck for searching and ranking (e.g., high compu-
tational cost of similarity calculation between continuous embed-
dings). It is thus essential to improve the efficiency of generating
top-𝑘 recommendations at scale [26, 28].

Network Quantizations. Quantization is a hardware-friendly
approach by approximating real values with low-bit ones [3, 12, 17–
19, 21, 22, 34]. Meanwhile, network inference can be performed
using cheaper fixed-point multiple-accumulation operations. As a
result, quantization can reduce the storage overhead and inference
latency of networks [12, 22, 23, 38, 39]. In recommender systems,
HashNet [3] proposes to binarize the embeddings by continuation
method for multimedia retrieval. Similarly, CIGAR [20] learns bi-
nary codes to build a hash table for retrieving top-𝑘 item candidates.
Recently, HashGNN [28] learns hash functions and graph represen-
tations in an end-to-end fashion. Our HQ-GNN builds on HashGNN.
Specifically, we extend 1-bit quantization of HashGNN to arbitrary-
bit one, and address the gradient mismatch issue of STE, resulting
in better performance.

3 METHODOLOGY
3.1 Task Description
Generally, the input of recommender systems includes a set of
users U = {𝑢}, items I = {𝑖}, and users’ implicit feedback O+ =

{(𝑢, 𝑖) | 𝑢 ∈ U, 𝑖 ∈ I, 𝑦𝑢𝑖 = 1}, where 𝑦𝑢𝑖 = 1 indicates that user 𝑢

has adopted item 𝑖 before, 𝑦𝑢𝑖 = 0 otherwise. One can construct
a corresponding bipartite graph G = (V = U ∪ I, E = O+). The
goal is to estimate the user preference towards unobserved items.

We next introduce our HQ-GNN that consists of two parts: a
GNN encoder and a quantized module.

3.2 GNN-based Recommenders
Most GNNs fit under the message-passing schema [14, 30], where
the representation of each node is updated by collecting messages
from its neighbors via an aggregation operation Agg(·) followed
by an Update(·) operation as:

e(𝑙 )𝑢 =Update
(
e(𝑙−1)
𝑢 ,Agg ({e(𝑙−1)

𝑖
| 𝑖 ∈ N𝑢 })

)
,

e(𝑙 )
𝑖

=Update
(
e(𝑙−1)
𝑖

,Agg ({e(𝑙−1)
𝑢 | 𝑢 ∈ N𝑖 })

)
,

(1)

where {e(𝑙 )𝑢 , e(𝑙 )
𝑖

} ∈ R𝑑 denote the embeddings of user and item
in the 𝑙-th layer; N𝑢 and N𝑖 denote neighbors of user 𝑢 and item 𝑖 ,
respectively. By propagating 𝐿 layer, a pooling operator is used to
obtain the final representations:

e𝑢 = Pool(e(0)𝑢 , . . . , e(𝐿)𝑢 ), e𝑖 = Pool(e(0)
𝑖

, . . . , e(𝐿)
𝑖

), (2)

where the final representations e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 can be used
for downstream tasks. However, the full-precision embeddings, e.g.,
FP32, usually require high memory cost and power consumption
to generate top-𝑘 recommendations for the billion-scale graphs.

3.3 Low-bit Quantization
Quantization is a hardware-friendly technique to reduce memory
footprint and energy consumption [13, 27, 39]. For a uniform 𝑏-bit
quantization, one can clip and normalize a floating-point number
𝑥 into a quantization interval, parameterized by an upper 𝑢 and a
lower 𝑙 bounds, as:

𝑥𝑛 =
clip(𝑥, 𝑙,𝑢) − 𝑙

Δ
, (3)

where 𝑥𝑛 is the normalized output, clip(𝑥, 𝑙,𝑢) = min(max(𝑥, 𝑙), 𝑢),
Δ = 𝑢−𝑙

2𝑏−1 is the interval length, and 𝑏 denotes the number of quan-
tization levels, e.g., 𝑏 = 8 for 8-bit quantization. During training,
the clipping interval (𝑙, 𝑢) is often unknown beforehand, two strate-
gies are commonly used to determine the upper/lower thresholds:
exponential moving averages [17] and treating the thresholds as
learnable parameters [9]. The normalized output 𝑥𝑛 can be then
converted to a discrete value 𝑥𝑏 using a round function with post-
scaling as [12, 38, 39]:

𝑥𝑏 = 𝑥𝑞 · Δ, 𝑥𝑞 = round(𝑥𝑛), (4)

where round(·) maps a full-precision value to its nearest integer.
The quantized tensor 𝑥𝑏 can be then used for efficient computation
by emergent accelerators (e.g., NVIDIA TensorRT) that are able to
handle Δ efficiently.

By combining Eq. (3) and Eq. (4), we can defined a quantization
function𝑄𝑏 (·) as: 𝑥𝑏 = 𝑄𝑏 (𝑥). If the input is a vector/matrix,𝑄𝑏 (·)
would apply to each element of the vector/matrix. To this end, we
can quantize the GNN embeddings e𝑢 and e𝑖 in Eq. (2) into:

q𝑢 = 𝑄𝑏 (e𝑢 ), q𝑖 = 𝑄𝑏 (e𝑖 ), (5)
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where {q𝑢 , q𝑖 } ∈ R𝑑 are the 𝑏-bit representations of user𝑢 and item
𝑖 , respectively. Our model follows the mixed-precision quantization
policy [24], where we only compress the activations of GNNs for
faster inference, and leave the weights of GNNs at full precision.
Since GNNs often contain less than three layers and have limited
weights, the mixed-precision scheme could achieve good trade-offs
between performance and memory size [11]. The mixed-precision
quantization has also become more and more common in deep
learning frameworks2.

However, the non-differentiable quantized processes are unde-
sirable for the standard back-propagation, i.e., the quantization
function is intrinsically a discontinuous step function and nearly
has zero gradients, which significantly affects the training of HQ-
GNN. We next present a Generalized Straight-Through Estimator
to address this problem.

3.4 Generalized Straight-Through Estimator
The main challenge of training our HQ-GNN arises from the dis-
cretized round function in Eq. (4), where its derivative is either
infinite or zero at almost everywhere. One popular family of esti-
mators are the so-called Straight-Through Estimators (STE) [2, 35].
In STE, the forward computation of round(·) is unchanged, but
back-propagation is computed through a surrogate [3, 28, 38]: re-
placing round(·) with an identity function, i.e., Gxn = Gxq where G
denotes the gradient operator. However, STE runs the risk of con-
vergence to poor minima and unstable training [35]. For example,
both values of 0.51 and 1.49 round to same integer 1 with differ-
ent quantized errors. Moreover, STE forces to update both values
equally with the same gradient at integer 1, which is likely to be
biased with cumulative quantized errors. Moreover, a small decre-
ment (e.g., −0.2) for value 0.51 can largely change the quantized
integer from 1 to 0, while a same decrement to 1.49 cannot.

To mitigate the impact of quantized errors, we generalize the
STE as [22]:

Gxn = Gxq ⊙
(
1 + 𝛿 · sign(Gxq ) ⊙ (xn − xq)

)
, (6)

where ⊙ denotes element-wise product; sign(·) is a sign function
such that sign(𝑥) = +1 if 𝑥 ≥ 0, −1 otherwise; 𝛿 is the scaling factor.
Eq. (6) is able to scale up/down the gradient of Gxq when the xn
requires a larger/smaller magnitude for an update. Moreover, Eq.
(6) is equivalent to vanilla STE when setting 𝛿 = 0. It is thus crucial
to determine the scaling factor 𝛿 during training.

Inspired by Hessian-aware quantized networks [10, 11], we use
second-order information to guide the selection of 𝛿 . Let 𝜖 = xn−xq
denote the quantized error for round function, where each element
of 𝜖 is well bound by a small number, i.e., |𝜖𝑖 | ≤ 0.5

2𝑏−1 , with element-
wise Taylor expansion, we have:

Gxn =Gxq +
Gxn − Gxq

xn − xq
⊙ (xn − xq)

=Gxq +
Gxq+𝜖 − Gxq

𝜖
⊙ (xn − xq)

≈Gxq + G′
xq ⊙ (xn − xq),

2https://www.tensorflow.org/guide/mixed_precision

where [ · ]
[ · ] is the element-wise division, G′

xq =
𝜕Gxq
𝜕xq

denotes the
second-order derivative of a task loss with respect to xq. The above
equation can be represented as:

Gxn ≈ Gxq ⊙
(
1 +

G′
xq

|Gxq |
⊙ sign(Gxq ) ⊙ (xn − xq)

)
, (7)

where | · | denotes the absolute value. Comparing Eq. (6) and Eq. (7)

suggests that we can connect𝛿 with
G′

xq
| Gxq |

, but explicitly forming the
Hessian matrix H (containing all G′

xq ) is computationally infeasible
in practice. Instead, recent quantized networks approximate the
second-order information by the average Hessian Trace [10] or top
Hessian eigenvalues [11]. In this work, we summarize the average

trace of Hessian and
G′

xq
| Gxq |

as scaling factor:

𝛿 =
Tr(H)/𝑁

𝐺
, (8)

where 𝑁 is the number of diagonal elements in H and 𝐺 is an
average over the absolute values of gradients, i.e., E[|Gxq |].

Algorithm 1: HQ-GNN
Input: A GNN 𝑓𝑔𝑛𝑛 , bipartite graph A, bit-width 𝑏, regularizer 𝛼 .
Output:Model parameters Θ of 𝑓𝑔𝑛𝑛 ;

1 Initialize Θ ;
2 for each mini-batch do

/* Forward pass */

3 Compute node embeddings e𝑢 and e𝑖 by Eq. (2);
4 Normalize outputs ê𝑢 =

clip(e𝑢 ,𝑙,𝑢)−𝑙
Δ (same for ê𝑖 );

5 Quantize values ē𝑢 = round(ê𝑢 ) (same for ē𝑖 );
6 Post-scaling quantized values q𝑢 = ē𝑢 ⊙ Δ (same for q𝑖 );
7 Compute the BPR loss by Eq. (9);

/* Backward propagation */

8 Compute the gradients Gē𝑢 and Gē𝑖 via standard SGD;
9 Adjust the gradients Gê𝑢 and Gê𝑖 by Eq. (6):

10 Gê𝑢 = Gē𝑢 ⊙
(
1 + 𝛿 · sign(Gē𝑢 ) ⊙ (ê𝑢 − ē𝑢 )

)
,

11 Gê𝑖 = Gē𝑖 ⊙
(
1 + 𝛿 · sign(Gē𝑖 ) ⊙ (ê𝑖 − ē𝑖 )

)
.

12 Compute the trace of Hessian by Hutchinson method [1];
13 Update GNN parameters Θ and the scaling factor 𝛿 by Eq. (8);
14 end
15 return Θ

We compute the trace of Hessian via Hutchinson’s method [1]
Given a random vector v, whose elements are i.i.d. sampled from a
Rademacher distribution such that E[vv⊤] = I. Then, we have:

Tr(H) = Tr(HE[vv⊤]) = E[Tr(Hvv⊤)]

= E[v⊤Hv] ≈ 1
𝑚

𝑚∑︁
𝑖=1

(v(𝑖 )⊤Hv(𝑖 ) ),

where I is the identity matrix. The trace of H can be estimated by
E[v⊤Hv], where the expectation can be obtained by drawing𝑚
random vectors. Note that we can first compute Hv, then v⊤Hv is
a simple inner product between v and Hv. Also, we can obtain Hv
efficiently without computing an exact Hessian matrix as follows:

𝜕(G⊤
xq v)

𝜕xq
=

𝜕G⊤
xq

𝜕xq
v + G⊤

xq

𝜕v
𝜕xq

=
𝜕G⊤

xq

𝜕xq
v = Hv,
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Table 1: Dataset statistics.

Dataset Gowalla Yelp2018 Amazon-Book Alibaba
|User| 29,858 31,668 52,643 106,042
|Item| 40,981 38,048 91,599 53,591

|Interaction| 1,027,370 1,561,406 2,984,108 907,407

where the first equality is the chain rule, while the second is due to
the independence of v and xq. As such, the cost of Hessian matrix-
vector multiply is the same as one gradient back-propagation.

3.5 Model Optimization
3.5.1 Loss function. Based on the 𝑏-bit representations q𝑢 and q𝑖
from Eq. (5), we can adopt the inner product to estimate the user’s
preference towards the target item as: 𝑦𝑢𝑖 = ⟨q𝑢 , q𝑖 ⟩. Also, we use
Bayesian Personalized Ranking loss to optimize the model [20]:

L𝐵𝑃𝑅 (Θ) =
∑︁

(𝑢,𝑖 ) ∈O+,(𝑢,𝑗 )∉O+
− ln𝜎

(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
+ 𝛼 ∥Θ∥2

𝐹 , (9)

where 𝜎 (·) denotes the sigmoid function, Θ denotes the model
parameters of GNNs, and 𝛼 controls the 𝐿2 regularization strength.
Finally, we briefly summarize our HQ-GNN in Algorithm 1.

3.5.2 Complexity. Compared to vanilla GNN, HQ-GNN has an
extra time cost to perform gradient adjustments in Eq. (6). The
computation of Hessian Trace only requires one gradient back-
propagation, which is significantly faster than training the GNN
encoder itself [10]. Thus, HQ-GNN has the same training complex-
ity as its GNN encoder. However, during the inference, we can use
integer-only node embeddings (without post-scaling) to generate
the top-𝑘 candidates, which has both lower memory footprint and
faster inference speed compared to the vanilla GNN.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. Weevaluate ourmethod on four public datasets [14,
16, 30]: Gowalla3, Yelp-20184, Amazon-book5, and Alibaba6. Their
statistics are summarized in Table 1. For each dataset, we randomly
select 80% of historical interactions of each user to construct the
training set, and treat the remaining as the test set. From the train-
ing set, we randomly select 10% of interactions as the validation set
to tune the hyper-parameters.

4.1.2 Baselines and Evaluations. To verify the effectiveness of
HQ-GNN,wemainly comparewith graph-basedmodels: NGCF [30],
LightGCN [14], HashNet [3] and HashGNN [28]. For HashNet,
HashGNN and HQ-GNN, we can choose any GNN encoder to com-
pute the continuous node embeddings in Eq. (2). The comparison
against other methods (e.g., factorizationmachines) is omitted, since
most of them are outperformed by LightGCN.We choose thewidely-
used Recall@𝑘 and NDCG@𝑘 as the evaluation metrics [14, 16, 30].
We simply set 𝑘 = 50 in all experiments [28].
3https://snap.stanford.edu/data/loc-gowalla.html
4https://www.yelp.com/dataset
5https://jmcauley.ucsd.edu/data/amazon/
6https://github.com/huangtinglin/MixGCF/tree/main/data/ali

4.1.3 Implementation Details. For all baselines, the embedding
size of user/item is searched among {16, 32, 64, 128}. The hyper-
parameters (e.g., batch size, learning rate) of baselines are initialized
as their original settings and are then carefully tuned to achieve
the optimal performance. For HQ-GNN, we search 𝐿2 regularizer
𝛼 within {10−5, 10−4, 10−3, 10−2, 10−1}. In addition, we determine
the upper/lower thresholds (Eq. (3)) by exponential moving aver-
ages [17], and set the number of bits 𝑏 = 1 in Eq. (5) for fair compar-
isons with binary hash methods: HashNet [3] and HashGNN [28].

4.2 Experimental Results
4.2.1 Overall Performance. We present a comprehensive perfor-
mance comparison between full-precision GNNs and quantization-
aware GNNs. We summarize the results in terms of Recall@50
and NDCG@50 for different datasets in Table 2. From the table,
we have two major observations: 1) Among all 1-bit GNNs, our
proposed HQ-GNN consistently outperforms both HashNet and
HashGNN by a large margin on all four datasets. Clearly, this re-
veals that our HQ-GNNs provide a meaningful gradient adjust-
ments for non-differentiable quantized function. For example, for
LightGCN encoder, HQ-GNN has on average 15.80% improvement
with respect to Recall@50 and over 15.63% improvement with re-
spect to NDCG@50, comparing to the state-of-the-art HashGNN.
2) It is not surprised that full-precision GNNs perform better than
quantization-aware GNNs in all cases. However, quantization-aware
GNNs benefit from both lower memory footprint and faster infer-
ence speed comparing to vanilla GNN.

In terms of memory and inference speed, we have observed
similar results as those reported in HashNet [3] and HashGNN [28].
This is because our HQ-GNN, with 𝑏 = 1, inherits all the benefits
of HashGNN. For instance, using binarized embeddings (1 bit) can
significantly reduce memory usage as compared to using FP32
embeddings. Moreover, the inference speed of our HQ-GNNs is
approximately 3.6 times faster than that of full-precision GNNs
because the Hamming distance between two binary embeddings
can be calculated efficiently [28]. These features make our HQ-GNN
more desirable for large-scale retrieval applications in the industry.

4.2.2 Compared to GTE. The STE method propagates the same
gradient from an output to an input of the discretizer, assuming that
the derivative of the discretizer is equal to 1. In contrast, our GSTE
method adopts the Hessian to refine the gradients. To evaluate
the effectiveness of our GSTE method, we chose LightGCN as the
backbone and quantized its embeddings into 1 bit. The performance
on different datasets is summarized in Table 3. From the table, it
is clear that our GSTE method performs better than STE for 1-bit
quantization, with improvements ranging from 14.7% to 24.5%.

Regarding running time, during the training stage, our GSTE
method requires computing the trace of Hessian using Hutchinson’s
method, which is however fast. From Table 3, we can see that our
GSTE method is slightly slower than STE, which is negligible in
practice. During inference, both our GSTE and STE methods have
the same speed as both use 1-bit quantized embeddings for retrieval,
and the trace of Hessian is not needed in the inference stage.

The left of Figure 1 also displays the training curves of GSTE
and STE, and we clearly observe that training quantized LightGCN
with GSTE is better than STE in terms of stability. This highlights
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Table 2: Performance comparison (bold and underline represent the best full-precision and 1-bit quantized models).

Gowalla Yelp-2018 Amazon-Book Alibaba
Methods Recall@50 NDCG@50 Recall@50 NDCG@50 Recall@50 NDCG@50 Recall@50 NDCG@50

NGCF 0.159 0.130 0.114 0.054 0.092 0.065 0.071 0.033
+HashNet 0.104 0.082 0.071 0.030 0.057 0.038 0.047 0.021

+HashGNN 0.122 0.098 0.091 0.042 0.073 0.043 0.054 0.023
+HQ-GNN 0.145 0.112 0.101 0.048 0.081 0.054 0.065 0.029
LightGCN 0.163 0.134 0.118 0.059 0.098 0.072 0.076 0.036
+HashNet 0.113 0.088 0.074 0.036 0.064 0.041 0.052 0.024

+HashGNN 0.128 0.112 0.094 0.047 0.075 0.053 0.062 0.029
+HQ-GNN 0.152 0.122 0.108 0.051 0.089 0.062 0.070 0.032
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Figure 1: Left: GSTE vs. STE over training loss. Right: the
impact of the number of bits in the HQ-GNN.

the effectiveness of utilizing Hessian information in the training
process. The right of Figure 1 shows the impact of quantization
levels by varying 𝑏 within {1, 2, 3, 4} for both GSTE and STE. As can
be seen, aggressive quantization (less than 2-bit precision) can lead
to significant degradation in the accuracy. When 𝑏 = 4, HQ-GNN
obtains 98.5% performance recovery of LightGCN. Comparing STE
and GSTE, our GSTE consistently performance better than STE in
all cases. In summary, HQ-GNN strikes a good balance between
latency and performance.

5 CONCLUSION
Training graph neural networks on large-scale user-item bipartite
graphs has been a challenging task due to the extensive memory
requirement. To address this problem, we propose HQ-GNN that
explores the issue of low-bit quantization of graph neural networks
for large-scale recommendations. Additionally, we introduce a Gen-
eralized Straight-Through Estimator to solve the gradient mismatch
problem that arises during the training of quantized networks. HQ-
GNN is flexible and can be applied to various graph neural networks.
The effectiveness of our proposed method is demonstrated through
extensive experiments on real-world datasets.
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