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Abstract—Quantization-aware training (QAT) achieves com-
petitive performance and is widely used for image classification
tasks in model compression. Existing QAT works start with
a pre-trained full-precision model and perform quantization
during retraining. However, these works require supervision
from the ground-truth labels whereas sufficient labeled data
are infeasible in real-world environments. Also, they suffer
from accuracy loss due to reduced precision, and no algorithm
consistently achieves the best or the worst performance on every
model architecture. To address the aforementioned limitations,
this paper proposes a novel Self-Supervised Quantization-Aware
Knowledge Distillation framework (SQAKD). SQAKD unifies
the forward and backward dynamics of various quantization
functions, making it flexible for incorporating the various QAT
works. With the full-precision model as the teacher and the
low-bit model as the student, SQAKD reframes QAT as a co-
optimization problem that simultaneously minimizes the KL-Loss
(i.e., the Kullback-Leibler divergence loss between the teacher’s
and student’s penultimate outputs) and the discretization error
(i.e., the difference between the full-precision weights/activations
and their quantized counterparts). This optimization is achieved
in a self-supervised manner without labeled data. The evaluation
shows that SQAKD significantly improves the performance of
various state-of-the-art QAT works (e.g., PACT, LSQ, DoReFa,
and EWGS). SQAKD establishes stronger baselines and does not
require extensive labeled training data, potentially making state-
of-the-art QAT research more accessible.

I. INTRODUCTION

Quantization is one of the model compression ap-
proaches [1]–[5] to address the mismatch issue between
resource-hungry DNNs and resource-constrained edge de-
vices [6]–[8]. Various quantization techniques [9]–[12] have
achieved great results in creating low-bit models through
Quantization-Aware Training (QAT), which starts with a pre-
trained model and performs quantization during retraining.
However, most of them result in some degree of accuracy loss
due to reduced precision [13] and no algorithm consistently
achieves the best or the worst performance on every model
architecture (e.g., VGG, ResNet, MobileNet, etc.) [14]. Also,
the various QAT works are motivated by different intuitions
and lack a commonly agreed theory, which makes it chal-
lenging to generalize. Moreover, all the QAT works assume
labeled training data are always available while labeling the
data can be time-consuming and sometimes even infeasible,
particularly in specialized domains or for specific tasks .

To address the aforementioned limitations and improve the
performance of the state-of-the-art (SOTA) QAT for model
compression, we propose a simple yet effective framework
— Self-Supervised Quantization-Aware Knowledge Distilla-
tion (SQAKD). SQAKD first unifies the forward and back-
ward dynamics of various quantization functions and shapes

… Softmax

Teacher (Full precision)

…

Student (Low precision)
Input

KL-Loss

…Layer 1 
𝑊!

" 𝐴!
" Layer i

𝑊#
" 𝐴#

"

Layer 1 
𝑊!

$ 𝐴!
$ Layer i

𝑊#
$ 𝐴#

$ Softmax…

Fig. 1: Workflow of SQAKD.

QAT as minimizing the discretization error between original
weights/activations and their quantized counterparts. Then,
SQAKD lets the full-precision and low-bit models as the
teacher and student, respectively, and excludes CE-Loss (i.e.,
cross-entropy loss with labels) and keeps only the KL-
Loss (i.e., the Kullback-Leibler divergence loss between the
teacher’s and student’s penultimate outputs), reframing QAT
as a co-optimization problem that simultaneously minimizes
the KL-Loss and the discretization error without supervision
from labels.

Compared to existing QAT methods, SQAKD has several
advantages. First, SQAKD is flexible for incorporating the
various QAT works since it unifies the optimization of their
forward and backward dynamics. Second, SQAKD operates
in a self-supervised manner without labeled data, supporting a
more extensive scope of applications in practical scenarios.
Finally, SQAKD improves the various SOTA QAT works
significantly in both convergence speed and accuracy.

II. METHODOLOGY

Figure 1 illustrates the workflow of the proposed SQAKD.
Forward Propagation. Let Quant(·) denote a uniform quan-
tizer that converts a full-precision input x to a quantized
output xq = Quant(x). x can be the activations or weights
of the network. First, the quantizer Quant(·) applies a clip-
ping function Clip(·) to normalize and clip the input x to
smaller range, producing a full-precision latent presentation:
xc = Clip(x, {pi}i=Kc

i=1 , v,m), where v and m are the lower
and upper bound of the range, respectively, {pi}i=Kc

i=1 denotes
the set of trainable parameters needed for quantization, and
Kc denotes the number of parameters. Then, the quantizer
Quant(·) converts the clipped value xc to a discrete quanti-
zation point xq using the function R(·) that contains a round
function: xq = R(xc, b, {qi}i=Kr

i=1 ), where b is the bit width
and {qi}i=Kr

i=1 denotes the set of trainable parameters. Thus,
Quant(·) can be described as: xq = Quant(x, α, b, v,m),
here we use α as a shorthand for the set of all the parameters
in the functions R(·) and Clip(·): α = {{pi}i=Kc

i=1 , {qi}i=Kr
i=1 }.
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TABLE I: Top-1 test accuracy (%) on CIFAR-10 and CIFAR-100.

CIFAR-10

Model VGG-8
(FP: 91.27)

ResNet-20
(FP: 92.58)

Bit-width W1A1 W2A2 W4A4 W1A1 W2A2 W4A4
EWGS [12] 87.77 90.84 90.95 86.42 91.41 92.40

SQAKD (EWGS) 89.05
(+1.28)

91.55
(+0.71)

91.31
(+0.36)

86.47
(+0.05)

91.80
(+0.39)

92.59
(+0.19)

CIFAR-100

Model VGG-13
(FP: 76.36)

ResNet-32
(FP: 71.33)

Bit-width W1A1 W2A2 W4A4 W1A1 W2A2 W4A4
EWGS [12] 65.55 73.31 73.41 59.25 69.37 70.50

SQAKD (EWGS) 68.56
(+3.01)

74.65
(+1.34)

74.67
(+1.26)

59.41
(+0.16)

69.99
(+0.62)

71.65
(+1.15)
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(a) VGG-8
(W1A1, CIFAR-10)
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(b) ResNet-32
(W4A4, CIFAR-100)
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(c) MobileNet-V2 (W4A4,
Tiny-ImageNet)

Fig. 2: Top-1 test accuracy evolution of full-precision models (FP), and
quantized models using EWES and EWGS+SQAKD, in each epoch during
training on CIFAR-10 and CIFAR-100. “W∗A×” denotes that the weights
and activations are quantized into ∗bit and ×bit, respectively.

Backward Propagation. Different from prevalent quantiza-
tion works using Straight-Through Estimator (STE) [15] in
backpropagation, we propose a novel formulation of backprop-
agation by integrating the discretization error (xc − xq):

∂L

∂xc
=

∂L

∂xq
+ µ · (xc − xq), (1)

where µ is a non-negative value. STE is represented by setting
µ to zero, and µ can also be updated by other schemes, like
Curriculum Learning driven strategy [1], [16].

Optimization Objective. To apply Knowledge Distillation
(KD) [17] into quantization, we let a pre-trained full-precision
network act as the teacher, guiding a low-bit student with the
same architecture. KD [17] defines the training loss as a linear
combination of the cross-entropy loss (term “CE-Loss”) with
labels and the KL divergence (termed “KL-Loss”) between
the teacher’s and student’s soft logits, controlled by a hyper-
parameter λ: L = (1− λ)LCE + λLKL.

However, we find out that CE-Loss does not cooperate ef-
fectively with KL-Loss, and their combination may potentially
degrade the network performance. Solely minimizing KL-Loss
is sufficient for achieving optimal gradient updates in the
quantized network. So we drop the CE-Loss and keep only the
KL-Loss in SQAKD. The optimization objection is defined as:

min
WS

f
,αW ,αA

KL(S(hT /ρ)||S(hS/ρ))

s.t. WS
q = QuantW (WS

f , αW , bW , vW ,mW )

AS
q = QuantA(A

S
f , αA, bA, vA,mA),

(2)

where ρ is the temperature, which makes distribution softer for
using the dark knowledge, Y is the ground-truth labels, hT and
hS are the penultimate layer outputs of the teacher and student,
respectively. QuantW (·) and QuantA(·) are the quantization
function for the student’s weights and activations, and WS

f /AS
f

and WS
q /AS

q are the student’s full-precision weights/activations
and quantized weights/activations.

TABLE II: Top-1 test accuracy (%) of ResNet and VGG on Tiny-ImageNet.

Model ResNet-18
(FP: 65.59)

VGG-11
(FP: 59.47)

Bit-width W3A3 W4A4 W8A8 W3A3 W4A4 W8A8
PACT [10] 58.09 61.06 64.91 52.94 57.10 58.08

SQAKD (PACT) 61.34
(+3.25)

61.47
(+0.41)

65.78
(+0.87)

57.25
(+4.31)

59.05
(+1.95)

59.44
(+1.36)

LSQ [11] 61.99 64.10 65.08 58.39 59.14 59.25

SQAKD (LSQ) 65.21
(+3.22)

65.34
(+1.24)

65.96
(+0.88)

58.43
(+0.04)

59.19
(+0.05)

59.42
(+0.17)

DoReFa [9] 61.94 62.72 63.23 56.72 57.28 57.54

SQAKD (DoReFa) 64.10
(+2.16)

64.56
(+1.84)

64.88
(+1.65)

57.02
(+0.3)

58.93
(+1.65)

58.91
(+1.37)

TABLE III: Top-1 and top-5 test accuracy (%) of MobileNet-V2, ShuffleNet-
V2, and SqueezeNet on Tiny-ImageNet.

Model Bit-width Method Top-1 Acc. Top-5 Acc.

MobileNet-V2

FP - 58.07 80.97

W3A3 PACT [10] 47.77 73.44
SQAKD (PACT) 52.73 (+4.96) 77.68 (+4.24)

W4A4 PACT [10] 50.33 75.08
SQAKD (PACT) 57.14 (+6.81) 80.61 (+5.53)

W8A8 DoReFa [9] 56.26 79.64
SQAKD (DoReFa) 58.13 (+1.87) 81.3 (+1.66)

ShuffleNet-V2

FP - 49.91 76.05

W4A4 PACT [10] 27.09 52.54
SQAKD (PACT) 41.11 (+14.02) 68.4 (+15.86)

W8A8 DoReFa [9] 45.96 71.93
SQAKD (DoReFa) 47.33 (+1.37) 73.85 (+1.92)

SqueezeNet1 0

FP - 51.49 76.02

W4A4 LSQ [11] 35.37 62.75
SQAKD (LSQ) 47.40 (+12.03) 73.18 (+10.43)

W8A8 DoReFa [9] 42.66 69.25
SQAKD (DoReFa) 46.62 (+3.96) 73.02 (+3.77)

III. EVALUATION

Experiment Setup. We conduct an extensive evaluation on
diverse models (ResNet [18], VGG [19], MobileNet [20],
ShuffleNet [21], SqueezeNet [22], and AlexNet [23]) and var-
ious datasets, including CIFAR-10 [24], CIFAR-100 [24], and
Tiny-ImageNet [25]. We incorporate state-of-the-art (SOTA)
quantization methods (PACT [10], LSQ [11], DoReFa [9],
and EWGS [12]) into SQAKD, and compare to their original
results to show the improvement made by SQAKD.
Accuracy on CIFAR-10 and CIFAR-100. Table I shows that
SQAKD improves the accuracy of EWGS by a large margin
for 1, 2, and 4-bit quantization on CIFAR-10 and CIFAR-
100. Specifically, on CIFAR-10, SQAKD improves EWGS by
0.36% to 1.28% on VGG-8 and 0.05% to 0.39% on ResNet-
20; and on CIFAR-100, SQAKD improves EWGS by 1.26%
to 3.01% on VGG-13 and 0.16% to 1.15% on ResNet-32.
Accuracy on Tiny-ImageNet. Tables II and III show that
SQAKD consistently improves the accuracy of various quan-
tization methods, including PACT [10], LSQ [11], and
DoReFa [9], by a large margin in all cases. Specifically,
SQAKD improves 1) PACT by 0.41% to 15.86%, 2) LSQ
by 0.04% to 12.03%, and 3) DoReFa 0.3% to 3.96% for 3, 4,
and 8-bit quantization.
Convergence Speed. Figure 2 illustrate the top-1 test accu-
racy evolution for 1-bit VGG-18 (CIFAR-10), 4-bit ResNet-
32 (CIFAR-100), and 4-bit MobileNet-V2 (Tiny-ImaeNet),
respectively, in each epoch during training. SQAKD improves
the convergence speed of the existing quantization methods
on all model architectures. Furthermore, on MobileNet-V2,
SQAKD enables the quantized student to converge much
faster than the full-precision teacher whereas the quantization
method alone cannot achieve that.
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open-source toolkit for model compression,” in Proceedings of the 30th
ACM International Conference on Information & Knowledge Manage-
ment, pp. 4504–4514, 2021.

[6] Y. Chen, K. Zhao, B. Li, and M. Zhao, “Exploring the use of synthetic
gradients for distributed deep learning across cloud and edge resources,”
in 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge
19), 2019.

[7] M. Zhao, “Knowledgenet: Disaggregated and distributed training and
serving of deep neural networks,”

[8] Y. Chen, S. Biookaghazadeh, and M. Zhao, “Exploring the capabilities
of mobile devices in supporting deep learning,” in Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, pp. 127–138, 2019.

[9] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[10] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[11] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” arXiv preprint
arXiv:1902.08153, 2019.

[12] J. Lee, D. Kim, and B. Ham, “Network quantization with element-
wise gradient scaling,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6448–6457, 2021.

[13] Y. Boo, S. Shin, J. Choi, and W. Sung, “Stochastic precision ensemble:
self-knowledge distillation for quantized deep neural networks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 6794–6802, 2021.

[14] Y. Li, M. Shen, J. Ma, Y. Ren, M. Zhao, Q. Zhang, R. Gong, F. Yu,
and J. Yan, “Mqbench: Towards reproducible and deployable model
quantization benchmark,” arXiv preprint arXiv:2111.03759, 2021.
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