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ABSTRACT
Program synthesis is the process of generating a computer program
following a set of specifications, which can be a high-level descrip-
tion of the problem and/or a set of input-output examples. The
synthesis can be modeled as a search problem in which the search
space is the set of all the programs valid under a grammar. As the
search space is vast, brute force is usually not viable and search
heuristics, such as genetic programming, also have difficulty navi-
gating it without any guidance. In this paper we present HOTGP, a
new genetic programming algorithm that synthesizes pure, typed,
and functional programs. HOTGP leverages the knowledge pro-
vided by the rich data-types associated with the specification and
the built-in grammar to constrain the search space and improve the
performance of the synthesis. The grammar is based on Haskell’s
standard base library (the synthesized code can be directly com-
piled using any standard Haskell compiler) and includes support
for higher-order functions, 𝜆-functions, and parametric polymor-
phism. Experimental results show that, when compared to 6 state-
of-the-art algorithms using a standard set of benchmarks, HOTGP
is competitive and capable of synthesizing the correct programs
more frequently than any other of the evaluated algorithms.
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1 INTRODUCTION
Program Synthesis (PS) is the task of creating a computer program,
in algorithmic form, based on a set of specifications [6]. A pro-
gram specification is a high-level description of the objective of
the program [19]. This specification can have different formats,
from natural language to a more formal notation. A common ap-
proach to specifying a program to solve a problem is providing a
set of input-output examples, with special attention to edge cases,
to reduce the set of ambiguous solutions. This is called Inductive
Synthesis, or Programming-by-Examples (PBE) [7]. In this case, the
task of the synthesizer is to find a program that correctly maps
each pair of input-output provided by the examples. Depending on

Algorithm 1: One solution to the example specification.
1 function solution(x):
2 s← 0
3 for 𝑖 ← 0; 𝑖 < length(x); 𝑖 ← 𝑖 + 1 do
4 if x[i] < 100 then
5 s← s + x[i]

6 return s

the completeness of the provided examples, the specification might
be ambiguous leading to many alternative programs that do not
behave as intended, even if they correctly map those examples.

The generation of a program can be modeled as a search where
the search space contains the set of all possible programs valid under
a pre-specified grammar. The objective is to find a program that
meets the specification. The search space size makes it impractical
to employ a naive approach for selecting the best candidate from
the enumeration of all possible programs. For this reason, the PS
is often done using a (meta-)heuristic approach, usually Genetic
Programming (GP) [18].

Even though this approach has presented some success in stan-
dard PS benchmarks [11–14, 17], it is still incapable of finding
solutions to some tasks that are trivial for humans. Some of the
reasons for this are:

(1) Traversing the search space is challenging, as sometimes a
small change in the program code significantly impacts its
output;

(2) Without additional information about the program, the
search relies on the completeness of the examples;

(3) Some synthesizers can create stateful programs that can
have unpredictable behavior depending on how the states
are changed.

To illustrate these difficulties, let us take as an example a spec-
ification for a program that, given a list x, returns the sum of all
the elements which are smaller than 100. A valid imperative style
program is presented in algorithm 1. Changes to any of the initial
values of s (line 2), i (line 3) or the constant 100 (line 4) can drop
the accuracy from 100% to 0%. On the other hand, for instance,
if the input-example lists do not contain values between 95 and
100, a constant such as 98 in line 4 will be enough to achieve 100%
accuracy on the training set, even though the code will produce
wrong results when one considers all possible inputs. Finally, any
additional statement inside the loop body that affects the value of
either i or s might also decrease the achieved accuracy.
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One possible solution to alleviate these problems is to employ
a typed and purely functional paradigm. In this paradigm, a pro-
gram is a pure function and is defined as the composition of pure
functions.

A pure function has, by definition, the fundamental property
of referential transparency [29]. This means that any expression
(including the whole program which is, by itself, an expression) can
safely be substituted by the result of its evaluation. This property
makes input transformations explicit and predictable, constraining
the search space to only functions with no side effects. Finally, a
typed language contains information about the input and output
types which helps us to constrain the search space further.

Moreover, if we also allow for parametric polymorphism1, we can
effectively constrain the search space to contain only well-formed
programs. Take, for example, the type signature ∀ a. a → a.
This signature only allows a single implementation, which is the
identity function. Any other implementation would either violate
referential transparency or the type information. Albeit extreme,
this example shows how the combination of these properties can
constrain the search space, easing the task of the PS algorithm [22].

While the mentioned features already allow for an expressive
language, typical functional programming languages also provide
constructs for the implementation of higher-order functions [15].
In this context, a higher-order function is a function that receives
a function as one of its arguments. Commonly used higher-order
functions are map, filter, fold, which generalize many common
patterns required by a program.

This work proposes a newGP algorithm, namedHOTGP (Higher-
Order Typed Genetic Programming), that searches for pure, typed,
and functional programs. The grammar supports higher-order func-
tions, parametric polymorphism in functions, and parametric types
(such as lists and tuples). HOTGP was evaluated against 29 bench-
mark problems and its results compared to 6 other algorithms from
the literature. Results show that a pure functional approach can
significantly improve the results of the standard GP algorithm in
terms of the frequency that it finds correct programs.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 describes HOTGP. The experimen-
tal evaluation is outlined in Section 4, and we conclude in Section 5.

2 RELATEDWORK
To the best of our knowledge, Automatic Design of Algorithms
Through Evolution (ADATE) [23] is the earliest example of PS tar-
geting functional code. This work aimed at synthesizing recursive
ML language programs using incremental transformations. The
algorithm starts with an initial program described by the token "?"
that always returns a don’t know2 value. After that, ADATE sys-
tematically expands the expression into a pattern matching of the
input type, synthesizing a program for each branch of the pattern
match, and replacing the general case with a recursive call.

Montana [22] proposes the Strongly Typed Genetic Program-
ming (STGP) algorithm, an adaption of GP that considers the types
of each function and terminal during the PS. The purpose of taking
types into consideration is to further constrain the search space

1Also known as generics in some programming languages.
2This is equivalent to a function that always returns null.

by allowing only correctly-typed programs to exist (i.e., programs
in which all functions operate on values with the appropriate data
types). In contrast to standard GP, where a given nonterminal must
be capable of handling any data type, STGP imposes extra con-
straints to enforce type-correctness. Another important contribu-
tion of the STGP is that the types of the nonterminals can employ
parametric polymorphism.

The main benefit of having parametric polymorphism is that
there is no need for multiple similar functions whose difference is
only in their types. Experiments on four different problems (regard-
ing matrix and list manipulations) have shown that STGP generally
outperforms untyped GP.

STGP and a standard untyped GPwere compared by Haynes et al.
[8] using the “Pursuit Problem”. This problemmodels a game where
four predators pursue a prey. The goal is to create an algorithm
for the predators to capture the prey as fast as possible. The prey
always runs away from the nearest predator, and the predators only
have information about themselves and the prey, but not about the
other predators. Results show that a good STGP program can be
generated faster than a good GP program. Moreover, the best STGP
program has a higher capture rate than the best GP program.

PolyGP [32, 33] extends STGP with support to higher-order func-
tions and 𝜆-functions. It also differs from STGP by using a type
unification algorithm instead of a lookup table to determine the
concrete types when using polymorphic functions. The 𝜆-functions
use the same initialization procedure of the main PS, but the avail-
able terminals are limited to the input parameters. Because these
𝜆-functions do not have any type restriction, they can be invalid
in which case it must be discarded and regenerated. The overall
algorithm is a simple search for a composition of 𝜆-functions with
a user-defined set of terminals and nonterminals as in STGP.

Katayama [16] proposes MagicHaskell, a breadth-search ap-
proach that searches for a correctly-typed functional program using
SKIBC [31] combinators. This simplifies the PS by reducing the
search space. MagicHaskell also introduces the use of the de Bruijn
lambda to find equivalent expressions and memoization to improve
performance [2]. Additionally, it implements fusion rules to sim-
plify the synthesized program further. This particular approach
was reported not to work well with larger problems [24].

Strongly Formed Genetic Programming (SFGP) [1] is an exten-
sion to STGP. SFGP not only assigns known data-types to terminals
but also node-types to functions. A node-type identifies if a given
node is a variable, an expression, or an assignment. Each subtree of
a function can also be required to be of a certain node-type. The au-
thors argue that this extra information is helpful to build correctly
typed imperative programs (e.g., the first child of an assignment
must have the “Variable” node-type and match the data-type of the
second child). They conducted experiments on 3 datasets, with a re-
duced grammar that deals mainly with integers, and reported high
success rates with a lower computational effort than competing
methods.

Santos et al. [28] discuss desiderata for PS approaches by further
constraining the search space, similar to what is done by STGP.
They propose the use of Refinement Types to this aim. As this is
an ongoing project, to the best of our knowledge, there are still no
experimental evaluations or comparative results.
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Pantridge et al. [25] proposes an adaptation of the Code Building
Genetic Programming (CBGP) [26] as a means to incorporate ele-
ments of functional programming such as higher-order functions
and 𝜆-functions. CBGP uses the same representation of PushGP
with three primary constructs: APP, to apply a function; ABS, to
define a function of 0 or more arguments and; LET, to introduce
local variables in the current scope. It also uses concepts from type
theory to ensure the correctness of the polymorphic types. CBGP
achieved higher generalization rates for a subset of benchmark
problems. However, for other problems, the generalization rate was
close to 0. The authors noted that the evolutionary search avoided
using 𝜆-functions and preferred to employ pre-defined functions
in higher-order functions such as map. These results show some
indirect evidence of the benefits provided by type-safety to PS, in
particular, with regard to the stability of the solutions over different
executions of the search algorithm.

In this same line, Garrow et al. [5] compared the generation of
Python and Haskell programs using a grammar-guided system [21].
Similar to our work, they employ a different grammar for each
set of types instead of a different grammar per benchmark prob-
lem. Their approach supports higher-order functions, but limits
the function arguments to pre-defined commonly used functions.
Experimental results showed that the Haskell version consistently
outperforms Python in most selected benchmarks. Implementing
general 𝜆-functions was left as future work by the authors since
that would add complexity to the search space and must be carefully
handled as a different construct from the main program.

He et al. [9] investigate the reuse of already synthesized pro-
grams as subprograms to be incorporated in the nonterminal set.
The main idea is that, if the algorithm has already synthesized
solutions to simpler tasks, these solutions can be used to build
more complex solutions, in an incremental process. Their results
show a significant benefit could be obtained by adding handcrafted
modules in 4 selected benchmarks.

Forstenlechner et al. [3] criticize a common technique in GP,
which is to provide a different grammar for each problem. They
argue that this leads to difficulties in grammar reuse, as they are
specifically tailored to each problem. They propose a general gram-
mar to the G3P algorithm and perform experiments on the bench-
mark introduced by Helmuth and Spector [12]. Since the proposed
grammar had difficulty with the benchmark problems involving
characters and strings, the authors proposed an improved and ex-
panded grammar leading to G3P+ [4].

3 HIGHER-ORDER TYPED GENETIC
PROGRAMMING

This section introduces Higher-Order Typed Genetic Programming
(HOTGP). To the best of our knowledge, STGP was among the
first to propose and employ types for GP. As such, it naturally has
influenced following works, such as Castle and Johnson [1], Santos
et al. [28], and HOTGP. We now present the main concepts needed
for typed GP which are shared by all these synthesizers.

In Strongly-Typed Genetic Programming (SGTP), every terminal
has an associated data type, and nonterminals have associated input
types and one output type. To enforce correctness, the algorithm
imposes two constraints: i) the root of the tree must have the same

output type as the intended program output type; ii) every non-root
node must have the output type expected by its parent.

Due to these restrictions, the main components of the evolu-
tionary search must be adapted. At every step of the initialization
process, a node will be considered only if it matches the type ex-
pected by its parent node. STGP also builds type-possibility tables
to keep track of which data-types can be generated by a tree of each
depth, one for each initialization method (grow and full). Those
tables are dictionaries whose keys represent the depths and the
values the types representable by trees of that depth, for full or grow.
At depth 0, they contain only terminals. At depth 𝑖 , they contain
the output types of all the functions that take the types at 𝑖 − 1 as
an argument; and for grow, it also contains the types at 𝑖 − 1.

The mutation operator replaces a random subtree with a new
subtree generated with the same algorithm of the initialization
procedure, using the grow method. The crossover, as expected, also
takes into account the types. The crossover point of the first parent
is chosen entirely at random, while the point of the second par-
ent is limited to those whose type is the same as the first parent.
If no such candidate exists, it returns one of the parents. There
are also some additional changes to the original GP algorithm re-
garding the evolutionary process such as the use of steady-state
replacement [30] and exponential fitness normalization, which select
parents for reproduction based on their ranks. The probability of
picking the 𝑛th best individual is given by 𝑝 (𝑛) = 𝑃scalar × 𝑝 (𝑛 − 1),
where 0 < 𝑃scalar < 1 is a hyperparameter.

Montana [22] also argues in favor of handling runtime errors as
part of the evolutionary process, penalizing individuals that present
them. This is the opposite of the original GP approach [18], which
enforces that a value must always be returned.

STGP also introduces the Void type for functions that do not
return anything (i.e., procedures) and local variables which can be
statefully changed during computation.

In contrast to STGP, HOTGP introduces higher-order functions
and 𝜆-functions, drops the support for impure functions, and uses
a general-use grammar extracted from Haskell’s base library. The
main differences, detailed in the next subsections, are:
• HOTGP builds programs using a pure functional program
paradigm (a subset of the Haskell programming language)
while STGP is modeled after a combination of typed-LISP
and ADA allowing impure functions (see Section 3.1);
• Since HOTGP is designed to only support pure functions, all
side effects, including local variables (mutable state) and IO,
are disallowed by design (see Sec. 3.1);
• As we shifted to a different language, appropriate changes
to the grammar were performed (see Section 3.1);
• Instead of specifying a strict set of terminals and non-
terminals which are specific to each problem, we specify
generic sets based on the input and output types3 (see Sec-
tion 3.1);
• Moreover, we use a more generic set of non-terminals (all
available in the standard Haskell base library) instead of very
specific functions that often need to be implemented by the
user. This characteristic, combined with the use of a subset
of the Haskell language, allows for all the synthesized code

3This is a design choice that was not explored by STGP nor PolyGP.
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to be immediately consumed by a Haskell compiler without
modification (see Section 3.1);
• Finally, HOTGP has support for higher-order functions (func-
tions that accept 𝜆-functions as input) to handle advanced
constructs in the synthesized programs (see Section 3.2);

3.1 Functional Grammar
Even though both HOTGP and STGP share the use of strong types,
in both experimental evaluations of STGP [8, 22], the authors em-
ployed a limited grammar specifically crafted for each one of the
benchmark problems. For example, to solve the Multidimensional
Least Squares Regression problem, they used a minimal set of func-
tions with matrix and vector operators such as matrix_transpose,
matrix_inverse, mat_vec_mult, mat_mat_mult. Instead, this paper
uses a more general set of functions, common to all problems, all
of which were extracted from the standard Haskell base library.

We argue that, in a practical scenario, providing only the func-
tions needed for each problem is undesirable since it involves giving
too much information to the algorithm. This is, in our opinion, not
ideal since this piece of information might not be readily available
beforehand. A much more reasonable demand on the user is to ask
them for the acceptable result type for each problem. This kind of
information usually only requires as much intuition on the problem
as providing examples.

HOTGP primitive types currently includes 32-bit integers, single-
precision floating-point numbers, booleans, and UTF8 characters.
The following parametric types are also supported: pairs (2-tuples);
linked lists; and 𝜆-functions. Types can be combined to create more
complex types, e.g., a list of pairs of 𝜆-functions or, something
simpler such as a string (represented as a list of characters).

As a consequence of using a subset of the Haskell language,
HOTGP precludes the use of impure functions. The use of pure
functions is often associated to a reduction of the number of possible
bugs [27]. An essential property of pure functions is that, being
without side effects, they are easier to compose. Thus, whenever the
return type of one function is the same as the input type of another
function, they can be composed to form a new, more complex pure
function.

The full list of the functions allowed by HOTGP’s grammar is
shown in Table 14. Most functions are common operations for their
specific types. Since we employ a strongly-typed language, we also
require conversion functions. Additional functions of common use
include sum and product for lists of numbers (integers and float-
ing points), Range, which generates a list of numbers (equivalent
to Haskell’s [x,y..z]); Zip, that pairs the elements of two lists
given as input; Take, that returns the first 𝑛 elements of a list; and
Unlines, that transforms a list of strings into a single string, joining
them with a newline character. In particular, Unlines is needed for
the benchmarks requiring the program to print text to the standard
output (in our case, since we are working on a pure language, we
simply return the output string).

It is worth noting that we included three constructor functions
in the grammar: ToPair, Cons, and Singleton. This is a deliberate
4For the sake of space and legibility, in this text we represent pairs and lists using
ML-inspired conventions: (7, 42) is a pair containing 7 and 42, and [42, 7, 6] is a
list with elements 42, 7 and 6. Similarly, we write [a] in lieu of the type List a and
(a, b) in lieu of the type Pair a b.

Table 1: Functions supported by HOTGP.

Function Type Function names

Int→ Int→ Int AddInt, SubInt, MultInt,
DivInt, ModInt, MaxInt,
MinInt

Bool→ Bool Not
Bool→ Bool→ Bool And, Or
Bool→ a→ a→ a If
Float→ Float Sqrt
Float→ Float→ Float AddFloat, SubFloat,

MultFloat, DivFloat
a→ [a] Singleton
a→ [a]→ [a] Cons
[a]→ a Head
[a]→ [a] Reverse
[[a]]→ [a] Concat
a→ b→ (a,b) ToPair
(a,b)→ a Fst
(a,b)→ b Snd
Char→ Char→ Bool EqChar
Char→ Bool IsLetter, IsDigit
Int→ Float IntToFloat
Float→ Int Floor
Int→ Int→ Bool GtInt, LtInt, EqInt
[a]→ Int Len
Int→ [a]→ [a] Take
Int→ Int→ Int→ [Int] Range
[Int]→ Int SumInts, ProductInts
[Float]→ Float SumFloats, ProductFloats
[[Char]]→ [Char] Unlines
Int→ [Char] ShowInt
[a]→ [b]→ [(a,b)] Zip
(a→ b)→ [a]→ [b] Map
(a→ Bool)→ [a]→ [a] Filter

choice to simplify the grammar. Let us take 2-tuples (pairs) as an
example. Our grammar must be able to cope with constructions
such as (1, 2) or (1 + 2, 3 * 4) (pairs of literals and pairs of
expressions). However these same pairs can be easily represented
as applications of ToPair. The first example can be represented
as ToPair 1 2, which means applying the ToPair function to the
arguments 1 and 2. Following the same representation, the second
example becomes just ToPair (AddInt 1 2) (MultInt 3 4).

In other words, the construction of a pair is a simple function
application with no special treatment by our grammar. This has
the added benefit of being directly compatible with the mutation
and crossover operators already defined for regular nodes. Under
the same reasoning, the evolution process can generate linked
lists using a combination of the Cons and Singleton functions.
For example, the list of the literals 1, 2, 3 can be represented as
Cons 1 (Cons 2 (Singleton 3)); and the list of the expressions
1 + 2, 3 * 4, 5 - 6 can be represented as Cons (AddInt 1 2)
(Cons (MultInt 3 4) (Singleton (SubInt 5 6))). As was also
the case with pairs, this has the added benefit of enabling crossover
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and mutation to happen on just the head or just the tails of such
lists.

HOTGP also allows the user to select which types the program
synthesis algorithm can use, to constrain the search space fur-
ther. Whenever the user selects a subset of the available types, the
non-terminal set is inferred from Table 1 by selecting only those
functions that support the selected types. For example, if we select
only the types Int and Bool we would allow functions such as
AddInt, And, GtInt, but would not allow functions such as Head,
Floor, ShowInt.

For a future implementation of this algorithm, we plan to add
support to ad-hoc polymorphism, employing Haskell’s type-classes,
so we can simply have Add, Mult, Sub that determine their types
by the context instead of having specific symbols for each type.

Another important distinction from STGP to HOTGP is the ab-
sence of the Void type, and constructs for creating local variables.
Therefore, impure functions andmutable state are not representable
by HOTGP’s grammar. By construction, HOTGP does not allow
side effects and can only represent pure programs. On the other
hand, similarly to STGP, runtime errors (such as divisions by zero)
can still happen. When they do, the fitness function assigns an
infinitely bad fitness value to that solution.

3.2 Higher-order Functions and 𝜆-functions
The main novelty of HOTGP is the use of higher-order functions.
To that end, adding support to 𝜆-functions is essential. A 𝜆-function,
or anonymous function, or simply lambda, is a function definition
not bound to a name. As first-class values, they can be used as
arguments to higher-order functions.

The introduction of lambdas requires additional care when cre-
ating or modifying a program. When evaluated, HOTGP’s lambdas
only have access to their own inputs, and not to the main program’s.
In other words, they do not capture the environment in which they
were created or in which they are executed. This means that lambda
terminals can be essentially considered “sub-programs” inside our
program, and are generated as such. We use the same initialization
process from the main programs, using the function type required
by the current node and employing the grow method. However,
two additional constraints must be respected.

Constraint 1 requires all lambdas to use their argument in at least
one of its subtrees, which significantly reduces the possibility of the
creation of a lambda that just returns a constant value. We argue
that, for higher-order-function purposes, a lambda is required to use
its argument in order to produce interesting results; otherwise the
program could be simplified eliminating the use of this higher-order
function and returning a constant5.

Constraint 2 takes the form of a configurable maximum depth
of the lambdas, which is imposed to prevent our programs from
growing too large. However, as these lambdas can be nested, this
hyperparameter alone is not enough to properly constrain the size
of a program. For instance, take a lambda as simple as 𝜆x → map
otherLambda x. Depending on the allowed types, otherLambda =
𝜆x → map yetAnotherLambda xwould be a valid function and so
on, which could lead to lambdas of arbitrarily large size. Therefore,

5This is only true because HOTGP’s grammar precludes the generation of expressions
with side effects.

to prevent excessively large lambda nesting, we constrain nested
functions to always be 𝜆𝑥 → 𝑥 (the identity function).

To enforce these constraints, similarly to STGP, HOTGP employs
type-possibility tables to generate lambdas. For the main program
tree, as the argument and output types are known beforehand,
both STGP and HOTGP only need to create two tables: one for
the grow and one for the full method. However, HOTGP needs
to generate lambdas involving every possible type allowed by the
current program. Due to the recursive nature of the table, different
argument types can lead up to vastly different type-possibility
tables, so we need to keep one separate table for each possible
argument type. As a corollary of Constraint 1, those tables are also
guaranteed never to grow too large, as they never need to calculate
possibilities for depths larger than the maximum lambda depth.
These tables also differ from the main tables in the sense that they
only consider a node valid if at least one of its subtrees can have
an argument leaf as a descendent, enforcing Constraint 2.

In terms ofmutation and crossover, lambdas are treated as regular
terminals. They are always discarded and regenerated (using the
process described above) or moved in their entirety, being treated
essentially as a single unit.

3.3 Code Refinements
Awell-known difficulty faced by GP algorithms is the occurrence of
bloat [20], an unnecessary and uncontrollable growth of a program
without any benefit to the fitness function. This happens naturally
as some building blocks that apparently do not affect the program’s
output survive during successive applications of crossover and
mutation. Not only do these bloats make the generated program
longer and unreadable, but they can also affect the performance on
the test set. For example, consider the task of doubling a number
and the candidate solution x0 * (min x0 900). If the training set
does not contain input cases such that x0 > 900, then this will be a
correct solution from the algorithm’s point-of-view.

Helmuth et al. [10] empirically show that simpler programs often
have a higher generalization capability, in addition to being easier
to understand and reason about. Pantridge et al. [25], for example,
applies a refinement step at the end of the search, repeatedly try-
ing to remove random sections of the program and checking for
improvements.

To alleviate the effect of bloats, we also apply a refinement pro-
cedure on the best tree found, considering the training data. Re-
finement starts by applying simplification rules, which remove
redundancies from the code:
• Constant evaluations: if there are no argument terminals
involved in a certain tree-branch, it can always safely be
evaluated to a constant value, e.g. head [4*5, 1+2]→ 20;
• General law-application: the simplifier has access to a table
of hand-written simplification procedures, which are known
to be true (laws) (e.g. if True then a else b ≡ a, a > a
≡ False, length (singleton b) ≡ 1, etc).

After this step, HOTGP applies a Local Search procedure aiming
at the removal of parts of the tree that do not contribute to, or even
reduce, the correctness of the program considering the training set.
The local search replaces each node with each one of its children
and keeps the modified version if it improves or returns the same
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Algorithm 2: The local search procedure
1 function localSearch(tree):
2 if not hasNext(tree.node) then return tree
3 bestTree← tree
4 foreach 𝑐ℎ𝑖𝑙𝑑 ∈ tree.node.children do
5 if child.outputType = tree.node.outputType then
6 newTree← replace(tree.node, child)
7 if accuracy(newTree) ≥ accuracy(bestTree)
8 && nNodes(newTree) < nNodes(bestTree)
9 then
10 bestTree← newTree

11 if bestTree ≠ tree then
12 return localSearch(bestTree)

13 return localSearch(nextPreOrder(tree))

result. Algorithm 2 describes this process. It takes as input tree,
which has an internal representation of the current position being
checked, that can be accessed via 𝑡𝑟𝑒𝑒.𝑛𝑜𝑑𝑒 . The procedure starts
by calling localSearch with the tree we obtained from the simpli-
fication rules, and the current position set to the tree root. Next, the
algorithm scans the children of the current node that have the same
output type as their parent, and creates a new tree by replacing
the parent node (Line 6). The best tree is stored, and the process
continues recursively, advancing the current position to the next
node in pre-order traversal if the tree is not changed, otherwise it
will continue using the current position. The process stops when
there are no more positions to be checked (Line 2).

4 EXPERIMENTAL RESULTS

In this section, we compare HOTGP to state-of-the-art GP-based
program synthesis algorithms found in the literature. For this com-
parison, we employ the “General Program Synthesis Benchmark
Suite” [12], which contains a total of 29 benchmark problems for
inductive program synthesis6.

Following the recommended instructions provided by Helmuth
and Spector [12], we executed the algorithm using 100 different
seeds for each benchmark problem. We used the recommended
number of training and test instances and included the fixed edge
cases in the training data. We also used the same fitness functions
described in their paper.

For the evolutionary search, we used a steady-state replacement
of 2 individuals per step, with an initial population of 1 000, and
using a Parent-Scalar of 99.93%. The maximum tree depth was set
to 15 for the main program and 3 for 𝜆-functions. The crossover
and mutation rates were both empirically set to 50%. We allowed
a maximum of 300 000 evaluations with an early stop whenever
the algorithm finds a perfectly accurate solution according to the
training data.

We report the percentage of correct solutions found within the
100 executions taking into consideration the training and test data
6The full source code for HOTGP can be downloaded from:
https://github.com/mcf1110/hotgp.

sets, before and after the refinement process. To position such re-
sults with the current literature, we compare the obtained results
against those obtained by PushGP [12], Grammar-Guided Genetic
Programming (G3P) [3], and the extended grammar version of
G3P (here called G3P+) [4], and some recently proposed methods
such as Code Building Genetic Programming (CBGP) [25], and G3P
with Haskell and Python grammars (G3Phs and G3Ppy) [5]. We
have not compared with STGP and PolyGP since their original pa-
pers [22, 32] predate this benchmark suite. All the obtained results
are reported in Table 2. In this table, all the benchmarks that could
not be solved with our current function set are marked with “–” in
HOTGP columns. For the other approaches, the dash mark means
the authors did not test their algorithm for that specific benchmark.

4.1 Analysis of the results

Compared to the other algorithms, HOTGP has the highest success
rate for the test set in 9 of the benchmark problems, followed by
PushGP and CBGP, which got the highest rate for 7 and 5 of the
benchmarks, respectively. An important point to highlight is that
HOTGP obtained a 100% success rate in 4 problems, and a ≥ 75% in
7, a result only matched by CBGP. Moreover, HOTGP obtained at
least a 50% success rate in 10 out of the 29 problems, which is not
matched by any of the compared methods. This brings evidence
to our initial hypothesis that including type information in the
program synthesis can, indeed, reduce the search space to improve
the efficiency of the evolution process.

For example, in the compare-string-lengths problem, the input
arguments are of the type String, and the output is a Bool but
allowing intermediate Int type. Looking at Table 1, we can see that
there are a few ways to convert a string to a boolean, as we only
support functions in the character level. The best we can do is to
extract the first character with Head and then convert the character
into a boolean with IsLetter or IsDigit. We could, for instance,
generate a program that does that for both inputs and compares
the results with different boolean operators. We could also apply a
Map function before applying Head. Also, to convert a string into an
integer, the only solution is to use the Length function and the few
combinations on how to convert two integers into a boolean. One
example of obtained solution is ((length x1) > (length x0))
&& ((length x1) < (length x2)).

On the other hand, for the last-index-of-zero problem, a possi-
ble correct solution using our grammar is fst (head (reverse
(filter (𝜆y → 0 == (snd y)) (zip (range 0 (length
x0) 1) x0)))). So the synthesizer must first enumerate the input,
apply a filter to keep only the elements that contain 0, reverse the
list, take the first element, and return its index. One of the best
obtained solutions was ((length x0) + (if ((head (reverse
x0)) == 0) then 1 else 0)) - 2with 32% of accuracy. It simply
checks if the last element is 0, if it is, it returns the length of the
list minus one, otherwise it returns the length minus two. This is a
possible general case for a recursive solution where it checks the

https://github.com/mcf1110/hotgp
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Table 2: Successful solutions found for each problem (% of executions) considering the training (Tr) and test (Te) data sets.
HOTGP * lists the results obtainedwithHOTGP after the simplification procedure. The best values for the test data sets of each
problem are highlighted. The checksum, collatz-numbers, string-differences, wallis-pi and word-stats problems are ommitted
as no algorithm was able to find results for those problems.

HOTGP HOTGP * PushGP G3P G3P+ CBGP G3Phs G3Ppy
Benchmark Tr Te Tr Te Te Te Tr Te Te Tr Te Tr Te
compare-string-lengths 100 100 100 100 7 2 96 0 22 94 5 12 0
count-odds 46 46 50 50 8 12 4 3 0 – – – –
digits – – – – 7 0 0 0 0 – – – –
double-letters 0 0 0 0 6 0 0 0 – – – – –
even-squares 0 0 0 0 2 1 0 0 – – – – –
for-loop-index 73 39 73 59 1 8 9 6 0 – – – –
grade 37 32 39 37 4 31 63 31 – – – – –
last-index-of-zero 0 0 0 0 21 22 97 44 10 0 0 2 2
median 82 73 100 99 45 79 99 59 98 100 96 39 21
mirror-image 1 1 1 1 78 0 89 25 100 – – – –
negative-to-zero 100 100 100 100 45 63 24 13 99 0 0 68 66
number-io 100 100 100 100 98 94 95 83 100 100 99 100 100
pig-latin – – – – 0 0 4 3 – – – – –
replace-space-with-newline 38 38 38 38 51 0 29 16 0 – – – –
scrabble-score – – – – 2 2 1 1 – – – – –
small-or-large 28 59 28 59 5 7 39 9 0 30 4 0 0
smallest 98 95 100 100 81 94 100 73 100 100 100 99 89
string-lengths-backwards 87 87 89 89 66 68 20 18 – 0 0 35 34
sum-of-squares 1 1 1 1 6 3 5 5 – – – – –
super-anagrams – – – – 0 21 43 0 – 30 5 51 38
syllables 0 0 0 0 18 0 53 39 – – – – –
vector-average 78 79 80 80 16 5 0 0 88 67 4 0 0
vectors-summed 34 34 37 37 1 91 28 21 100 100 68 0 0
x-word-lines – – – – 8 0 0 0 – – – – –
# of Best Results 4 9 7 2 3 5 1 2
= 100% 3 4 0 0 0 4 1 1
≥ 75% 6 7 3 4 1 7 3 2
≥ 50% 8 10 5 6 3 7 4 3

last element and, if it is not zero, recurses with the remainder of
the list.

As described in Section 3.3, the code refinement step always
produces an equal or better solution. These improvements are more
noticeable on the median and for-loop-index problems. This is due
to the fact that code refinement is sometimes capable of discarding
misused numerical constants. For example, one solution to the
median problem with 99% of accuracy on the training set was max
-96 (min (max x1 x2) (max (min x1 x2) x0)) that only works
if the median of the three arguments is greater than −96, otherwise
it will always return a constant value. After the code refinements,
HOTGP finds the final and correct solution: min (max (min x2
x1) x0) (max x1 x2).

Another benefit of code refinement is reducing the program
size, which can improve the readability of the generated program.
Figure 1 shows the rate of decrease in the program size after re-
finements, with a geometric mean of 52%. The refinement process
effectiveness varies depending on the nature of the solutions of the

problem. For most problems, the end of the upper quartile is well
within the > 75% reduction mark, meaning it was not unusual for
some solutions to get largely simplified. However, more evident re-
sults are yielded in problems such as counts-odds, even-squares, and
sum-of-squares, which dealt with fewer types (and thus a reduced
grammar) and usually reached the maximum evaluation count,
therefore were more susceptible to bloat. Notably, number-io and
negative-to-zero had almost no reduction, showing the algorithm
could directly find a perfect and near minimal solution.

To provide further insights into how minimal the correct solu-
tions actually are, and how susceptible to bloat each problem is,
Table 3 takes the smallest correct solution that HOTGP could find
for each problem, and compares them to the handwritten solutions
crafted by the authors. Even before the refinement procedure, most
of the solutions have the same node count as a the handwritten ones,
and nearly all of them are reasonably close. The sum-of-squares was
initially much larger than the manual solution, but after refinement
the size reduction is notable. The only correct solution we found for
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Figure 1: Percentage of reduction in the number of nodes caused by the refinement process.

mirror-image also has the biggest reduction of the batch, showing
a 87% reduction overall.

Table 3: Node count of the hand-crafted solutions (HC)
and the smallest correct solutions found by HOTGP and
HOTGP*. The node count relative to HC is shown in paren-
thesis.

Benchmark HC HOTGP HOTGP *

compare-string-lengths 11 11 (1.0x) 11 (1.0x)
count-odds 4 4 (1.0x) 4 (1.0x)
for-loop-index 7 25 (3.6x) 9 (1.3x)
grade 27 45 (1.7x) 29 (1.1x)
median 9 9 (1.0x) 9 (1.0x)
mirror-image 10 102 (10.2x) 13 (1.3x)
negative-to-zero 3 3 (1.0x) 3 (1.0x)
number-io 4 4 (1.0x) 4 (1.0x)
replace-space-with-newline 8 8 (1.0x) 8 (1.0x)
small-or-large 11 12 (1.1x) 12 (1.1x)
smallest 7 7 (1.0x) 7 (1.0x)
string-lengths-backwards 4 5 (1.2x) 5 (1.2x)
sum-of-squares 7 163 (23.3x) 30 (4.3x)
vector-average 6 6 (1.0x) 6 (1.0x)
vectors-summed 5 5 (1.0x) 5 (1.0x)

5 CONCLUSION
This paper presents HOTGP, a GP algorithm that supports higher-
order functions, 𝜆-functions, polymorphic types, and the use of type
information to constrain the search space. It also sports a grammar
based on the Haskell language using only pure functions in the
nonterminals set. Our main arguments in favor of this approach
are: i) limiting our programs to pure functions avoids undesirable
behaviors; ii) using type-level information and parametric polymor-
phism reduces the search space directing the GP algorithm towards
the correct solution; iii) higher-order functions eliminate the need
of several imperative-style constructs (e.g., for loops).

HOTGP differs from most GP implementations as it actively
uses the information of input and output types to constrain the
candidate terminals and nonterminals while creating new solu-
tions or modifying existing ones, and to select feasible points of
recombination.

We have evaluated our approach with 29 benchmark problems
and compared the results with 6 state-of-the-art algorithms from the
literature. Overall, we got favorable results, consistently returning
a correct programmost of the time for 10 problems, a mark that was
not met by any of the tested methods. Moreover, HOTGP achieved
the highest success rates more often than the state of art.

We also applied code refinements to the best solution found by
the algorithm to reduce the occurrence of bloat code. This procedure
leads to further improvements in the results while at the same time
improving the readability of the final program.

Even though we achieved competitive results, we observed that
there are still possible improvements. First, our nonterminals set
is much smaller than some of the state-of-the-art algorithms (e.g.,
PushGP). Future work includes carefully examining the impact of
adding new functions to the grammar. This inclusion might further
simplify the PS or allow us find solutions that are not currently be-
ing found. On the other hand, including new functions also expands
the search space and can hinder some of our current results.

Our approach could also benefit from a more modular perspec-
tive for PS. In a modular approach, the problem is first divided into
simpler tasks which are solved independently and then combined
to create the complete synthesized program. This approach will
require support to different forms of functional composition and
the modification of the benchmark to create training data for the
different subtasks. Such a synthesizer could also be coupled with
Wingman7 (the current implementation of advanced Haskell code
generation), which can either synthesize the whole program or
guide the process using only the type information, and code holes.

Further research is also warranted concerning more advanced
type-level information such as Generalized Algebraic Data Types
(GADTs), Type Families, Refinement Types and Dependent Types.
More type information could further constrain the search space
and, in some situations, provide additional hints to the synthesis
of the correct program. Clearly, this must be accompanied by a
modification of the current benchmarks and the inclusion of new
benchmarks that provides this high-level information about the
desired program.
7https://haskellwingman.dev/

https://haskellwingman.dev/
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