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ABSTRACT

Nondeterministic choice is a useful program construct that pro-

vides a way to describe the behaviour of a program without speci-

fying the details of possible implementations. It supports the step-

wise refinement of programs, a method that has proven useful in

software development. Nondeterminism has also been introduced

in quantum programming, and termination of nondeterministic

quantum programs has been extensively analysed. In this paper,

we go beyond termination analysis to investigate the verification

of nondeterministic quantum programswhere properties are given

by sets of hermitian operators on the associatedHilbert space. Hoare-

type logic systems for partial and total correctness are proposed

which turn out to be both sound and relatively complete with re-

spect to their corresponding semantic correctness. To show the

utility of these proof systems, we analyse some quantumalgorithms

such as quantum error correction scheme, Deutsch algorithm, and

a nondeterministic quantum walk. Finally, a proof assistant proto-

type is implemented to aid in the automated reasoning of nonde-

terministic quantum programs.
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1 INTRODUCTION

The introduction of nondeterminism into a programming language

allows one to describe both a specification and its possible imple-

mentations within the same language. It naturally supports the

technique of stepwise refinement of programs, which has proven
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useful in the development of computer software [1, 17, 19]. From

the verification perspective, it provides a way to reason about the

correctness of an abstract specification before it is fully implemented [5],

making it possible to detect errors in the earliest stages of software

development.

Programs with both nondeterministic and probabilistic choices

have been investigated in [8, 14, 15, 18]. Interestingly, as pointed

out in [8], there are two natural models to describe the way nonde-

terminism interacts with probabilistic choice. This difference can

be best illustrated by regarding the execution of a nondeterministic

and probabilistic program as a game against a malicious adversary.

In the relational model, the adversary makes his nondeterministic

choice during runtime execution, taking advantage of all the prob-

abilistic choices already made up to that point. By contrast, the

adversary in the lifted model must make all the nondeterministic

choices in compile-time, before any real execution of the program.

It was shown in [8] that programs in the relational model enjoy

many nice algebraic properties which are useful in static analysis

and compiler design [9].

Nondeterminism was also introduced into quantum program-

mingmany years ago. Zuliani [30] extended the quantumGuarded-

Command Language qGCL [22] with a nondeterministic choice

construct, for the purpose of modelling and reasoning about coun-

terfactual computations [16] and quantum mixed-state systems.

Termination analysis of nondeterministic quantum programs was

first studied in [12], where programs are described in a language-

independent way: a nondeterministic quantum program simply

consists of a set of deterministic quantum Markov chains (math-

ematically expressed as super-operators) with the same Hilbert

space and a two-outcome measurement to determine whether the

program has terminated. Later on, termination analysis was ex-

tended to a quantum programming language which involves both

demonic and angelic nondeterminism, using the technique of lin-

ear ranking super-martingale [11].

Despite the termination analysis in [11, 12], the verification of

nondeterministic quantum programs is rarely addressed in the lit-

erature. In this paper, we consider an extended while-language for

quantum programs where a construct for binary (demonic) nonde-

terministic choice is included. The main contribution includes:

• Adenotational semantics for nondeterministic quantumpro-

grams, which resembles the lifted model in the probabilis-

tic setting. The rationale behind this design decision is an

observation that the relational model cannot be satisfacto-

rily defined in the quantum setting, partly due to the non-

uniqueness of ensembles of pure states associated with a

given density operator.

• The partial and total correctness of nondeterministic quan-

tum programs based on their denotational semantics. Com-

pared with [11, 12], our notions of correctness are much
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broader, capable of describing a wider range of properties

beyond termination of quantum programs.

• Hoare-type logic systems which are both sound and rela-

tively complete with respect to partial/total correctness. Il-

lustrating examples are explored and a prototyping tool is

implemented which show the utility of these logic systems

in proving the correctness of some quantumalgorithms such

as quantumerror correction scheme, Deutsch algorithm, and

a nondeterministic quantum walk.

The remaining part of the paper is organised as follows. In Sec. 2

we review some basic notions from quantum computing that will

be used in later discussion. The syntax and denotational semantics

of nondeterministic quantum programs considered in this paper

are given in Sec. 3. Sec. 4 is the main part of the paper where we

elaborate the notions of assertions for quantum states, and the par-

tial and total correctness of nondeterministic quantum programs.

Proof systems for these two correctness notions are proposed and

shown to be both sound and relatively complete. Illustrative exam-

ples are explored in Sec. 5 to show the effectiveness of our proof

systems. Sec. 6 is devoted to a proof assistant prototype imple-

menting the verification techniques developed in this paper. Fi-

nally, Sec. 7 concludes the paper and points out some topics for

future studies.

2 BACKGROUND ON QUANTUM
COMPUTING

This section is devoted to fixing some notations from linear alge-

bra and quantum mechanics that will be used in this paper. For

a thorough introduction of relevant backgrounds, we refer to [20,

Chapter 2].

LetH be a finite-dimensional Hilbert space. Following the tradi-

tion of quantum computing, vectors inH are denoted in the Dirac

form |k 〉. The inner and outer products of two vectors |k 〉 and |q〉
are written as 〈k |q〉 and |k 〉〈q | respectively. LetL(H) be the set of
linear operators onH . Denote by tr(�) = ∑

8 ∈� 〈k8 |�|k8〉 the trace
of � ∈ L(H) where {|k8〉 : 8 ∈ � } is an (arbitrary) orthonormal

basis ofH . The adjoint of�, denoted�†, is the unique linear oper-
ator in L(H) such that 〈k |�|q〉 = 〈q |�† |k 〉∗ for all |k 〉, |q〉 ∈ H .

Here, for a complex number I, I∗ denotes its conjugate. An opera-

tor � ∈ L(H) is said to be (1) hermitian if �†
= �; (2) unitary if

�†� = �H , the identity operator onH ; (3) positive if for all |k 〉 ∈ H ,

〈k |�|k 〉 ≥ 0. Every hermitian operator � has a spectral decompo-

sition form � =
∑
8 ∈� _8 |k8〉〈k8 | where {|k8〉 : 8 ∈ � } constitute an

orthonormal basis ofH . The Löwner (partial) order ⊑ on L(H) is
defined by letting � ⊑ � iff � −� is positive.

Let H1 and H2 be two finite dimensional Hilbert spaces, and

H1⊗H2 their tensor product. Let�8 ∈ L(H8 ). The tensor product
of �1 and �2, denoted �1 ⊗�2 is a linear operator in L(H1 ⊗H2)
such that (�1⊗�2)( |k1〉⊗ |k2〉) = (�1 |k1〉)⊗ (�2 |k2〉) for all |k8〉 ∈
H8 . The definition extends linearly to L(H1 ⊗ H2). To simplify

notations, we often write |k1〉|k2〉 for |k1〉 ⊗ |k2〉.
A linear operator E from L(H1) to L(H2) is called a super-

operator. It is said to be (1) positive if it maps positive operators on

H1 to positive operators on H2; (2) completely positive if IH ⊗ E
is positive for all finite dimensional Hilbert space H , where IH
is the identity super-operator on L(H); (3) trace-preserving (resp.

trace-nonincreasing) if tr(E(�)) = tr(�) (resp. tr(E(�)) ≤ tr(�)
for any positive operator � ∈ L(H1).

FromKraus representation theorem [10], a super-operatorE from

L(H1) to L(H2) is completely positive iff there are linear opera-

tors {�8 : 8 ∈ � }, called Kraus operators of E, from H1 to H2 such

that E(�) =
∑
8 ∈� �8��

†
8 for all � ∈ L(H1). Furthermore, E is

trace-preserving (resp. trace-nonincreasing) iff
∑
8 ∈� �

†
8 �8 = �H1

(resp.
∑
8 ∈� �

†
8 �8 ⊑ �H1

). The adjoint of E, denoted E† , is a com-

pletely positive super-operator from L(H2) back to L(H1) with
Kraus operators being {�†8 : 8 ∈ � }. It is easy to check that for any

� ∈ L(H1) and � ∈ L(H2), tr(E(�) · �) = tr(� · E† (�)).
In the following, for simplicity, all super-operators are assumed

to be completely positive and trace-nonincreasing unless other-

wise stated. Given the tensor product space H1 ⊗ H2, the partial

trace with respect to H2, denoted trH2
, is a super-operator from

L(H1 ⊗ H2) to L(H1) such that for any |k8〉, |q8 〉 ∈ H8 , 8 = 1, 2,

trH2
( |k1〉〈q1 | ⊗ |k2〉〈q2 |) = 〈q2 |k2〉|k1〉〈q1 |.

Again, the definition extends linearly to L(H1 ⊗ H2).
According to von Neumann’s formalism of quantum mechanics

[27], any quantum system with finite degrees of freedom is asso-

ciated with a finite-dimensional Hilbert space H called its state

space. When the dimension of H is 2, such a system is called a

qubit, the analogy of bit in classical computing. A pure state of the

system is described by a normalised vector inH . When the system

is in state |k8〉 with probability ?8 , 8 ∈ � , it is said to be in a mixed

state, represented by the density operator
∑
8 ∈� ?8 |k8〉〈k8 | onH . Ob-

viously, a density operator is positive and has trace 1. In this paper,

we follow Selinger’s convention [23] to regard partial density oper-

ators, i.e. positive operators with traces not greater than 1 as (un-

normalised) quantum states. Intuitively, a partial density operator

d denotes a legitimate quantum state d/tr(d) which is obtained

with probability tr(d). Denote by D(H) the set of partial density
operators onH . The state space of a composite system (e.g., a quan-

tum system consisting of multiple qubits) is the tensor product of

the state spaces of its components. For any d in D(H1 ⊗ H2), the
partial traces trH1

(d) and trH2
(d) are the reduced quantum states

of d onH2 and H1, respectively.

The evolution of a closed quantum system is described by a uni-

tary operator on its state space: if the states of the system at C1 and

C2 are d1 and d2, respectively, then d2 = * d1*
† for some unitary

* . Typical unitary operators used throughout this paper include

Pauli-- , . , and / , Hadamard � , and controlled-NOT (CNOT) op-

erator�- , represented in thematrix form (with respect to the com-

putational basis) respectively as follows:

- ,

[
0 1

1 0

]
, . ,

[
0 −8
8 0

]
, / ,

[
1 0

0 −1

]
,

and

� ,
1
√
2

[
1 1

1 −1

]
, �- ,



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


.

A (projective) quantum measurement M is described by a collec-

tion {%8 : 8 ∈ $} of projectors (hermitian operators with eigenval-

ues being either 0 or 1) in the state spaceH , where $ is the set of
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measurement outcomes. It is required that the measurement oper-

ators %8 ’s satisfy the completeness equation
∑
8 ∈$ %8 = �H . If the

system was in state d before measurement, then the probability

of observing outcome 8 is given by ?8 = tr(%8d), and the state of

the post-measurement system becomes d8 = %8d%8/?8 whenever
?8 > 0. Sometimes we use a hermitian operator" in L(H) called
observable to represent a projective measurement. To be specific,

let

" =

∑
<∈spec (")

<%<

where spec(") is the set of eigenvalues of" , and %< the projector

onto the eigenspace associated with <. Then the projective mea-

surement determined by " is {%< : < ∈ spec(")}. Note that by
the linearity of the trace function, the expected value of outcomes

when" is measured on state d is calculated as∑
<∈spec (")

< · tr(%<d) = tr("d).

Finally, the dynamics that can occur in a (not necessarily closed)

physical system are described by a trace-preserving super-operator.

Typical examples include the unitary transformationE* (d) , * d* †

and the state transformation caused by a measurement, when all

the post-measurement states are taken into account. More specifi-

cally, the evolution

EM (d) ,
∑
8 ∈$

?8d8 =
∑
8 ∈$

%8d%8

is a super-operator.

Notation conventions. To simplify notations, we assume the

following conventions throughout the paper.

• For a pure state |k 〉 in a finite dimensional Hilbert space

H , we denote by [|k 〉] its corresponding (rank-1) density

operator; that is, [|k 〉] , |k 〉〈k |.
• Weuse subscripts to indicate the quantum systems onwhich

a state, an operator, or a super-operator is acting. For exam-

ple, |k 〉@ or [|k 〉@] denotes a pure state |k 〉 of qubit @, and
�-@1,@2 denotes the CNOT operator with @1 being its con-

trol qubit and @2 the target qubit. Here�- |G〉|~〉 = |G〉|G⊕~〉
for any G,~ ∈ {0, 1} and ⊕ denotes exclusive-or. Further-

more, for a3-dimensional Hilbert space, denote by {|8〉 : 0 ≤
8 ≤ 3 − 1} its standard (or computational) basis.

• Any super-operator is assumed to be identical to its cylinder

extensions (the tensor product of it with the identity super-

operator on the remaining subsystems) on larger Hilbert

spaces. In other words, E from L(H1) to L(H2) can be re-

garded as fromL(H⊗H1) toL(H⊗H2) for anyH by iden-

tifying E and IH ⊗ E. In particular, any value ? ∈ [0, 1] (a
super-operator on the 0-dimensional space) can be regarded

as ? · I+ on D(H+ ) for any finite set + of qubits.

• Operations on individual elements are assumed to be ex-

tended to sets in an element-wise way. For example, let E

and F be two sets of super-operators. Then

E ◦ E + F ◦ F , {E′ ◦ E + F ′ ◦ F : E′ ∈ E,F ′ ∈ F}

where ◦ denotes the composition of super-operators; that is,

E ◦ F (d) = E(F (d)) for all d .

@ : |k 〉

noise

-

@1 : |0〉

@2 : |0〉

Figure 1: Quantum error correction scheme which corrects

a bit-flip error on any of the three qubits.

3 NONDETERMINISTIC QUANTUM
PROGRAMS

We extend the purely quantum while-language defined in [6, 28]

to describe quantum programs with nondeterministic choices. Let

V, ranged over by @, A, · · · , be a finite set of (qubit-type) quantum
variables. For any subset + of V, let

H+ ,

⊗
@∈+

H@ ,

whereH@ ≃ H2 is the 2-dimensional Hilbert space associated with

@. As we use subscripts to distinguish Hilbert spaces associated

with different quantum variables, their order in the tensor product

is irrelevant.

3.1 Syntax

A nondeterministic quantum program is defined by the following

rules:

( ::= skip | abort | @̄ := 0 | @̄ ∗= * | (0; (1 | (0 � (1 |
if M[@̄] then (1 else (0 end | whileM[@̄] do ( end

where (, (0 and (1 are nondeterministic quantum programs, @̄ ,

@1, . . . , @= an (ordered) tuple of distinct qubit-type variables, and

* a unitary operator and M = {%0, %1} a two-outcome projective

measurement on H@̄ respectively. Sometimes we also use @̄ to de-

note the (unordered) set {@1, @2, . . . , @=}. Let qv(() be the set of

quantum variables in ( .

The program constructs are standard, and their meaning will

be clear when the denotational semantics is given later. Intuitively,

skip is a no-op statement, abort halts the computation with no

proper state reached, @̄ := 0 initialises each qubit in system @̄ into

|0〉, @̄ ∗= * applies the unitary operator * on system @̄, (0; (1 is

the sequential composition of (0 and (1, and (0 � (1 chooses (0
or (1 to execute non-deterministically. The conditional statement

if M[@̄] then (1 else (0 end and thewhile statementwhileM[@̄] do ( end
behave similarly to their classical counterparts, except that they

use the outcome of measuring M on @̄ to determine subsequent

operations. These quantum measurements often change the state

of the system they are applied on. This is in contrast with classical

programs, where such side-effects do not exist.

Example 3.1 (�antum Error Correction Scheme as a Non-

deterministic Program). Error correction codes are widely used to

protect quantum information from noise in quantum communication
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channels or during quantum computation. The simplest error correc-

tion code, called three-qubit bit-flip code, encodes each qubit state

U0 |0〉 + U1 |1〉 into a three-qubit state U0 |000〉 + U1 |111〉 (see the left
part of Fig. 1 for a circuit implementation of the encoding process). All

the three qubits then pass through a noisy quantum channel, which

flips the qubit (that is, applies a Pauli-- operator on it which turns

|0〉 into |1〉 and |1〉 into |0〉 simultaneously) with some small proba-

bility. For simplicity, we assume that at most one of the three qubits

is flipped, but we do not know which one it is. Interestingly, by ap-

plying a properly designed error correction procedure (shown in the

right part of Fig. 1), the error can be detected and corrected perfectly.

If we model the unknown noise with a nondeterministic choice, the

quantum error correction scheme, including the processes of encoding,

error introduction, and decoding, can bewritten as a nondeterministic

quantum program as follows:

ErrCorr ,

@1, @2 := 0;

@, @1 ∗= CX; @, @2 ∗= CX;

skip � @ ∗= - � @1 ∗= - � @2 ∗= - ;

@, @2 ∗= CX; @, @1 ∗= CX;

if M[@2] then
if M[@1] then
@ ∗= -

end

end

Here �- is the CNOT gate, M is the measurement according to the

computational basis {|0〉, |1〉}, and the command if M[A ] then( end
denotes the abbreviation for if M[A ] then ( else skip end. The non-

deterministic statement models four different possibilities of error oc-

curring: no error, bit-flip error on the first, second, and third qubit,

respectively. Similar to the sequential composition, we assume (and

will justify after the formal semantics is given) that the nondetermin-

istic choice is both left- and right-associative.

3.2 Denotational Semantics

This subsection is devoted to a denotational semantics for nonde-

terministic quantum programs which is obtained by lifting the se-

mantics of deterministic programs presented in [6, 28].

Given a finite dimensional Hilbert spaceH , let S(H) be the set
of super-operators onH . Note that S(H) is a complete partial or-

der (CPO) with respect to the order � defined as follows: E � F
iff there exists a super-operator G such that F = E + G. The fol-
lowing lemma shows that this partial order coincides with the one

defined by lifting pointwise the Löwner order over density opera-

tors on extended Hilbert spaces.

Lemma 3.1. For any E, F ∈ S(H), E � F iff for any auxiliary

Hilbert space H ′ and any d ∈ D(H ⊗ H ′),

E(d) ⊑ F (d).

Proof. The necessity part is easy. For the sufficiency part, note

that the mapping G , F − E is linear, trace non-increasing, and

completely positive. Thus it is also a super-operator. �

[[skip]] = {1}
[[abort]] = {0}

[[@̄ := 0]] =
{
Set0@̄

}
[[@̄ ∗= * ]] =

{
U@̄

}
[[(0; (1]] = [[(1]] ◦ [[(0]]

[[(0 � (1]] = [[(0]] ∪ [[(1]]

[[if M[@̄] then (1 else (0 end]] = [[(0]] ◦ P0
@̄ + [[(1]] ◦ P1

@̄

[[whileM[@̄] do ( end]] ={ ∞∑
8=0

P0
@̄ ◦ [8 ◦ P1

@̄ ◦ . . . [1 ◦ P1
@̄ : [ ∈ [[(]]

N

}

Figure 2: Denotational semantics for nondeterministicquan-

tum programs.

Let Prog be the set of all nondeterministic quantum programs.

For any ( ∈ Prog, the denotational semantics [[(]] of ( is a set of

super-operators in S(Hqv (() ) defined inductively in Fig. 2, where

M = {%0, %1}, P8
@̄ , 8 = 0, 1, is a super-operator such that P8

@̄ (d) =
%8@̄d%

8
@̄ , and Set

0
@̄ andU@̄ with |@̄ | = = are super-operators such that

Set0@̄ (d) =
∑2=−1
8=0 |0〉@̄ 〈8 |d |8〉@̄ 〈0| and U@̄ (d) = *@̄d*

†
@̄ for all d ∈

D(HV ). Recall that the semantics of a deterministic quantum pro-

gram is a single super-operator. We borrow the idea widely used

in classical programming theory to employ sets of super-operators

to represent nondeterminism in the semantics of nondeterministic

quantum programs.

Amore elegant way to define the denotational semantics of non-

deterministic quantum programs is to consider the power domain

whose elements are subsets of super-operators with certain clo-

sure properties. The semantics of a while loop, say, is then simply

the least fixed point of some Scott-continuous function over this

power domain. However, since the main goal of this paper is to

develop verification techniques for nondeterministic quantum pro-

grams, we decided to adopt the current definition, which is more

intuitive and accessible for ordinary readers without a background

in domain theory.

Note that with our notational convention, [[(]] can also be re-

garded as a subset of S(H+ ) for any + ⊇ qv((). For example, the

number 1 in [[skip]] can be regarded as the identity super-operator

IH+
for any + ⊆ V . Similarly, the number 0 in [[abort]] can rep-

resent the zero super-operator on any qubit system. Furthermore,

note that 0(d) is the zero density operator for any input d . This

accurately captures the intuition that abort applied to any input

cannot produce any valid quantum state.

As the four basic commands skip, abort, @̄ := 0, @̄ ∗= * are

all deterministic, their semantic sets contain only a single super-

operator representing the corresponding quantum operation. Re-

call also that we use the subscript @̄ to denote the qubit system on

which the quantum operation is applied. The semantics of (0; (1
is defined as the (element-wise) composition of [[(1]] and [[(0]].

This follows the lifted model proposed in [8] for nondeterministic
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probabilistic programs. The reason why we adopt this lifted model

(rather than the relational one) will be elaborated in Sec. 3.3.

For [[if M[@̄] then (1 else (0 end]], we have to combine the se-

mantics of (0 and (1 using the corresponding measurement super-

operators. Specifically, for any input state d , if the measurement

returns 0, then the post-measurement state becomes P0
@̄ (d), and

one of the super-operators in [[(0]] will be applied on this state.

The case where the measurement result is 1 is similar. Finally, the

(partial) density operators obtained from the two branches must

be added together to form the output state of the entire statement,

since the two branches are chosen probabilistically (due to themea-

surement), rather than non-deterministically.

Finally, in [[whileM[@̄] do ( end]], since the loop body ( may

contain nondeterministic choices, we use a scheduler [ to spec-

ify which super-operator in [[(]] is taken in each iteration of the

while loop. To simplify the notation, we write[8 for [ (8), the super-
operator taken in the 8-th iteration. For each = ≥ 0, the super-

operator

F [
= ,

=∑
8=0

P0
@̄ ◦ [8 ◦ P1

@̄ ◦ . . . [1 ◦ P1
@̄ (1)

is obtained from the first = executions of the loop body ( under

the scheduler [ . It is evident that the sequence F [
= , = ≥ 0, is non-

decreasing under �. Thus the least upper bound ∨
=≥0 F

[
= is well-

defined, and it is the semantics of whileM[@̄] do ( end when [ is

used to resolve the nondeterminism in ( .

Example 3.2. We revisit the quantum error correction scheme pre-

sented in Example 3.1. First, it is easy to see that

[[ErrCorr]] =
{(
X@ ◦ P11

@1,@2 + P≠11
@1,@2

)
◦ CX@,@1 ◦ CX@,@2 ◦ U

◦ CX@,@2 ◦ CX@,@1 ◦ Set0@1,@2 : U ∈
{
I,X@,X@1 ,X@2

}}
where X and CX are the super-operators corresponding to the uni-

tary operators - and �- , respectively. Furthermore,

P11 (d) = |11〉〈11|d |11〉〈11|

and

P≠11(d) =
∑

(8, 9)≠(1,1)
|8 9〉〈8 9 |d |8 9〉〈8 9 |

for all d ∈ D(H2 ⊗ H2). That is, P11
@1,@2 denotes the super-operator

corresponding to the case where themeasurementsM[@2] andM[@1]
both obtain 1, while P≠11

@1,@2 represents the other cases.

From any input state |k 〉@ |k ′〉@1,@2 where |k 〉 = U0 |0〉 +U1 |1〉 and
|k ′〉 ∈ H2 ⊗H2, although there are four different super-operators in

the denotational semantics [[ErrCorr]], when applied on |k 〉@ |k ′〉@1,@2 ,
the final quantum states |k 〉@ |8 9〉@1,@2 , 8, 9 = 0, 1, have the same re-

duced state |k 〉 on qubit @, which is exactly the input state on @. From
this observation, we conclude that the error correction scheme has suc-

cessfully corrected the potential bit-flip error occurred in any of the

three qubits.

The next lemma gives a recursive description of the denota-

tional semantics of while loops. For any scheduler [ ∈ [[(]]
N
, we

define [→ ∈ [[(]]
N
to be the suffix of [ starting from [2; that is,

[→8 = [8+1 for all 8 ≥ 1.

Lemma 3.2. Let while , while M[@̄] do ( end. Then for any

[ ∈ [[(]]
N
and = ≥ 0,

F [
=+1 = P0

@̄ + F [→
= ◦ [1 ◦ P1

@̄ . (2)

where F [
= is defined as in Eq. (1). Consequently,

[[while]] = P0
@̄ + [[while]] ◦ [[(]] ◦ P1

@̄ . (3)

Proof. Eq. (2) can be easily proved by induction on =, and then

the ‘⊆’ part of Eq. (3) follows. For the ‘⊇’ part, let G ∈ P0
@̄ +

[[while]] ◦ [[(]] ◦ P1
@̄ . Then there exists [ ∈ [[(]]

N
and E ∈ [[(]]

such that G = P0
@̄ +

∨
=≥0 F

[
= ◦E ◦P1

@̄ . Let [
′ ∈ [[(]]

N
with [ ′1 = E

and [ ′8+1 = [8 for all 8 ≥ 1. Then it is easy to prove by induction

that for any = ≥ 1,

F [′
= = P0

@̄ + F [
= ◦ E ◦ P1

@̄ .

Thus G =
∨

=≥0 F
[′
= is in [[while]] as well. �

3.3 Different Approaches for Semantics of
Quantum Programs

This subsection is devoted to an explanation of the design decisions

we made in defining the semantics of nondeterministic quantum

programs.

3.3.1 Pure-State v.s. Mixed-State Semantics. Note that there are

two different approaches in defining semantics of deterministic

quantum programs in the literature. One is based on pure states [2,

21, 22, 24, 26], in which the meaning of a program is defined assum-

ing that it is applied on pure states. The semantics is then extended

to mixed states using, say, spectral decomposition. To be specific,

if d =
∑
8 ∈� ?8 |k8〉〈k8 | and a program ( maps |k8〉 to |k ′

8 〉, then the

final (mixed) state of executing ( on d is
∑
8 ∈� ?8 |k ′

8 〉〈k
′
8 |. In con-

trast, the other approach is based onmixed states [4, 6, 23, 28]. That

is, the semantics of a program is defined directly on mixed states

without extension.

The choice of pure-state v.s. mixed-state semantics does not

make any difference when the programs considered are determin-

istic. The reason is that the semantics of a deterministic quantum

program is a super-operator which is linear with respect to con-

vex combination of density operators. Consequently, the two ap-

proaches indeed obtain the same semantics for deterministic quan-

tum programs when applied on mixed states. However, this is not

true for nondeterministic quantumprograms, since now a program

often corresponds to a set of super-operators, instead of a single

one. As a result, convex combination of pure-state semantics does

not give the same result as the mixed-state semantics. Tomake this

point clear, let us see a simple example.

Example 3.3. Let ( be a nondeterministic quantum program de-

fined as follows:

( , skip � @ ∗= -

Then we have from Fig. 2 that [[(]] =
{
1,X@

}
. Consequently,

[[(]]([|0〉]@ ) =
{
[|0〉]@ , [|1〉]@

}
[[(]]([|1〉]@ ) =

{
[|0〉]@ , [|1〉]@

}
(4)

[[(]]([|+〉]@ ) =
{
[|+〉]@

}
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[[(]]([|−〉]@) =
{
[|−〉]@

}
where |±〉 , 1√

2
( |0〉±|1〉), and the last equation follows from the fact

that [- |−〉] = [−|−〉] = [|−〉]; that is, the global phase disappears
in the density operator representation of quantum states.

Suppose we had adopted the pure-state approach to define our de-

notational semantics, and extended it to mixed states by taking the

convex combination of pure-state semantics. Recall that inH2,

�

2
=

1

2
([|0〉] + [|1〉]) = 1

2
([|+〉] + [|−〉]) . (5)

Then from the first two equations in Eq. (4) we would derive

[[(]](�@/2) =
{
[|0〉]@ , [|1〉]@ , �@/2

}
,

while from the last two equations in Eq. (4) we would have

[[(]](�@/2) =
{
�@/2

}
instead. That is, the extended semantics for mixed states would not

be well-defined.

Note that this inconsistency does not exist for classical programs

because, unlike the fact that a density operator can represent different

ensembles of pure states, exemplified in Eq. (5) for �/2, any probabil-
ity distribution of classical states has a unique representation (as a

convex combination of underlying states).

3.3.2 Relational v.s. Li�ed Model. As pointed out in [8], nondeter-

ministic probabilistic programs can naturally be given two differ-

ent semantic models: a relational one and a lifted one. Intuitively,

in the lifted model, a nondeterministic program is semantically re-

garded as a set of deterministic programs, while in the relational

model, a dedicated semantics is given by taking into account the

interference between probability and nondeterminism. The differ-

ence between these twomodels can be best illustrated in their treat-

ment of sequential composition of programs. Specifically, let Σ be

the classical state space, ranged over by B, C, etc. For simplicity, as-

sume that Σ is countable. Let ( and ) be nondeterministic proba-

bilistic programs. Recall that the semantics [[(]]
r
of ( in the rela-

tional model is a mapping from states in Σ to sets of probability

distributions over Σ. The semantics of the sequential composition

( ;) is defined for any B ∈ Σ as

[[( ;) ]]
r (B) =

{∑
C ∈Σ

` (C) · aC : ` ∈ [[(]]
r (B),∀C .aC ∈ [[) ]]

r (C)
}
. (6)

That is, each probability distribution in [[( ;) ]]
r (B) is generated

by first choosing a distribution ` in [[(]]
r (B), then for each state

C choosing a distribution aC in [[) ]]
r (C), and finally taking the con-

vex combination of aC ’s where the weight of aC is given by ` (C).
In contrast, the semantics [[(]]

l
of ( in the lifted model is a set of

deterministic distribution-transformers which map states in Σ to

probability distributions over Σ. The lifted semantics of ( ;) is de-

fined to be

[[( ;) ]]
l
=

{
6 ◦ 5 : 5 ∈ [[(]]

l
, 6 ∈ [[) ]]

l
}

(7)

where6◦5 is defined in the standardway: (6◦5 )(B) = ∑
C ∈Σ 5 (B)(C)·

6(C). Although these two models are both well-motivated, it was

argued in [8] that the relational model is preferable since it enjoys

more nice algebraic properties.

Obviously, our definition in Fig. 2 follows the same style of the

lifted model in Eq. (7). To illustrate why it is problematic to have

a relational semantics for nondeterministic quantum programs, let

us take a close look at the definition of [[( ;) ]]
r
in Eq. (6) from the

perspective of a game. Intuitively, for each C ∈ Σ, aC is chosen from
[[) ]]

r (C) by the adversary if the current program state is C . Note

that this only makes sense under the assumption that the program

state at any given moment can be determined exactly during the

runtime so that the adversary can use this information to make the

choice. However, this assumption does not necessarily hold in the

quantum setting, also due to the fact that a density operator can

represent different ensembles of pure states. To make this point

more clear, let us consider the following example.

Example 3.4. Let ( be defined as in Example 3.3 and

) , @ := 0; @ ∗= � ; measure @

)± , @ := 0; measure± @

Here the command measure @ is the abbreviation for

if M0,1 [@] then skip else skip end andM0,1 is the measurement ac-

cording to the computational basis {|0〉, |1〉}. Similarly,measure± @

is the abbreviation for if M± [@] then skip else skip end andM± is

the measurement according to the orthonormal basis {|+〉, |−〉}. Note
that both ) and )± are deterministic. Obviously, for any input state

d in D(H@ ) with tr(d) = 1, the output state of ) is the ensemble(
|0〉 : 1

2 , |1〉 :
1
2

)
, which can also be regarded as a probability

distribution taking |0〉 or |1〉 uniformly. Similarly, the output state

of )± for the same input d is the ensemble
(
|+〉 : 1

2 , |−〉 :
1
2

)
, a

probability distribution taking |+〉 or |−〉 uniformly. If we adopt the

relational semantics [[·]]r by regarding mixed quantum states as

probability distributions over pure states, then we may have

[[) ]]
r (d) =

{(
|0〉 : 1

2
, |1〉 : 1

2

)}
,

[[)±]]
r (d) =

{(
|+〉 : 1

2
, |−〉 : 1

2

)}
.

Note that these two ensembles, although different in the probability

distribution form, are physically indistinguishable; see Eq. (5). Con-

sequently, [[) ]]
r
= [[)±]]

r
.

Now, consider the sequential composition of ) and )± with ( re-

spectively. Similar to Eq. (6), we may have

[[) ; (]]
r (d) = 1

2
· [[(]]r ([|0〉]) + 1

2
· [[(]]r ([|1〉])

=
1

2
· {|0〉, |1〉} + 1

2
· {|0〉, |1〉}

=

{
(|0〉 : 1) , ( |1〉 : 1) ,

(
|0〉 : 1

2
, |1〉 : 1

2

)}
while

[[)±; (]]
r (d) = 1

2
· [[(]]r ([|+〉]) + 1

2
· [[(]]r ([|−〉])

=
1

2
· {|+〉} + 1

2
· {|−〉} =

{(
|+〉 : 1

2
, |−〉 : 1

2

)}
.

In the language of density operators, we can say that starting

from d , [[) ; (]]
r
may output |0〉, |1〉, or �

2

(
=

1
2 |0〉〈0| +

1
2 |1〉〈1|

)
non-deterministically while [[)±; (]]

r
can only output �

2
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(
=

1
2 |+〉〈+| +

1
2 |−〉〈−|

)
although the nondeterministic choice

also exists in it. In other words, [[) ; (]]
r

≠ [[)±; (]]
r
although

[[) ]]
r

= [[)±]]
r
. This is highly undesirable because semantic

composability is a natural requirement of language design.

4 VERIFICATION OF NONDETERMINISTIC
QUANTUM PROGRAMS

Recall that a common practice in the verification of (determinis-

tic or nondeterministic) probabilistic programs is to take expecta-

tions, that is, linear functions 5 : Σ → [0, 1] where Σ is the set of

classical states, as assertions. Then a program can be regarded as

an expectation-transformer which maps a post-expectation to its

greatest pre-expectation. The reason why deterministic and non-

deterministic probabilistic programs can share the same form of

assertions is that the set of expectations constitutes a complete lat-

tice with respect to the pointwise partial order, where the join and

meet are also defined pointwisely. Consequently, it is closed un-

der taking infimum, the operation corresponding to the (demonic)

nondeterminism.

To describe desirable properties of a quantum state, we follow

the approach of regarding hermitian operators from

P(HV) , {" ∈ L(HV ) : 0 ⊑ " ⊑ � } .

as quantum predicates in the verification of deterministic quan-

tum programs [4, 6, 28]. Note that any hermitian operator " ∈
P(HV) induces a linear function 5" : D(HV ) → [0, 1] by set-

ting 5" (d) = tr("d) for any d . Remarkably, recall from Sec. 2 that

tr("d) is exactly the expected value of outcomes when measuring

the observable " on state d . It is naturally interpreted as the de-

gree of d satisfying" if" represents some desired property of the

quantum system.

However, the set P(HV ), although being a CPO, does not form
a lattice. Thus it is not expressive enough for the verification of

nondeterministic quantum programs. In this paper, we simply take

A , 2P(HV ) , the collection of subsets of P(HV), ranged over by
Θ, Ψ, · · · , as our set of quantum assertions. It is obviously a com-

plete lattice in the usual subset order.WhenΘ = {"} is a singleton
we simply write Θ as" . We further extend the operations applied

on hermitian operators to quantum assertions in an element-wise

way. For example, let E be a super-operator. Then by E(Θ) we de-
note the set {E(") : " ∈ Θ}.

Definition 4.1. Given a density operator d ∈ D(HV ) and a

quantum assertion Θ ∈ A, the expectation of d satisfying Θ is de-

fined to be Exp(d |= Θ) , inf"∈Θ tr ("d) .

The infimum taken in the above definition of Exp(d |= Θ) re-
flects a pessimistic view of the satisfaction: it provides a guaranteed

expected satisfaction ofΘ by d in the presence of possibly demonic

nondeterminism.

4.1 Correctness Formula

As usual, program correctness is expressed by correctness formulas

with the form {Θ} ( {Ψ} where ( is a quantum program, and Θ

and Ψ are quantum assertions in A.

Definition 4.2. Let ( ∈ Prog, and Θ,Ψ ∈ A.

(1) We say the correctness formula {Θ} ( {Ψ} is true in the sense
of total correctness, written |=tot {Θ} ( {Ψ}, if for any d ∈
D(HV ),
Exp(d |= Θ) ≤ inf

{
Exp(f |= Ψ) : f ∈ [[(]](d)

}
.

(2) We say the correctness formula {Θ} ( {Ψ} is true in the sense
of partial correctness, written |=par {Θ} ( {Ψ}, if for any
d ∈ D(HV ),
Exp(d |= Θ) ≤ inf {Exp(f |= Ψ) + tr(d) − tr(f)

: f ∈ [[(]](d)
}
.

Intuitively, |=tot {Θ} ( {Ψ} iff starting from any initial state,

the guaranteed expected satisfaction of postcondition Ψ by any

possible final state is lower bounded by the guaranteed expected

satisfaction of precondition Θ by the initial state. For the case of

partial correctness, we relax the lower bound by taking the non-

termination probability tr(d) − tr(f) into account. It is easy to see
that when ( is deterministic, and both Θ and Ψ contain only one

quantum predicate, the above definition reduces to the correspond-

ing one in [28] for deterministic quantum programs.

Example 4.1. The correctness of quantum error correction scheme

for bit flip in Example 3.1 can be stated as follows: for any |k 〉 ∈ H@ ,

|=tot
{
|k 〉@ 〈k |

}
ErrCorr

{
|k 〉@〈k |

}
. (8)

To see why Eq.(8) captures the intuition that the (arbitrary) state of

qubit@ has been successfully protected from the possible bit-flip error,

note that Eq.(8) implies

1 = 〈k |k 〉〈k |k 〉 ≤ inf
{
〈k |f |k 〉 : f ∈ [[ErrCorr]]( |k 〉〈k |)

}
.

Thus f = |k 〉〈k | for all f ∈ [[ErrCorr]]( |k 〉〈k |).

Note that for ∗ ∈ {tot, par}, if there exists " ∈ Θ such that

|=∗ {"} ( {# } for all # ∈ Ψ, then |=∗ {Θ} ( {Ψ} . However, the
reverse is not true. A counterexample is as follows. Let V , {@},
Θ , {|0〉@ 〈0|, |1〉@ 〈1|}, Ψ , {�@/2}, and ( , skip. Note that for any

d ∈ D(HV ), tr( |0〉@ 〈0|d) + tr( |1〉@ 〈1|d) = tr(d). Thus
Exp (d |= Θ) = min

{
tr( |0〉@ 〈0|d), tr( |1〉@ 〈1|d)

}
≤ tr(d)

2
= Exp (d |= Ψ) ,

and so |=∗ {Θ} ( {Ψ}. However, neither |=∗
{
|0〉@ 〈0|

}
(

{
�@/2

}
nor |=∗

{
|1〉@ 〈1|

}
(

{
�@/2

}
holds. To see the former one, we note

that

Exp
(
|0〉@ 〈0| |= |0〉@ 〈0|

)
= 1 � 1/2 = Exp

(
|0〉@ 〈0| |= �@/2

)
.

For the latter one, we can take |1〉@ 〈1| as the initial state.
The following are some basic facts about total and partial cor-

rectness.

Lemma 4.1. Let ( ∈ Prog, Θ and Ψ be quantum assertions.

(1) If |=tot {Θ} ( {Ψ} then |=par {Θ} ( {Ψ};
(2) |=tot {0} ( {Ψ} and |=par {Θ} ( {� };
(3) If |=∗ {Θ8 } ( {Ψ8 } for all 8 , then |=∗ {⋃8 Θ8 } ( {⋃8 Ψ8 } ,

where ∗ ∈ {tot, par}.

Proof. Clause (1) follows directly from the fact that tr(f) ≤
tr(d) for all f ∈ [[(]](d), clause (3) from the definition, and clause

(2) from the observation that for any " ∈ Θ, tr("d) ≤ tr(d). �
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(Skip) {Θ} skip {Θ}

(Abort) {� } abort {0}

(Init)

{
2=−1∑
8=0

|8〉@̄ 〈0|Θ|0〉@̄ 〈8 |
}
@̄ := 0 {Θ}

(Unit)
{
*
†
@̄Θ*@̄

}
@̄ ∗= * {Θ}

(Seq)
{Θ} (0 {Θ′} , {Θ′} (1 {Ψ}

{Θ} (0; (1 {Ψ}

(NDet)
{Θ} (0 {Ψ} , {Θ} (1 {Ψ}

{Θ} (0 � (1 {Ψ}

(Meas)
{Θ1} (1 {Ψ} , {Θ0} (0 {Ψ}{

P0
@̄ (Θ0) + P1

@̄ (Θ1)
}
if M[@̄] then (1 else (0 end {Ψ}

(While)
{Θ} (

{
P0
@̄ (Ψ) + P1

@̄ (Θ)
}

{
P0
@̄ (Ψ) + P1

@̄ (Θ)
}
whileM[@̄] do ( end {Ψ}

(Imp)
Θ ⊑inf Θ

′, {Θ′} ( {Ψ′} , Ψ′ ⊑inf Ψ

{Θ} ( {Ψ}

(Union)
{Θ8 } ( {Ψ8 } for all 8 ∈ �

{⋃8 ∈� Θ8 } ( {⋃8 ∈� Ψ8 }

Figure 3: Proof system for partial correctness.

To conclude this subsection, we define a pre-order between quan-

tum assertions by letting Θ ⊑inf Ψ if for any d , inf"∈Θ tr("d) ≤
inf# ∈Ψ tr(#d). The following lemma is useful in our later discus-

sion.

Lemma 4.2. (1) Let E be a super-operator andΘ ⊑inf Ψ. Then

E† (Θ) ⊑inf E† (Ψ). Recall that E† is the adjoint super-operator
of E.

(2) If for all 8 , Θ8 ⊑inf Ψ8 , then
⋃

8 Θ8 ⊑inf
⋃

8 Ψ8 .

Proof. Easy from the definition of ⊑inf . �

4.2 Proof Systems

The core of Hoare logic is a proof system consisting of axioms and

proof rules which enable syntax-oriented and modular reasoning

of program correctness. In this section, we propose a Hoare logic

for nondeterministic quantum programs.

Partial Correctness. We propose in Fig. 3 a proof system for

partial correctness of quantum programs, which is a natural exten-

sion of the Hoare logic system introduced in [28] for deterministic

quantum programs.

To help understand the rules presented in Fig. 3, let us com-

pare themwith their counterparts for classical programs. The rules

(Skip), (Abort), (Seq), (NDet), (Imp) have the same form as the cor-

responding classical ones. Note that for any pure state |k 〉, tr(� ·

|k 〉〈k |) = 1 and tr(0 · |k 〉〈k |) = 0. Thus, the quantum predicates

� and 0 play similar roles as true and false do respectively in clas-

sical assertions. The rules (Init) and (Unit) are the counterparts of

the classical assignment rule, and they can be better understood in

a backwards fashion. For example, (Unit) means that to guarantee

postcondition Ψ, it suffices to have * †
@̄Θ*@̄ as the precondition.

Recall the proof rule for classical conditional statements

{? ∧ �} (1 {@} , {? ∧ ¬�} (0 {@}
{?} if � then (1 else (0 end {@} . (9)

Due to the lack of conjunction of quantum assertions, our proof

rule (Meas) takes an alternative form, adding the preconditions of

the two branches of if M[@̄] then (1 else (0 end after applying

the corresponding measurement super-operators. Note that ? =

(? ∧�) ∨ (? ∧¬�). So (Meas) is indeed a generalisation of the rule

in Eq. (9). Inspired by [28], the quantumassertionP0
@̄ (Ψ)+P1

@̄ (Θ) in
rule (While) serves as a loop invariant of the while loop. Finally, we

introduce rule (Union) to combine different correctness formulas

for the same quantum program, mimicking the conjunction rule

for classical programs.

Denote by ⊢par {Θ} ( {Ψ} if the correctness formula {Θ} ( {Ψ}
can be derived from the proof system.

Theorem 4.1. The proof system in Fig. 3 is both sound and rel-

atively complete with respect to the partial correctness of nondeter-

ministic quantum programs.

Proof. (Sketch) Similar to [28], the key idea for the proof here is

to define the notion of weakest liberal precondition for quantum

programs. Specially, for any nondeterministic quantum program

( and postcondition Ψ ∈ A, we construct a quantum assertion,

denotedF;?.( .Ψ, which is the weakest (or largest in terms of ⊑inf )

one among all valid preconditions. In other words, for any Θ ∈ A,

|=par {Θ} ( {Ψ} iff Θ ⊑inf F;?.( .Ψ.

Now, to prove the soundness of our logic system, it suffices

to show by induction on the structure of ( that whenever ⊢par
{Θ} ( {Ψ}, it holds Θ ⊑inf F;?.( .Ψ. For the completeness

part, we need to prove, again by structural induction, that ⊢par
{F;?.( .Ψ} ( {Ψ}. Formore details, please refer to Appendix B. �

Total Correctness. Ranking functions play a central role in

proving total correctness of while loop programs. Recall that in the

classical case, a ranking function maps each reachable state during

the execution of the loop body to an element of a well-founded or-

dered set (say, the set of nonnegative integers), such that the value

decreases strictly after each iteration of the loop. Our proof rule for

total correctness of while loops also heavily relies on the notion of

ranking assertion. The following definition is inspired by the corre-

sponding concept proposed in [7]. However, here we have to take

into account possible nondeterministic choices in the loop body.

Definition 4.3. Let Θ̂ be a quantum assertion. A set of quantum

predicates
{
'
[
8 : 8 ≥ 0, [ ∈ [[(]]

N
}
is called a Θ̂-ranking assertion for

whileM[@̄] do ( end if for each [ ,

(1) Θ̂ ⊑inf '
[
0 ;

(2) the sequence '
[
8 , 8 ≥ 0, is decreasing with respect to ⊑; that is,

'
[
0 ⊒ '

[
1 ⊒ . . .. Furthermore,

∧
8 '

[
8 = 0;



Verification of Nondeterministic �antum Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(3) for any 8 ≥ 0 and d ∈ D(HV ),

tr
(
'
[→

8 ·
(
[1 ◦ P1

@̄ (d)
))

≤ tr
(
'
[
8+1 · d

)
. (10)

This can also be more compactly written as

P1
@̄ ◦ [†1

(
'
[→

8

)
⊑ '

[
8+1. (11)

As can be seen from the rule (WhileT) below, Θ̂ is usually taken

to be the precondition of the correctness formulawe are concerned

with, which is also a loop invariant of while M[@̄] do ( end. The

basic idea of Θ̂-ranking assertion is to provide a sequence of upper

bounds on Θ̂. We will explain it in more detail below.

For simplicity, assume Θ̂ = P0
@̄ (") + P1

@̄ (Θ) for some quantum

predicate " and assertion Θ. Let "
[
0 = 0 and "

[
8 , 8 ≥ 1, be the

quantum predicate representing the weakest precondition of " if

the loop body is only executed 8 − 1 times; that is, for any d ,

tr
(
"

[
8 · d

)
= tr

(
" · F [

8−1(d)
)

where F [
8 is defined in Eq. (1). The goal of Θ̂-ranking assertion '

[
8

is then to make sure that

P0
@̄ (") + P1

@̄ (Θ) ⊑inf "
[
8 + '

[
8 . (12)

Clause (1) of Definition 4.3 establishes the bound for 8 = 0, while

clause (3), together with the assumption that P0
@̄ (") + P1

@̄ (Θ) is a
loop invariant, guarantee that Eq. (12) holds inductively for all 8 .

This can be shown by using Lemma 3.2. Finally, because of clause

(2), when 8 tends to infinity, "
[
8 alone acts as the upper bound,

which in turn implies that P0
@̄ (") + P1

@̄ (Θ) is a valid precondition
of" with respect towhileM[@̄] do ( end in the total correctness

sense.

With the notion of ranking assertion, we can state the rule (WhileT)

for while loops in total correctness as follows:

(WhileT)

{Θ} (
{
P0
@̄ (Ψ) + P1

@̄ (Θ)
}

P0
@̄ (Ψ) + P1

@̄ (Θ)-ranking assertion exists{
P0
@̄ (Ψ) + P1

@̄ (Θ)
}
whileM[@̄] do ( end {Ψ}

The proof system for total correctness is then defined as for partial

correctness, except that the rule (While) is replaced by (WhileT),

and rule (Abort) replaced by

(AbortT) {0} abort {0} .

We write ⊢tot {Θ} ( {Ψ} if the correctness formula {Θ} ( {Ψ}
can be derived using the proof system for total correctness. Again,

we can prove the soundness and relative completeness of the proof

system for total correctness.

Theorem 4.2. The proof system for total correctness is both sound

and relatively complete with respect to the total correctness of nonde-

terministic quantum programs.

Proof. (Sketch) Again, the key idea for the proof here is to de-

fine the notion of weakest precondition for quantum programs.

The basic idea of using a ranking assertion to establish the sound-

ness of rule (WhileT) has been intuitively discussed below Defini-

tion 4.3. For the completeness part, we can prove that the set of

quantum predicates

'
[
8 =

∞∑
:=8

P1
@̄ ◦ [†1 ◦ . . . ◦ P

1
@̄ ◦ [†

:
◦ P0

@̄ (� ),

representing the termination probability of the while loop after 8

iterations of the loop body, constitute a proper ranking assertion to

prove that ⊢tot {F?.while.Θ} while {Θ} . For more details, please

refer to Appendix B. �

5 CASE STUDIES

To illustrate the effectiveness of the proof systems presented in

the last section, we employ them to verify some simple quantum

algorithms and protocols.

5.1 Three Qubit Quantum Error Correction
Scheme

Recall from Example 4.1 that the correctness of the three-qubit

quantum error correction scheme can be stated as follows: for any

|k 〉 = U0 |0〉 + U1 |1〉 ∈ H2,

|=tot
{
|k 〉@ 〈k |

}
ErrCorr

{
|k 〉@〈k |

}
. (13)

First, we note that from rules (Skip) and (Unit),

⊢tot {[U0 |000〉 + U1 |111〉]} skip {[U0 |000〉 + U1 |111〉]}
⊢tot {[U0 |000〉 + U1 |111〉]} @ ∗= - {[U0 |100〉 + U1 |011〉]}
⊢tot {[U0 |000〉 + U1 |111〉]} @1 ∗= - {[U0 |010〉 + U1 |101〉]}
⊢tot {[U0 |000〉 + U1 |111〉]} @2 ∗= - {[U0 |001〉 + U1 |110〉]} .

Let "8 , 1 ≤ 8 ≤ 4, be the four postconditions presented above

respectively. Then from (Imp), we have for each ( ∈ {skip, @ ∗=
-, @1 ∗= -, @2 ∗= - },{

[U0 |000〉 + U1 |111〉]@,@1,@2
}
( {"1 +"2 +"3 +"4} .

Thus we have the following proof outline:{
[U0 |0〉 + U1 |1〉]@

}
@1, @2 := 0;{
[U0 |000〉 + U1 |100〉]@,@1,@2

}
(Init)

@, @1 ∗= CX;{
[U0 |000〉 + U1 |110〉]@,@1,@2

}
(Unit)

@, @2 ∗= CX;{
[U0 |000〉 + U1 |111〉]@,@1,@2

}
(Unit)

skip � @ ∗= - � @1 ∗= - � @2 ∗= - ;

{[U0 |000〉 + U1 |111〉] + [U0 |001〉 + U1 |110〉]
+[U0 |010〉 + U1 |101〉] + [U0 |100〉 + U1 |011〉]} (NDet)

@, @2 ∗= CX;

{[U0 |000〉 + U1 |110〉] + [U0 |001〉 + U1 |111〉]
+[U0 |010〉 + U1 |100〉] + [U0 |101〉 + U1 |011〉]} (Unit)

@, @1 ∗= CX;{
[U0 |0〉 + U1 |1〉]@ ⊗ ([|00〉] + [|01〉] + [|10〉])@1,@2
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@1 : |0〉 �

*5

�

@2 : |0〉 - �

G G

~ ~ ⊕ 5 (G)

Figure 4: Quantum circuit for Deutsch algorithm.

+[U0 |1〉 + U1 |0〉]@ ⊗ [|11〉]@1,@2
}

(Unit)
if M[@2] then

{[U0 |0〉 + U1 |1〉] ⊗ [|0〉] + [U0 |1〉 + U1 |0〉] ⊗ [|1〉]}
if M[@1] then{

[U0 |1〉 + U1 |0〉]@
}

@ ∗= -{
[U0 |0〉 + U1 |1〉]@

}
(Unit)

end{
[U0 |0〉 + U1 |1〉]@

}
(Meas)

end{
[U0 |0〉 + U1 |1〉]@

}
(Meas)

With the soundness of our logic system, this completes the proof

of Eq. (13).

5.2 Deutsch Algorithm

Deutsch algorithm [3] is one of the first quantumalgorithmswhich

demonstrate a speedup brought by quantum computing. Given a

boolean function 5 : {0, 1} → {0, 1}, Deutsch algorithm can tell

whether 5 (0) equals 5 (1) or not with just a single evaluation of 5 .

In the traditional description of the algorithm, a quantum oracle

*5 that maps any state |G〉 ⊗ |~〉 to the state |G〉 ⊗ |~ ⊕ 5 (G)〉, where
G, ~ ∈ {0, 1}, is employed. The circuit for Deutsch algorithm is

shown in Figure 4. It claims that 5 is constant (meaning 5 (0) =

5 (1)) if the measurement outcome is 0; otherwise, it claims 5 is

balanced (meaning 5 (0) ≠ 5 (1)).
We now show how to describe Deutsch algorithm as a nonde-

terministic quantum program, and how to verify the correctness

of it. To this end, we note that

*5 =




�2 ⊗ �2 if 5 (0) = 5 (1) = 0;

�2 ⊗ - if 5 (0) = 5 (1) = 1;

�- if 5 (0) = 0 and 5 (1) = 1;

�0- if 5 (0) = 1 and 5 (1) = 0.

where �- is the CNOT gate, and �0- = (- ⊗ �2) · �- · (- ⊗ �2)
which applies - gate on the second qubit conditioning on the first

qubit being |0〉. In the first two cases 5 is constant while in the last

two cases 5 is balanced. Then Deutsch algorithm can be written as

Deutsch ,

@1, @2 := 0;

@1 ∗= � ; @2 ∗= - ; @2 ∗= � ;

if M0,1 [@] then
(@1, @2 ∗= �- ) � (@1, @2 ∗= �0- )

else

skip � (@2 ∗= - )
end

@1 ∗= � ;

measure @1

Here we introduce an auxiliary qubit @ with unknown initial state

and use the measurement outcome on @ to choose 5 (or equiva-

lently, *5 ). Note that for each outcome we have two possibilities

for *5 , denoted by a nondeterministic choice between them. The

statement measure @1 is defined as in Example 3.4. It is easy to

prove from rules (Unit) and (Meas) that the following correctness

formula is valid for any quantum assertion Θ:{
|0〉@1 〈0|Θ|0〉@1 〈0| + |1〉@1 〈1|Θ|1〉@1 〈1|

}
measure @1 {Θ} .

Note that at the end of the algorithm, both @ and @1 are in one

of the computational basis {|0〉, |1〉}. The correctness of Deutsch

algorithm can then be stated as follows:

|=tot {� } Deutsch
{
( |00〉〈00| + |11〉〈11|)@,@1

}
. (14)

That is, the (classical) information encoded in @1 when the pro-

gram terminates coincides with that encoded in @, thus indicating

correctly whether 5 (0) equals 5 (1) or not.
To prove Eq. (14), we first note from (Unit) that

⊢tot
{
[|0〉@ | + −〉@1,@2 ]

}
skip

{
[|0〉@ | + −〉@1,@2 ]

}
⊢tot

{
[|0〉@ | + −〉@1,@2 ]

}
@2 ∗= -

{
[|0〉@ | + −〉@1,@2 ]

}
⊢tot

{
[|1〉@ | + −〉@1,@2 ]

}
@1, @2 ∗= �-

{
[|1〉@ | − −〉@1,@2 ]

}
⊢tot

{
[|1〉@ | + −〉@1,@2 ]

}
@1, @2 ∗= �0-

{
[|1〉@ | − −〉@1,@2 ]

}
where |±〉 , 1√

2
( |0〉 ± |1〉). Then we have the following proof out-

line:

{� }
@1, @2 := 0;{
[|00〉]@1,@2

}
(Init), (Seq)

@1 ∗= � ; @2 ∗= - ; @2 ∗= � ;{
[|0 + −〉]@,@1,@2 + [|1 + −〉]@,@1,@2

}
(Unit), (Seq)

if M0,1 [@] then{
[|1 + −〉]@,@1,@2

}
(@1, @2 ∗= �-) � (@1, @2 ∗= �0- ){
[|1 − −〉]@,@1,@2

}
(NDet)

else{
[|0 + −〉]@,@1,@2

}
skip � (@2 ∗= - ){
[|0 + −〉]@,@1,@2

}
(NDet)

end{
[|0 + −〉]@,@1,@2 + [|1 − −〉]@,@1,@2

}
(Imp), (Meas){

[|0+〉]@,@1 + [|1−〉]@,@1
}

(Imp)
@1 ∗= � ;{
[|00〉]@,@1 + [|11〉]@,@1

}
(Unit)

measure @1
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{
[|00〉]@,@1 + [|11〉]@,@1

}
(Meas)

Finally, Eq. (14) follows from the soundness of our logic system.

5.3 A Nondeterministic Quantum Walk

To illustrate the utility of our logic system regarding quantum loops,

let us consider a revised version of the nondeterministic quantum

walk on a circle with four vertices presented in [12]. The walk uses

a two-qubit system consisting of @1 and @2 as its principle system.

It starts in the initial state |00〉, and at each step of walk, the fol-

lowing two unitary walk operators

,1 ,
1√
3

©
«

1 1 0 −1
1 −1 1 0

0 1 1 1

1 0 −1 1

ª®®®¬
, ,2 ,

1√
3

©
«

1 1 0 1

−1 1 −1 0

0 1 1 −1
1 0 −1 −1

ª®®®¬
are applied on @1 and @2 consecutively. Here,1 and,2 are writ-

tenwith respect to the computational basis {|00〉, |01〉, |10〉, |11〉} of
H@1,@2 . However, the order in which these walk operators are ap-

plied is nondeterministically chosen. We further assume that there

exists an absorbing boundary at the subspace spanned by |10〉; that
is, after each walk step, a projective measurement M = {%0, %1}
where

%0 , |10〉〈10|, %1 , �4 − |10〉〈10|
is applied. If the outcome corresponding to %0 is observed, the

whole process terminates; otherwise the next walk step continues.

The walk can be described as the following nondeterministic

program:

QWalk ,

@1, @2 := 0;

whileM[@1, @2] do
(@1, @2 ∗=,1; @1, @2 ∗=,2)

� (@1, @2 ∗=,2; @1, @2 ∗=,1)
end

It has been shown in [12] that QWalk does not terminate if the left

branch of the nondeterministic choice is always taken in each iter-

ation. This can be easily seen from the fact that,2,1 |00〉 = |00〉.
In the following, we show a stronger result using our proof sys-

tem for nondeterministic quantum programs: in fact, QWalk does

not terminate under any scheduler of the nondeterministic choice!

For simplicity, we omit the subscript {@1, @2} of the assertions and
super-operators in the discussion below.

First, note that this non-termination property can be stated as

follows:

|=par {� } QWalk {0} . (15)

The reason is, from Definition 4.2(2), Eq. (15) holds iff for any d ∈
D(H@1,@2 ) and f ∈ [[QWalk]](d),

tr(d) ≤ tr(d) − tr(f).
Thus tr(f) = 0, meaning that starting from any d , the probability

of QWalk reaching any valid quantum state is 0.
To prove Eq. (15), we first compute using rule (Unit) that{

[ |00〉] +
[
1
√
2
( |01〉 + |11〉)

]}
@1, @2 ∗=,1;

{ [
1
√
3
( |00〉 + |01〉 + |11〉)

]
+

[
1
√
6
(−|01〉 + 2 |10〉 + |11〉)

]}
@1, @2 ∗=,2;{
[ |00〉] +

[
1
√
2
( |01〉 + |11〉)

]}

and{
[ |00〉] +

[
1
√
2
( |01〉 + |11〉)

]}
{[

1

3
(−|00〉 + 2 |01〉 + 2 |11〉)

]
+

[
1

3
√
2
(4 |00〉 + |01〉 + |11〉)

]}
@1, @2 ∗=,2 ;{[

1
√
3
( |00〉 + |01〉 − |11〉)

]
+

[
1
√
6
(2 |00〉 − |01〉 + |11〉)

]}
@1, @2 ∗=,1 ;{
[ |00〉] +

[
1
√
2
( |01〉 + |11〉)

]}

Now let # , [|00〉] +
[
1√
2
( |01〉 + |11〉)

]
, and ( the body of the

while loop of QWalk. Note that P0 (0) = 0 and P1 (# ) = # where

for 8 = 0, 1, P8 is the super-operator with a single Kraus operator

%8 . Then by (NDet) we have

⊢par {# } (
{
P0 (0) + P1 (# )

}
(16)

Finally, we have

{� }
@1, @2 := 0;{
[|00〉] +

[
1
√
2
( |01〉 + |11〉)

]}
(Init)

whileM[@1, @2] do
(@1, @2 ∗=,1; @1, @2 ∗=,2) � (@1, @2 ∗=,2; @1, @2 ∗=,1)
end

{0} (While),Eq. (16)
With the soundness theorem4.1, this concludes the proof of Eq. (15).

6 A PROTOTYPE TOOL IMPLEMENTATION

We have illustrated the utility of our proof systems through a cou-

ple of examples in the previous section. It can be seen that even for

such simple programs, carrying out formal verification is tedious

(albeit routine) and involves a large number of matrix manipula-

tions. To ease the burden on human users so that they can focus

on more challenging parts such as specifying invariants for while

loops, we implement a prototype proof assistant NQPV to auto-

mate routine parts of the verification process. Currently, NQPV

only supports partial correctness; verification of total correctness

is left as future work.

NQPV is a pure Python project that does not rely on existing

theorem provers such as Isabelle and Coq. We make this decision

taking into account the following factors: (1) Python and its var-

ious libraries provide powerful matrix manipulation capabilities

that facilitate us to compute the pre- and post-conditions of quan-

tum programs and determine the ⊑inf relation between quantum

assertions easily; (2) The main purpose of NQPV is to illustrate the

practicality of our proposed logic system, so the ease of use is our

top priority. Python’s popularity and rich matrix libraries make it
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convenient and natural to describe quantum programs and asser-

tions; (3) Symbolic verification in Python is difficult, which limits

the quantum programs that NQPV can express and verify. But in

return, most verification steps can be done automatically in NQPV.

NQPV relies on the following Python packages: ply for syn-

tax analysis, numpy for operator calculation, and cvxpy for the

SDP solver. NQPV utilises a simple language to define and man-

age terms of operators and proofs.

6.1 User Inputs

NQPV takes a correctness formula defined in Sec. 4.1 as the in-

put. However, to automate the proof for while programs, loop in-

variants are also expected whenever a while structure is encoun-

tered. For illustration, we reconsider the quantum walk example

in Sec. 5.3. The code is shown as follows:

def invN := load "invN.npy" end

// more operators imported ...

def pf := proof [q1 q2] :

{ I[q1] };

[q1 q2] :=0;

{ inv: invN [q1 q2] };

while MQWalk [q1 q2] do

( [q1 q2] *= W1; [q1 q2] *= W2

# [q1 q2] *= W2; [q1 q2] *= W1 )

end;

{ Zero[q1] }

end

show pf end

Here the unitary operators W1, W2 and measurement MQWalk are de-

fined in Sec. 5.3, and they should be input by the user as numpyma-

trices. Note that some identifiers such as I and Zero are reserved

for commonly used unitary operators, hermitian operators, and

measurements. Furthermore, loop invariants (invN in this exam-

ple) specified by the user for while programs should also be numpy

matrices.

In addition to the main program describing behaviours of the

quantumwalk, the above code also includes two extra lines { I[q1]

} and { Zero[q1] } to represent the precondition and postcondi-

tion of the program. Hence, the body of proof term pf indeed de-

scribes the correctness formula presented in Eq. (15). Finally, the

keyword inv marks a loop invariant, and the show command in

the last line outputs the proof outline generated by NQPV.

To further simplify usage, NQPV also allows users to omit pre-

conditions and specify only postconditions. In this case, NQPV out-

puts the weakest precondition it can compute using the given post-

condition and user-supplied loop invariants.

6.2 Verification Process

After successfully parsing the input, NQPV inductively constructs

proofs according to the logic system in Fig. 3 in an automated way.

The strategy is to calculate the weakest preconditions in the back-

ward direction, starting from the postcondition of the whole pro-

gram. For while loops, NQPV will check if the loop invariant pro-

vided by the user is a valid one.

In the end, the assistant compares the verification condition and

the precondition proposed by the user (details will be given in the

next subsection) and then generates the final result. Again, the fol-

lowing shows the output of NQPV for the quantum walk example:

proof [q1 q2] :

{ I[q1] };

{ VAR2[q1 q2] }; // the Veri . Con.

[q1 q2] :=0;

{ invN[q1 q2] };

{ inv: invN[q1 q2] };

while MQWalk [q1 q2] do

{ invN[q1 q2] };

( { invN[q1 q2] }; [q1 q2] *= W1;

{ VAR0[q1 q2] }; [q1 q2] *= W2

# { invN[q1 q2] }; [q1 q2] *= W2;

{ VAR1[q1 q2] }; [q1 q2] *= W1 )

end;

{ Zero[q1] }

As is shown, every sub-program statement is annotatedwith the

corresponding pre- and postconditions. Some of them are already

defined, such as invN. Other operators, such as VAR0, are gener-

ated by NQPV to represent predicates used in the proof outline.

The detailed information of these operators can be shown using

the show command. For example, show VAR2 end for this example

will return the two-qubit identity operator, meaning that the veri-

fication condition determined by the given postcondition and the

loop invariant is I[q1 q2] (thus the original correctness formula

is valid).

In addition to checking the validity of a correctness formula,

NQPV can also verify if a user-supplied operator is indeed a loop

invariant. For example, if we change the invN[q1 q2] in the code

in Sec. 6.1 into P0[q1] where P0 = |0〉 〈0|, we will get an error

message:

Error :

Order relation not satisfied :

{ P0[q1] } <= { VAR0[q1 q2] VAR3[q1 q2] }

...

Error : The predicate '{ P0[q1] }' is not

a valid loop invariant.

...

6.3 Determining the ⊑inf Relation

One of the key steps in verifying a correctness formula is to de-

termine if two assertions (sets of quantum predicates) satisfy the

⊑inf relation. For the sake of implementability, we assume all the

quantum assertions allowed in NQPV are finite ones.

Lemma 6.1. LetΘ andΨ are finite set of quantumpredicates. Then

Θ ⊑inf Ψ iff for any # ∈ Ψ,

∀d ∈ D(HV ), ∃" ∈ Θ, tr("d) ≤ tr(#d).

Proof. From the finiteness of Θ and Ψ,

Θ ⊑inf Ψ
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⇔ ∀d ∈ D(HV ), min
"∈Θ

tr("d) ≤ min
# ∈Ψ

tr(#d)

⇔ ∀d ∈ D(HV ),∀# ∈ Ψ,∃" ∈ Θ, tr("d) ≤ tr(#d)
⇔ ∀# ∈ Ψ,∀d ∈ D(HV ), ∃" ∈ Θ, tr("d) ≤ tr(#d). �

With Lemma 6.1, we have the following algorithm to determine

if Θ ⊑inf Ψ for finite sets Θ and Ψ:

• If Θ = {"} is a singleton, then Θ ⊑inf Ψ iff " ⊑ # for all

# ∈ Ψ. This can be done by simply checking if the eigenval-

ues of # −" are all nonnegative.

• Otherwise, for each # ∈ Ψ we try to solve the following

SDP problem:

minimize 0

subject to ∀" ∈ Θ, tr(#d) ≤ tr("d) − n

0 ⊑ d

Here n is a user-defined precision that is sufficiently small

but positive. This is required by SDP solvers such asMOSEK

and CVX. Another reason for the introduction of n is to

make the feasible region close and thus the whole problem

an SDP one. Obviously, if any of the |Ψ| SDP problems re-

turns a solution, then Θ 6⊑inf Ψ. However, because of the

precision parameter, we cannot make sure ifΘ ⊑inf Ψ holds

even none of the SDP problems returns a solution. Never-

theless, the probability of getting incorrect answers can be

negligible if n is taken sufficiently small.

6.4 Related Tools

Program verification can also be done within an interactive theo-

rem prover such as Isabelle and Coq. The first theorem prover for

quantum programs is QHLProver [13], which implements the pro-

gram logic in [28] using Isabelle/HOL. CoqQ [29] implements the

same logic in Coq, with a general and abstract representation of

linear operators. Qrhl-tool [25] is a verification tool embedded in

Isabelle that supports relational verification of quantum programs.

To make a fair comparison, we investigate the difference be-

tween NQPV and the existing tools in the following aspects (we

only take CoqQ as an example, as QHLProver and Qrhl-tool are

built in a similar way to CoqQ):

Reliability. For CoqQ, inference rules are not only defined, but their

soundness with respect to the denotational semantics (also for-

mally defined in CoqQ) is provedwithin Coq. In contrast, the sound-

ness of inference rules is not checked in NQPV. Nevertheless, a rig-

orous proof for the soundness of our logic system has been given

in Theorem 4.1.

Expressiveness. Existing tools only deal with deterministic quan-

tum programs, while our prototype implementation supports non-

deterministic ones. On the other hand, symbols can be handled in

CoqQ, as in theorem provers; whereas only numerical terms are

allowed in NQPV, as in Python. In particular, CoqQ is suitable for

verifying general (i.e., with an arbitrary number of qubits) algo-

rithms such as Grover algorithm, since the qubit number appears

as a symbol in CoqQ.

Automation. Due to the abstract representation of linear operators

in CoqQ, many properties of quantum predicates are not easy to

prove and have to be shown by the user. However, NQPV can take

advantage of powerful Python libraries, so many proofs can be au-

tomated without user assistance. Therefore, the proof script for

NQPV is usually much shorter than the proof written in CoqQ.

Usability. Using the Coq library MathComp, CoqQ develops an ab-

stract representation of linear operators directly based on Hilbert

spaces, and a smart way to describe them using labelled Dirac nota-

tions. Consequently, users of CoqQ are supposed to have sufficient

knowledge of Coq, especially the way linear operators and com-

puter programs are specified in it. In NQPV, operators are given

concretely as numpy matrices, and programs are represented in a

natural way familiar to ordinary Python programmers. As men-

tioned at the beginning of this section, we take this easy path to

implement the prototype since our main purpose is to illustrate

the utility of our logic system, rather than a full-blown verification

tool.

Performance. The performance of CoqQ is determined by the proofs

provided, while that of NQPV is determined by the calculation

backend, which in the worst case is exponential in the number of

qubits. In comparison, it takes a few seconds to verify the general

Grover algorithm in CoqQ, and 90 seconds for the 13-qubit Grover

algorithm in NQPV.

7 CONCLUSION

In this paper, we consider quantum programs where nondetermin-

istic choices are allowed. Denotational semantics of such programs

is given by lifting semantics of deterministic quantum programs,

and we argue that this is the only natural way to define nondeter-

minism in the quantum setting. For the purpose of verification, we

take sets of hermitian operators on the associated Hilbert space to

be the assertions of quantum states, and propose two proof sys-

tems, for partial and total correctness respectively. We show that

they are both sound and relatively completewith respect to the cor-

responding correctness notions. Simple quantum algorithms and

protocols, such as the three-qubit bit-flip quantum error correction

scheme, Deutsch algorithm, and a nondeterministic quantumwalk,

are analysed to demonstrate the utility of our proof systems. A

lightweight prototype of a proof assistant is implemented to aid in

the automated reasoning of nondeterministic quantum programs.

For future works, we are going to investigate how to make use

of the nondeterministic choice construct and the verification tech-

nique proposed in this paper for quantum program refinement.

How to incorporate angelic nondeterminism into the picture is also

an interesting topic for future study.
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A WEAKEST (LIBERAL) PRECONDITION
SEMANTICS

This section presents an alternative semantics for nondeterminis-

tic quantum programs in terms of the weakest (liberal) precondi-

tions. It turns out to be equivalent to the denotational semantics

given in Sec. 3.2. More importantly, the weakest (liberal) precondi-

tion semantics provides a powerful proof technique for the sound-

ness and completeness of our logic systems, as shown in the next

section.

Let ( ∈ Prog. Theweakest precondition semanticsF?.( andweak-

est liberal precondition semantics F;?.( of ( are both mappings in

2A → 2A defined inductively in Fig. 5. To simplify notation, we

use G? to denote F? or F;? whenever it is applicable for both of

them.

The definitions are similar to those of deterministic quantum

programs presented in [28]. Again, because of the possible nonde-

terministic choices in the loop body ( , we have incorporated sched-

ulers [ ∈ [[(]]
N
in the weakest (liberal) precondition semantics of

while M[@̄] do ( end.

The following lemma shows a duality between the denotational

andweakest (liberal) precondition semantics of quantumprograms.

Lemma A.1. Let ( ∈ Prog, d ∈ D(HV ), " be a quantum predi-

cate, and Θ a quantum assertion. Then

(1) F?.(." =

{
E† (") : E ∈ [[(]]

}
;

(2) F;?.( ." =

{
E† (") + � − E† (� ) : E ∈ [[(]]

}
;

(3) Exp(d |= F?.(.Θ) = inf
{
Exp(f |= Θ) : f ∈ [[(]](d)

}
;

(4) Exp(d |= F;?.( .Θ) =
inf

{
Exp(f |= Θ) + tr(d) − tr(f) : f ∈ [[(]](d)

}
.

Proof. We prove clause (1) by induction on the structure of ( .

The basis cases are easy from the definition. For the induction step,

we only show the following two cases as examples.

• Let ( , if M[@̄] then (1 else (0 end. Then

F?.(."

= P1
@̄ (F?.(1 .") + P0

@̄ (F?.(0 .")

=

{
P1
@̄ ◦ F † (") : F ∈ [[(1]]

}
+

{
P0
@̄ ◦ E† (") : E ∈ [[(0]]

}
=

{
(F ◦ P1

@̄ + E ◦ P0
@̄ )† (") : E ∈ [[(0]],F ∈ [[(1]]

}
=

{
G† (") : G ∈ [[(]]

}
.

• Let ( , while M[@̄] do ( ′ end. For any [ ∈
[[( ′]]N and 8 ≥ 0, let "

[
8 be defined as in Fig. 5 for

F?.(whileM[@̄] do ( ′ end)." , and F [
8 be defined as in Fig-

ure 2 for [[whileM[@̄] do ( ′ end]]. First, from Lemma 3.2 it

is easy to show by induction on 8 that

∀8 ≥ 0, ∀[ ∈ [[( ′]]N, "[
8 = (F [

8 )† ("). (17)

Thus we have

∨
8≥0

"
[
8 =

∨
8≥0

(
F [
8

)†
(") =

(∨
8≥0

F [
8

)†
("),

and so

F?.(." =

{∨
8≥0

"
[
8 : [ ∈ [[( ′]]N

}
=

{
E† (") : E ∈ [[(]]

}

from the definition of [[(]].

The proof for clause (2) is similar; the only difference in proving

the case for while M[@̄] do ( ′ end is that instead of Eq. (17) we

have to prove

∀8 ≥ 0, ∀[ ∈ [[( ′]]N, � −"
[
8 = (F[

8 )† (� −")

where "
[
8 ’s are defined in a similar way as in Fig. 5 but for

F;?.(while M[@̄] do ( ′ end)." . However, this is also easy by in-

duction on 8 .

For clause (3), we calculate

Exp(d |= F?.(.Θ) = inf {tr("d) : # ∈ Θ, " ∈ F?.(.# }

= inf
{
tr(E† (# )d) : # ∈ Θ, E ∈ [[(]]

}
= inf

{
tr(#E(d)) : # ∈ Θ, E ∈ [[(]]

}
= inf

{
tr(#f) : # ∈ Θ, f ∈ [[(]](d)

}
= inf

{
Exp(f |= Θ) : f ∈ [[(]](d)

}
where the second equality is from clause (1). Finally, clause (4) fol-

lows from (2) with a similar argument. �

The next lemma shows that the weakest (liberal) precondition

of a while program is a fixed point of some functor on A.

Lemma A.2. For any quantum predicate " , let Θ =

G?.(while M[@̄] do ( end)." . Then

Θ = P0
@̄ (") + P1

@̄ (G?.( .Θ).

Proof. Let while , whileM[@̄] do ( end. Then

F?.while."

=

{
E† (") : E ∈ [[while]]

}
=

{
P0
@̄ (") + P1

@̄ ◦ F † ◦ G† (") : F ∈ [[(]],G ∈ [[while]]
}

= P0
@̄ (") + P1

@̄

(
F?.(.

{
G† (") : G ∈ [[while]]

})
= P0

@̄ (") + P1
@̄ (F?.(. (F?.while."))

where the second equality is from Eq. (3) while the other ones fol-

low from Lemma A.1(1). The case forF;? is similar. �

To conclude this section, we prove a lemma which is useful in

our later discussion.

Lemma A.3. For any correctness formula {Θ} ( {Ψ},
(1) |=tot {Θ} ( {Ψ} if and only if Θ ⊑inf F?.(.Ψ;

(2) |=par {Θ} ( {Ψ} if and only if Θ ⊑inf F;?.( .Ψ.

Proof. For clause (1), we compute

|=tot {Θ} ( {Ψ}
⇔ ∀d,Exp(d |= Θ) ≤ inf

{
Exp(f |= Ψ) : f ∈ [[(]](d)

}
⇔ ∀d,Exp(d |= Θ) ≤ Exp(d |= F;?.( .Ψ)
⇔ ∀d, inf {tr("d) : " ∈ Θ} ≤ inf {tr(#d) : # ∈ F;?.( .Ψ}
⇔ Θ ⊑inf F?.(.Ψ

where the second equivalence is fromLemmaA.1(3) while the third

one from Eq (8). The case forF;? in clause (2) is similar. �
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G?.skip." = " G?.(@̄ ∗= * )." = *
†
@̄"*@̄

G?.(@̄ := 0)." =

2=−1∑
8=0

|8〉@̄ 〈0|" |0〉@̄ 〈8 | G?.( .Θ =

⋃
"∈Θ

G?.( ."

G?.((0; (1)." = G?.(0 .(G?.(1 .") G?.((0 � (1)." = G?.(0 ." ∪ G?.(1 ."

F;?.abort." = {� } F?.abort." = {0}

G?.(if M[@̄] then (1 else (0 end)." = P1
@̄ (G?.(1 .") + P0

@̄ (G?.(0 .")

F;?.(whileM[@̄] do ( end)." =

{∧
8≥0

"
[
8 : [ ∈ [[(]]

N

}
where for each [ ,"

[
0 , � , and for any 8 ≥ 0,

"
[
8+1 = P0

@̄ (") + P1
@̄

(
[
†
1

(
"

[→

8

)
+ � − [

†
1 (� )

)
F?.(while M[@̄] do ( end)." =

{∨
8≥0

"
[
8 : [ ∈ [[(]]

N

}
where for each [ ,"

[
0 , 0, and for any 8 ≥ 0,

"
[
8+1 = P0

@̄ (") + P1
@̄

(
[
†
1

(
"

[→

8

))

Figure 5: Weakest (liberal) precondition semantics for quantum programs, where G? ∈ {F?,F;?}.

B PROOF DETAILS

B.1 Proof of Theorem 4.1

Soundness: We need only to show that each rule in Fig. 3 is valid in

the sense of partial correctness. Take the rule (While) as an exam-

ple; the others are simpler. From (Union), it suffices to consider the

special case when Ψ = {"} for some quantum predicate" . Let

|=par {Θ} (
{
P0
@̄ (") + P1

@̄ (Θ)
}
.

Then Θ ⊑inf F;?.( .
(
P0
@̄ (") + P1

@̄ (Θ)
)
. We now prove by induc-

tion on 8 that

∀8 ≥ 0,∀[ ∈ [[(]]
N
, P0

@̄ (") + P1
@̄ (Θ) ⊑inf "

[
8

where "
[
8 is defined as in Fig. 5 for theF;? semantics of while ,

while M[@̄] do ( end. The case when 8 = 0 is trivial. Then we

calculate

P0
@̄ (") + P1

@̄ (Θ)

⊑inf P0
@̄ (") + P1

@̄

(
F;?.( .

(
P0
@̄ (") + P1

@̄ (Θ)
) )

⊑inf P0
@̄ (") + P1

@̄

(
F;?.( ."

[→

8

)
⊑inf P0

@̄ (") + P1
@̄

(
[
†
1

(
"

[→

8

)
+ � − [

†
1 (� )

)
= "

[
8+1,

where the first inequality follows from Lemma 4.2(1), the second

one from the induction hypothesis and that F;?.( is monotonic

with respect to ⊑inf , and the third one from Lemma A.1 and that

[1 ∈ [[(]]. Thus

P0
@̄ (") + P1

@̄ (Θ) ⊑inf F;?.while.",

and so

|=par
{
P0
@̄ (") + P1

@̄ (Θ)
}
while {"}

from Lemma A.3.

Completeness: By Lemma A.3 and the (Imp) rule, it suffices to

show that for any Θ and ( ′,

⊢par
{
F;?.( ′.Θ

}
( ′ {Θ} .

Again, we take the case for loops as an example. For any" ∈ Θ, let

Ψ , F;?.while." . By induction, we have ⊢par {F;?.( .Ψ} ( {Ψ} .
Note from Lemma A.2 that Ψ = P0

@̄ (") + P1
@̄ (F;?.( .Ψ) . Then

we have ⊢par {Ψ} while {"} by rule (While). Finally, the desired

result

⊢par {F;?.while.Θ} while {Θ}
follows from (Union) and Lemma 4.2(2).

B.2 Proof of Theorem 4.2

Soundness: We need only to show that each rule of the proof sys-

tem is valid in the sense of total correctness. Take rule (WhileT) as

an example. Again, from (Union), it suffices to consider the special

case when Ψ = {"} for some quantum predicate" . Let

|=tot {Θ} (
{
P0
@̄ (") + P1

@̄ (Θ)
}
,

and {'[8 : 8 ≥ 0, [ ∈ [[(]]
N} be a P0

@̄ (") +P1
@̄ (Θ)-ranking assertion

for while M[@̄] do ( end. Then Θ ⊑inf F?.(.
(
P0
@̄ (") + P1

@̄ (Θ)
)
.

We now prove by induction on 8 that

∀8 ≥ 0,∀[ ∈ [[(]]
N
, P0

@̄ (") + P1
@̄ (Θ) ⊑inf "

[
8 + '

[
8

where "
[
8 is defined as in Fig. 5 for the F? semantics of

while M[@̄] do ( end. The case when 8 = 0 is from the assump-

tion that P0
@̄ (") + P1

@̄ (Θ) ⊑inf '
[
0 . Then we calculate

P0
@̄ (") + P1

@̄ (Θ)
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⊑inf P0
@̄ (") + P1

@̄

(
F?.(.

(
P0
@̄ (") + P1

@̄ (Θ)
) )

⊑inf P0
@̄ (") + P1

@̄

(
F?.(.

(
"

[→

8 + '
[→

8

))
⊑inf P0

@̄ (") + P1
@̄

(
[
†
1

(
"

[→

8

))
+ P1

@̄

(
[
†
1

(
'
[→

8

))
⊑inf "

[
8+1 + '

[
8+1,

where the first inequality follows from Lemma 4.2(1), the second

one from the induction hypothesis and that F?.( is monotonic

with respect to ⊑inf , the third one from Lemma A.1 and that [1 ∈
[[(]], and the last one from Eq. (11). Thus

P0
@̄ (") + P1

@̄ (Θ) ⊑inf F?.(while M[@̄] do ( end)."

by noting that
∧

8 '
[
8 = 0 for any [ , and so

|=tot
{
P0
@̄ (") + P1

@̄ (Θ)
}
whileM[@̄] do ( end {"}

from Lemma A.3.

Completeness: By Lemma A.3 and the (Imp) rule, it suffices to

show that for any Θ and ( ′,

⊢tot
{
F?.( ′ .Θ

}
( ′ {Θ} .

Again, we take the case for while loops as an example. Letwhile ,

while M[@̄] do ( end and " ∈ Θ. By induction, we have ⊢tot
{F?.(.Ψ} ( {Ψ}whereΨ , F?.while." . Note also from LemmaA.2

that Ψ = P0
@̄ (") + P1

@̄ (F?.(.Ψ) . To finish the proof, we have to

construct a Ψ-ranking assertion for while.

For any [ ∈ [[(]]
N
and : ≥ 0, let

'
[

:
=

∞∑
8=:

P1
@̄ ◦ [†1 ◦ . . . ◦ P

1
@̄ ◦ [†8 ◦ P

0
@̄ (� ). (18)

We would like to show that the set of '
[

:
satisfy the conditions in

Definition 4.3. First, we prove by induction on 8 that

∀8 ≥ 0,∀[ ∈ [[(]]
N
, "

[
8 ⊑ '

[
0 (19)

where "
[
8 is defined as in Fig. 5 for F?.while." , which then im-

plies that Ψ ⊑inf '
[
0 . The base case of Eq. (19) where 8 = 0 is trivial

since "
[
0 = 0. We further calculate that

"
[
8+1 = P0

@̄ (") + P1
@̄

(
[
†
1

(
"

[→

8

))
⊑ P0

@̄ (� ) + P1
@̄

(
[
†
1

(
'
[→

0

))
= '

[
0 .

For the second condition of Definition 4.3, we note that fromEq. (18),

'
[

:+1 ⊑ '
[

:
and

∧
: '

[

:
= 0. Furthermore, it is easy to see that

'
[

:+1 = P1
@̄

(
[
†
1

(
'
[→

:

))
.

Now using rule (WhileT), we have ⊢tot {Ψ} while {"} . Finally,
the desired result

⊢tot {F?.while.Θ} while {Θ}
follows from (Union) and Lemma 4.2(2).

C ARTIFACT APPENDIX

C.1 Abstract

NQPV is a verification assistant prototypeof nondeterministic quan-

tum programs. It implements the verification logic of partial cor-

rectness in the numerical form, with soundness guaranteed by the

theory and experiments. It is a Python project, depending on numpy,

cvxpy and ply packages. The three examples in our paper: the

three-qubit bit-flip quantum error correction scheme, Deutsch al-

gorithm and quantum walk, are encoded and verified numerically.

The evaluation is integrated into a step-by-step Jupyter notebook.

It shows that the tool can check the program syntax, automatically

calculate the verification condition, check whether it is satisfied by

the precondition, and return a proof outline of the correctness for-

mula if so. Compared to other verification tools based on theorem

provers like Coq or Isabelle, NQPV is weaker in expressiveness but

stronger in automation. The whole evaluation can be conducted

using a computer with 32 GB memory.

C.2 Artifact check-list (meta-information)
• Algorithm: Verification of nondeterministic quantum programs.

• Run-time environment: Python 3. The project is developed with

Python 3.9.

• Metrics: Expressiveness of the programs and quantum assertions;

Automation of the verification; Time and memory consumption for

the verification of larger programs.

• Output: Numerical verification conditions saved in a computer

file.

• Experiments: Integrated in a Jupyter notebook.

• How much disk space required (approximately)?: Only the

performance test is resource consuming. 8 GB is sufficient for the

experiments here.

• Howmuch time is needed to prepareworkflow (approximately)?:

5 minutes.

• Howmuch time is needed to complete experiments (approx-

imately)?: 15 minutes to go through the Jupyter notebook.

• Publicly available: Yes, on GitHub, Zenodo and PyPI.

• Code licenses (if publicly available)?: Apache-2.0

• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.7564087

C.3 Description

C.3.1 How to access. This is a Python project onGitHub: https://github.com/LucianoXu/NQPV.

For evaluation purpose, please clone the "Article Release". The project

itself is about 1 MB in size.

This project is also uploaded on PyPI as a package: https://pypi.org/project/NQPV/.

C.3.2 Hardware dependencies. Only the performance test is re-

source consuming. A laptop computer with 32 GB memory and

8 GB disk storage is sufficient for the evaluation.

C.3.3 So�ware dependencies. Python packages: numpy for matrix

calculation, cvxpy for the SDP solver, and ply for syntax parsing.

C.4 Installation

Experiments with the source code:

(1) Prepare a Python 3 environment (This project was devel-

oped with Python 3.9).

(2) Install package dependencies with this command:

pip install cvxpy ply

(3) Clone the NQPV project or download the "Article Release".

https://github.com/LucianoXu/NQPV
https://pypi.org/project/NQPV/
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(4) Open a console at the root folder of the project and run the

test script with

python test_install.py

If no error is reported, then the installation is successfully

completed.

NQPV as a Python package: run the command pip install NQPV

C.5 Experiment workflow

Find the Jupyter notebook evaluate.ipynb in the root folder of

source. This notebook contains a brief introduction to the tool and

integrates the verification experiments of all examples in our pa-

per.

Every individual experiment is done with a .nqpv file contain-

ing the NQPV program code, and a .py python script to prepare

the operators and invoke the verification.

C.6 Evaluation and expected results

The three examples in the paper: the three-qubit bit-flip quantum

error correction scheme, Deutsch algorithm and quantumwalk are

encoded as program codes in the Jupyter notebook. The notebook

also contains some examples to demonstrate the ability of NQPV to

reject false correctness claims. The required operators (special uni-

tary operators or measurements) are prepared and saved as numpy

matrices.

It is expected that the verification is automatically completed

and a proof outline is printed. We can check every intermediate

condition in the proof outline using the show command. The ver-

ification condition of each example is compared with the given

precondition.

Finally, a performance test of NQPV on larger qubit numbers is

presented. For the Grover algorithm, NQPV takes several minutes

and 32 GB memory to finish the verification of the 13 qubit case.

C.7 Experiment customisation

The examples in the notebook demonstrate the syntax of describ-

ing a verification task in NQPV.

To conduct a customised experiment, we can:

(1) Encode the verification task in the example.nqpv file. It con-

tains the program to be verified, the pre- and post-conditions,

and the loop invariants.

(2) Prepare a python script to produce the operators used in

example.nqpv as binary numpy matrix files. Then invoke

the verification using the commend

nqpv.verify("example.nqpv")

(3) Run the python script to conduct the verification.

(4) After obtaining the proof outline, modify example.nqpv and

repeat to print the conditions during verification.

To avoid path errors, the above experiments should be conducted

in the root folder of NQPV source, or use NQPV installed from

PyPI.

C.8 Notes

MacOS users may encounter an installation error due to the pack-

age cmake. In this case, try to run pip install cmake first, then

add cmake to PATH manually, and finally install NQPV.

We recommend using conda to create a new experimental envi-

ronment. The deployment was also tested on a Linux cloud server.
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