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ABSTRACT
With the growing privacy concerns in recommender systems, rec-

ommendation unlearning, i.e., forgetting the impact of specific

learned targets, is getting increasing attention. Existing studies pre-

dominantly use training data, i.e., model inputs, as the unlearning

target. However, we find that attackers can extract private infor-

mation, i.e., gender, race, and age, from a trained model even if it

has not been explicitly encountered during training. We name this

unseen information as attribute and treat it as the unlearning target.
To protect the sensitive attribute of users, Attribute Unlearning (AU)

aims to degrade attacking performance and make target attributes

indistinguishable. In this paper, we focus on a strict but practical

setting of AU, namely Post-Training Attribute Unlearning (PoT-

AU), where unlearning can only be performed after the training of

the recommendation model is completed. To address the PoT-AU

problem in recommender systems, we design a two-component loss

function that consists of i) distinguishability loss: making attribute

labels indistinguishable from attackers, and ii) regularization loss:

preventing drastic changes in the model that result in a negative im-

pact on recommendation performance. Specifically, we investigate

two types of distinguishability measurements, i.e., user-to-user and

distribution-to-distribution. We use the stochastic gradient descent

algorithm to optimize our proposed loss. Extensive experiments
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on three real-world datasets demonstrate the effectiveness of our

proposed methods.
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1 INTRODUCTION
Recommendation unlearning has gained increasing interest in re-

cent years. On the one hand, recommender systems have been

widely applied in practice with great success, having a substan-

tial influence on people’s lifestyles [12, 25, 41]. The success lies in

their ability to extract highly personalized information from user

data. On the other hand, people have grown more aware of privacy

concerns in personalized recommendations, and demand their sen-

sitive information be protected. As one of the protective measures,

Right to be Forgotten [8, 9, 16] requires recommendation platforms

to enable users to withdraw their individual data and its impact,

which impulses the study of machine/recommendation unlearning.

Existing studies of machine unlearning mainly use training data,

i.e., model inputs, as the unlearning target [38]. We name this type

of unlearning task as Input Unlearning (IU). In the recommendation
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Table 1: Difference between input unlearning and attribute
unlearning in recommender systems.

Input Unlearning Attribute Unlearning

Unlearning target

Input data Latent attribute

(used in training) (not used in training)

Applicability of

Ground truth Not applicable

retraining from scratch

scenarios, the input data can be a user-item interaction matrix. With

different unlearning targets, IU can be user-wise, item-wise, and

instance-wise [11]. IU benefits multiple parties, e.g., data providers

and model owners, because the target data can be i) the specified

data that contains users’ sensitive information, and ii) the dirty data

that is polluted by accidental mistakes or intentional attack [34].

Extensive studies on IU cannot obscure the importance of At-

tribute Unlearning (AU), where attributes represent the inherent

properties, e.g., gender, race, and age of users that have not been
used for training (Table 1: difference in unlearning target). Due to

the information extraction capabilities of recommender systems,

AU is especially valuable in the context of recommendation. Al-

though recommendation models did not see the latent attribute,

the research found that basic machine learning models can success-

fully infer users’ attributes from the user embedding learned by

collaborative filtering models [18], which is also known as Attribute

Inference Attack (AIA) [3, 31]. Therefore, from the perspective of

privacy preservation, AU is as important as IU in recommender

systems. However, existing IU methods cannot be applied in AU.

As illustrated in Table 1, retraining from scratch (ground truth for

IU) is unable to unlearn the latent attribute, i.e., not applicable for

AU, since it is not utilized during training at all.

Existing but limited research on AU has focused on In-Training

AU (InT-AU) [18, 24], where unlearning is performed during model

training (as shown in the left of Figure 1). In this paper, we focus

on a more strict AU setting, namely Post-Training Attribute Un-

learning (PoT-AU), where we can only manipulate the model, i.e.,

updating parameters, after the training is fully completed and have

no knowledge about training data or other training information (as

shown in the right of Figure 1). Compared with InT-AU, this setting

is more practical, because of i) data accessibility: we may not get

access to the training data or other information after training due to

regulations, and ii) deployment overhead: non-interference with the

original training process is more flexible and reduces deployment

overhead. As shown in Figure 1, there are two goals for PoT-AU

in recommender systems, where user embedding is the target of

attacking and unlearning. The primary goal (Goal #1) is to make

the target attribute indistinguishable to AIA, or more directly, to

degrade the attacking performance. The other goal (Goal #2) is to
maintain the recommendation performance. This goal is equally im-

portant as the primary one, since both users and recommendation

platforms want to avoid having a negative impact on the original

recommendation tasks.

To achieve the above two goals in the PoT-AU problem, we con-

sider it as an optimization problem on user embedding which is the

crucial parameter in the recommendation model that contains user

information. We then design a two-component loss function that

consists of i) distinguishability loss: measuring the distinguishable

degree of users with different attribute labels, and ii) regularization
loss: measuring the divergence of current parameters and the origi-

nal ones. Each component is individually devised for one goal in the

PoT-AU problem. We introduce the general design principle of each

component, which is applicable to all recommendation models that

have user embeddings. Specifically, we mainly focus on the design

of distinguishability loss and investigate two types of distinguisha-

bility measurements from different perspectives, i.e., User-to-User

(U2U) and Distribution-to-Distribution (D2D). U2U loss measures

the distinguishability by the weighted embedding divergence of

each user-pairs if the two users in the pair have different attribute

labels. D2D loss regards all users within the same attribute label as

a distribution and measures the distinguishability by the distance of

different distributions. We implement our proposed loss functions

with effective and computationally efficient components, and adopt

stochastic gradient descent to optimize them.

We summarize the main contributions of this paper as follows:

• To the best of our knowledge, we are the first to study the PoT-AU

problem in recommender systems, which is a more strict and

practical problem than InT-AU. We identify two essential goals

of PoT-AU in recommender systems, i.e., making attributes indis-

tinguishable, and maintaining recommendation performance.

• To address the PoT-AU problem, we propose a two-component

loss function, i.e., a linear combination of distinguishability loss

and regularization loss. Each component is devised to achieve one

of the above goals separately. From two different perspectives,

we design two types of distinguishability loss, i.e., U2U and D2D.

• We implement two examples, i.e., U2U-R and D2D-R, of our pro-

posed loss function and conduct extensive experiments on three

real-world datasets to comprehensively evaluate the effectiveness

of our proposed methods in terms of both unlearning (Goal #1)
and recommendation (Goal #2).

• To better understand the mechanism of our proposed method, we

analyze the user embedding changes before and after unlearning,

finding the connection between these changes and the perfor-

mance difference between U2U and D2D. Finally, we also discuss

the potential variations of different distinguishability losses.

2 PRELIMINARIES
2.1 Recommendation Model
Today’s recommender systems can provide personalized recom-

mendations based on collaborative information across users and

items. Collaborative filtering is an acknowledged algorithm for an-

alyzing this information [43].In this paper, we choose the widely

applied collaborative filtering which is based on matrix factoriza-

tion (MF-based CF). The basic idea of MF-based CF is to decompose

the user-item interaction matrix into two low-rank embedding ma-

trices, i.e., user embedding and item embedding. In the PoT-AU

problem, we use user embedding as the target of attacking and

unlearning.

2.2 Attacking Setting
The process of attacking in PoT-AU problem is also known as AIA,

which consists of three stages, i.e., exposure, training, and inference.
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Figure 1: Overview of Post-Training Attribute Unlearning (PoT-AU) in recommender systems.

In the exposure stage, we assume that attackers follow the grey-box

attack. In other words, not all model parameters but only users’

embedding and their corresponding attribute information are ex-

posed to attackers. In the training stage, we assume that attackers

train the attacking model on a shadow dataset, which can be gen-

erated by sampling from the original users or users from the same

distribution [40]. Although shadow-dataset training will inevitably

reduce attacking performance, this assumption is reasonable, since

the full-dataset setting is too strong and impractical. Regarding the

attack as a classification task, attacking models use user embedding

as input data and attribute information as labels. For conciseness,

we focus on binary classification in this paper. We will discuss the

generalization to multi-class classification in Section 6. In the in-

ference stage, attackers use their trained attacking models to make

predictions.

3 POST-TRAINING ATTRIBUTE UNLEARNING
In this section, we first further explain our motivation as well as

the process of the PoT-AU problem in recommender systems. Then

we consider the PoT-AU problem as an optimization problem on

user embedding and propose a novel two-component loss function

to address it.

3.1 Motivation
As shown in Figure 1, we divide the whole process of PoT-AU into

two stages, i.e., training stage and post-training stage. In the train-

ing stage, the recommender system trains an original collaborative

filtering model on input data. To align with the post-training setting,

we leave this stage untamed and assume that one has no information

in this stage except the user embedding and their attributes. In the

post-training stage, we generate new user embedding by unlearn-

ing the original one. The new embedding, i.e., user embedding after

unlearning, is supposed to achieve two goals simultaneously. Goal
#1 (unlearning) is to make target attributes distinguishable so as to

protect attribute information from attackers. Goal #2 (recommen-

dation) is to maintain the original recommendation performance

so as not to influence users’ initial requirements.

Compared with in-training setting (InT-AU), the post-training

setting (PoT-AU) is more challenging. Firstly, PoT-AU allows no

interference with the training process, which means InT-AU meth-

ods, i.e., adding network block [24], and adversarial training [18],

are not applicable. Secondly, even though PoT-AU cuts down the

connection with the training process, directly manipulating user

embedding by adding artificially-designed noise, e.g., differential

privacy [1], is inappropriate, because i) it will inevitably degrade

recommendation performance, and ii) its unlearning ability is not

promising, as the functional mechanism of attacking models, in-

cluding complex machine learning models, is not well-understood.

Thirdly, PoT-AU prohibits access to the input data and other train-

ing information, as the said data could be either unavailable or

under protection. As a result, the said data cannot be used for fine-

tuning user embedding, e.g., adding noise to the embedding and

then fine-tuning to boost recommendation performance.

3.2 Two-Component Loss Function
One of the feasible solutions is to envision the final desired user

embedding and temporally ignore the intermediate manipulation

and transformation. Thus, we regard PoT-AU as an optimization

problem on user embedding. In other words, we aim to design a

proper loss function and let optimization techniques do the rest.

There are two goals in PoT-AU problem, i.e.,Goal #1: unlearning
andGoal #2: recommendation. Thus, we propose a two-component

loss function in which one component is individually devised for

one goal. Formally, we combine the two components linearly with

a trade-off parameter 𝛼 to balance both goals:

𝐿(𝜃 ) = ℓ𝑢 + 𝛼ℓ𝑟 , (1)

where 𝜃 ∈ R𝑁×𝐾
denotes user embedding (𝑁 is the number of

users, and 𝐾 is the number of embedding dimensions), ℓ𝑢 and ℓ𝑟
represent the loss for Goal #1 and Goal #2 respectively.

3.3 Distinguishability Loss
The core difficulty of designing a proper two-component loss func-

tion lies in defining distinguishability loss ℓ𝑢 . It is related to the pri-

mary goal of PoT-AU, i.e., Goal #1. We define the distinguishability

from two perspectives, i.e., User-to-User (U2U) and Distribution-

to-Distribution (D2D). Following the definitions, we design two
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types of distinguishability losses respectively. For conciseness, we

assume the target attribute has binary labels: 𝑆1 and 𝑆2.

3.3.1 User-to-user Loss. The attacker infers users’ attributes

according to their embedding. From a U2U perspective, making

attributes indistinguishable means letting users with different at-

tribute labels have similar embedding. This idea is statistically ex-

pressed as a positive correlation between the divergence of attribute

information and the similarity of user embedding. In other words,

there is a negative correlation between the divergence of attribute

information and the divergence of user embedding, which can be

formally expressed as:

𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) ≤
𝛿

𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 )
for 𝑖 ∈ 𝑆1, 𝑗 ∈ 𝑆2, (2)

where 𝐷𝑖𝑣 can be certain divergence functions, 𝑣𝑖 denotes the at-

tribute information of user 𝑖 , and 𝛿 is a constant. The attribute

information is usually regarded as the attribute labels, but there

are more advanced options in the PoT-AU setting, which we will

discuss in Section 3.5.

As user embedding 𝜃 is the target to optimize, Equation (2) can be

interpreted as the divergence of embedding 𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) is bounded
by a scale of 𝛿/𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ). That is, the greater the divergence be-
tween the attribute information of users 𝑖 and 𝑗 , the tighter the

upper bound, and hence the smaller the divergence in embedding

between users is likely to be. Assuming that the divergence function

is non-negative, we can rewrite Equation (2) as:

𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) · 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝛿. (3)

Equation (3) reflects the concept of U2U-perspective distinguisha-

bility, where 𝛿 is the upper bound of the distinguishability degree.

We name this type of distinguishability measurement as U2U loss

and define it as follows.

Definition 1 (User-to-user distinguishability). Given the
divergence of user embedding 𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) and the divergence of user
attribute 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ), we define user-to-user distinguishability as:

ℓ𝑢,𝑈 =
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) · 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) . (4)

Note that the divergence of embedding can be different from that

of attribute, which leads tomore possibility of U2U loss. Interpreting

𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) as a weight term, Equation (4) shows that U2U loss is a

weighted divergence loss of user embedding. The larger the weight,

the more stringent the measure of embedding divergence is likely

to be, which reflects our design principle, i.e., letting users with

different attribute labels have similar embedding.

3.3.2 Distribution-to-distribution Loss. We consider the user

embedding with the same attribute label as a distribution, e.g., 𝑃𝜃1
denotes the embedding distribution of users with label 𝑆1. Inspired

by Theorem 1, the distinguishability of user performance can be

bounded by theH -divergence of their distributions 𝑑𝑖𝑣H (𝑃𝜃1 , 𝑃𝜃2 ).

Theorem 1. [Bound on Domain Risk [4]] LetH be a hypothesis
class of VC dimension 𝑑 . With probability 1 − 𝜖 over the choice of
samples Θ1 ∼ 𝑃 (𝜃1)𝑛 and Θ2 ∼ 𝑃 (𝜃2)𝑛 , for every 𝜂 ∈ H :

𝑅Θ1
(𝜂) − 𝑅Θ2

(𝜂) ≤ ˆ𝑑𝑖𝑣H (Θ1,Θ2) + 𝛽 + 𝛾, (5)

with 𝛽 =

√︃
4

𝑛 (𝑑 log
2𝑒𝑛
𝑑

+ log
4

𝜖 ) + 4

√︃
1

𝑛 (𝑑 log
2𝑛
𝑑

+ log
4

𝜖 ), and 𝛾 ≥
inf𝜂∗∈H [𝑅𝑃𝜃

1

(𝜂∗) + 𝑅𝑃𝜃
2

(𝜂∗)].

In Theorem 1,
ˆ𝑑𝑖𝑣H is the empirical H -divergence, and 𝑅 is

the domain risk which represents the recommendation loss in our

scenarios, reflecting the performance of users. For practical con-

sideration, it is worth noting that the embeddings of all users are

trained together without any attribution information. As a result,

the shapes of the embedding distribution tend to be similar across

different attribute labels. The difference in distributions mainly

comes from their distance. Therefore, we use 𝑑𝑖𝑠𝑡 (𝑃𝜃1 , 𝑃𝜃2 ) to ap-
proximate 𝑑𝑖𝑣H (𝑃𝜃1 , 𝑃𝜃2 ) and omit the constants for simplicity. We

name this type of distinguishability measurement as D2D loss and

define it as follows.

Definition 2 (Distribution-to-distribution distinguisha-

bility). Given two distributions of embedding from users with differ-
ent attribute labels 𝑃𝜃1 and 𝑃𝜃2 , we define distribution-to-distribution
distinguishability as the distance between two distributions:

ℓ𝑢,𝐷 = 𝐷𝑖𝑠𝑡 (𝑃𝜃1 , 𝑃𝜃2 ) . (6)

Thus, distributional distances, e.g., KL divergence [21] and Max-

imum Mean Discrepancy (MMD) [44], can be used to measure the

degree of D2D distinguishability.

3.4 Regularization Loss
To achieveGoal #2, we add regularization loss ℓ𝑟 in Equation (1).We

name ℓ𝑟 as regularization loss instead of recommendation loss. The

reason is that we cannot use common recommendation loss, e.g.,

binary cross-entropy [48] and Bayesian personalized ranking [39])

in the post-training setting, as the training data is not available. As

a result, we can only use the regularization term to bound the user

embedding with the original one, preventing a drastic change in

user embedding. The idea behind this is that we deem that closer

model parameters will lead to closer model performance. Formally,

the regularization loss is defined as ℓ𝑟 = 𝑅(𝜃, 𝜃∗), where 𝜃∗ denotes
the original user embedding before unlearning.

3.5 Implementation
3.5.1 Regularization Loss. For the regularization loss ℓ𝑟 , we

choose the commonly used regularizer, Frobenius norm [5]. For-

mally,

𝑅(𝜃, 𝜃∗) = ∥𝜃 − 𝜃∗∥2𝐹 =

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

(𝜃𝑖, 𝑗 − 𝜃∗𝑖, 𝑗 )
2 . (7)

3.5.2 Distinguishability Loss.

U2U. For the U2U distinguishability loss, we also use Frobe-

nius norm to measure the divergence of user embedding. Formally,

𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) = ∥𝜃𝑖 − 𝜃 𝑗 ∥2𝐹 . As for attribute divergence, we use the
inverse adjacent matrix. To be specific,

𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) = 1 −𝐴(𝑆𝑖 , 𝑆 𝑗 ), 𝐴(𝑆𝑖 , 𝑆 𝑗 ) =
{
1 if 𝑆𝑖 = 𝑆 𝑗 .

0 if 𝑆 𝑗 ≠ 𝑆 𝑗 .
(8)
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Due to the property that 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) = 0 if 𝑆𝑖 = 𝑆 𝑗 , we can rewrite

U2U loss as:

ℓ𝑢,𝑈 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

∥𝜃𝑖 − 𝜃 𝑗 ∥2𝐹 · 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) = 2Tr(𝜃⊤L𝐷𝜃 ), (9)

where L𝐷 is the Laplacian matrix of divergence 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ). This
tensorized expression is more efficient for GPU devices to compute.

Although the choice of attribute divergence is not the main focus

of this paper, we would like to have a brief discussion about it. Using

the inverse adjacent matrix as attribute divergence is simple and

effective, but it loses a certain amount of attribute information and

there are more choices with potential. A straightforward choice is to

transform attribute labels into one-hot vectors and apply classifica-

tion losses, e.g., cross-entropy [50] and cosine similarity [15]. Rather

than using one-hot vectors, a more advanced approach would be

to use the predicted softmax vector from attacking models instead.

This approach can not only preserve more information about at-

tribute labels, but also adopt adversarial training while updating

user embedding, which means 𝐷𝑖𝑣 (𝑣𝑖 , 𝑣 𝑗 ) is adaptively updated as

𝐷𝑖𝑣 (𝜃𝑖 , 𝜃 𝑗 ) is updated.

D2D. For the D2D distinguishability loss, we apply MMD with

radial kernels [45] to measure the distance of two distributions.

MMD satisfies several properties that are required as a distance

measurement, including non-negativity and exchange invariance,

i.e., 𝐷𝑖𝑠𝑡 (𝑃𝜃1 , 𝑃𝜃2 ) = 𝐷𝑖𝑠𝑡 (𝑃𝜃2 , 𝑃𝜃1 ).

3.5.3 Summary. Incorporating different distinguishability losses,

we propose two loss functions for the PoT-AU problem. The U2U-R

loss computes as:

𝐿𝑈 (𝜃 ) = ℓ𝑢,𝑈 + 𝛼𝑅(𝜃, 𝜃∗) = 2Tr(𝜃⊤L𝐷𝜃 ) + 𝛼 ∥𝜃 − 𝜃∗∥2𝐹 . (10)

The D2D-R loss computes as:

𝐿𝐷 (𝜃 ) = ℓ𝑢,𝐷 + 𝛼𝑅(𝜃, 𝜃∗) = MMD(𝑃𝜃1 , 𝑃𝜃2 ) + 𝛼 ∥𝜃 − 𝜃
∗∥2𝐹 . (11)

We apply the stochastic gradient descent algorithm [6] to optimize

our proposed losses.

4 EXPERIMENTS
To comprehensively evaluate our proposed methods, we conduct

experiments on three benchmark datasets and observe the per-

formance in terms of unlearning and recommendation. We also

investigate the efficiency and robustness of our proposed loss func-

tions. We further analyze the change in user embedding before

and after unlearning to better understand the mechanism of our

proposed methods.

4.1 Experimental Settings
4.1.1 Datasets. Experiments are conducted on three publicly ac-

cessible datasets that contain both input data, i.e., user-item interac-

tions, and user attributes, i.e., gender. Following [18], the provided

gender information of the users are limited to females and males.

• MovieLens 100K (ML-100K)1: MovieLens is one of the most

widely used datasets in the recommendation [26, 27]. They col-

lected users’ ratings towards movies as well as other attributes,

1
https://grouplens.org/datasets/movielens/

Table 2: Summary of datasets.

Dataset Attribute User # Item # Rating # Sparsity

ML-100K

Total 943

1,682

100,000 93.695%

Female 273 73,824 83.923%

Male 670 26,176 97.677%

ML-1M

Total 6040

3,950

1,000,209 95.814%

Female 1,079 246,896 94.207%

Male 4,331 753,313 95.597%

LFM-2B

Total 19,972

99,639

2,829,503 99.858%

Female 4,415 444,076 99.899%

Male 15,557 2,385,427 99.846%

e.g., gender, age, and occupation. ML-100K is the version con-

taining 100 thousand ratings.

• MovieLens 1M (ML-1M): This version has 1 million ratings.

• LFM-2B2
: This dataset collected more than 2 billion listening

events, which is used for music retrieval and recommendation

tasks [37].LFM-2B also contains user attributes including gender,

age, and country.

We filter out the users and items that have less than 5 interactions.

Specifically, we use 80% of ratings for training, 10% as the validation

set for tuning hyper-parameters, and the rest for testing. Table 2

summarizes the statistics of three datasets.

4.1.2 Recommendation Models. We test our proposed meth-

ods on two different recommendation models. As mentioned in

Section 2.1, we focus on collaborative filtering models and use the

user embedding as the attacking and unlearning target.

• NMF [30]: Neural Matrix Factorization (NMF) is one of the rep-

resentative well-known models based on matrix factorization.

• LightGCN [29]: Light Graph Convolution Network (LightGCN)

is the state-of-the-art collaborative filtering model which im-

proves recommendation performance by simplifying the graph

convolution network.

4.1.3 Attackers. We randomly expose 10% user embedding and

their corresponding labels as the shadow dataset to train attackers,

leaving the rest for testing. We choose two easy-implement and

powerful machine learning models as attackers.

• MLP [19]: Multilayer Perceptron is a simplified three-layer neural

network, which is a widely used classifier.

• XGB [14]: XGBoost is an acknowledged classifier in the industry.

It is so powerful that it has been used in numerous machine

learning since it was proposed [13].

4.1.4 UnlearningMethods. There are lots of studies on machine

unlearning, but they are not applicable to the PoT-AU problem.

To the best of our knowledge, we are the first to study the PoT-

AU problem. Although InT-AU setting is different from ours, i.e.,

PoT-AU, comparing with InT-AU methods would be helpful to

provide a comprehensive understanding of the AU problem. Thus,

we compared our proposed U2U-R and D2D-R with the original

user embedding and other InT-AU methods.

2
http://www.cp.jku.at/datasets/LFM-2b
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Table 3: Results of unlearning performance (performance of attackers). The top results are highlighted in bold. The lower the
attacking performance, the better the unlearning performance.

NMF

MLP XGB

Acc Precision Recall AUC Acc Precision Recall AUC

ML-100K

Original 0.6455 0.6735 0.5893 0.6465 0.6364 0.6333 0.6786 0.6356

U2U-R 0.4818 0.9997 0.0013 0.5002 0.9909 0.9828 0.9999 0.9906

D2D-R 0.5182 0.6333 0.3115 0.5434 0.5091 0.5593 0.5410 0.5052
Retrain 0.5091 1.0000 0.0003 0.5006 0.3818 0.3965 0.4107 0.6187

Adv-InT 0.4883 0.5758 0.2054 0.5135 0.5933 0.6409 0.5662 0.5957

ML-1M

Original 0.7485 0.7403 0.7125 0.7464 0.7310 0.7361 0.6625 0.7269

U2U-R 0.4737 1.0000 0.0002 0.5001 0.9831 0.9763 0.9981 0.9845

D2D-R 0.4795 0.4167 0.6338 0.5019 0.5029 0.4186 0.5070 0.5035
Retrain 0.4883 0.4868 1.0000 0.5028 0.4437 0.4598 0.4819 0.5261

Adv-InT 0.4912 0.4557 0.4161 0.5129 0.6079 0.6551 0.5577 0.6110

LFM-2B

Original 0.7181 0.6906 0.7501 0.7192 0.6767 0.6419 0.7422 0.6790

U2U-R 0.5188 0.5641 0.1654 0.5188 0.9991 0.9873 0.9924 0.9993

D2D-R 0.5263 0.5128 0.6154 0.5283 0.5075 0.4960 0.4769 0.5068

Retrain 0.5226 0.5021 0.9531 0.5382 0.5038 0.4853 0.5156 0.5042
Adv-InT 0.5205 0.5243 0.6207 0.5187 0.5825 0.6279 0.5557 0.5812

LightGCN

MLP XGB

Acc Precision Recall AUC Acc Precision Recall AUC

ML-100K

Original 0.6220 0.6363 0.6512 0.6205 0.6585 0.6596 0.7209 0.6553

U2U-R 0.4391 0.9993 0.0012 0.5011 0.9756 0.95838 0.9998 0.9722

D2D-R 0.5244 0.4737 0.4865 0.5210 0.5047 0.5213 0.5132 0.5045
Retrain 0.4545 0.4483 0.4815 0.5449 0.4795 0.4952 0.4962 0.5107

Adv-InT 0.5375 0.4907 0.5221 0.5326 0.5785 0.6032 0.6007 0.5864

ML-1M

Original 0.7076 0.6871 0.6957 0.7069 0.6754 0.6524 0.6646 0.6748

U2U-R 0.5175 0.5134 0.9943 0.5090 0.9874 0.9761 0.9973 0.9889

D2D-R 0.5234 0.5281 0.5434 0.5232 0.5146 0.5205 0.5145 0.5146

Retrain 0.4737 0.4641 0.4201 0.5269 0.5029 0.4969 0.4793 0.5027
Adv-InT 0.5117 0.4908 0.8209 0.5272 0.5917 0.6544 0.5725 0.6037

LFM-2B

Original 0.7218 0.6712 0.7903 0.7261 0.6541 0.6143 0.6935 0.6566

U2U-R 0.4812 0.4773 0.9981 0.5071 0.9997 0.9989 0.9874 0.9998

D2D-R 0.5062 0.5151 0.4928 0.5064 0.5113 0.5286 0.5312 0.5103
Retrain 0.5489 0.4247 0.5000 0.5458 0.5263 0.4459 0.5323 0.5226

Adv-InT 0.5439 0.5139 0.5714 0.5454 0.5879 0.6124 0.5548 0.5734

• U2U-R (PoT-AU): This is the two-component loss function with

user-to-user loss as distinguishability loss, i.e., Equation (10).

• D2D-R (PoT-AU): This is the two-component loss function with

distribution-to-distribution loss as distinguishability loss, i.e.,

Equation (11).

• Original: This is the original user embedding before unlearning.

• Retrain [49] (InT-AU): This method adds a regularizer to the

original loss to achieve fairness. Inspired by it, we add our pro-

posed D2D loss to the original recommendation loss and retrain

the model from scratch. Note that we only use D2D loss because

incorporating U2U loss in this setting would be computationally

prohibitive.

• Adv-InT [18] (InT-AU): This method uses adversarial training

to achieve InT-AU for variational auto-encoder. We also apply

the idea of adversarial training to our tested recommendation

models, i.e., NMF and LightGCN, and name it Adv-InT.

We run all models 10 times and report the average results. Due

to the space limit, we report the hyper-parameter settings and

hardware information in Appendix A.

4.2 Results and Discussions
4.2.1 Unlearning Performance. The performance of unlearning

is evaluated by the performance of attackers. We train attackers on

the shadow training set, and report their performance on the testing

set. To comprehensively evaluate attacking performance, we report

four metrics, including Accuracy (Acc), precision, recall, and Area

Under the ROC Curve (AUC) [17], in Table 3. To visually analyze

the results, we also use t-SNE [46] to reduce dimension (Figure 3 in
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Table 4: Results of recommendation performance. The top
results are highlighted in bold.

NMF NDCG@5 HR@5 NDCG@10 HR@10

ML-100K

Original 0.4308 0.6098 0.4179 0.4491
U2U-R 0.4174 0.6015 0.4073 0.4425

D2D-R 0.4320 0.6102 0.4147 0.4489

Retrain 0.4159 0.6004 0.4109 0.4439

Adv-InT 0.4213 0.5997 0.4097 0.4453

ML-1M

Original 0.5146 0.7517 0.5054 0.5761
U2U-R 0.4316 0.6957 0.4430 0.5443

D2D-R 0.5110 0.7497 0.5033 0.5750

Retrain 0.5095 0.7421 0.4962 0.5673

Adv-InT 0.4913 0.7395 0.4875 0.5514

LFM-2B

Original 0.2082 0.8510 0.3773 0.8130
U2U-R 0.1342 0.6572 0.2268 0.6236

D2D-R 0.2111 0.8479 0.3746 0.8103

Retrain 0.2033 0.8414 0.3695 0.8071

Adv-InT 0.2012 0.8335 0.2706 0.8075

LightGCN NDCG@5 HR@5 NDCG@10 HR@10

ML-100K

Original 0.4394 0.6161 0.4195 0.4496
U2U-R 0.4274 0.6106 0.4079 0.4418

D2D-R 0.4384 0.6131 0.4180 0.4492

Retrain 0.4211 0.6051 0.4092 0.4450

Adv-InT 0.4285 0.6063 0.4134 0.4443

ML-1M

Original 0.4554 0.7170 0.4674 0.5590
U2U-R 0.4296 0.6983 0.4445 0.5452

D2D-R 0.4534 0.7168 0.4657 0.5586

Retrain 0.4471 0.7176 0.4666 0.5567

Adv-InT 0.4485 0.7106 0.4625 0.5538

LFM-2B

Original 0.2234 0.8898 0.4025 0.8471
U2U-R 0.2148 0.8807 0.3898 0.8332

D2D-R 0.2228 0.8894 0.4018 0.8461

Retrain 0.2230 0.8885 0.3996 0.8449

Adv-InT 0.2213 0.8827 0.3943 0.8425

Table 5: Running time of unlearning methods.

Time (s) U2U-R D2D-R Retrain Adv-InT

ML-100K

NMF 5.78 2.69 117.39 223.21

LightGCN 11.86 5.99 284.65 567.24

ML-1M

NMF 66.65 28.80 629.09 928.55

LightGCN 159.22 60.99 1402.22 2103.57

LFM-2B

NMF 110.05 45.00 1116.19 1457.31

LightGCN 364.73 147.54 2993.87 3503.16

Appendix B.2). We have the following observations from the above

results. Firstly, attackers achieve an average accuracy of 0.68 on

the original embedding, indicating that information on the user’s

attribute in user embedding is released to the attackers. Secondly,

all methods can degrade the attacking performance of MLP. U2U-R,

D2D-R, Retrain, and Adv-InT decrease the AUC by 27.11%, 25.00%,

24.16%, and 24.37%, respectively, on average. Thirdly, U2U-R cannot

fool XGB and increase the attacking performance significantly in-

stead (average AUC is up to 0.99). We will further analyze U2U-R’s

different performance w.r.t MLP and XGB in Section 4.2.5. D2D-R

can decrease the AUC of XGB by 24.41% on average. In comparison,

Retrain and Adv-InT can only decrease the AUC by 20.93% and

11.84%, respectively.

Summary: Compared with U2U-R, D2D-R is more effective in un-

learning. D2D-R protects the user’s attributes by making them indis-

tinguishable to the attacker, outperforming the compared methods.

4.2.2 Recommendation Performance. We use two common

metrics, i.g., Normalized Discounted Cumulative Gain (NDCG) and

Hit Ratio (HR), to evaluate recommendation performance [28, 48].

We truncate the ranked list at 5 and 10 for both metrics. As shown

in Table 4, unlearning methods also affect recommendation per-

formance. Compared with the original performance, U2U-R has

an average degradation of 5.30% on NDCG and 3.77% on HR. We

analyze the reasons for degradation in Section 4.2.5. Interestingly,

D2D-R increases the performance at an average of 6.28% on NDCG

and 1.89% on HR. D2D loss, which is devised to make attributes

(gender) indistinguishable, could accidentally diminish the negative

gender discrimination to enhance recommendation performance.

Summary: U2U-R degrades recommendation performance to some

extent, while D2D-R outperforms all compared methods and even

slightly outperforms the original user embedding.

4.2.3 Efficiency. We use running time to evaluate the efficiency

of unlearning methods. From Table 5, we observe that i) our pro-

posed PoT-AU methods (U2U-R and D2D-R) significantly outper-

form InT-AU methods (Retrain and Adv-InT). This is because PoT-

AU methods can be viewed as a fine-tuning process on an existing

model, providing themwith inherent efficiency compared to InT-AU

methods; ii) By incorporating our proposed distinguishability loss

to the original recommendation loss and retraining from scratch,

Retrain outperforms Adv-InT. By serving as a baseline method,

Retrain provides a new path for InT-AU methods to explore.

4.2.4 Effect of Trade-off Parameter. To investigate the robust-

ness of our proposed two-component loss function, we study the

effect of 𝛼 , i.e., trade-off parameter. As shown in Figure 2 (Appen-

dix B.1), we use AUC and NDCG@10 to represent unlearning and

recommendation performance respectively. We observe that our

proposed methods, especially U2U-R, are robust with different 𝛼 .

Reducing the value of 𝛼 results in insignificant performance change

for D2D-R, i.e., enhances unlearning performance and decreases

recommendation performance.

4.2.5 Analysis of Embedding. To understand the mechanism

of our proposed methods and compare the difference between two

types of distinguishability losses, we analyze the distributions of

user embedding. Specifically, we report the histograms for each

dimension of user embedding where the users are grouped by gen-

der. Figure 4 illustrates the user embedding of LightGCN trained

on different datasets. From it, we have the following observations.

• Compared with original user embedding, U2U-R and D2D-R both

change the distributions of user embedding. According to nu-

meric results, i.e., Tables 3 and 4, these changes affect unlearning

and recommendation performance.
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• U2U loss does make users with different gender behave more sim-

ilarly. However, U2U-R enhances XGB’s attacking performance,

instead of degrading it. We observe that the current implemen-

tation of U2U-R bounds the loss so tightly that it destroys the

original distributions, making them collapse to the mean of the

original embedding. This results in two needle-shaped distribu-

tions, which makes MLP difficult to distinguish them. As for XGB,

it has a powerful fitting ability and is sometimes over-fitting. But

in this case, XGB can over-fit the mean in the training set, and

accurately distinguish needle-shaped distributions in the testing

set. This observation also provides a reasonable explanation for

U2U-R’s performance drop in the recommendation task (Table 4).

• D2D loss is effective in enlarging the overlapping area of two

gender distributions, which means it narrows the distance be-

tween two distributions. At the same time, it does not deform

the original distributions. This brings superior performance in

both unlearning and recommendation.

Summary:With the analysis of embedding distribution, we find

that the performance degradation of U2U-R in the recommendation

task is caused by a sharp change in embedding distribution. U2U

distinguishability loss is bounded so tightly that it makes all users

within the distribution move toward the mean.

5 RELATEDWORK
5.1 Machine Unlearning
Machine unlearning aims to remove the influence of particular

training data on a learned model [38]. Existing unlearning methods

can be classified into the following two approaches.

Exact Unlearning: This approach aims to ensure that the target

is unlearned as completely as retraining from scratch. Cao and

Yang [10] transformed training data points into a reduced number

of summations to enhance unlearning efficiency. Recently, Bour-

toule et al. [7] proposed a partition-aggregation unlearning frame-

work, i.e. SISA, which partitions the dataset into disjoint subsets,

trains one model on each subset, and aggregates all models. This

design reduces the retraining overhead to subsets.

Approximate Unlearning: This approach aims to estimate the

influence of unlearning target, and directly remove the influence

through parameter manipulation, i.e., updating parameters with the

purpose of unlearning [20, 23, 42, 47]. In this approach, the influence

of unlearning target is evaluated by influence function [32, 33],

which is found to be fragile in deep learning [2]. Recent studies

also point out that the influence of individual training data on deep

models is intractable to compute analytically [22].

5.2 Recommendation Unlearning
RecEraser was proposed to achieve unlearning in recommender

systems [11]. Following SISA’s partition-aggregation framework,

RecEraser groups similar data together, instead of random partition-

ing. In addition, RecEraser uses an attention-based aggregator to

further enhance performance. Similarly, LASER also groups similar

data together [36]. However, instead of parallel training, LASER

employs sequential training. While this modification significantly

enhances model utility, it comes at the cost of reduced efficiency.

Lately, approximate unlearning is also investigated in recommen-

dation to enhance efficiency [35].

5.3 Attribute Unlearning
Existing studies predominately focus on unlearning the input data

samples, ignoring the latent attributes that are irrelevant to the

training process. AU is first studied by [24] to unlearn particular

attributes of a facial image, e.g., smiling, big nose, and mustache,

by adding network blocks. As recommender systems potentially

capture users’ sensitive information, e.g., gender, race, and age, it

is non-trivial to study AU in the recommendation scenario.

However, splitting the model into a feature extractor and a classi-

fier, and adding a network block between them may not be univer-

sally applicable in the context of recommendation [24]. Adversarial

training was used to achieve AU in recommender systems [18].

However, it is under the setting of In-Training AU (InT-AU), which

manipulates the model parameters during training. Different from

InT-AU setting, our PoT-AU setting is more strict and practical

because i) we can only manipulate the model parameters when

training is completed, ii) as the training data or other training in-

formation, e.g., gradients, are usually protected or discarded after

training, we cannot get access to them to enhance performance, and

iii) it is more flexible for recommendation platforms to manipulate

the model based on unlearning requests without interfering with

the original training process.

6 CONCLUSIONS
In this paper, we study the Post-Training Attribute Unlearning (PoT-

AU) problem in recommender systems, which aims to protect users’

attribute information instead of input data. To the best of our knowl-

edge, we are the first to study this problem, which is more strict and

practical than In-Training Attribute Unlearning (InT-AU) problem.

There are two goals in the PoT-AU problem, i.e., making attributes

indistinguishable, and maintaining comparable recommendation

performance. To achieve the above two goals, we propose a two-

component loss function, which consists of distinguishability loss

and regularization loss, to optimize user embedding. We design two

types of distinguishability losses from different perspectives, i.e.,

User-to-User (U2U) and Distribution-to-Distribution (D2D).We con-

duct extensive experiments on three real-world datasets to evaluate

the effectiveness of our proposed methods, i.e., U2U-R and D2D-R.

Results indicate that i) both methods achieved the unlearning goal,

but D2D-R significantly outperformed U2U-R, and ii) D2D-R had a

negative impact on recommendation performance, but D2D-R can

enhance it. Generally speaking, D2D-R achieves both goals in the

PoT-AU problem.

In this work, we focus on the attribute with binary labels. In the

future, we will study the multiple-labels case and further exploit

different implementations of the current U2U design. One of the

advantages of U2U is that it can be directly generalized to the

multiple-label case without modification.

ACKNOWLEDGMENTS
This work was supported in part by the “Ten Thousand Talents Pro-

gram” of Zhejiang Province for Leading Experts (No. 2021R52001),

and theNational Natural Science Foundation of China (No. 72192823).



Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] S Basu, P Pope, and S Feizi. 2021. Influence Functions in Deep Learning Are

Fragile. In ICLR.
[3] Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,

Alexander Nou, andHuan Liu. 2020. Privacy-aware recommendationwith private-

attribute protection using adversarial learning. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining. 34–42.

[4] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and

Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.

Mach. Learn. 79, 1-2 (2010), 151–175. https://doi.org/10.1007/s10994-009-5152-4

[5] Albrecht Böttcher and David Wenzel. 2008. The Frobenius norm and the commu-

tator. Linear algebra and its applications 429, 8-9 (2008), 1864–1885.
[6] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural networks: Tricks

of the trade. Springer, 421–436.
[7] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.

Machine unlearning. In Proceedings in the 42nd IEEE Symposium on Security and
Privacy (SP).

[8] Department of Justice California. 2018. California Consumer Privacy Act. https:

//oag.ca.gov/privacy/ccpa.

[9] Government Canada. 2019. Personal Information Protection and Electronic

Documents Act (S.C. 2000, c. 5). Website. https://laws-lois.justice.gc.ca/ENG/

ACTS/P-8.6/index.html.

[10] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine

unlearning. In Proceedings in the 36th IEEE Symposium on Security and Privacy
(SP). 463–480.

[11] Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. 2022. Recommendation

unlearning. In Proceedings of the ACM Web Conference 2022. 2768–2777.
[12] Chaochao Chen, Huiwen Wu, Jiajie Su, Lingjuan Lyu, Xiaolin Zheng, and Li

Wang. 2022. Differential private knowledge transfer for privacy-preserving

cross-domain recommendation. In Proceedings of the ACM Web Conference 2022.
1455–1465.

[13] T Chen, T He, and M Benesty. 2022. Machine learning challenge winning solu-

tions. https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-

challenge-winning-solutions

[14] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu

Cho, Kailong Chen, et al. 2015. Xgboost: extreme gradient boosting. R package
version 0.4-2 1, 4 (2015), 1–4.

[15] Najim Dehak, Reda Dehak, James R Glass, Douglas A Reynolds, Patrick Kenny,

et al. 2010. Cosine similarity scoring without score normalization techniques.. In

Odyssey. 15.
[16] Council EU. 2014. Council regulation (eu) on 2012/0011. Website. https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011.

[17] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[18] Christian Ganhör, David Penz, Navid Rekabsaz, Oleg Lesota, and Markus Schedl.

2022. Unlearning Protected User Attributes in Recommendations with Adversar-

ial Training (SIGIR ’22). Association for Computing Machinery, New York, NY,

USA, 2142–2147. https://doi.org/10.1145/3477495.3531820

[19] Matt W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment 32, 14-15 (1998), 2627–2636.

[20] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Eternal sunshine

of the spotless net: Selective forgetting in deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9304–9312.

[21] Jacob Goldberger, Shiri Gordon, Hayit Greenspan, et al. 2003. An Efficient Image

Similarity Measure Based on Approximations of KL-Divergence Between Two

Gaussian Mixtures.. In ICCV, Vol. 3. 487–493.
[22] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. 2021. Amnesiac machine

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
11516–11524.

[23] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. 2020.

Certified data removal from machine learning models. In Proceedings of the 37th
International Conference on Machine Learning. 3832–3842.

[24] Tao Guo, Song Guo, Jiewei Zhang, Wenchao Xu, and Junxiao Wang. 2022. Effi-

cient Attribute Unlearning: Towards Selective Removal of Input Attributes from

Feature Representations. arXiv preprint arXiv:2202.13295 (2022).
[25] Zhongxuan Han, Xiaolin Zheng, Chaochao Chen, Wenjie Cheng, and Yang Yao.

2023. Intra and Inter Domain HyperGraph Convolutional Network for Cross-

Domain Recommendation. In Proceedings of the ACM Web Conference 2023. 449–
459.

[26] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm Transactions on Interactive Intelligent Systems (TIIS) 5, 4 (2015),

1–19.

[27] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th International Conference on World Wide Web (WWW). 507–517.

[28] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. Trirank: Review-

aware explainable recommendation by modeling aspects. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management
(CIKM). 1661–1670.

[29] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[30] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW). 173–182.

[31] Jinyuan Jia and Neil Zhenqiang Gong. 2018. Attriguard: A practical defense

against attribute inference attacks via adversarial machine learning. In 27th
{USENIX} security symposium ({USENIX} security 18). 513–529.

[32] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via

influence functions. In International conference on machine learning. 1885–1894.
[33] Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. 2019. On

the accuracy of influence functions for measuring group effects. In Advances in
neural information processing systems, Vol. 32.

[34] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poi-

soning attacks on factorization-based collaborative filtering. Advances in neural
information processing systems 29 (2016).

[35] Yuyuan Li, Chaochao Chen, Xiaolin Zheng, Yizhao Zhang, Biao Gong, Jun Wang,

and Linxun Chen. 2023. Selective and collaborative influence function for efficient

recommendation unlearning. Expert Systems with Applications (2023), 121025.
https://doi.org/10.1016/j.eswa.2023.121025

[36] Yuyuan Li, Xiaolin Zheng, Chaochao Chen, and Junlin Liu. 2022. Making recom-

mender systems forget: Learning and unlearning for erasable recommendation.

arXiv preprint arXiv:2203.11491 (2022).
[37] Alessandro BMelchiorre, Navid Rekabsaz, Emilia Parada-Cabaleiro, Stefan Brandl,

Oleg Lesota, andMarkus Schedl. 2021. Investigating gender fairness of recommen-

dation algorithms in the music domain. Information Processing & Management
58, 5 (2021), 102666.

[38] Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung

Liew, Hongzhi Yin, and Quoc Viet Hung Nguyen. 2022. A survey of machine

unlearning. arXiv preprint arXiv:2209.02299 (2022).
[39] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452–461.

[40] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and

Michael Backes. 2019. Ml-leaks: Model and data independent membership in-

ference attacks and defenses on machine learning models. In 2019 Network and
Distributed Systems Security (NDSS) Symposium.

[41] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative

filtering recommender systems. In The adaptive web. Springer, 291–324.
[42] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh.

2021. Remember What You Want to Forget: Algorithms for Machine Unlearning.

In Advances in 34th Neural Information Processing Systems (NeurIPS).
[43] Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative filtering beyond

the user-item matrix: A survey of the state of the art and future challenges. ACM
Computing Surveys (CSUR) 47, 1 (2014), 1–45.

[44] Alexander J Smola, A Gretton, and K Borgwardt. 2006. Maximum mean discrep-

ancy. In 13th International Conference, ICONIP 2006, Hong Kong, China, October
3-6, 2006: Proceedings.

[45] Ilya O Tolstikhin, Bharath K Sriperumbudur, and Bernhard Schölkopf. 2016.

Minimax estimation of maximummean discrepancy with radial kernels. Advances
in Neural Information Processing Systems 29 (2016).

[46] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, 11 (2008).

[47] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck.

2023. Machine Unlearning of Features and Labels. In Network and Distributed
System Security (NDSS) Symposium 2023.

[48] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017.

Deep Matrix Factorization Models for Recommender Systems.. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI), Vol. 17.
3203–3209.

[49] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P

Gummadi. 2019. Fairness constraints: A flexible approach for fair classification.

The Journal of Machine Learning Research 20, 1 (2019), 2737–2778.

[50] Zhilu Zhang and Mert Sabuncu. 2018. Generalized cross entropy loss for training

deep neural networks with noisy labels. Advances in neural information processing
systems 31 (2018).

https://doi.org/10.1007/s10994-009-5152-4
 https://oag.ca.gov/privacy/ccpa
 https://oag.ca.gov/privacy/ccpa
https://laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html
https://laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011
https://doi.org/10.1145/3477495.3531820
https://doi.org/10.1016/j.eswa.2023.121025


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Yuyuan Li et al.

U2U-R: NDCG@10
D2D-R: NDCG@10

U2U-R: AUC (right)
D2D-R: AUC (right)

1.0 0.1 0.01
0.001

0.0001
1e-05

1e-06
1e-07

0.40

0.41

0.42

N
D

C
G

@
10

0.5

1.0

A
U

C

(a) ML-100K: NMF

1.0 0.1 0.01
0.001

0.0001
1e-05

1e-06
1e-07

0.45

0.50

N
D

C
G

@
10

0.5

1.0

A
U

C

(b) ML-1M: NMF

1.0 0.1 0.01
0.001

0.0001
1e-05

1e-06
1e-07

0.2

0.3

0.4

N
D

C
G

@
10

0.5

1.0

A
U

C

(c) LFM-2B: NMF

1.0 0.1 0.01
0.001

0.0001
1e-05

1e-06
1e-07

0.40

0.41

0.42

N
D

C
G

@
10

0.5

1.0

A
U

C

(d) ML-100K: LightGCN

1.0 0.1 0.01
0.001

0.0001
1e-05

1e-06
1e-07

0.42

0.44

0.46

N
D

C
G

@
10

0.5

1.0

A
U

C

(e) ML-1M: LightGCN

1.0 0.1 0.01
0.001

0.0001
1e-05

1e-06
1e-07

0.38
0.39
0.40
0.41

N
D

C
G

@
10

0.5

1.0

A
U

C

(f) LFM-2B: LightGCN

Figure 2: Effect of 𝛼 w.r.t. unlearning (AUC) and recommen-
dation (NDCG@10) performance.

A EXPERIMENTAL SETTINGS
Hardware Information: All models and algorithms are imple-

mented with Python 3.8 and PyTorch 1.9. We run all experiments

on an Ubuntu 20.04 LTS System server with 48-core CPU, 256GB

RAM and NVIDIA GeForce RTX 3090 GPU.

(a) U2U-R: GT (b) U2U-R: MLP (c) U2U-R: XGB

(d) D2D-R: GT (e) D2D-R: MLP (f) D2D-R: XGB

Figure 3: Gender prediction of different user embedding
where GT denotes ground truth, the orange and blue dots
represent the predictions of female and male respectively.
The user embedding is trained in LightGCN on ML-1M.

Recommendation Models: To obtain the optimal performance,

we use grid search to tune the hyper-parameters. For model-specific

hyper-parameters, we follow the suggestions from their original

papers. All model parameters are initialized with a Gaussian dis-

tribution N(0, 0.012). Specifically, we set the learning rate to 0.001

and the embedding size 𝐾 to 16. The number of epochs is set to 50

for NMF and 400 for LightGCN.

Attackers: For MLP, we set the L2 regularization weight to 1.0 and

the maximal iteration to 1000, leaving the other hyper-parameters

at their defaults in scikit-learn 1.1.3. For XGB, we use the xgboost

package, setting the hyper-parameters as their default values.

Our Methods: We set 𝛼 and the learning rate to 1e-4 and 0.001

respectively for both methods. The number of epochs is set to 5,000

and 1,000 for U2U-R and D2D-R respectively.

B EXPERIMENTAL RESULTS
B.1 Effect of Trade-off Parameter
The effect of 𝛼 is reported in Figure 2.

B.2 Visualization of Unlearning Performance
To visually analyze the results, we also reduce the embedding di-

mension to 2 using t-SNE [46] and plot the distribution of gender

prediction in Figure 3. Recall that the aim of unlearning is to de-

grade the performance of attackers. From Figure 3, we observe that

U2U-R displays a significant degree of diversity towards different

attackers, i.e., MLP and XGB.

• For MLP attack, U2U-R fools the attacker by flipping all labels

into the same class, which significantly changes the distribution

of user embedding. This observation can also be illustrated in

Figure 4.

• For XGB attack, U2U-R cannot degrade the attacking perfor-

mance. The visualized outcome of U2U-R, i.e., Figure 3(c), depicts

minimal disparity from the actual ground truth, i.e., Figure 3(a).

B.3 Analysis of Embedding
The histograms of user embedding are reported in Figure 4.
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Figure 4: The distributions of different user embedding on different datasets (LightGCN). Each mini-plot represents one
dimension of user embedding where F and M denote female and male respectively. To compare the two distributions, i.e.,
female and male, more accurately, we down-sample the males so that the number of males is equal to the number of females.
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