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ABSTRACT

Vehicle Energy Consumption (VEC) estimation aims to predict the
total energy required for a given trip before it starts, which is of
great importance to trip planning and transportation sustainability.
Existing approaches mainly focus on extracting statistically sig-
nificant factors from typical trips to improve the VEC estimation.
However, the energy consumption of each vehicle may diverge
widely due to the personalized driving behavior under varying
travel contexts. To this end, this paper proposes a preference-aware
meta-optimization framework (Meta-Pec) for personalized vehi-
cle energy consumption estimation. Specifically, we first propose
a spatiotemporal behavior learning module to capture the latent
driver preference hidden in historical trips. Moreover, based on
the memorization of driver preference, we devise a selection-based
driving behavior prediction module to infer driver-specific driv-
ing patterns on a given route, which provides additional basis and
supervision signals for VEC estimation. Besides, a driver-specific
meta-optimization scheme is proposed to enable fast model adap-
tion by learning and sharing transferable knowledge globally. Ex-
tensive experiments on two real-world datasets show the superi-
ority of our proposed framework against ten numerical and data-
driven machine learning baselines. The source code is available at
https://github.com/usail-hkust/Meta-Pec.
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Figure 1: The driver-varying energy consumption distribu-

tion of a real-world dataset in Shenzhen, all 377 vehicles are

of the same type.

1 INTRODUCTION

The rapid transportation network expansion and traffic demand
growth raise public concerns about the efficiency, sustainability,
and resilience of the urban transportation system. From 2015 to
2030, as reported by the United Nations1, the number of vehicles
on the road is approximately double, and global traffic is likely
to increase by 50%. Therefore, the accurate estimation of Vehicle
Energy Consumption (VEC) is of great importance to the decision-
making of urban governance and travel planning [24].

Prior studies on VEC estimation can be roughly divided into two
categories: the Numerical methods [6, 8, 20] and the Data-driven
methods [10, 14, 17, 18, 22]. Specifically, the numerical methods
mainly focus on identifying factors that have the most significant
influence on VEC. For example, Y. Al-Wreikat et al. [1] propose
to partition drivers into multiple classes and quantify the aver-
age VECs. The data-driven methods, on the other hand, aim to
automatically extract and utilize relevant knowledge by leveraging
machine learning tools, e.g., linear regression (LR) [7], decision
tree (DT) [25], support vector machine (SVM) [21], etc. Inspired by
the recent advances of deep learning, deep neural networks such
as Long-Short-Term Memory (LSTM) [4] and Transformer [31]
have also been adopted to analyze road-level energy consumption.
However, existing approaches make predictions based on hand-
crafted statistical features, which overlook the personalized nature
of varying driving behaviors under different travel contexts.

In this work, we investigate the personalized vehicle energy con-
sumption estimation problem with a consideration of fine-grained

1https://www.un.org/sustainabledevelopment/progress-report/
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individual driving preferences hidden in historical trajectories.
However, three major challenges arise towards this goal. First, the
driving preference describes the driver’s long-term intention (e.g.,
overtaking, braking, changing lanes under different travel contexts),
which is critical to the overall energy consumption. As depicted in
Figure 1, the average energy consumption of different drivers may
vary significantly, indicating the necessity of incorporating driver
preference for VEC estimation. However, the existing approach [31]
represents latent driver preference via handcrafted features, which
lead to lossy driving preference preservation. Thus, how to cap-
ture the latent driving preference in an effective way is the first
challenge. Second, the behavior of a driver under different travel
contexts may also vary. Estimating the intentional driving behavior
of a given route can provide additional signals to guide the learning
direction of the prediction model. However, the historical trajectory
is noisy and may in large-scale. How to quantify the personalized
driving behavior on a target route based on historical data in a cost-
effective manner is another challenge. Third, although a unified
model can provide predictions for all drivers, the estimation for
drivers with only a few trajectories may be biased and error-prone.
The last challenge is how to share transferable knowledge between
drivers so that to benefit the long-tail prediction.

To this end, in this paper, we propose a preference-aware meta-
optimization framework,Meta-Pec, to deliver more effective per-
sonalized vehicle energy consumption estimation. Specifically, we
first propose a driving preference learning module to capture the
latent spatiotemporal preference of each driver hidden in high-
dimensional historical trajectories in an end-to-end manner. More-
over, we devise a selection-based driving behavior prediction mod-
ule to estimate the future behaviors of a driver on a given route. In
particular, the predicted behaviors provide additional supervision
signals for model learning by incorporating the information from
similar historical trips. Furthermore, we propose a driver-specific
meta-optimization scheme to allow fast model adaption to data-
insufficient drivers, where the transferable knowledge is encoded
in a global parameter initialization.

In summary, the major contributions of this paper are as follows.
(1) We investigate the personalized vehicle energy consumption
estimation problem, which is beneficial to various downstream ap-
plications, such as fuel-efficient trip planning and sustainable urban
transportation system policy-making. (2) We propose a preference-
aware meta-optimization framework to incorporate the latent driv-
ing behavior knowledge hidden in past trajectories. To our knowl-
edge, this is the first work that utilizes meta-learning to tackle
the cold-start problem in the VEC estimation task. (3) Extensive
experiments on two real-world datasets demonstrate the superi-
ority of Meta-Pec compared with ten numerical and data-driven
state-of-the-art approaches.

2 PRELIMINARIES

This section introduces some important definitions and the formal
problem statement.

Road network. The road network consists of a set of road
segments 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑁 } and intersection joints, where 𝑁 is
the number of road segments in the city. We use x𝑒

𝑖
to denote the

road segment 𝑖’s features (e.g., length, number of lanes).

Table 1: Statistics of datasets.

Category VED ETTD

# of trips 25,661 18,546
# of drivers 348 377
Time span 11/1/2017-11/7/2018 10/22/2014

# of total distance 130,864 km 87,251 km
Avg. route length 4.81 km 5.10 km
Avg. speed 38.59 km/h 13.54 km/h

Route. A route 𝑅 = [𝑒1, 𝑒2, . . . , 𝑒𝑛] is a road segment sequence
that a vehicle will traverse, where 𝑛 is the number of road segments.
We denote 𝑅𝑐 as the route of the target trip and 𝑅𝑖 (𝑖 ∈ N+) as the
route of a historical trip.

Trajectory. A trajectory 𝑇𝑖 = [(𝑝 𝑗 , 𝑡 𝑗 , x𝑙𝑗 , 𝑦 𝑗 )]
𝑚
𝑗=1 is a sequence

of sample points logged by GPS devices, where 𝑝 𝑗 is the distance the
driver has traveled from the origin to the current location (𝑝1 = 0),
𝑡 𝑗 is the time elapsed since the trip started (𝑡1 = 0), x𝑙

𝑗
are features

describing the current state of the vehicle (e.g., speed, acceleration),
𝑦 𝑗 is the energy consumption from the origin to the current point 𝑗
(𝑦1 = 0), and𝑚 is the number of sample points. We take 𝑦 = 𝑦𝑚 as
the ground truth label of the total energy consumption of the trip.

Historical trips. A driver 𝑢’s historical trips is defined as 𝐻𝑢 =

{(𝑅𝑖 ,𝑇𝑖 )}𝑀𝑖=1, where 𝑅𝑖 is the route, 𝑇𝑖 is the corresponding trajec-
tory, and𝑀 is the total number of historical trips.

Problem definition. We define personalized vehicle energy con-
sumption estimation as a supervised-learning task. Given a target
route 𝑅𝑐 and a driver 𝑢, we aim to predict the energy consumption
of the trip based on 𝑢’s historical trips 𝐻𝑢 ,

𝑓𝜃 : (𝑅𝑐 , 𝐻𝑢 ) → 𝑦, (1)

where 𝑓𝜃 is the model parameterized by 𝜃 that we aim to learn, 𝑦 is
the ground truth energy consumption.

3 DATA DESCRIPTION AND ANALYSIS

In this section, we describe the datasets used for Meta-Pec with a
primary data analysis.

3.1 Data Description

We study our problem on two real-world datasets. The first is a
large-scale energy usage dataset of diverse vehicles in Ann Arbor,
Michigan, USA, known as the vehicle energy dataset (VED2). An-
other is an electric taxi trajectory dataset (ETTD3), collected from
Shenzhen, Guangdong, China. The statistics of two datasets are
summarized in Table 1.

The VED dataset [19] consists of vehicles’ trajectories and the
corresponding dynamic factors (i.e., energy, speed, etc.) collected by
the Second On-Board Diagnostics (OBD-II) logger. The dataset is
ranged from Nov 2017 to Nov 2018, covering various driving scenar-
ios and weather conditions. In total, VED contains trajectories of
approximately 130,864 kilometers. The fleet comprises 348 vehicles
(230 Internal Combustion Engine Vehicles (ICEVs), 91 Hybrid Elec-
tric Vehicles (HEVs), 24 Plug-in Hybrid Electric Vehicles (HEVs),
2https://github.com/gsoh/VED
3http://guangwang.me/#/data
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(b) Trip length distribution.
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(c) Temporal distribution.

0 10 20 30 40 50 60 70 80 90
Number of trips

0

10

20

30

40

50

60

Nu
m

be
r o

f d
riv

er
s

(d) Trip frequency distribution.

Figure 2: Distribution of the VED dataset: (a) the spatial distribution of vehicle energy consumption on each road segment. (b)

the trip distance-energy distribution. (c) the temporal distribution of energy consumption in a year. (d) the driver-specific trip

frequency distribution.

and 3 Electric Vehicles (EVs). We regard the fuel consumption of
ICEVs and HEVs, and the electricity cost of PHEVs and EVs as the
ground truth energy consumption [14].

The ETTD dataset [28] contains trajectories of 377 electric taxis
with 1,155,654 GPS records and speed profiles collected on Oct 22,
2014. The driving conditions range from approximately all scenarios
city-wide. The total distance is about 87,251 kilometers.We consider
the required mechanical energy at the wheel as the ground truth
energy consumption [32] in the ETTD dataset.

3.2 Data Preprocessing

3.2.1 Data Preparation. We preprocess each dataset as follows. For
each dataset, we split the raw trajectory into multiple trips if the
driver has stopped for more than five minutes. The route of each
trip is extracted by a map-matching algorithm [35]. We calculate the
energy consumption on each GPS sample point by following [14].
Since the ETTD dataset only provides the speed and coordinate
information, the VEC is calculated based on an estimation of the
required mechanical energy at the wheel by following [32]. We
aggregate the energy consumption of each GPS point as the ground
truth of each trip.

3.2.2 Data Anonymization. The original datasets in our study did
not include any identifiable driver information such as names,
phone numbers, or any other personal details. To further protect
the sensitive information of each driver, we mask each driver with
an anonymized identifier.

3.3 Data Analysis

To help understand the VEC distribution, we conduct primary data
analysis on the VED dataset. Overall, the energy consumption of
each trip is influenced by various factors. First, Figure 2a plots the
spatial distribution of energy consumption in Ann Arbor, where
warmer color represents a higher energy consumption. We observe
the VEC varies in different road segments of the city, and vehi-
cles cost more energy in the downtown area of the city than in
the suburbs. Figure 2b shows the positive correlation between trip
length and energy consumption. Meanwhile, Figure 2c presents
the varying energy consumption over the year, indicating a nega-
tive correlation between the energy consumption and temperature.
Finally, the trip frequency of each driver is reported in Figure 2d.
We observe a two-peak distribution where the second-highest peak

in the long-tail represents the large portion of drivers with only
a few historical trips. Such observation inspires us to develop a
meta-optimization scheme to alleviate the cold-start problem.

4 THE PROPOSED METHOD

The overall structure of our proposedMeta-Pec framework is il-
lustrated in Figure 3, which mainly consists of four components.
(1) Driving preference learning: it performs spatiotemporal behavior
learning to extract the driver’s driving preferences from histori-
cal trips. (2) Selection-based driving behavior prediction: it forecasts
the driver’s future driving behaviors on each road by jointly con-
sidering road conditions and driving preferences, providing the
extra basis and supervision signals for VEC estimation. (3)VEC es-
timation: it predicts the VEC of the target trip. (4) Driver-specific
meta-optimization: it learns the global parameter initialization and
enables the model to fast adapt to each driver. We next present each
component in detail.

4.1 Feature Construction

This section introduces the features we utilize based on the datasets
mentioned above. Every feature vector will be projected into a 𝑑
dimensional representation via an embedding layer before feeding
into the Meta-Pec model.

4.1.1 The trip feature. Trip features provide prior knowledge about
the trip, including month, departure time, and route length.

4.1.2 The statistical driving behavior feature. The statistical driving
behavior features provide macroscopic personalized information.
We extract them from the driver’s historical trips, including average
speed, acceleration, VEC per hour, and VEC per kilometer. They
are concatenated with the trip features and denoted as x𝑠 . We also
extract these features on each road of the target trip as the ground-
truth labels for the selection-based driving behavior prediction
module. The features on the road 𝑒𝑖 are denoted as y𝑒

𝑖
.

4.1.3 Vehicle state feature. Vehicle state features describe the vehi-
cle’s current condition in the trajectory, including local time, speed,
acceleration, VEC per hour, and VEC per kilometer.

4.1.4 Road feature. Road features describe the characteristics of
the target road, which include the road type, the one-way indicator,
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Figure 3: The framework overview of Meta-Pec.

the number of lanes, the allowed maximum speed, and the length
of the road.

4.2 Driving Preference Learning

Instead of measuring the driver’s personalized information only by
handcrafting statistical features, we propose to exploit fine-grained
trajectory-level driving preferences hidden in historical trips. As
demonstrated in Section 3.3, VEC varies under different locations,
time periods, and driver behaviors. We develop a spatiotemporal
driving preference learning module to incorporate driving prefer-
ence in an end-to-end way.

4.2.1 Distance-time encoding. We first encode the location and
time information in each trajectory in a normalized scale to ease
spatiotemporal learning. Inspired by the success of SeFT [13] and
Transformer [26] in preserving the location relation via position
encoding, we introduce distance-time encoding. Specifically, we
use sine and cosine functions of different frequencies to convert
the 1-dimensional data axis into a multi-dimensional input, which
is defined as follows:

𝐸𝑛𝑐∗2𝑘 (𝑎) = 𝑠𝑖𝑛(
𝑎

𝒶2𝑘/𝑑 ), (2)

𝐸𝑛𝑐∗2𝑘+1 (𝑎) = 𝑐𝑜𝑠 (
𝑎

𝒶2𝑘/𝑑 ), (3)

where 𝒶 is the maximum value that is expected in the data, 𝑘
denotes the dimension, and ∗ can be an arbitrary encoding tar-
get. For distance encoding 𝐸𝑛𝑐𝑑𝑖𝑠𝑡 (·), 𝑎 stands for the distance the
driver has traveled from the origin to the current location. For time-
encoding 𝐸𝑛𝑐𝑡𝑖𝑚𝑒 (·), 𝑎 represents the time elapsed since the trip
started. Then, we attach two types of encodings into the vector of
the vehicle state features:

x𝑙𝑖 = x𝑙𝑖 + 𝐸𝑛𝑐
𝑑𝑖𝑠𝑡 (𝑝𝑖 ) + 𝐸𝑛𝑐𝑡𝑖𝑚𝑒 (𝑡𝑖 ) . (4)

4.2.2 Driving behavior learning. Then, we extract driving behaviors
hidden in historical trajectories. We consider the driver’s behaviors
as a sequence of vehicle states, where each state x𝑙

𝑖
at a time stamp

describes an instant condition of the vehicle (e.g., current speed,
acceleration, VEC per km, etc.). We derive the latent driver behavior
representation by analogous the complicated behavior as a semantic
object in an image [9].

Formally, we first split the vehicle state sequence of the historical
trajectory X𝑙 = [x𝑙1, x

𝑙
2, · · · , x

𝑙
𝑚] into multiple segments, then a

convolutional neural network (CNN) is applied to embedding the
driving behavior,

Z[𝑖] = 𝑆𝐸𝐿𝑈 (X𝑙 [𝑞 · (𝑖 − 1) + 1 : 𝑞 · 𝑖] ⊙ F + b), (5)

where 𝑞 < 𝑚 is the number of states contained in a segment, Z[𝑖]
is the learned representation of the extracted behavior at step 𝑖 ,
Z is the sequence of driving behaviors in each step, F ∈ R𝑞×𝑑 is
the filter, ⊙ denotes the convolution operation, 𝑆𝐸𝐿𝑈 is chosen as
the activation function, and b ∈ R𝑑 is a learnable parameter. We
further employ a Transformer encoder to derive the unified driver
preference representation z,

z = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (Z). (6)

4.3 Selection-based Driving Behavior Prediction

Based on the driving preferences extracted above, we further infer
the fine-grained trajectory, i.e., the detailed driving behavior such
as acceleration and speed on the target trip, to provide the addi-
tional basis and supervision signals for the VEC estimator. Instead
of predicting driving behaviors solely based on the road segment
sequence, we propose to selectively reference similar routes of the
target one to align the input (i.e., the feature vector) at training and
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inference time. The selective approach also incorporates personal-
ized information without introducing the significant computational
overhead and extra noise.

4.3.1 Top-𝐾 historical trip selection. We propose to select top-𝐾
historical trips to ease the driving behavior prediction. Specifically,
we construct two lightweight score functions to measure the dis-
tance between two trips. The first distance function is based on the
overlap of road segments,

𝑠𝑐𝑜𝑟𝑒𝑟𝑜𝑢𝑡𝑒𝑐,𝑖 = | 𝑅𝑐 ∩ 𝑅𝑖 |, (7)

where ∩ is the intersection operation. Meanwhile, we calculate the
temporal similarity,

𝑠𝑐𝑜𝑟𝑒𝑡𝑖𝑚𝑒𝑐,𝑖 = | 𝑠𝑐 − 𝑠𝑖 |, (8)

where 𝑠𝑐 and 𝑠𝑖 are the departure time of the target and the histori-
cal trip, respectively. Finally, we calculate the overall score of the
historical trip,

𝑛𝑜𝑟𝑚(𝑠𝑐𝑜𝑟𝑒∗𝑐,𝑖 ) =
𝑠𝑐𝑜𝑟𝑒∗

𝑐,𝑖
−𝑀𝑖𝑛(𝑠𝑐𝑜𝑟𝑒∗𝑐 )

𝑀𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒∗𝑐 ) −𝑀𝑖𝑛(𝑠𝑐𝑜𝑟𝑒∗𝑐 )
, (9)

𝑠𝑐𝑜𝑟𝑒𝑐,𝑖 = 𝑛𝑜𝑟𝑚(𝑠𝑐𝑜𝑟𝑒𝑟𝑜𝑢𝑡𝑒𝑐,𝑖 ) − 𝑛𝑜𝑟𝑚(𝑠𝑐𝑜𝑟𝑒𝑡𝑖𝑚𝑒𝑐,𝑖 ), (10)

where 𝑠𝑐𝑜𝑟𝑒∗𝑐 denotes the similarity scores of the target trip com-
pared with all historical trips of the driver. We select 𝐾 trips with
the highest scores to extract the driver’s driving preference. Note
the reference trips may be less than 𝐾 for long-tail drivers with
only a few historical trips. Please refer to Appendix A.1 for the
complete top-𝐾 historical trip selection algorithm.

4.3.2 Driving behavior prediction. For driving behavior prediction,
we first employ GRU [5], a variant of the recurrent neural network,
to encode contextual information of the road segment sequence in
the target route:

h𝑒𝑖 = 𝐺𝑅𝑈1 (h𝑒𝑖−1, x
𝑒
𝑖 ;𝛀1), (11)

where 𝛀1 is parameters of GRU. With selected historical trips, then
a multi-head attention module followed by a fully connected layer
(FC) is applied to predict driving behaviors on each road segment:

𝛽𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
( (W𝑄h𝑒𝑖 )

⊤W𝐾 z𝑗√
𝑑

)
, (12)

head =

𝐾∑︁
𝑗=1

𝛽𝑖 𝑗 (W𝑉 z𝑗 ), (13)

ŷ𝑒𝑖 = 𝐹𝐶 (head1 ∥ · · · ∥ headℎ), (14)

where ŷ𝑒
𝑖
is the predicted statistical driving behavior features on

the road 𝑒𝑖 , z𝑗 is the driving preference shown in the historical trip
𝑗 , W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑 are learnable parameters, ℎ is the number
of heads, and ∥ denotes the concatenation operation.

4.4 VEC Estimation

Based on the five categories of features we obtained above, i.e.,
the trip features, the statistical driving behavior features, the road
features, the driving preferences extracted in section 4.2, and the
target trip’s driving behaviors predicted in section 4.3, we estimate
the VEC of the target trip.

Firstly, we fuse all the driver’s historical driving preference rep-
resentations by an attention function as follows:

𝜇𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
W𝑧 (x𝑠 ∗ z𝑖 ) + b

)
, (15)

h𝑧 =
𝐾∑︁
𝑖=1

𝜇𝑖z𝑖 , (16)

where h𝑧 is the representation of driving preference extracted from
top-𝐾 historical trips, W𝑧 ∈ R𝑑×𝑑 and b ∈ R𝑑 are learnable param-
eters, and ∗ denotes element-wise multiplication.

For the road segment sequence, we concatenate each road seg-
ment’s embedding vector with its corresponding predicted statis-
tical driving behavior features as x̂𝑒

𝑖
= [x𝑒

𝑖
∥ ŷ𝑒

𝑖
]. Then, we adopt

another GRU to encode the updated contextual relations among
roads:

ĥ𝑒𝑖 = 𝐺𝑅𝑈2 (ĥ𝑒𝑖−1, x̂
𝑒
𝑖 ;𝛀2) . (17)

We take the last hidden state ĥ𝑒𝑛 from (17) as the representation of
the target route.

Afterward, we propose a gating mechanism to fuse the represen-
tation of driving preference, the statistical driving behavior features,
and the target route,

h = (h𝑧 ★ x𝑠 ) ★ ĥ𝑒𝑛, (18)

where h is the representation of the target route, and★ denotes the
parameterized gating mechanism.

Finally, we estimate the VEC of the target route by feeding h into
a multi-layer perception (MLP), then multiply it with the vehicle
type embedding W𝑡𝑝 ∈ R𝑑 :

h = 𝑀𝐿𝑃 (h), (19)

𝑦 = W⊤𝑡𝑝h, (20)

where 𝑡𝑝 ∈ {𝐼𝐶𝐸𝑉 ,𝐻𝐸𝑉 , 𝑃𝐻𝐸𝑉 , 𝐸𝑉 } indicates the type of the ve-
hicle.

4.5 Driver-specific Meta-optimization

A well-trained global model may fail to estimate the VEC for long-
tail drivers with insufficient historical trips. Inspired by the success
of Model-Agnostic Meta-Learning (MAML) [11] in handling few-
shot problems, we propose to learn a meta-optimized universal
parameter initialization that can fast adapt to all drivers. Then
we fine-tune private models for each driver based on the model
initialized by meta-training.

Formally, we apply MAE as our loss function for both driving
behavior prediction and VEC estimation.

L𝑏𝑒ℎ (ŷ𝑒 ) =
1
𝑛

𝑛∑︁
𝑖=1

𝑓∑︁
𝑗=1
| y𝑒𝑖 [ 𝑗] − ŷ

𝑒
𝑖 [ 𝑗] |, (21)

L𝐸𝐶 (𝑦) = | 𝑦 − 𝑦 |, (22)
L = L𝑏𝑒ℎ (ŷ𝑒 ) + L𝐸𝐶 (𝑦), (23)

where 𝑗 and 𝑓 denote the index and the number of statistical driving
behavior features, respectively.

Then, we regard VEC estimation for an individual driver as an in-
dependent task. The drivers’ datasets can be denoted as {(𝐷𝑢𝑠 , 𝐷𝑢𝑞 )}𝑈𝑢=1,
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where 𝑈 is the number of drivers, 𝐷𝑢𝑠 , 𝐷𝑢𝑞 denotes the support set,
and the query set of driver 𝑢, respectively.

In 𝑖-th epoch, we run every dataset on MAML to learn the glob-
ally adaptive model parameters. In every meta-training step, we
perform fast adaptation on the support set 𝐷𝑢𝑠 , calculate the loss
L𝑖
𝐷𝑢
𝑠
(𝑓𝜃 ), and update parameters as follow:

𝜃 ′ ← 𝜃 − 𝜂∇𝜃L𝑖𝐷𝑢
𝑠
(𝑓𝜃 ), (24)

where 𝜃 ′ are updated parameters, 𝜂 is the inner loop learning rate,
and ∇𝜃L𝑖𝐷𝑢

𝑠
(𝑓𝜃 ) denotes the gradient of loss on the support set.

Then, we evaluate the model by running the query set 𝐷𝑢𝑞 and
calculate the loss L𝑖

𝐷𝑢
𝑞
(𝑓𝜃 ′ ). At the end of each epoch, we apply

bi-level optimization to update model parameters as:

𝜃 ← 𝜃 − 𝛾∇𝜃
𝑈∑︁
𝑢=1
L𝑖
𝐷𝑢
𝑞
(𝑓𝜃 ′ ), (25)

where𝛾 is the outer loop learning rate.We run several meta-training
epochs until it performs well on the validation dataset.

Afterward, we merge the support and query set as 𝐷𝑢 , then fine-
tune the initialized parameters on driver 𝑢. In the end, we would
obtain 𝑈 sets of parameters, and each of them can be well adapted
to its corresponding driver. Please refer to Appendix A.2 for the
complete meta-optimization algorithm.

5 EXPERIMENTS

5.1 Experimental Setup

In this section, we introduce the metrics of our experiments, the
baseline models we compared, and the implementation details.
Moreover, please refer to A.4 for the prototype system design.

5.1.1 Metrics. We adopt three widely used evaluation metrics in
regression tasks: Mean Square Error (MSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE).

5.1.2 Implementation Details. The embedding size of features is
set as 20. The top-𝐾 value is 5. We take the filter size 𝑞 = 4 for
CNN and the number of heads ℎ = 4 for the Transformer encoder
and the multi-head attention module. The hidden size of GRU and
MLP modules is set as 20 and 40, respectively. We utilize Adam
optimizer with the inner loop learning rate 6 × 10−4 and 3 × 10−4,
the outer loop step size 6 × 10−3 and 3 × 10−3, and the fine-tuning
learning rate 6 × 10−4 and 10−4 for the VED and ETTD datasets.
The L2 penalty is set to 10−5. For each dataset, we randomly select
each driver’s 10% and 20% of records as the validation and test sets,
respectively. The rest is left for training. The support set is split
from the training set of the driver with a ratio of 10%, and the rest
is left as the query set.

5.1.3 Baselines. We compareMeta-Pec4 with numerical and data-
driven methods. The following ten baselines are compared.
Average [7] estimates the energy consumption by multiplying the
VEC per kilometer by the length of the trip.
MLR is known as the multiple linear regression model. [7] utilizes

4Source code is available at https://github.com/usail-hkust/Meta-Pec

Table 2: Overall performance of Meta-Pec and all baselines

on two datasets. The best and second-best results are high-

lighted in boldface and underlined, respectively.

Model VED ETTD

MSE MAE MAPE MSE MAE MAPE

Average 0.4142 0.1569 62.52% 0.8245 0.5279 43.27%
MLR 0.0551 0.0529 48.12% 0.7627 0.5014 38.95%

XGBoost 0.0446 0.0416 28.05% 0.7531 0.4989 42.31%

DNN 0.0397 0.0427 26.55% 0.7956 0.5187 38.38%
LSTM 0.0393 0.0421 27.56% 0.7646 0.5045 39.36%

Transformer 0.0382 0.0398 24.50% 0.7669 0.5068 39.30%

LDFeRR 0.0470 0.0425 28.16% 0.7483 0.5085 38.76%
Enc-Dec 0.0378 0.0398 25.55% 0.7496 0.5071 37.81%
PLd-FeRR 0.0405 0.0395 24.37% 0.7519 0.504 37.66%

Meta-TTE 0.0458 0.0463 40.72% 0.7416 0.5139 40.12%

Meta-Pec 0.0350 0.0349 22.82% 0.7306 0.4898 37.10%

real-world measured driving data and domain knowledge to con-
struct a particular MLR model for VEC estimation, and predicts the
speed profile based on a NN model.
XGBoost is a well-known gradient boosting model. [3] utilizes
XGBoost as the state-of-the-art model.
DNN [4, 7, 25] is a classic NN model and widely used by multiple
researchers in VEC estimation tasks.
LSTM [4, 18] is a typical recurrent neural network widely utilized
to handle the route sequence data and make road-level VEC esti-
mations.
Transformer [26] is a well-known self-attention-based sequential
model.
LDFeRR [17] utilizes an attention-based GRU to estimate the road-
level VEC.
Enc-Dec [18] utilizes an encoder-decoder structure to estimate the
road-level VEC.
PLd-FeRR [31] identifies the features indicating the driving pref-
erence, and a Transformer-based model is deployed for VEC esti-
mation.
Meta-TTE [27] is a meta-learning-based model utilized for the esti-
mated time of arrival (ETA) prediction tasks. We modify its output
from travel time into the energy consumption of the target trip.

5.2 Overall Results

Table 2 shows the experimental results of the ten baselines and our
proposed method on two real-world datasets. Meta-Pec outper-
forms all the baseline models and achieves state-of-the-art. In detail,
almost all classic methods (Average, MLR, XGBoost) perform worse
than deep learning models since they only consider the trip’s and
driver’s statistical information. They estimate energy consumption
from a macroscopic view. Well-designed VEC estimation-oriented
models (LDFeRR, Enc-Dec, PLd-FeRR) have the best performance
among most baseline models, indicating more information is cap-
tured by the model as we consider more driver-specific features.
Meta-TTE is a model for ETA prediction, which performs worse
on the VED since this dataset is constructed based on real vehicle
energy usage. In contrast, VECs of the ETTD dataset are calculated

https://github.com/usail-hkust/Meta-Pec
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Figure 4: Ablation tests of the model on two datasets.

based on mechanical energy, indicating a gap existing between
the ETA and VEC prediction tasks. Note Meta-TTE is designed to
provide accurate travel time estimates even when there are changes
in traffic conditions or road networks, while our model leverages
meta-learning to acquire globally shared knowledge from various
drivers and enable rapid adaptation to insufficient data scenarios.

Further looking into the results, Meta-Pec significantly sur-
passes all deep-learning-based models by (7.51%, 11.66%, 6.37%)
on the VED dataset, indicating our proposed method can make
more appropriate driver-specific VEC estimations. The reasons are
three-fold. First, unlike other baseline models which only model
personalization features by handcrafting statistical features, we
extract driving preferences from the historical trajectories at the
trajectory-level. Second, the driving behavior prediction module
also helps in providing extra estimation basis and supervision sig-
nals. More in-detailed analysis of this module will be provided in
Section 5.3.5. Finally, different from methods that learn a unified
model for all users, we utilize a meta-optimization strategy to per-
form fast adaptation on long-tail drivers, which will be studied in
Section 5.4.

5.3 Ablation Study

In order to verify the effectiveness of each module, we conduct
ablation studies on six variants of our proposed Meta-Pec, in-
cluding (1) Pec: the base model, which does not utilize the meta-
optimization strategy, (2) Meta-ec: the model does not use any
personalization module (i.e., the driving preference learning and
driving behavior prediction module), (3) Meta-Pec-Rand-Hist:
the model randomly selects 𝐾 historical trips to extract the dri-
ver’s preference, (4) Meta-Pec-State: the model learns the driving
preference by modeling vehicle state sequence rather than driver
behaviors, (5) Meta-Pec-No-Beh-Dec: the model that does not
predict driving behaviors on each target road, and (6)Meta-Pec-
R2B-Dec: the model that predicts driving behaviors only based on
the road features rather than jointly considering driving prefer-
ences and the road conditions. The comparison results among all
variants are shown in Figure 4.

Table 3: Performances on long-tail drivers

Model VED ETTD

MSE MAE MAPE MSE MAE MAPE

Pec 0.0452 0.0686 22.85% 2.9598 1.0203 70.41%
Meta-Pec 0.0316 0.0587 21.86% 2.8950 0.8848 50.25%

5.3.1 The effectiveness of the meta-optimization module (Pec). Al-
though Pec and Meta-Pec have similar performance, Meta-Pec is
better (3.74% atmost on the VEDdataset) due to itsmeta-optimization
module, indicating the model has learned the globally shared knowl-
edge and is able to adapt quickly to each driver’s particular prefer-
ence and provide accurate VEC estimations for long-tail drivers.

5.3.2 The effectiveness of personalization modules (Meta-ec). We
designed two modules for personalized VEC estimation, including
the driving preference learning module and the selection-based
driving behavior prediction. After we exclude these two compo-
nents and only leave statistical information as personalized features,
it performs badly on the two datasets (drops 11.16% at most on the
ETTD dataset), indicating the handcrafting statistical data is coarse-
grained and helps little to the accurate personalized estimations.

5.3.3 The effectiveness of the top-𝐾 historical trip selection (Meta-

Pec-Rand-Hist). After we replace the top-𝐾 historical trip selection
strategy by random picking, this variant model performs much
worse on two datasets (drops 23.19% at most on the VED dataset),
representing the irrelevant trips provide little information about
how the driver will drive on the target route.

5.3.4 The effectiveness of modeling driver behaviors (Meta-Pec-

State). Meta-Pec-State does not deploy CNN to extract behaviors
but only uses a transformer module to model the vehicle state
sequence. It performs terribly on the two datasets (drops 10.43% at
most on the ETTD dataset), indicating it is reasonable to encode
driver behaviors rather than directly model vehicle states on the
trajectory.

5.3.5 The effectiveness of driving behavior prediction (Meta-Pec-

No-Beh-Dec). The driving behavior prediction module can offer
more VEC estimation basis for VEC estimations and extra supervi-
sion signals as a joint learning module. As we exclude the driving
behavior prediction module, the performance drops on the two
datasets (4.91% at most on the VED dataset).

5.3.6 The effectiveness of the Behavior to Behavior (B2B) prediction

(Meta-Pec-R2B). Previous studies like [18] predict road-level driver
energy consumption only based on road features, which require the
model to transfer the road domain into the energy usage behavior
domain (R2B). It is a more complex manner and does not consider
any personalization information. After we switch B2B into R2B
prediction, the performance drops on the two datasets (5.17% at
most on the ETTD dataset).

5.4 Effectiveness on Long-tail Drivers

We consider drivers who have less than ten training samples as
long-tail drivers, which account for 14.65% and 8.12% in the VED
and ETTD datasets, respectively. To verify the effectiveness of
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Figure 5: Parameter sensitivity tests of the model on two

datasets.

Table 4: The importance of each top-𝐾 historical trips. "# of

same roads" indicates the number of road segments shared

by the historical and the target route.

Rank # of same roads Importance

# 1 31 0.2689
# 2 29 0.2626
# 3 29 0.2637
# 4 25 0.1074
# 5 24 0.0974

our proposed meta-optimization module, we further compare the
performance of Meta-Pec and Pec (i.e., the model does not utilize
the meta-optimizationmodule) on long-tail drivers. Table 3 presents
the results on two datasets with and without the meta-optimization
module. We observe that Meta-Pec significantly surpasses Pec
on long-tail drivers (30.08% and 28.64% at most on the VED and
ETTD dataset, respectively), indicating our proposed model is more
robust in handling drivers with limited instances and achieving
personalized VEC estimation for various drivers.

5.5 Parameter Sensitivity

We conduct experiments on the two datasets to study the impacts
of the following hyper-parameters inMeta-Pec. 𝐾 is the number
of the most similar historical trips we extracted. 𝑞 is the number of
continuous vehicle states in a behavior segment. States contained
in a segment are considered a driving behavior in the trip trajectory
(e.g., accelerating, braking, etc).

Figure 5a and Figure 5b show the results with varying𝐾 . It is clear
that the model’s performance drops as we sample more historical
trips, indicating dissimilar trips contain noisy information and are
less helpful to the driver’s driving preference. Keeping the most

(a) The ground truth VEC. (b) The predicted VEC.

Figure 6: The spatial distribution of the ground truth and

predicted VEC.
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Figure 7: The learned multi-head attention weights.

relevant trips can help the model focus on what is truly important.
Meta-Pec achieves the best performance when setting 𝐾 = 5 on
the two datasets.

Figure 5c and Figure 5d report the results of varying 𝑞. We ob-
serve that the performance drops when more states are included
in a behavior segment, which is perhaps because the CNN needs
to handle more behaviors simultaneously. As a result, the model
performance decreased as the task became difficult. We set the 𝑞
value as 2 and 4 on the VED and ETTD datasets, respectively.

5.6 Case Study

In this section, we conduct a case study to further validate the VEC
estimation performance of our proposed Meta-Pec. We take an
example of the VED dataset, which achieves absolute error (AE) at
5 × 10−4 and absolute percentage error (APE) at 0.56%.

5.6.1 Spatial visualization. We first analyze the spatial distribution
of the estimated VEC. Figure 6a shows the route and the ground
truth energy usage of the example route. Figure 6b shows the energy
consumption on each road segment predicted by the selection-
based driving behavior prediction module. As can be seen, our
model properly estimated the high energy consumption area (in red
rectangles) indicating Meta-Pec successfully captures the driver’s
preference and road conditions for accurate VEC estimations.

5.6.2 Module-level analysis. We report the learned importance of
historical trips in Table 4. As can be seen, the importance of histori-
cal trips decreases gradually, indicating Meta-Pec owns the ability
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to discriminate the most critical historical trips that can provide
helpful information to the VEC estimation. Besides, we calculate
the multi-head attention weights of each historical trip defined
by Equation 12. As illustrated in Figure 7, the learned attention
weights of top-3 trips are higher than the rest two, indicating that
our driving behavior prediction module has also learned how to
select the most useful information.

6 RELATEDWORK

6.1 Vehicle Energy Consumption Estimation

Previous studies on vehicle energy consumption estimation can be
mainly categorized into numerical approaches [1, 6, 8, 20] and data-
driven approaches [4, 7, 10, 14, 17, 18, 22, 31]. Based on the vehicle
dynamics equation as the underlying physical model, Cauwer et
al. [6] proposed using multiple linear regression (MLR) models to
identify correlations between the kinematic parameters of the vehi-
cle and VEC. Similarly, Al-Wreikat et al. [1] proposed to evaluate
the driving behavior, distance, temperature, traffic, and road grade
effects on the VEC of an electric vehicle and the result shows the
driver’s behaviors have significant influences on VEC. Ojeda et al.
[20] considered using a real physical vehicle model for the speed
and fuel consumption prediction. Ding et al. [8] proposed to eval-
uate VEC by measuring the power generated by fuel combustion.
Recently, machine learning based methods have been studied for
vehicle energy consumption estimation. Cauwer et al. [7] developed
a data-driven method utilizing real-world measured driving data
and domain knowledge to construct MLR models for VEC estima-
tion. Chen et al. [4] proposed to use of long short-term memory
(LSTM) and artificial neural network (ANN) models to estimate
the energy consumption of electric buses. Liu et al. [17] utilized an
attention-based GRU to estimate the road-level VEC. DeepFEC [10]
proposed a deep-learning-based model to forecast energy consump-
tion on every road in a city based on real traffic conditions. Hua et
al. [14] developed a transfer learning model for electric vehicle en-
ergy consumption estimation based on insufficient electric vehicles
and ragged driving trajectories. PLd-FeRR [31] employs the Trans-
former for VEC estimation, with a consideration of the driver’s
driving preference through handcrafted personalized features.

6.2 Spatial-temporal Data Mining

Our study is closely related to spatiotemporal data mining [12,
15, 16, 23, 30, 33, 34, 37–39]. With the propensity of GPS devices,
spatial-temporal data mining has been extensively studied in vari-
ous applications. To name a few, Estimated time of arrival (ETA)
prediction is a classic task that aims to estimate the travel time
with a given origin, destination, and departure time. WDR [30]
proposed to combine Wide-Deep Learning with an LSTM module
for ETA. It is worth to mention that WDR also considers some
personalized features (e.g., driver profile, rider profile, vehicle pro-
file, etc.) to improve the performance. HetETA [12] proposes to
transform the road map into a heterogeneous graph and introduce
a vehicle-trajectories-based network to consider traffic behavior
patterns jointly. Huang et al. [15] argue modeling traffic congestion
is important for accurate ETA prediction, and they constructed a
congestion-sensitive graph and a route-aware graph transformer
to learn the long-distance congestion correlations. Driving is a

complex activity influenced by multiple factors. Analyzing driv-
ing behavior helps to assess driver performance, including safety
and energy efficiency, leading to enhancements in transportation
systems. Studies like [2] and [29] propose using discretized state
transition graphs derived from trajectories to identify different driv-
ing behaviors. In contrast, [33] proposes to provide better driving
behavior predictions by modeling the correlation between drivers’
skills and interactions hidden in their social networks. Besides, Next
Point-of-Interest (POI) aims to recommend the next POIs drivers
are most likely to visit based on their historical trajectories. Rao
et al. [23] proposed a Spatial-Temporal Knowledge Graph (STKG),
which can directly learn transition patterns between POIs. Trajec-
tory prediction is similar to Next POI recommendation, which aims
to predict the driver’s future visiting grid cell in the trajectory. Xu et
al. [34] designed a cluster-based [36] network initialization method
based on a meta-learning algorithm to obtain initial personalized
parameters for each trajectory. With the development of electric
vehicle technologies, spatiotemporal data mining has also been
applied to electric vehicle tasks. In order to help drivers find proper
spots for charging, Zhang et al. [38] proposed a framework called
Master for charging station recommendation by considering each
charging station as an individual agent and formulating the prob-
lem as a multi-objective multi-agent reinforcement learning task.
To balance the use of charging stations, MAGC [37] proposes to
provide dynamic pricing for each charging request and achieve
effective use of stations by formulating this problem as a mixed
competitive-cooperative multi-agent reinforcement learning task
with multiple long-term commercial goals.

7 CONCLUSION

In this paper, we investigated the personalized vehicle energy con-
sumption estimation problem by explicitly exploiting driving be-
haviors hidden in historical trajectories. Specifically, we proposed a
preference-aware meta-optimization framework (Meta-Pec) which
consists of three major modules. We first proposed a driving prefer-
ence learning module to extract latent spatiotemporal preferences
from historical trips. After that, we constructed a selection-based
driving behavior prediction module to estimate the possible driving
behavior on a given route with the consideration of the driver’s
past relevant trips. Furthermore, a driver-specificmeta-optimization
module is proposed to learn a shared global model parameter ini-
tialization that can be fast adapted to each long-tail driver with a
few historical trips. Extensive experiments on two large real-world
datasets demonstrated the effectiveness of Meta-Pec against ten
baselines. In the future, we plan to deploy Meta-Pec to more cities
so as to provide insightful information for various decision-making
tasks such as individual trip planning and sustainable transporta-
tion system management.
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A APPENDIX

A.1 Top-𝐾 historical trip selection Algorithm

Algorithm 1: Top-𝐾 historical trip selection
input :The route of the target trip 𝑅𝑐 and its departure

time 𝑠𝑐 , and historical trips’ routes {𝑅𝑖 }𝑀𝑖=1 and
departure times {𝑠𝑖 }𝑀𝑖=1.

output :The target trip’s most similar 𝐾 trips 𝐻𝐾 .

1 for 𝑖 ← 1 to𝑀 do

2 Calculate the route similarity by:
𝑠𝑐𝑜𝑟𝑒𝑟𝑜𝑢𝑡𝑒

𝑐,𝑖
= | 𝑅𝑐 ∩ 𝑅𝑖 |;

3 Calculate the temporal similarity by:
𝑠𝑐𝑜𝑟𝑒𝑡𝑖𝑚𝑒

𝑐,𝑖
= | 𝑠𝑐 − 𝑠𝑖 |;

4 end

5 for 𝑖 ← 1 to𝑀 do

6 Normalize each similarity score as:

𝑛𝑜𝑟𝑚(𝑠𝑐𝑜𝑟𝑒∗
𝑐,𝑖
) = 𝑠𝑐𝑜𝑟𝑒∗𝑐,𝑖−𝑀𝑖𝑛 (𝑠𝑐𝑜𝑟𝑒∗𝑐 )

𝑀𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒∗𝑐 )−𝑀𝑖𝑛 (𝑠𝑐𝑜𝑟𝑒∗𝑐 ) ;
7 Calculate the final similarity score by:

𝑠𝑐𝑜𝑟𝑒𝑐,𝑖 = 𝑛𝑜𝑟𝑚(𝑠𝑐𝑜𝑟𝑒𝑟𝑜𝑢𝑡𝑒𝑐,𝑖
) − 𝑛𝑜𝑟𝑚(𝑠𝑐𝑜𝑟𝑒𝑡𝑖𝑚𝑒

𝑐,𝑖
);

8 end

9 Select 𝐾 historical trips with the highest scores as 𝐻𝐾 .

A.2 Meta-optimization Algorithm

Algorithm 2:Meta-optimization

input :All drivers’ task datasets {(𝐷𝑢𝑠 , 𝐷𝑢𝑞 )}𝑈𝑢=1, inner loop
learning rate 𝜂, outer loop learning rate 𝛾 , and
fine-tuning learning rate 𝜔 .

output :Model parameters {𝜃𝑢 }𝑈
𝑢=1 adapted to every driver.

1 Random initialize model parameters 𝜃 ;
2 for 𝑖 ← 1 to 𝑁𝑒𝑝𝑜𝑐ℎ do

3 for 𝑢 ← 1 to𝑈 do

4 Calculate the gradient of loss on the support set as:
∇𝜃L𝑖𝐷𝑢

𝑠
(𝑓𝜃 );

5 Update parameters with gradient descent as:
𝜃 ′ ← 𝜃 − 𝜂∇𝜃L𝑖𝐷𝑢

𝑠
(𝑓𝜃 );

6 Calculate the loss on the query set as: L𝑖
𝐷𝑢
𝑞
(𝑓𝜃 ′ );

7 end

8 Update parameters with gradient descent as:
𝜃 ← 𝜃 − 𝛾∇𝜃

∑𝑈
𝑢=1 L𝑖𝐷𝑢

𝑞
(𝑓𝜃 ′ );

9 end

10 for 𝑢 ← 1 to𝑈 do

11 Merge the support and query set as 𝐷𝑢 ;
12 Fine-tune the model by: 𝜃𝑢 ← 𝜃 − 𝜔∇𝜃L𝐷𝑢 (𝑓𝜃 );
13 end

A.3 Additional Case Study

The ground truth and predicted VEC spatial distribution of addi-
tional cases are presented in Figure 8-9.

(a) The ground truth VEC. (b) The predicted VEC.

Figure 8: Additional case 1.

(a) The ground truth VEC. (b) The predicted VEC.

Figure 9: Additional case 2.

A.4 Prototype System

We have implemented a demo system to provide personalized en-
ergy consumption estimation for given trips. Figure 10 shows the
screenshot of our demo system. For each trip, the system displays
the route, the origin and destination, and the estimated energy
consumption of the trip, where warm colors indicate high energy
consumption. Moreover, the system also provides a road view to
visualize the energy consumption of each road segment based on
the past trajectories traversed.

Figure 10: Prototype system.
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