Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3589335.3651243acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
short-paper

Towards Personalized Evaluation of Large Language Models with An Anonymous Crowd-Sourcing Platform

Published: 13 May 2024 Publication History

Abstract

Large language model evaluation plays a pivotal role in the enhancement of its capacity. Previously, numerous methods for evaluating large language models have been proposed in this area. Despite their effectiveness, these existing works mainly focus on assessing objective questions, overlooking the capability to evaluate subjective questions which is extremely common for large language models. Additionally, these methods predominantly utilize centralized datasets for evaluation, with question banks concentrated within the evaluation platforms themselves. Moreover, the evaluation processes employed by these platforms often overlook personalized factors, neglecting to consider the individual characteristics of both the evaluators and the models being evaluated. To address these limitations, we propose a novel anonymous crowd-sourcing evaluation platform, BingJian, for large language models that employs a competitive scoring mechanism where users participate in ranking models based on their performance. This platform stands out not only for its support of centralized evaluations to assess the general capabilities of models but also for offering an open evaluation gateway. Through this gateway, users have the opportunity to submit their questions, testing the models on a personalized and potentially broader range of capabilities. Furthermore, our platform introduces personalized evaluation scenarios, leveraging various forms of human-computer interaction to assess large language models in a manner that accounts for individual user preferences and contexts. The demonstration of BingJian can be accessed at https://github.com/Mingyue-Cheng/Bingjian.

Supplemental Material

MP4 File
Supplemental video

References

[1]
Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2023. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology (2023).
[2]
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition. Ieee, 248--255.
[3]
Jingtao Ding, Fuli Feng, Xiangnan He, Guanghui Yu, Yong Li, and Depeng Jin. 2018. An improved sampler for bayesian personalized ranking by leveraging view data. In Companion Proceedings of the The Web Conference 2018. 13--14.
[4]
Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023. C-eval: A multi-level multi-discipline chinese evaluation suite for foundation models. arXiv preprint arXiv:2305.08322 (2023).
[5]
Junzhe Jiang, Shang Qu, Mingyue Cheng, and Qi Liu. 2023. Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling. arXiv preprint arXiv:2309.10435 (2023).
[6]
Jiatong Li, Rui Li, and Qi Liu. 2023. Beyond Static Datasets: A Deep Interaction Approach to LLM Evaluation. arXiv preprint arXiv:2309.04369 (2023).
[7]
Yucong Luo, Mingyue Cheng, Hao Zhang, Junyu Lu, and Enhong Chen. 2023. Unlocking the potential of large language models for explainable recommendations. arXiv preprint arXiv:2312.15661 (2023).
[8]
Radek Pelánek. 2016. Applications of the Elo rating system in adaptive educational systems. Computers & Education, Vol. 98 (2016), 169--179.
[9]
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 (2018).
[10]
Tong Zhao, Julian McAuley, and Irwin King. 2014. Leveraging social connections to improve personalized ranking for collaborative filtering. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management. 261--270.
[11]
Yan Zhuang, Qi Liu, Yuting Ning, Weizhe Huang, Rui Lv, Zhenya Huang, Guanhao Zhao, Zheng Zhang, Qingyang Mao, Shijin Wang, et al. 2023. Efficiently Measuring the Cognitive Ability of LLMs: An Adaptive Testing Perspective. arXiv preprint arXiv:2306.10512 (2023).

Cited By

View all

Index Terms

  1. Towards Personalized Evaluation of Large Language Models with An Anonymous Crowd-Sourcing Platform

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WWW '24: Companion Proceedings of the ACM Web Conference 2024
    May 2024
    1928 pages
    ISBN:9798400701726
    DOI:10.1145/3589335
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 May 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. crowdsourcing platform
    2. large language model
    3. personalized evaluation

    Qualifiers

    • Short-paper

    Funding Sources

    Conference

    WWW '24
    Sponsor:
    WWW '24: The ACM Web Conference 2024
    May 13 - 17, 2024
    Singapore, Singapore

    Acceptance Rates

    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 84
      Total Downloads
    • Downloads (Last 12 months)84
    • Downloads (Last 6 weeks)16
    Reflects downloads up to 23 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media