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SSR-Net: A Spatial Structural Relation Network for Vehicle

Re-identification

ZHEMING XU, LILI WEI, CONGYAN LANG∗, SONGHE FENG, and TAO WANG, the Beijing
Key Laboratory of Traic Data Analysis and Mining, School of Computer and Information Technology, Beijing

Jiaotong University, China

ADRIAN G. BORS, University of York, The United Kingdom

HONGZHE LIU, Beijing Key Laboratory of Information Service Engineering, Beijing Union University, China

Vehicle re-identiication (Re-ID) represents the task aiming to identify the same vehicle from images captured by diferent

cameras. Recent years have seen various feature learning based approaches merely focusing on feature representations

including global features or local features to obtain more subtle details to identify highly similar vehicles. However, few such

methods consider the spatial geometrical structure relationship among local regions or between the global and local regions.

By contrast, in this study, we propose a Spatial Structural Relation Network (SSR-Net) which explores the above-mentioned

two kinds of relations simultaneously to learn more discriminative features by modeling the spatial structure information and

global context information. In this paper we propose to adopt a Graph Convolution Network (GCN), for modeling spatial

structural relationships among characteristic features. The GCN model aggregating the local and global features is shown

to be more discriminative and robust to several car image transformations. To improve the performance of our proposed

network, we jointly combine the classiication loss with metric learning loss. Extensive experiments conducted on the public

VehicleID and VeRi-776 datasets validate the efectiveness of our approach in comparison with recent works.

CCS Concepts: • Computing methodologies→ Object identiication; Image representations.

Additional KeyWords and Phrases: Vehicle re-identiication, Graph convolution network, Attention Mechanism, Deep learning

1 INTRODUCTION

Vehicle re-identiication (vehicle Re-ID), aiming to identify the same vehicle from a gallery of images captured

by disjoint cameras, has attracted much attention in the computer vision community in recent years. Vehicle

Re-ID has been widely applied in urban surveillance scenarios, e.g., traic management, video surveillance, and

intelligent security. It plays an important role in retrieving suspicious vehicles from giant surveillance data to

save labor costs and improve eiciency. However, Vehicle Re-ID still remains a challenging task due to subtle

inter-class variation (i.e., variation between diferent vehicles) and enormous intra-class variation (i.e., variation

among the same vehicle in diferent images) caused by severe changes in the image acquisition variation, such
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as heavy occlusion of vehicles, illumination conditions, and the variation in the visual appearance caused by

changes in the viewpoints of the cameras acquiring the vehicle images.

To address the above challenges, there are two diferent categories of approaches, i.e., distance metric learning

based approaches and feature learning based approaches. The irst group emphasizes how to map all samples into

a suitable latent subspace and relies on diferent loss functions to constrain the inter- and intra-class distances. By

contrast, the other group focuses on how to learn more discriminative features to enhance the performance and

robustness, as shown in Fig. 1. Early works of this group [1, 35, 77] merely extract global features by adopting

diferent deep convolutional neural networks or diferent loss functions, as shown in Fig. 1 (a). However, these

approaches lack exploiting subtle cues in local regions (e.g., vehicle logos, vehicle lights, annual inspection

insurance stickers, and interior decorations) , which are more discriminative in identifying highly similar vehicles

with similar colors and vehicle types. On account of this, some approaches [16, 40, 63] turn to extract global and

local feature simultaneously by adopting several separate methods embedding the local features as complementary

information for global features to distinguish similar vehicles between diferent classes, as shown in Fig. 1 (b).

However, these approaches ignore intrinsic relations within an image, which can be helpful for learning more

spatial structure information. To this end, recent advances [39, 90] make progress in exploring the intrinsic

relations among local regions, as shown in Fig. 1 (c). However, prior studies do not consider the relationships

between each local region and the global area, which could be helpful to improve the global context awareness of

each local region, further making the extracted features more discriminative and robust.

In this work, inspired by the capabilities of the Graph Convolution Networks (GCN) [2, 12, 30], we propose a

Spatial Structural Relation Network (SSR-Net) to address the challenges posed by vehicle Re-ID. Compared with

previous research studies, we attempt to model two kinds of relations simultaneously, i.e., the relations among

local regions to learn spatial structural information, and the relations between each local region and the global

relevant information to enhance the context awareness of local regions, as shown in the blue lines and red lines

in Fig. 1 (d). By learning these relations, the SSR-Net can learn more discriminative features with spatial structure

information and global context information. Concretely, the SSR-Net is composed of three branches, i.e., Global

Branch (GB), Attention Branch (AB) and Relation Branch (RB), respectively. Among them, GB is used to extract

the global feature representation of each vehicle image. Based on the global feature, AB further relies on two

attention mechanisms to generate more discriminative feature representations, which usually pay more attention

to subtle diferences in local regions. Subsequently, RB, the core branch of SSR-Net, aims to model the structure

relationships among local regions or between the global region and local regions. Speciically, we irst construct a

spatial geometrical structure graph by taking the global feature as a global node and the ive local feature patches

cropped from AB as local nodes. Each local node is directly associated with its adjacent local nodes. To avoid

over-smoothing issues when directly connecting global and local nodes, we introduce a learnable token node

to indirectly associate the global node and local nodes. Based on such a spatial structural graph, RB employs a

GCN module to learn more discriminative structure features by incorporating global and local features. After

SSR-Net learning three diferent kinds of feature representations for each vehicle, in order to further boost the

performance, we utilize a combination of classiication loss and metric learning loss for the training of the whole

SSR-Net.

We conduct extensive experiments on two Re-ID benchmark datasets, and experimental results demonstrate

the efectiveness of the proposed SSR-Net. The main contributions of the proposed approach are summarized as

follows:

• We propose a Spatial Structural Relation Network (SSR-Net) for vehicle Re-ID by processing three branches

and jointly exploiting the relationships among the global and local vehicle image representations.

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 1. The illustration of comparison between previous re-id methods and ours. (a) approaches merely extracting global

features; (b) approaches separately extracting global and local features; (c) approaches with relations among local regions;

(d) the proposed SSR-Net exploring spatial relations among local regions and the relations between global areas and local

regions. The blue lines indicate the relations among local regions, and the red lines represents relations between each local

region and the global representation.

• We model the relationships among local features and between the global feature and local features in the

form of a spatial geometrical structure graph, and utilize a GCN module to conduct message-passing on

the graph topology to extract spatial structural relation representations.

• Extensive comparison experiments and ablation studies on two benchmark datasets demonstrate the

efectiveness of the proposed SSR-Net.

Our preceding work is described in [69]. In this work, our crucial improvements include: (1) We proposed

an attention branch to obtain detailed features which are more discriminative. (2) We reconstruct the graph

by introducing a learnable token node to learn spatial structure information and global context information

simultaneously, while avoiding over-smoothing. (3) In each branch, we jointly learn the triplet loss and cross-

entropy loss.

2 RELATED WORKS

In this section, we irst briely revisit the most relevant works in the ield of Re-ID in Sec. 2.1, followed by a

review of the work in Graph Convolutional Network in Sec. 2.2. Finally, in Sec. 2.3, we briely introduce the

research on attention mechanisms.

ACM Trans. Multimedia Comput. Commun. Appl.
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2.1 Vehicle Re-ID

In recent years, various research studies have addressed the ield of vehicle Re-ID, and these works can be

separated into two categories: metric learning based approaches and feature learning based approaches.

Metric learning based approaches. The metric learning methods [1, 5, 35, 37, 41, 77] focus on learning a

latent embedding in order to decrease the intra-class variance and increase inter-class variance to improve the

discrimination. Depending on the number of network inputs, metric learning can be classiied as contrastive

loss [15, 37], triplet loss [51], and quadruplet loss [21]. In the vehicle Re-ID community, the triplet loss and its

variants [77] are now the most prevalent metric learning loss functions employed.

Feature learning based approaches. Over the last few decades, most of the existing research has aimed

to extract more discriminative features. These eforts may be divided into two categories, namely hand-crafted

features extraction and deep learning based features extraction. In an early age, researchers designed and utilized

diferent feature extractors [33, 46, 58, 76] to obtain hand-crafted features. For instance, Liu et al. [36] utilized

SIFT descriptor [46] and CN (Color Name) descriptor [58] to extract the texture and color feature of local regions.

Liao et al. [33] presented a feature descriptor termed Local Maximal Occurrence (LOMO) to cope with the

person Re-ID problem. However, the method based on hand-crafted features has its drawbacks. First, low-level

semantic features, such as color and texture, are vulnerable to the environment (e.g., lighting, shooting angles

and resolution). Furthermore, these methods demand a lot of time and efort from researchers to design efective

feature descriptors, which is ineicient.

After the great success and widespread of AlexNet and the following development of Convolutional Neural

Networks (CNN), deep learning methods have shown their great power in various applications. The task of

vehicle re-identiication is no exception [35, 44, 65, 79, 80]. Early research methods mainly focus on extracting

the global feature of the vehicle images. For instance, Guo et al. [13] propose a structured feature embedding

method that designed coarse-grained to ine-grained ranking loss to extract more discriminative global features.

However, these methods neglect to consider local regions which contain rich detailed information that helps

deal with challenges like subtle inter-class variance. In order to deal with this challenge, He et al. [16] propose a

network with two modules, namely the Global Module (GM) and the Local Module (LM). In LM, three kinds of

local features (i.e., rear windows, headlights, license plate logos) are obtained by the YOLO detection algorithm

[49]. Besides dividing overlapped parts to obtain local features, Liu et al. [40] also introduce two extra relevant

attributes (i.e., colors, and vehicle models) to further improve the performance of the method. He et al. [18]

propose an approach that introduces a two-branch network to extract the appearance of vehicles, as well as a

license plate Re-ID network to capture the contexts of license plate images to further boost the performance of

vehicle Re-ID.

However, most of these methods only pay attention to obtaining visualized feature expression while ignoring

considering the structural relationship of vehicle representation. Nevertheless, recently some research studies

have considered the structural relationship of local regions of vehicles. For instance, Liu et al. [39] build a

Multi-grained Vehicle Parsing (MVP) dataset by constructing a semantic graph to further extract the structural

relationship among local regions. Zhu et al. [90] propose a Structured Graph Attention network (SGAT) to

exploit the structural relationship among local landmarks of vehicles. However, these methods only exploit the

relationship among local features while not considering the global representation or using this separately. In this

paper, we consider the two relationships simultaneously.

2.2 Graph Convolutional Network (GCN)

GCN. In real-life, plenty of structured data exists in a graph manner, such as social networks, protein structures,

transportation networks and the World Wide Web. Although the convolutional network has gained a profound

ACM Trans. Multimedia Comput. Commun. Appl.
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reputation in processing images, audios and sentences, it is not appropriate to be used for certain data representa-

tions. Graph Convolution Network (GCN) is one of the methods that can process graph representations. The study

of GCN mainly focuses on the propagation and aggregation of information from neighboring nodes. In terms

of feature space, GCN can be generally divided into two categories: spectral-domain and spatial-domain. The

spectral GCN [2, 7, 19, 32, 75] deine convolution operations on the graph by using Fourier or Laplace transform,

while the spatial GCN [12, 50, 74] aggregate each central node and its neighboring nodes in the graph directly by

deining various aggregation functions. GCN has gained much attention in recent years and has been applied in

various tasks such as skeleton-based action recognition [70, 71], zero-shot learning [61], few shot learning [11],

social relation recognition [38], point clouds processing [62], etc.

GCN in Re-ID Tasks. GCN has also been applied in the Re-ID community. For the person Re-ID task, Jiang et

al. [25] propose a Part-based Hierarchical Graph Convolutional Network (PH-GCN) which builds a hierarchical

graph to represent the pairwise relationships across distinct regions and utilizes a GCN to extract the structural

feature of images. In terms of the video-based person Re-ID task, Yang et al. [72] propose a Spatial-temporal

Graph Convolutional Network (STGCN) to learn the temporal relationship between distinct frames and the

spatial relationship inside a given frame. Ji et al. [24] develop a Meta Pairwise Relationship Distillation (MPRD)

method, in which a GCN module predicted the pseudo labels of sample pairs to deal with the unsupervised

person Re-ID task. As for the vehicle Re-ID task, Liu et al. [39] propose a Parsing-guided Cross-part Reasoning

Network (PCRNet) to extract part-level feature representation and then adopt a GCN module to explore the

relations between various parsing-guided parts.

2.3 Atention Mechanism

Attention mechanisms [10, 22, 48, 53, 66] have gained great popularity in recent years.They have been utilized in

a variety of domains, including action recognition [52], image caption generation [68], human pose estimation[6],

and image classiication [22, 60, 64, 67, 78]. Speciically, Hu et al. [22] propose squeeze-and-excitation (SE) module

to adjust the weights of channels. Based on the SENet, the CBAM [64] considers spatial attention module and

channel attention module simultaneously. Vaswani et al. [59] propose the transformer, which is designed entirely

based on the self-attention mechanism and inspires the development of ViT [9], Swin Transformer [43] and other

variants.

3 METHODOLOGY

In this section, we provide the overview of the proposed re-ID framework in Sec. 3.1. Then the three branches, i.e.,

Global Branch, Attention Branch, and Relation Branch are elaborated in Sec. 3.2, Sec. 3.3, and Sec. 3.4, respectively.

Finally, in Sec. 3.5, we introduce the joint learning of classiication loss with metric learning loss.

3.1 Framework Overview

Given input images � = {�1, �2, . . . , ��} and the ground truth labels � = {�1, �2, .., �� }, where B and M represent

the number of images in a mini batch and the total number of classes respectively, the aim of the Spatial Structural

RelationNetwork (SSR-Net) is to extract robust and discriminative features for vehicle Re-ID. The overall pipeline

of our proposed SSR-Net is briely illustrated in Fig. 2, where SSR-Net consists of three components, namely

Global Branch (GB), Attention Branch (AB), and Relation Branch (RB). Speciically, GB adopts a simple yet

efective backbone network F (·) to generate the global representation (global feature map �� ∈ R�×�×�×� and

global feature vector �� ) for input images � , where �, � , � and� are the batch size, channel, height and width

of �� , respectively. Later, AB takes �� as input, learns important subtle features via the Attention Module (AM),

and derives the attention feature map which is denoted as ����� in Fig. 2 (b). Subsequently, as depicted in Fig. 2 (c),

taken ����� as input, RB irst crops ����� into a local feature map set �� = {��� , ��� , ���� , ��� , ��� } with ive local

ACM Trans. Multimedia Comput. Commun. Appl.



6 • Xu and Wei, et al.

!/*01#

!$%

!&%!&'

!$'

!()&

!!'*+,'

!/*01#

!-

!.//#

Pool

Pool

B
N

P
o

o
l

Inference

stage

Attention 

Module 

G
C

N

!$%
!()&
!&'
!&%

!$'

!!

!!"#

#

"(

")**+

",

(a) Global Branch (GB)

(c) Relation Branch (RB)

(b) Attention Branch (AB)

Batch NormalizationBN

FC layerFC

Pool Global Avg Pooling

Backbone

F
C ℒ!"

ℒ#$%

SSR-Net

…

crop

!!"#

!$% !$&

!#&!#%

B
N

F
C ℒ!"

ℒ#$%

B
N

F
C ℒ!"

ℒ#$%

ℱ(%)

Fig. 2. The framework overview illustration of the proposed SSR-Net. (a) global branch (GB) embeds the input images into

latent space. (b) atention branch (AB) takes global feature map as input and conduct atention operations to obtain atention

maps. (c) relation branch (RB) organizes global and local representations in the form of graph, and utilizes a GCN module to

incorporate the geometrical structural information and derive discriminative features. Best viewed in color.

feature maps, and then derives ive diferent local representations (denoted as �� = {��� , ��� , ���� , ��� , ��� }) which

have low spatial correlation in the original image. Later, considering �� , �� and a randomly initialized feature

vector ������ as node feature embeddings, RB models the spatial structural relation among local regions and

that between global and local areas using a graph representation. Afterward, a GCN module is utilized to make

message-passing on the graph topology to derive an updated representation ������ which integrates both the

global information and spatial local information. Note that during the inference stage, concatenation of extracted

��, ������ and ����� is denoted as the inal representation for vehicle Re-ID.

3.2 Global Branch

As depicted in Fig. 2 (a), GB is designed to derive global representation of the input images � . In the branch, a

CNN F (·) (such as ResNet-50 [17]) is trained to infer the latent space corresponding to a given image � . After

obtaining the feature map �� , there are two data lows. In one low, global feature vector �� is derived after

operations with global average pooling (GAP) and batch normalization (BN). In the other low, �� is taken as the

input of AB as explained in Sec. 3.3 to help with subsequent attention operations.

3.3 Atention Branch

As aforementioned, subtle detail information in local regions could efectively help re-identify the vehicle. To this

end, we adopt a light-weight attention module CBAM, proposed in [64], to obtain local attention maps. Denote

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 3. Visualization of atention maps. Warm color represents the high significance of its covered region.

the channel attention map obtained from CBAM as�� ∈ R
�×1×1 and the spatial attention map as�� ∈ R

1×�×� .

Given the global feature map �� as input, the attention map ����� is computed as follows:

�� = �� (�� ) ⊗ �� ,

����� = �� (�� ) ⊗ �� ,
(1)

where ⊗ represents element-wise multiplication. ����� provides detailed cues for vehicle Re-ID, and is taken as

the input of the Relation Branch in Fig. 2 (c).

3.4 Relation Branch

Feature Extraction. In general, the middle part of the image contains rich local details because the vehicle

is cropped using object detection algorithms. Meanwhile, the vehicle is a rigid object and the information of a

vehicle is deined by its parallelepipedic geometrical structure. As illustrated in Fig. 3, the majority of the focus

areas are located in the four corners of the segmented vehicle object. Therefore, we denote the four corners

and the middle region of the vehicle image as the local feature map set �� = {��� , ��� , ���� , ��� , ��� }, in which

�� ∈ R
�×�×��×�� . �� and�� represent the height and length of each local feature map, and are computed as

follows:

�� = ⌊� × �⌋,

�� = ⌊� ×� ⌋,
(2)

where ⌊⌋ represents loor operator and � ∈ (0, 1) is a region ratio parameter. For improving the robustness of the

vehicle representation we consider overlaps between the selected regions by considering � >
1
2 . Considering

alignment error and pose variation, we set � as 2
3 to deine overlapping regions in the vehicle representation data.

Subsequently, in each branch, feature maps are embedded as feature vector representations, denoted as

�� , ��� , ��� , ���� , ��� , ��� . To better integrate both the global and spatial local information, as well as avoid over-

smoothing, we further introduce a token feature representation ������ that is initialized randomly.

Graph Construction. In recent years, some existing methods concatenate local features directly, ignoring the

latent relationships between them. Some approaches consider such intrinsic relation among local parts whereas

ignoring the spatial structural relationship between local and global features at the same time. To this end, we

formulate these two relations in the form of a graph depicted in the middle of Fig. 2.

ACM Trans. Multimedia Comput. Commun. Appl.
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Let � (� , �) represents the constructed graph. � (� , �) is composed of seven nodes including ive local nodes,

one global node and one token node which is initialized randomly. Therefore, the node set � is deined as

� = {�� , ��� , ��� , ���� , ��� , ��� , ������}. As illustrated in Fig. 2, edge �� � = 1 when �� and � � are connected. The

adjacency matrix � ∈ R�×� can be then formulated as follows,

�� � =

{
1 �� � = 1

0 otherwise,
(3)

where �� � ∈ � and � is the number of nodes. At last, the adjacency matrix of � (� , �) is denoted as �̃ = � + � ,

where � is the identity matrix.

Feature Update. Following the work of Kipf [30], we employ a � th-layer GCN module (� is set as 2 in this

paper) to extract structural features. To be more speciic, the output of the � + 1 th layer of the GCN module can

be represented as,

� (�+1)
= � (�̃−1�̃� (� )� (� ) ), (4)

where �̃ ∈ R�×� is the degree matrix of �̃. The activation function � (·) is ���� (·). The initial input of the GCN

module � (0) is consist of the feature vector of the seven nodes. In the end, the updated token feature ������
represents the output of RB, containing spatial structural relationships.

3.5 Loss Functions

Classiication Loss. The vehicle Re-ID task can be treated as a multi-class classiication problem. Therefore,

given sample images � , we employ the cross-entropy loss,

L�� = −
1

�

�︁

�=1

�︁

�=1

������(���), (5)

where � is the number of samples in a mini batch, and� is the number of classes. The ground truth ��� equals

1 when the � th sample belongs to the� th class of vehicles, and ��� represents the predicted probability that

an image belongs to the� th vehicle class. In training stage, feature vectors obtained after the fully connected

layers in the three branches are supervised by the cross-entropy loss which can be denoted as L�
�� ,L

���
�� , L����

��

respectively.

Metric Embedding Loss. To learn more discriminative representations, we employ the triplet with hard

example mining [20] which selects challenging samples in each batch as positive and negative samples. The loss

is computed as follows:

L������� =

�︁

�=1

�︁

�=1

((���
�=1,...�

� (��� , �
�
� ) − ���

�=1,...�
�=1,...�
�≠�

� (��� , �
�
�) + �))+, (6)

where ��� denotes the � th image of the � th vehicle, and � (·) represents the distance metric function. Function

(·)+ denotes��� (0, ·), and hyper-parameter � represents a margin between positive and negative pairs. Feature

vectors obtained before the batch normalization layers in the three branches are supervised by the enhanced

triplet loss whose components are denoted L�
�������

, L���
�������

and L����
�������

.

Total Loss. The triplet loss focuses on the similarity distance learning, whereas the cross-entropy loss seeks to

ind a hyper-plane to classify data. In this work, we learn the triplet loss and the cross-entropy loss simultaneously.

A batch normalization (BN) layer is used before the fully connected layer. For our proposed methods, the total

loss is deined as follows:

ACM Trans. Multimedia Comput. Commun. Appl.
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L����� = L�
�� + L���

�� + L����
�� + � (L�

������� + L���
������� + L����

������� ), (7)

where � represents the loss balance parameter.

4 EXPERIMENTS

In this section, we evaluate the proposed SSR-Net through extensive experiments. To be more speciic, we irst

introduce two public datasets and the evaluation metrics in Sec. 4.1. Later, implementation details are elaborated

in Sec. 4.2. Then we conduct extensive ablation studies to demonstrate the efectiveness of essential components

of SSR-Net in Sec. 4.3. In Sec. 4.4, we conduct various experiments to explore the impact of diferent hyper-

parameters. Subsequently, we validate the proposed method on two benchmarks and compare the obtained

results with the state-of-the-art methods. Finally, we visualize the retrieval results in two retrieval datasets and

show the superiority of the proposed SSR-Net in Sec. 4.7.

4.1 Datasets and Evaluation Metrics

Datasets. VehicleID [35] dataset is one of the common datasets in vehicle Re-ID tasks. It is also known as the PKU

VehicleID dataset, which is collected and published by the National Engineering Laboratory for Video Technology

(NELVT) of Peking University in 2016. All images in the dataset are derived from real surveillance data captured

from traic cameras. VehicleID contains a total of 221,763 images from 26,267 vehicles. On average, the number

of images per vehicle is 8.44, and each vehicle has at least two images. Therefore, the dataset is suitable for

the vehicle re-identiication task. In order to protect the privacy of vehicle owners, the dataset obscures the

license plates information of all images with black masks. Based on the size of the dataset, VehicleID includes

three test subsets: VehicleID-800, VehicleID-1600, and VehicleID-2400. There are 6493 images from 800 vehicles

in VehicleID-800, 13777 images from 1600 vehicles in VehicleID-1600, and 19777 images from 2400 vehicles in

VehicleID-2400.

VeRi-776 [37] is collected from traic data captured by 20 diferent cameras. The dataset contains 49360 images

with 776 vehicles. In addition, VeRi-776 is annotated with information such as bounding box, vehicle type, and

color, and supplemented with spatial-temporal information such as the distance between various cameras. In

VeRi-776, there are 37781 images of 576 identities used for training, while the rest 11579 images of 200 vehicles

constitute the test set.

Evaluation Metrics. To validate the efectiveness of our proposed method, we adopt two evaluation metrics

as the previous work does: Cumulative Matching Characteristics (CMC) and mean average precision (mAP). CMC

curve relects retrieval accuracy. Generally, CMC@K is often adopted, where K represents the hit accuracy of the

top K positions. The formulation of CMC@K is deined as follows:

���@� =

∑�
�=1 �� (�, �)

�
, (8)

where � refers to the � th probe image, and � refers to the total number of probes. Ground truth �� (�, �) = 1

when the � th probe is in the top-K of the rank list, and otherwise, �� (�, �) = 0.

The CMC curve is suitable for single-gallery-shot, and CMC@1, also known as Rank-1, is an extremely

signiicant metric especially in application scenarios. The evaluation metric mean average precision (mAP) is

another appropriate metric especially when there are multiple query results in the gallery. The equation of mAP

is computed as follows:

��� =

∑�
�=1�� (�)

�
, (9)

where �� refers to the average precision, and � refers to the total number of probe images.
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Table 1. Evaluation of the efectiveness of the crucial components within SSR-Net on datasets. "RB w/o GN" denotes that

the constructed graph ignores the global node and only formulates the intrinsic relation among local nodes. "RB w/o token"

denotes constructing a graph with global and local nodes connected directly. The best results are indicated with bold.

Methods
VeRi-776 VehicleID-800 VehicleID-1600 VehicleID-2400

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

GB 93.31 71.54 77.74 83.97 74.37 79.90 71.67 77.00

+AB 95.23 76.23 81.73 87.41 75.96 82.65 74.75 81.11

+RB (w/o GN) 94.87 74.97 82.73 88.62 77.04 83.49 75.94 81.79

+RB (w/o token) 95.05 75.09 82.72 88.22 76.96 83.36 74.38 80.93

+RB 95.17 76.07 83.01 88.56 78.85 84.67 77.08 82.84

+AB+RB (w/o GN) 95.95 77.72 82.38 88.03 79.07 84.98 75.99 81.89

+AB+RB (Our Method) 96.36 78.32 83.08 89.07 79.51 85.13 77.44 83.12

4.2 Implementation Details

Network setting. In this work, ResNet-50 is used for extracting basic features of input images, and is pre-trained

on ImageNet [8]. The input images are resized to 256 × 256 and we apply random lipping and cropping for data

augmentation. The dimension of each local feature is set as R�×2048 where � represents the batch size. In all

experiments, � is set as 32, in which the number of the IDs per batch is 8 while the number of images per ID is

4. Note that the token node is randomly initialized with a dimension of R1×2048. The dimension of the output

feature of RB is set as R�×512.

Hyper Parameters. All experiments are implemented using PyTorch, and are conducted with 4 12G NVIDIA

TITAN XP GPUs. In each mini-batch, Stochastic Gradient Descent (SGD) optimizer is adopted to train the network

with the weight decay of 5 × 10−4. The initial learning rate is set as 1 × 10−4 and starts decaying at epoch 15 by

cosine annealing. The warm-up strategy is employed to the learning rate in the irst 5 epochs. The margin � of

metric embedding loss in Eq. (6) is set as 0.5. The value of hyper-parameters �, � and � are studied in Sec. 4.3 and

are inally set as 2
3 , 1 and 2, respectively.

4.3 Ablation Studies

Overall, our proposed model is made up of three parts, namely the global branch (GB), the attention branch (AB),

and the relation branch (RB). GB extracts global features through the common convolutional network, which is

also considered as the baseline. By introducing attention mechanisms, AB identiies crucial local features. The RB

deines the structure information as a graph with one global node, one token node, and ive local nodes. Then

we employ the graph convolutional network to explore the structural relationship among local parts and that

between local and global features. In order to fully validate the efectiveness of each branch in the proposed

method, we conduct a series of ablation experiments on both VehicleID and VeRi-776 datasets.

The Efectiveness of each component. As illustrated in Table 1, on the basis of "GB", by incorporating AB,

"+AB" achieves better performance over "GB", with Rank-1 accuracy and mAP increasing by 1.92% and 4.5% on

VeRi-776, respectively. On VehicleID-2400, "+AB" gains superior performance, with Rank-1 accuracy raised by

3.08% while mAP increased by 4.11%. These results demonstrate that the attention module further extracts useful

local features and would enhance the performance of GB. In terms of the RB, we observe that "+RB" gains at least

4.43% higher mAP performance over the baseline. Such results demonstrate the efectiveness and robustness of

the proposed method. According to Table 1, "+AB+RB" beats the baseline by 5.77% and 6.12% in Rank-1 accuracy

and mAP on VehicleID-2400, respectively. A similar trend also appears on the results achieved on the VeRi-776
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Table 2. Evaluation on diferent atention-based methods on VeRi-776 dataset where * denotes that the same base networks

are used.

Methods
VeRi-776

Rank-1 Rank-5 mAP

Bilinear CNN∗ [34] 87.57 95.05 59.39

Spatial Transformer Network∗ [23] 95.10 97.97 72.70

SE-Block∗ [22] 95.49 98.09 75.96

CBAM [64] 96.36 98.39 78.32

Table 3. Evaluation on diferent part-based methods on VehicleID and VeRi-776. * denotes that the same base networks are

used.

Method
VeRi-776 VehicleID-800 VehicleID-1600 VehicleID-2400

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

PCB∗[56] 95.59 78.04 77.99 85.21 73.43 80.94 71.43 78.97

SSR-Net 96.36 78.32 83.08 89.07 79.51 85.13 77.44 83.12

dataset. Furthermore, we observe that the combination of all modules achieves better performance than when

each individual module is considered, demonstrating the efectiveness of our proposed approach.

The Efectiveness of diferent ways of graph construction. In the following, we test various model

choices, for the relationships between local and global features in the GCN model for re-ID. The conigurations

considered "+RB (w/o GN)" and "+AB+RB (w/o GN)", where the global node is abbreviated as "GN". Besides, to

validate the efectiveness of the token node, we also create a model variant called "+RB (w/o token)" that builds a

graph without a token node, i.e., connecting global and local nodes directly. From Table 1, it can be observed that

approaches considering the global-local relation exceeds both their variants. To be more explicit, on the VeRi-776

dataset, "RB" improves "+RB (w/o GN)" by 0.3% and 1.3% on Rank-1 and mAP respectively. "RB" also results in

0.98% higher performance on mAP compared with "+RB (w/o token)", showing the efectiveness of the token node.

In the case of VehicleID-2400, "RB" holds a larger Rank-1 accuracy and mAP of 1.14% and 1.05%, respectively. For

the comparison of "+AB+RB" and "+AB+RB (w/o GN)", we similarly observe that the former approach outperforms

its variant by 0.6%, 1.04%, 0.15% and 1.23% mAP on VeRi-776, VehicleID-800, VehicleID-1600, VehicleID-2400,

respectively.

The Efectiveness of diferent attention-based and part-feature based methods. In Table 2 and Table

3, we further compare the performance of diferent attention-based methods and part-feature-based methods,

respectively. As illustrated in Table 2, we consider Bilinear CNN[34], SN-Block[22] and CBAM [64] on VeRi-776.

Besides, following PAN[83] and TAMR[14], we also validate the efectiveness of the Spatial Transformer Network

(STN)[23] module. Note that we directly utilize STN after input images for simplicity. Results in Table 2 show

that by considering spatial and channel attention simultaneously, CBAM achieves the best results. Therefore,

CBAM is used as our attention-mechanism method in the following experiments. Table 3 shows the performance

of diferent part-feature-based methods on VeRi-776. Compared to the conventional PCB[56], our method which

crops features through patches, achieves better results.

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 4. Rank-1 accuracy and mAP results obtained with diferent values of � on VehicleID and VeRi-776.

�
VeRi-776 VehicleID-800 VehicleID-1600 VehicleID-2400

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

1 96.07 77.12 82.5 88.04 79.08 84.65 76.08 81.81

2 96.36 78.32 83.08 89.07 79.51 85.13 77.44 83.12

3 95.47 76.97 81.93 87.77 78.02 84.20 75.21 81.26
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Fig. 4. Rank-1 accuracy and mAP results obtained with diferent values of �.

4.4 Impact of Hyper-parameters

In this subsection, we evaluate the impact of three hyper-parameters in SSR-Net, which are the depth of GCN � ,

the ratio � in Eq. (2) controlling the size of local regions and the loss balance parameter � .

Impact of the depth � for GCN. As shown in Fig. 2, the maximum depth of the constructed graph structure

is 2. Based on this, we consider three diferent values of � to validate the model performance. The experimental

results are shown in Table 4. The best performance is obtained when � = 2. Meanwhile, a three-layer GCN has

the poorest performance, with 1.19% lower mAP on VeRi-776 compared with model setting � to 2. On the basis of

this phenomenon, we analyze that over-itting occurs when the depth is over the maximum depth of the graph,

which in turn decreases the performance of the model.
Impact of the crop ratio �. In Sec. 3.4 we consider a hyper-parameter � controlling the size of local areas.

Fig. 4 depicts the experimental results of this hyper-parameter on VehicleID and VeRi-776s. Overall, the Rank-1

accuracy is not sensible to � as the variation trend in Fig. 4 (a) is not obvious. However, for another evaluation

metric, Fig. 4 (b) indicates an obvious variation trend. To be more speciic, on both datasets, the model has poor

performance on Rank-1 accuracy and mAP when � is set as 1
8 , then its performance increased sharply as � varies

from 1
8 to

2
3 , and reached the best performance when � = 2

3 . For higher values, the model’s performance decreases

dramatically. The results demonstrate that a small � setting leads to a rather weak expression for re-identiication,

while a larger � results in local feature maps similar to the global feature maps, causing over-smoothing issues

during GCN processing. In the following comparison and ablation studies, we consider � set as 2
3 .

The impact of loss balance parameter � . To validate the impact of balance parameter � in Eq. (7), we test

the value of � from 0 to 1.5 with a step of 0.2 or 0.3, and conduct distinctive experiments, as reported in Table 5. As
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Table 5. Rank-1 accuracy and mAP results obtained with diferent values of � on VehicleID and VeRi-776.

�
VeRi-776 VehicleID-800 VehicleID-1600 VehicleID-2400

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

0 94.04 73.43 78.90 85.36 75.32 81.44 74.44 80.14

0.2 94.40 74.32 79.40 85.99 78.78 84.58 75.30 81.56

0.5 94.34 74.27 81.40 87.49 78.47 84.43 75.39 81.51

0.8 94.70 75.02 81.85 87.96 78.47 84.61 77.04 82.88

1.0 96.36 78.32 83.08 89.07 79.51 85.13 77.44 83.12

1.2 94.22 73.58 81.49 87.70 78.17 84.17 76.19 82.09

1.5 93.74 71.18 81.31 87.45 78.07 84.24 76.34 82.26

Table 6. The performance when considering diferent loss functions on VeRi-776 datasets.

Methods
VeRi-776

Rank-1 mAP

Cross-Entropy 94.04 73.43

Circle 95.29 73.46

Circle + triplet 96.31 78.36

Cross-Entropy + triplet 96.36 78.32

Cross-Entropy + Contrast 94.93 72.93

Cross-Entropy + Lifted 95.35 74.43

Cross-Entropy + Instance 95.05 73.16

can be observed, both Rank-1 accuracy and mAP increase slowly as � rises. When � is set as 1, the model obtains

the best performance. The performance declines as � continues to rise. This indicates that the joint learning of

the two loss functions consistently brings more promising improvement by raising the value of � moderately.

The impact of diferent loss functions. To further explore the impact of diferent loss functions, we conduct

several comparison experiments on VeRi-776 datasets. As illustrated in Table 6, compared with the cross-entropy

loss, circle loss[55] achieves better performance on both mAP and Rank-1 accuracy. The result of utilizing the

cross-entropy loss alone is lower than that of combining with a metric learning-based loss for example the

instance loss[82], lifted loss[47], contrastive loss[15] or triplet loss. For our method, the circle+triplet method and

the cross-entropy+triplet method obtain comparable results.

4.5 Complexity analysis

In Table 7, we report the number of parameters, FLOPs, inference time (seconds per image), and the corresponding

performance for GB and SSR-Net. As shown in the results from Table 7, the addition of two extra components

brings a small increase of 1.10×107(+31.88%) in the number of parameters required and 1.09×109(+11.85%) FLOPs

computational cost while achieving 3.05% higher Rank-1 accuracy and 6.78% higher mAP. The inference time of

the two methods is comparable, with only 4.6 × 10−4 seconds diference. Therefore, SSR-Net is computationally

eicient as it requires a similar number of parameters while achieving better performance.

4.6 Comparison with the State-of-the-art

Evaluation on VehicleID. As illustrated in Table 8, we compare our proposed SSR-Net with several other

methods on the VehicleID dataset. We categorize these methods into global feature extraction based methods,
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Table 7. Complexity analysis of GB and SSR-Net.

Method Parameters FLOPs
Inference Time VeRi-776

(sec/img) Rank-1 mAP

GB 2.35 × 107 8.11 × 109 2.27 × 10−3 93.31 71.54

SSR-Net 3.45 × 107 9.20 × 109 2.73 × 10−3 96.36 78.32

local feature extraction based methods and GCN-based methods which consider the relationship among local

and global features. It can be observed that our method SSR-Net achieves a good performance when compared

with other approaches. On the VehicleID-800 dataset, in comparison with approaches that only extract global

features, our SSR-Net improves Rank-1 accuracy by at least 2.18% and mAP by at least 2.07%. On the middle-large

VehicleID-1600 dataset, SSR-Net obtains 79.51% on Rank-1 and 85.13% on mAP respectively, which outperforms

other methods by at least 0.71% in terms of Rank-1 and 0.93% in terms of mAP. SSR-Net obtains 77.44% on Rank-1

accuracy and 83.12% on mAP on the more diicult VehicleID-2400 dataset. Our method improves Rank-1 accuracy

by at least 5.57% on Rank-1 and 7.77% on mAP when compared with GCN-based methods. The results from Table

8 demonstrate the superiority of our proposed SSR-Net, which jointly exploits the relationships among local

regions and the relationships between local and global parts of the vehicles.

Evaluation on VeRi-776. We also validate our proposed SSR-Net on VeRi-776 dataset and compared the

performancewith several other approacheswhich are classiied as global feature extraction, local feature extraction

and GCN-based methods. The experimental results are summarized in Table 9. From Table 9 we can observe

that the proposed method outperforms other approaches, with Rank-1 and mAP values of 96.36% and 78.32%,

respectively. To be more speciic, our proposed SSR-Net exceeds at least 2.42% in terms of mAP compared with

methods that simply extract global features from image appearances. Compared with methods that consider

extracting local features[16] and other additional information such as spatio-temporal information[54, 63, 86]

and license plate appearance[18], the SSR-Net method outperforms them by at least 0.95% in higher Rank-1

accuracy and 0.24% in higher mAP performance. Compared with the GCN-based method, SSR-Net exceeds by at

least 2.98% on Rank-1 and with 7.73% on mAP. These results illustrate the efectiveness and superiority of our

proposed method.

4.7 Visualization of retrieval results

Image retrieval can be divided into two cases, single-gallery-shot and multi-gallery-shot. Note that we conduct

experiments under the single-gallery-shot condition. Fig. 5 and Fig. 6 show several vehicle retrieval results on the

VeRi-776 dataset in single-gallery-shot and multi-gallery-shot, respectively. Note that the leftmost image is the

query image in each sub-igure, surrounded by a blue border, while images with green and red borders represent

correct and wrong retrieval results, respectively. In Fig. 5 and Fig. 6, two rows of images in each sub-igure depict

the retrieval results of the baseline and our proposed SSR-Net, respectively.

Single-gallery-shot refers to the case in which one sample per vehicle ID is chosen at random to construct a

gallery of vehicles, while the other samples are utilized as query images. This implies that among the retrieval

results list, there is just one sample image belonging to the same vehicle ID as the query image. The top-5 retrieval

result lists of 6 query images are illustrated in Fig. 5. It can be seen that the proposed SSR-Net performs well for

the vehicle re-identiication task. In all cases, the SSR-Net method outperforms the baseline method according

to the retrieved vehicle image results displayed in the irst row of each sub-igure. In contrast, correct images

retrieved by the baseline method do not rank in the irst place in the retrieval results list. As it can be observed

from Fig. 5 (f), the baseline does not even retrieve the correct sample in the top-5 ranked list, whereas the SSR-Net

not only delivers the right result, but also ranks it at the top of the list.
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Table 8. Performance comparison with other methods on VehicleID where * indicates that the same base network is used.

Methods
VehicleID-800 VehicleID-1600 VehicleID-2400

Rank-1 mAP Rank-1 mAP Rank-1 mAP

LOMO[33] N/A 19.76 N/A 18.85 N/A 15.32

SCCN-CLBL-8 [84] 48.63 N/A N/A N/A N/A N/A

DRDL [35] 48.91 N/A 46.36 N/A 40.97 N/A

FACT [36] 49.53 N/A 44.63 N/A 39.91 N/A

ABLN[87] 52.63 N/A N/A N/A N/A N/A

FDA-Net [44] N/A N/A 59.84 65.33 55.53 61.84

SDC-CNN[89] 56.98 63.52 50.57 57.07 42.92 49.68

C2F-Rank [13] 61.10 63.50 56.20 60.00 51.40 53.00

Improved Triplet Loss[77] 69.90 N/A 66.20 N/A 63.20 N/A

GSTE [1] 75.90 75.40 74.80 74.30 74.00 72.40

BS[31] 78.80 86.19 73.41 81.69 69.33 78.16

UMTS [27] 80.90 87.00 78.80 84.20 76.10 82.80

VAMI [86] 63.12 N/A 52.87 N/A 47.34 N/A

TAMR [14] 66.02 N/A 62.90 N/A 59.69 N/A

QD-DLF[88] 72.32 76.54 70.66 74.63 64.14 68.41

OIFE+ST [63] N/A N/A N/A N/A 67.00 N/A

AAVER[28] 74.69 N/A 68.62 N/A 63.54 N/A

RAM [40] 75.20 N/A 72.30 N/A 67.70 N/A

EALN [45] 75.11 77.50 71.78 74.20 69.30 71.00

MAD+STR[26] N/A 82.00 N/A 75.90 N/A 72.80

GRF+GGL[41] 77.10 N/A 72.70 N/A 70.00 N/A

PRN [3] 78.92 N/A 74.94 N/A 71.58 N/A

Part Regularization[16] 78.40 N/A 75.00 N/A 74.20 N/A

SAVER [29] 79.90 N/A 77.60 N/A 75.30 N/A

HSS-GCN∗[69] 71.49 79.00 70.27 76.99 68.93 75.37

SGAT[90] 78.12 81.49 73.98 77.46 71.87 75.35

SSR-Net(Ours) 83.08 89.07 79.51 85.13 77.44 83.12

The multi-gallery-shot result illustration represents the situation where at least one image per vehicle ID

constitutes the query image set, and the remaining sample images constitute the image gallery. The image gallery

is made up of at least � samples per vehicle ID. In this experiment, � is set as 6, which implies that the top-10

retrieval result list only returns up to 6 vehicle images with the same ID as the query image. As depicted in Fig. 6,

in comparison to the baseline approach, SSR-Net returns more correct samples despite the challenges in these

examples posed by the diversity of changes in the view perspectives, while providing higher positive rankings in

the image retrieval list. For example, in the upper row from Fig. 6 (b), we can observe that the baseline method
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Table 9. Performance comparison with other methods on VeRi-776 where * indicates that the method is reproduced with the

same base network.

Methods Rank-1 mAP

LOMO[33] 25.30 9.60

SiameseVisual[54] 41.12 29.48

BOW-CN[81] 33.91 12.20

FACT [36] 52.21 18.75

GoogLeNet[73] 52.30 17.90

XVGAN[85] 60.30 24.70

ABLN[87] 60.49 24.92

SCCN-Ft+CLBL-8-Ft[84] 60.83 25.12

SDC-CNN[89] 83.49 53.45

FDA-Net [44] 84.27 55.49

GSTE [1] N/A 59.47

VANet [5] 89.78 66.34

BS[31] 90.23 67.55

UMTS [27] 95.80 75.90

OIFE+ST [63] 92.40 51.42

Siamese-CNN+Path-LSTM[54] 83.49 58.27

QD-DLF [88] 88.50 61.83

VAMI+STR [86] 85.92 61.32

RAM [40] 88.60 61.50

EALN [45] 84.39 57.44

AAVER[28] 88.97 61.18

MAD+STR[26] 89.27 61.11

GRF+GGL[41] 89.40 61.70

PVSS[42] 90.58 62.62

PAMTRI[57] 92.86 71.88

Part Regularization [16] 94.30 74.30

SPAN[4] 94.00 68.90

Appearance+License[18] 95.41 78.08

HSS-GCN∗[69] 93.38 70.59

SGAT [90] 89.69 65.66

SSR-Net(Ours) 96.36 78.32
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Fig. 5. Examples of Rank-5 retrieval results on VeRi-776 in single-gallery-shot condition. The queried vehicle image is shown

in the let-most image. The top row in each example of queried vehicle image represents the results of the baseline while the

botom row illustrates the retrieved vehicle images by the proposed SSR-Net model.

retrieves only 4 correct images which are not even among the top choices. In contrast, SSR-Net not only that

correctly retrieves 5 correct samples, but also sorts them appropriately in the top-5 positions of the list.

5 CONCLUSION
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