
MetaMorphosis: Task-oriented Privacy Cognizant Feature
Generation for Multi-task Learning

MD ADNAN AREFEEN, University Of Missouri-Kansas City, USA

ZHOUYU LI, North Carolina State University, USA

MD YUSUF SARWAR UDDIN, University Of Missouri-Kansas City, USA

ANUPAM DAS, North Carolina State University, USA

With the growth of computer vision applications, deep learning, and edge computing contribute to ensuring practical

collaborative intelligence (CI) by distributing the workload among edge devices and the cloud. However, running separate

single-task models on edge devices is inefficient regarding the required computational resource and time. In this context,multi-
task learning allows leveraging a single deep learning model for performing multiple tasks, such as semantic segmentation and

depth estimation on incoming video frames. This single processing pipeline generates common deep features that are shared
among multi-task modules. However, in a collaborative intelligence scenario, generating common deep features has two major

issues. First, the deep features may inadvertently contain input information exposed to the downstream modules (violating

input privacy). Second, the generated universal features expose a piece of collective information than what is intended for a

certain task, in which features for one task can be utilized to perform another task (violating task privacy). This paper proposes
a novel deep learning-based privacy-cognizant feature generation process called “MetaMorphosis” that limits inference

capability to specific tasks at hand. To achieve this, we propose a channel squeeze-excitation based feature metamorphosis

module, Cross-SEC, to achieve distinct attention of all tasks and a de-correlation loss function with differential-privacy to train

a deep learning model that produces distinct privacy-aware features as an output for the respective tasks. With extensive

experimentation on four datasets consisting of diverse images related to scene understanding and facial attributes, we show

that MetaMorphosis outperforms recent adversarial learning and universal feature generation methods by guaranteeing

privacy requirements in an efficient way for image and video analytics.

CCS Concepts: •Computingmethodologies→Computer vision tasks; Scene understanding; • Security and privacy
→ Privacy protections.
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1 INTRODUCTION
Computer vision-based technologies have seen widespread adoption over recent years due to improved perfor-

mance. This use is not limited to the rapid adoption of facial recognition technology but extends to autonomous

driving [37], scene recognition, and more [9, 29]. As a result, organizations and even cities have started utilizing

video feeds to carry out various automated tasks. However, while computer vision-based technologies provide
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Fig. 1. Overview of MetaMorphosis.

new opportunities, they also raise privacy concerns and call for novel solutions to ensure adequate privacy

protection.

One trivial way to protect sensitive information is not to send protected information outside the organization

by any means, i.e., to train the deep-learning model within the respective organization providing the inputs.

That implies the input-providing organizations (i.e., producers/publishers/feature providers) also have to construct

various models for different tasks, e.g., object detection, depth estimation, etc. One of the drawbacks of this

approach is that organizations owning the video/input feed will also need to develop the entire analytic pipeline

whose primary interest may be orthogonal to building deep learning models, such as hospitals or grocery stores.

Organizations can also resort to video analytics as a service where companies are now offering essential video

processing pipelines as paid services [13, 27]. However, outsourcing video feeds to cloud services also raises

privacy concerns as video feeds can be used to infer various sensitive information. As an alternative, a hybrid

approach can also be adopted where instead of sending the raw input, some useful derived features are shared

with the third party (i.e., consumers) to prevent unintended information leakage. This approach is known as

collaborative intelligence.
In collaborative intelligence, intelligence is shared across more than one entity to split the computation overload,

where one entity can run a portion of a deep model and send the intermediate partial output as “features” to

another entity for further computation. In this way, the input can be replaced by meaningful features. One of the

popular architectures adopted in this context is themulti-task learning paradigm, which offers an efficient solution

to reduce computational resources across different analytic tasks. The efficiency comes through the introduction

of a shared deep layer to produce universal features usable by all downstream tasks [21]. Unfortunately, it does

not fully diminish the privacy concern. The shared features, also called intermediate representations, can be

reverted to the actual input, thus violating input privacy and affecting the whole notion of providing deep features

rather than the input itself. Similarly, the universal features generated for multi-task learning, when subscribed

by different downstream tasks, can also leak unintended information leading to violating task privacy. From a

privacy and business perspective, if the task-oriented features differ, the producers can offer specific features

based on consumers’ objectives and hide private attribute information from each task. For example, for a given

image, the feature for segmentation will be different than the feature for depth estimation or classification.
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In this paper, we focus on a publisher-subscriber-based multi-party communication system where one party

acts as a publisher, and the rest acts as a consumer/subscriber (Figure 1). The feature publishing party also known

as the feature provider or the publisher holds the data and private information, and with proper intelligent

tweaking, it provides privacy-aware task-variant features to consumers. Consumers, on the other hand, consume

the features rather than the input and train a task according to the features. Without loss of generality, we can

assume that the producer can securely share the output with the consumer so that the consumer can train the

rest of the remaining part using the task-variant features. With respect to deep learning tasks, mapping the

feature to output does not violate our assumption of securing object attributes rather than the type of objects for

classification cases. In the case of object detection, segmentation, or depth estimation, it can be shared to blur the

attribute of the objects.

To achieve data and task privacy, we propose MetaMorphosis, which consists of two modules, (a) a private
encoder trained using differential privacy, and (b) a task metamorphosis module for each task for task privacy.

The private encoder protects identifiable information from input, which we refer to as input obfuscation. The

task metamorphosis modules help to form distinct features for each task. The privacy of the encoder depends

on the requirement of privacy based on the data. So, the producer can hold private and non-private encoder

submodules to offer both options to the consumers based on the privacy requirement. The whole functionality

of the producer will be obscured so that the consumer cannot determine the types and characteristics of the

construction of the producers.

Table 1. Comparison of MetaMorphosis with recent literature

Characteristics MetaMorphosis DeepObfuscator [18] TIPRDC [17] ALPPTOR [42] P-FEAT [10]

Input obfuscation ✓ ✓ ✓ ✓ ✓
Noisy models parameters ✓ ✗ ✗ ✗ ✗

Task privacy ✓ ✗ ✗ ✗ ✗
Scalable Good Poor Poor Poor Poor

Quantifiable privacy ✓ ✗ ✓ ✗ ✗
Feature sharing Task-specific Universal Task-specific Task-specific Universal

Training budget LOW HIGH HIGH HIGH HIGH

Several challenges arise when offering task-oriented privacy-aware features. Firstly, the joint training of input

obfuscation and task privacy in a single phase makes the whole process challenging due to the uncertainty of

leaking unintended information to task-specific features. Secondly, a sophisticated feature morphosis module

is required to achieve the right balance of performance and privacy. Finally, the proposed approach has to be

scalable to facilitate new tasks with minimal training effort. In order to address the challenges, we propose

MetaMorphosis and specify the contribution of this work as follows.

• We propose MetaMorphosis, which ensures input obfuscation and privacy-aware task variant feature

generation to prevent information leakage through the shared features while still providing acceptable

outcomes for the intended tasks.

• We propose a novel taskmetamorphosis moduleCross-SEC that maintains or even improves the performance

in addition to producing distinct task-specific features.

• We reduce the training time of task-specific feature generation by collaborating on the task-invariant and

metamorphosis modules.

• The scope for sequential and parallel training helps MetaMorphosis improve scalability compared to recent

adversarial learning methods, such as [18].

The rest of the paper is organized as follows. Section 2 describes the motivation of our work by comparing it to

similar works. Section 3 explains the MetaMorphosis. We present the findings in Section 4. Section 4.1 defines the

3



IoTDI ’23, May 9–12, 2023, San Antonio, TX, USA Arefeen et al.

datasets and metrics that we use in the analysis. We also evaluate training and inference results after deployment

of MetaMorphosis in Section 5. An ablation study is conducted to show the reasons behind choosing specific

modules and parameters in Section 6. Related work is added in Section 7. Finally, we conclude in Section 8.

2 MOTIVATION AND CHALLENGES
Various kinds of deep learning models [4, 5, 11, 33, 40] have been proposed to resolve visual applications with

multi-task learning setups such as semantic segmentation, and depth estimation, efficiently. Khattar et al. [16]

propose a multi-task learning framework where domain-agnostic features are learned to improve the model

performance on both object detection and saliency prediction tasks with limited data. Meanwhile, techniques

such as knowledge distillation fit well with multi-task training where knowledge is distilled from single models

by minimizing the distance, thus contributing to fast training of multi-task models [19–21]. As a universal feature

is shared for all downstream tasks, it is computationally efficient but raises a privacy concern while sharing

with outside agents due to offering a common feature for all tasks. Similar behavior patterns can be found in

other recent literature [2, 3] where features from multiple layers of deep models are fused to form the universal

features and image classification task is accomplished.

To preserve the privacy of the universal features, several adversarial learning algorithms have been proposed [17,

18] to obfuscate intermediate representation. In this, adversarial decoders and classifiers are trained jointly with

the intended classification task to obfuscate features [18]. TIPRDC [17] is also designed to hide private information

from the feature vector while retaining the feature’s utility regarding the primary task through a hybrid training

algorithm. ALPPTOR [42] framework proposed a GAN loss to prevent model-inversion attack by adversarial

reconstruction learning and provide task-oriented representations for binary classification tasks. P-FEAT [10]

proposed two adversarial objectives for privacy-preserving feature encoding-based adversarial training, which

considers privacy attributes and privacy-attribute agnostic scenarios. In split federated learning [35], intermediate

features of IID data are shared with the server and the server returns the gradients back to clients.

These methods face drawbacks at the time of adding a new task to the framework, as adversary decoders

and classifiers need to be trained again with the addition of new tasks. Another disadvantage is the need for

ground truth in all tasks to train the whole pipeline to prevent features from being attacked by intruders.

With the development of edge computing technology, the emerging collaborative intelligent technique allows

computational-constrained devices to participate as end-users where sharing of intermediate representation

takes the first place to connect two entities. Table 1 compares the overview of MetaMorphosis with related recent

literature to show the effectiveness of MetaMorphosis. Rather than training a decoder to decode the intermediate

representation to a noise, MetaMorphosis uses differential privacy along with an intelligent split learning method,

which can guarantee obfuscation of input as well as achieve target performance. MetaMorphosis assures task-
privacy by making the intermediate features distinct from each other, which limits the necessity to have ground

truth for all tasks. With ground truth, extra DNN models are required for training an adversary classifier. At

the time of addition of a new task, MetaMorphosis learns to make the new task features distinct from the

already added tasks. Thus, MetaMorphosis ensures better scalability and a low training budget. To produce the

distinct features, MetaMorphosis offers a novel metamorphosis module. In summary, MetaMorphosis answers

the following key questions:

• How to reduce the input information leak while sending deep features rather than the input itself?

• How to overcome privacy issues regarding universal features for all tasks?

• How to design a lightweight task metamorphosis module so that the performance drop should be negligible

and almost similar to the performance of a single task?
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3 METAMORPHOSIS
Generating features for different tasks is the core part of MetaMorphosis and as a result, several considerations are

undertaken in the construction of the producer to enhance the target performance and privacy, reduce memory

issues, and latency of the system.

3.1 Privacy Cognizant Feature Generation
At first, task-oriented single models cannot be provided due to zero task privacy for independent training. In

addition, memory requirements will increase when new tasks are assigned. So, a multi-task model is required to

reduce the number of models. In this way, one model can provide a universal encoder to produce the features for

all tasks. But the drawback of the latter method for producing universal representation lies in the degradation of

performance and privacy in some cases for de-correlated tasks. For example, the data owner can issue a restriction

on reconstructing the images from the encoded features for facial image attribute classification. But for semantic

segmentation or depth estimation tasks, privacy can be imposed on the feature generation so that unique features

are generated for each task at hand. A universal representation fails to either provide high accuracy for all tasks

or prevent privacy attacks due to providing the same features for all tasks, e.g., the same features are provided

for gender classification and smile classification from facial images.

Furthermore, a producer cannot offer any arbitrary feature for any task. To claim a good performance over

some offered tasks, it needs to train the whole pipeline in an end-to-end fashion to provide a meaningful feature

for a certain task. The notations used throughout the paper to describe MetaMorphosis are shown in Table 2.

To construct the model in a cost-effective fashion and to reduce the model size as well, we divide the producer

into a feature extractor part (encoder E), a MetaMorphosis module (g(.)), and the target task. For clarity, we use

the producer, feature extractor, and encoder as the same entity, E or E𝑝 (encoder trained with differential privacy)

throughout the paper. To produce meaningful features, the producer goes through a full training effort respecting

the input obfuscation and task privacy. After training the whole model, the producer splits the model into two

parts: one part includes a semi-universal encoder for some sub-tasks and unique transformer modules for each

of the tasks. For other similar sub-tasks, another similar feature extractor module may exist. The remaining

part will be hidden from the outside environment and is kept on the producer side only. Thus, the producer

will offer access points for only subscribed consumers for the respective tasks. But where to split is an issue in

maintaining communication vs. computation trade-off (see Sections 5 and 6). Although the earlier layers are

suitable for a lightweight encoder, they may be prone to reconstruction image attack very easily. It is difficult to

retain the original image from the layers closer to the outputs. The feature provider should also offer features so

that consumers will produce the final output for a task with minimal effort.

To design MetaMorphosis, suppose a model M𝑓 is trained by the producer that provides features for a

corresponding task T𝑖 for an input x. At the time of inference, the producer will share the intermediate features

as output, denoted by z𝑖 , from a portion of the model G𝑖 where G𝑖 ∈ M𝑓 . After getting the features z𝑖 instead of

the raw input x, the consumer runs its own modelM𝑐 on z𝑖 and produces ŷ𝑖 for task T𝑖 where the ground truth

is y𝑖 . Mathematically, it can be written as follows.

min y𝑖 ∼ ŷ𝑖 =M𝑐 ◦ (G𝑖 ◦ x) =M𝑐 (z𝑖 )

s.t. 𝐴𝑐𝑐 (T𝑖 |z𝑖 ) −
∑︁
𝑖≠𝑗

𝐴𝑐𝑐 (T𝑗 |z𝑖 ) ≈ 𝐴𝑐𝑐 (T𝑖 |z𝑖 )

𝐴𝑐𝑐 (T𝑖 |z𝑖 ) ≥ 𝜉 ; 0 < 𝜉 < 1

(1)

In Equation 1, the objective is to maintain the target performance (𝐴𝑐𝑐) for task T𝑖 and obfuscate the input (x)
and features (z) to limit the accuracy of all other tasks with the current task features. AsM𝑐 and G𝑖 will not be
processed by the same party, a few privacy considerations should be established. Based on this, we can divide the
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Table 2. Notation

Description Notation Description Notation

Input x Output y
Producer Model M𝑓 Consumer Model M𝑐

Task T Task features z1,2,...,T
Task Metamorphosis Module g Encoder E

Private Encoder E𝑝 Private Feature z𝑝
MetaMorphosis G Decoder E−1

overall producer construction into two components: (1) Input obfuscation, and (2) Task-privacy.
In the next subsections, we will investigate thoroughly Equation 1 in terms of input obfuscation and task privacy

and discuss the final equation as shown in Equation 8.

3.2 Input Obfuscation
By input obfuscation, we mean the input should be made private so that the features provided by the producer

cannot be converted back to the original input by an attacker. If 𝑧 = E(x;𝜃E), then it is nearly impossible to find

a E−1
so that E−1 (z) = x.

To ensure input obfuscation, we propose an efficient use of differential privacy which is defined as follows.

Definition 3.1. If 𝑑 and 𝑑 ′ are two adjacent inputs of 𝐷 that differ by at least one sample and they follow a

certain condition such that

𝑃𝑟 [f (𝑑) ∈ 𝐷] ≤ 𝑒𝜖𝑃𝑟 [f (𝑑 ′) ∈ 𝐷] + 𝛿 (2)

where, f is a randomized function, i.e., f : 𝐷 −→ R, then f satisfies (𝜖, 𝛿) differential privacy (DP) [1].

Definition 3.1 is also known as R𝑒nyi-differential privacy [28] which is a relaxed version of 𝜖-DP with a 𝛿 . From

Equation 2, we see that the higher the value of 𝜖 , the lower the privacy bound. Differential privacy operations

in deep learning models are shown in Algorithm 1 where noises are added with gradients before updating the

parameters [1]. To get a desired 𝜖 , the noise 𝜎 can be chosen for a number of training steps 𝑇 , batch size 𝑞, and

𝜖 < 𝑐1𝑞
2𝑇 as the following Equation 3 [1]. Here, 𝑐1 and 𝑐2 are constants.

𝜎 ≥ 𝑐2

𝑞

√︃
𝑇 log

1

𝛿

𝜖
(3)

Rather than adding differential privacy in the input as shown in recent literature [18], we perform DP in model

parameters for input obfuscation. As in MetaMorphosis, the producer holds the feature extractor part only, to

generate meaningful features, the feature extractors along with target classifiers are required to train jointly.

A split learning method can reflect the scenario where a model is split into the feature extractor part and the

classifier part. So, we propose differential privacy with split learning to achieve input obfuscation.

Split learning with differential privacy: Input obfuscation results in a trade-off between utility vs. privacy.

As the main goal of MetaMorphosis is to provide task-specific features, injecting noises to ensure DP into the

whole model parameters while training to ensure only input obfuscation to the encoder E𝑝 in unnecessary and it

affects the task performance. In most cases, the consumer resides in the public domain and making the consumer
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Algorithm 1 Differential Privacy Operations

1: function Gradient Computation(.)

2: 𝑔𝑡 (𝑧𝑖 ) ←− ∇𝜃𝑡L(𝜃𝑡 , 𝑧𝑖 )
3: end function
4: function Gradient Clipping(.)

5: 𝑔𝑡 (𝑧𝑖 ) ←− 𝑔𝑡 (𝑧𝑖 )/max(1, | |𝑔𝑡 (𝑧𝑖 ) | |2
𝐶
) ⊲ Gradient Clipping with certain threshold 𝐶

6: end function
7: function Noise Addition(.)

8: 𝑔𝑡 (𝑧𝑖 ) ←− 1

𝑛

∑
𝑖 (𝑔(𝑧𝑖 ) + N (0, 𝜎2𝐶2I) ⊲ Adding noise to the gradient

9: end function

Fig. 2. Pictorial representation of privacy-aware task feature generation.

model parameters private have little effect on overall privacy constraints. As a result, making only producer

model parameters private will suffice our goal. In that case, during training of the feature generator, the provider

uses differential privacy to ensure the input obfuscation of the generator only while learning the intended task

using the split learning method [35]. A detailed discussion of utility vs. privacy is discussed in Section 4.3.

3.3 Task Privacy
As we consider the service provider (feature-provider) as an MLaaS (Machine Learning as a Service) platform,

the service provider/producer will offer meaningful features for certain tasks to the public domain. In this case,

instead of providing a single universal interface, the service provider offers multiple access points for some

task-privacy-related features to the subscribers/consumers. By task privacy, we mean the features used for one

task will not perform well for another task. Mathematically, the deep features generated for one task should

be far apart from another task. We formally formulate task privacy as follows. For any input 𝑥 , if there exist 𝑛
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Fig. 3. Cross-SEC Metamorphosis Module

feature extractors (G1...𝑛) for multi-task learning, then the optimal similarity between any two feature extractors

G𝑖 (.) and G𝑗 (.) satisfies the following equation.

𝑛∑︁
𝑖≠𝑗

S(G𝑖 (x),G𝑗 (x)) ≈ 0 (4)

where S(., .) denotes a similarity function between two features. To ensure task-privacy, the summation of the

similarity between features will be theoretically 0. A pictorial representation of task-privacy transformation on

certain feature z is shown in Figure 2.

Task Metamorphosis Module: In MetaMorphosis, we propose a novel feature module for each task, instead

of sharing a common feature for all consumers. The main goal of each metamorphosis module is to produce

task-specific features as distinctively as possible with an assurance of better performance for the respective task.

In this way, the attacker is unable to produce meaningful features for the specific private task. To ensure better

performance, the metamorphosis module should capture the most informative feature of the task. To achieve

this, we propose an attention-based metamorphosis module, Cross-SEC, that enables the general features E to

be more informative. At first, we split the E(𝑥) into 𝑘 splits. For each split, we get the global attention of the

features. Using the Conv-Linear-ReLU-Linear module, we transform the features and add a Sigmoid activation

layer to get the attention values. Then, the attention is swapped between the splits following a Conv (1 × 1) layer.

At the time of joint training of E and g(.), the swapping of attention values will try to make E more informative

as it avoids making only some channels of E more informative.

The metamorphosis module is shown in Figure 3 with the shape for each layer. To make the task features

distinct, we use a similarity metric as used in recent literature [2, 18]. In this case, we use the SSIM metric to

compare the structural similarity among task features, and in the loss function, it learns to project them far from

8
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each other based on the weight given to this metric. The task-privacy loss function can be written as follows.

ℓ𝑡𝑝 =
∑︁
𝑖, 𝑗 ∈T

1[T𝑖 ≠ T𝑗 ] S
(
g𝑖 (E(x)), g𝑗 (E(x))

)
(5)

This metric will be added to the loss function with other task performance losses to achieve the desired behavior

of MetaMorphosis. Together, we can write the whole equation as follows.

𝑙𝑜𝑠𝑠 =

|T |∑︁
𝑖=1

L𝑖 + 𝜔
∑︁
𝑖, 𝑗 ∈T

1[T𝑖 ≠ T𝑗 ] 𝑆𝑆𝐼𝑀
(
g𝑖 (E(x)), g𝑗 (E(x))

)
(6)

Here, 𝜔 controls the weight of the distance loss function to overall loss. To make the feature generator more

efficient, we can use a single encoder and multi-task transformer modules for a group of tasks. To assure task

privacy and input obfuscation, we can rewrite the function G as a composition of private-encoder E𝑝 that prevents
exposing the private information and a task transformer module that converts the g. For task privacy only, the

encoder can be non-private (E).
G(x) = (g ◦ E𝑝 ) (x) (7)

We can combine these two aspects of privacy and elaborate the Equation 1 and relax the constraints to achieve

efficient training as follows.

min y𝑖 ∼ ŷ𝑖 = (M𝑐 ◦ G𝑖 ) (x) = (M𝑐 ◦ g𝑖 ◦ E𝑝 ) (x) =M𝑐 (z𝑖 )
s.t. Ep−1 (z𝑖 ) ≠ x

T∑︁
𝑖≠𝑗

S(G𝑖 (x),G𝑗 (x)) ≈ 0

(8)

3.4 MetaMorphosis Training Scheme
The training scheme of MetaMorphosis is shown in Algorithm 2. MetaMorphosis obfuscates the input and the

tasks in two phases. If input obfuscation and private attribute obfuscation are imposed, then the encoder with

the privacy attribute classifier is trained jointly at Phase 1 [line 9 in Algorithm 2]. After the completion of Phase

1, in Phase 2, the task variant metamorphosis modules are trained along with the respective classifiers [line 10 in

Algorithm 2], where the encoder trained from phase 1 is kept fixed to provide features. In line 9,M𝑝 refers to the

private classifier (i.e. gender for face images) that the publisher intends to hide. It will train other tasks i.e.M𝑐𝑖

by hiding private information using task privacy [line 6-7, 10 in Algorithm 2]. After the completion of two-phase

training, the task features are ready for the consumers. Figure 4 shows the steps of the training and inference

scheme of MetaMorphosis. At the time of inference, the producer will offer access points (z1,2,...,T) for different
tasks.

3.5 Threat Model
Before going into detail on experimental results, we describe the attacker model in this section. For input obfus-

cation, we extract the private encoder features and use a decoder model (Figure 8) to act as an attacker trying to

reconstruct the image. For task privacy, we assume the consumer portion of the model architecture is as same

as the producer model architecture while training. In this, for all cases of classifiers, we use the same model

architecture (ResNet-18) to act as an attacker. At the time of task privacy evaluation, we interchange the task

metamorphosis module but keep the classifier layers and weights intact as the producer for the attacker. In Sec-

tion 4, we implement and evaluate MetaMorphosis on different types of tasks and compare MetaMorphosis with

recent relevant literature.
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Algorithm 2 MetaMorphosis

1: if Input obfuscation only then
2: ŷ𝑐𝑖 =M𝑐𝑖 ◦ E𝑝 ◦ g𝑖 (x) ⊲ forward pass

3: Compute L(y𝑐𝑖 , ŷ𝑐𝑖 )
4: Update 𝜃g𝑖 , 𝜃E𝑝 using Algorithm 1,Update 𝜃𝑐𝑖 ⊲ backward pass

5: else if Task-privacy only then
6: Compute

∑ |T |
𝑖=1
L𝑖 + 𝜔

∑
𝑖≠𝑗 𝑆𝑆𝐼𝑀 (g𝑖 (z), g𝑗 (z))

7: Update 𝜃g𝑖 , 𝜃E, 𝜃𝑐𝑖∀𝑖 ∈ T
8: else
9: At phase 1, do steps 2-4 to joint train the E𝑝 andM𝑝

10: At phase 2, using 6-7 train g𝑖 , E𝑝 , andM𝑐𝑖

11: end if

Fig. 4. Producer training and inference scheme

4 EVALUATION

4.1 Datasets and Metrics
To have a deep understanding of MetaMorphosis performance, we evaluate the task-privacy algorithm in different

domains with various task complexities. To simulate an indoor robot scenario, we use the NYU-v2 dataset [29],

which contains 1449 indoor images with ground truth images on three tasks, i.e., semantic segmentation, depth

estimation, and surface normal estimation. We have used 795 images for training MetaMorphosis and evaluated

the rest 654 images. To simulate the road scene-based tasks, we use the CityScapes dataset [9], which contains
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3475 vehicle road scene views. Based on recent literature, we use the 2975 images for training and the rest

500 images for testing the performance of MetaMorphosis. We also use a large facial attribute dataset named

CelebA [24] that includes more than 200000 images (162000 for training, 40000 for testing) to show multi-binary

classification-based task privacy. For the multi-class classification scenario, we use StateFarm (a total of 22424

images, use 17934 for training and 4490 for testing ) to validate the input obfuscation and task privacy.

4.2 Implementation details
We use PyTorch to implement MetaMorphosis and to execute the training we use 4× 16 GB NVIDIA RTX A4000

workstation for all datasets. We use cross-entropy loss as shown below for segmentation and compute the mean

Intersection over Union (mIoU), and pixel accuracy as a performance metric as referred to [19].

L𝑠𝑒𝑔 = −
1

𝑚

𝑚∑︁
𝑖=1

𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 ) (9)

For depth estimation, we use the absolute error as described by [19] and also use it in the loss function to minimize

the depth error.

𝑀𝐴𝐸𝑑𝑒𝑝𝑡ℎ =
1

𝑁

∑
𝑖, 𝑗 |𝑦𝑖, 𝑗 − 𝑦𝑖, 𝑗 |∑
𝑖, 𝑗 1[𝑦𝑖, 𝑗 > 0] (10)

In surface normal estimation, we use the mean and median of per pixel error and compute the fraction of error

within a certain threshold (11.25, 22.5, 30). For Cityscapes and NYU-v2, we use Adam optimizer with an initial

learning rate (LR) 1 × 10
−4
. A step learning rate scheduler changes the LR with step size 100 and 𝛾 = 0.5. We ran

each experiment for 200 epochs and chose the best model with the smallest average training error of all tasks.

We then use the best model for prediction. For NYU-v2, we use 13 classes for segmentation, and for CityScapes,

we use seven classes. The batch size is 8 and 2 for Cityscapes and NYU-v2, respectively. We use 0.001 as weight

on SSIM loss while adding task privacy. For the CelebA and StateFarm datasets, we use 𝜖 = 4, and 1.2 as the

maximum gradient clipping (𝐶) for both StateFarm, and CelebA, and 𝛿 = 10
−5, 10

−6
respectively. The batch size is

set to 64, and AdamW [26] optimizer with LR=10
−4
. For data transformation, we resize to make the images to

64 × 64 pixels, and use RandomHorizontalFlip at training. The normalization parameters are used as same as

ImageNet. We use Opacus [45] to train the model using differential privacy. We have chosen the lightweight

ResNet-18 model, split it in half at different points, and used the first portion as the encoder and the rest as the

private and intended classifier.

4.3 Experimental Results
CityScapes and NYU-v2: As MetaMorphosis imposes privacy constraints either on the content or on the task

or on both. Considering task privacy we focus on NYU-v2 and Cityscapes dataset. For both datasets, we use

SegNet model [19] with knowledge distillation during training. Table 3 shows the results on the test set using

KD-MTL [19] where privacy-aware feature generation is absent. With the addition of cross-SEC metamorphosis

module and SSIM loss function, we compare the utility as the performance metric for both and compare task

privacy based on the interchange of the module. For having the distilled knowledge, we first train every single

model to train a single task. Then using Algorithm 2 for task-privacy only, we train the joint model to produce

output similar to every single model and add the privacy loss to make each task features distinct. We joint train

the segmentation, depth, and surface-normal estimation for NYU-v2 using task-transformer module and compare

it without the task-transformer module and without task privacy. For segmentation results, we observe a 7.61%

higher mean Intersection Over Union (mIOU) than KD-MTL and a 2.25% higher pixel accuracy metric. Compared

to the depth estimation results, MetaMorphosis achieves almost the same results for absolute error and a little
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Table 3. Test set results on CityScapes [9] dataset. MetaMorphosis achieves higher pixel accuracy for segmentation and
almost the same absolute error for depth.

Model Size Segmentation Depth

(MB) mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓)
KD-MTL [19] 300.90 52.18 91.24 0.0140 28.90

MetaMorphosis 307.00 59.79 93.49 0.0141 31.89

Table 4. Task-privacy evaluation of Cityscapes [9]. Use of one task metamorphosis module to evaluate the performance of
other tasks. Using depth features for segmentation, lower mIoU, and pixel accuracy indicate higher task privacy and vice
versa. For depth estimation, the higher error with segmentation features indicates higher task privacy and vice versa.

Metamorphosis Methods Segmentation Depth

Module (Replaced) mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓)
— MetaMorphosis 59.79 93.49 0.0141 31.89

Segmentation MetaMorphosis 59.79 93.49 0.1079 99.07

Depth MetaMorphosis 1.47 7.33 0.0141 31.89

Table 5. Test results on NYU-v2 dataset. In spite of imposing task privacy, MetaMorphosis achieves almost the same
performance as [19]. STL refers to the results of single-task learning models.

Model

Size

Methods

Segmentation Depth Surface Normal

(MB) mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓) Mean (↓) Median (↓) 11.25 (↑) 22.5 (↑) 30 (↑)

SegNet

300.90 STL 17.32 55.70 0.6577 0.2828 29.99 23.81 24.31 48.06 60.05

300.90 KD-MTL [19] 18.75 58.02 0.5780 0.2467 29.40 23.71 24.33 48.22 60.45

310.8 MetaMorphosis 18.14 57.03 0.5867 0.2498 30.47 24.73 22.92 46.50 58.62

worse in relative error. having a 𝑐𝑜𝑛𝑣 (1 × 1) for each task. As cross-SEC transformer generalizes better task

features. For StateFarm dataset, we train for 20 epochs. For CelebA we train for 10 epochs.

To show the task-privacy evaluation, we use the trained segmentation Cross-SEC module features to infer

segmentation and depth estimation and vice versa for depth estimation. From Table 4, we observe a sharp drop in

the performance of both tasks. For segmentation, the mIoU and pixel accuracy drop down to 1.47% and 7.33%,

respectively. For depth estimation, the absolute error is almost 10× higher using the segmentation feature.

We also observe the qualitative results of CityScapes using task privacy as shown in Figure 5. The segmentation

and depth estimation outputs are almost obscured if respective features are not used for respective tasks. To

evaluate more complicated tasks, we consider adding surface normal estimation with the segmentation and

depth tasks and impose task privacy. We use NYU-v2 dataset in this regard. We have found similar results as on

Cityscapes dataset. In NYU-v2, we also observe similar performance as compared to KD-MTL [19] with a little

deflection in performance metric (∼< 1% for segmentation and depth estimation, and ∼< 2% for surface normal

estimation as shown in Table 5. We also evaluate task privacy on NYU-v2 by interchanging the metamorphosis

modules as shown in Table 6. The mIoU for segmentation drops down to 3.37 ∼ 4.27, the absolute depth error rises
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Fig. 5. Qualitative analysis of task privacy. Prediction results of the segmentation and depth estimations of the CityScapes
dataset using MetaMorphosis (first row). The task metamorphosis modules are interchanged and the output is produced
(second and third row).

Fig. 6. Task-oriented feature projection using t-SNE on
NYU-v2 dataset. The triangle points having the same
color refer to segmentation, depth, and surface normal
features for the same input. The distant feature position
for the same input verifies task privacy in t-SNE.

Fig. 7. MetaMorphosis achieves better utility whereas
respecting input obfuscation. Higher privacy ensures if
𝜖 → 0. So, the best points having high utility and high
privacy locates in the top left quadrant.
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Table 6. NYU-v2 [29] task-privacy evaluation by interchanging metamorphosis module.

MetaMorphosis Methods Segmentation Depth Surface Normal

Module mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓) Mean (↓) Median (↓) 11.25 (↑) 22.5 (↑) 30 (↑)
— MetaMorphosis 18.14 57.03 0.5867 0.2498 30.47 24.73 22.92 46.50 58.62

Segmentation MetaMorphosis 18.14 57.03 1.2541 0.5014 51.97 51.37 1.74 9.14 17.89

Depth 4.27 18.28 0.5867 0.2498 54.77 54.38 4.41 14.41 22.02

Surface-normal 3.37 16.56 1.8694 0.7843 30.47 24.73 22.92 46.50 58.62

to >1, and the mean value of surface normal goes high from 30.47 to 51.97 ∼ 54.77.To evaluate the task-specific

feature projection, we investigate the inference of the model trained on NYU-v2 and project the three task features

using t-SNE representation as shown in Figure 6. The task features for each input are projected by training them

using t-SNE. We show the task projection points in the same color and form a triangle to observe how separate

they are. The higher area of the triangle means a higher distance. The component values of t-SNE additionally

illustrate the distance among feature projections for each input.

StateFarm: To evaluate MetaMorphosis in achieving task utility and input obfuscation, we use the distracted

driver recognition task having 10 classes. At first, we impose differential privacy (DP) into the model encoder

and classifier part. By varying the 𝜖 , we compute the distracted behavior recognition accuracy. In Figure 7,

we observe the accuracy drops with the increase in privacy (In DP, the 𝜖 → 0 ensured higher privacy and

vice-versa). According to Algorithm 2, to ensure input obfuscation, by adding DP-guarantee to the encoder side

only, MetaMorphosis achieves both utility and privacy. We also evaluate differential privacy qualitatively. In

Figure 8, reconstruction of the Statefarm dataset is performed using an encoder and decoder. Using the encoder

features, the distracted driver recognition task is performed. The decoder succeeds in decoding the image. Then,

we train the encoder using differential privacy. In this case, the decoder fails to reconstruct images. Even using

the private encoder, we train a decoder to reconstruct the image. Even after training, the decoder failed, but we

got 98.69% accuracy for the intended distracted driver recognition task. In Figure 8, we observe the DP-guarantee

of obfuscating deep features in spite of training a decoder with the obfuscated features.

In addition to a private attribute, we first train the encoder and the private attribute task jointly using DP on

the encoder. After the models are trained, then we train the intended classification task using MetaMorphosis,

where a task-transformer module is trained using DP, and it generates distinct features for the distracted driver

recognition task from private features by adding MS-SSIM to the loss function. In this way, the full process will

maintain content-task privacy. Table 7 shows the evaluation of the final output of driver identity recognition and

distracted driver behavior recognition tasks. After training with MetaMorphosis, for driver identity recognition,

we got 100%, and for distracted driver behavior detection, we got 98.69% accuracy. Then by interchanging

the task-transformer module, we compute the accuracy of each task which implies task privacy. We observe

only 1.49% accuracy if an intruder use behavior features for driver identity classification. In comparison to

deepObfuscator [18], considering behavior features as general features to shared (as private features will be

hidden in feature producer), MetaMorphosis achieves only 1.49% accuracy for driver identity recognition whereas,

for deepObfuscator, it achieves 30.38% accuracy. So, MetaMorphosis ensures more privacy in obfuscating private

attributes.

CelebA: To validate the task privacy and input obfuscation jointly, We have experimented with CelebA dataset.

We consider two scenarios (1) smile, gender, and (2) smile, gender, cheekbone classification where gender is a

private attribute and input obfuscation is imposed. To achieve this, according to Algorithm 2, we joint train the

encoder and the private gender classifier first. For this, we also use a comparatively smaller model, ResNet-18,

and split it into different positions to build the encoder and the classifier. Without loss of generality, we use the

same classifier model size for all tasks. After training of encoder with DP and the private classifier, we use the
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Fig. 8. Input obfuscation on the StateFarm dataset. (a) Top left: Sample images. Top right: images decoded from a non-private
encoder. Bottom right: images decoded from a private encoder trained with differential privacy having 𝜖 = 4, 𝛿 = 1𝑒−4 and a
decoder (Figure 8b). Bottom left: Images generated by a decoder after training using the same private encoder. (b) Decoder
model by the attacker for image reconstruction attack on private features.

Table 7. Test results on input obfuscation and task-privacy on Statefarm dataset

Task Metamorphosis Classifier DeepObfuscator [18] MetaMorphosis

Module

Identity Identity 99.97 100.00

Behavior Identity 30.28 1.49
Behavior Behavior 98.32 98.69

Identity Behavior — 10.34

task-privacy loss to train the classifier for smile for case (1) and the smile and cheekbone classifier jointly for

case (2). Then, we test the performance of all tasks and task privacy by interchanging the task-metamorphosis

modules. It is to be noted that gender features are created so that we can make other attributes’ features distinct

from the private features, and this private attribute feature will be hidden and kept on the producer side. As in

MetaMorphosis, we show that one private attribute defined for one task may be defined as non-private by another

task. In Table 8, we consider gender as private and the smile classification as the intended classification task. Both

private and non-private classifiers achieve almost similar performance as DeepObfuscator [18] but hide privacy

information better (21.29% less accuracy than DeepObfuscator). In this case, MetaMorphosis achieved 34.56%

accuracy while doing gender classification using the smile classifier. The reason for a bit increase in gender

accuracy with one task (smile) and two tasks (smile and cheekbone) indicates an intrinsic correlation between
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Table 8. Test results on task privacy and input obfuscation on CelebA

split point Task Metamorphosis Classifier DeepObfuscator MetaMorphosis

Module

5 Gender Gender — 95.94

Smile Gender 55.85 34.56
Smile Smile 89.52 89.89

Gender Smile — 42.49

the two tasks as discussed by recent literature [18]. In this case, MetaMorphosis diminishes the correlation more

than DeepObfuscator.

Fig. 9. Smile and cheekbone classification from CelebA while obfuscating gender attribute using MetaMorphosis.

We investigate the second scenario where the number of intended tasks is two. In this, we adopt smile

and cheekbone classification as two intended tasks. In this scenario, the privacy requirements are similar to

the previous one i.e. input obfuscation and task privacy. MetaMorphosis classifies smile and cheekbone while

obfuscating the gender attribute and input. In Figure 9, we achieve 89.78 ∼ 89.89% accuracy for smile and

83.02 ∼ 84.2% accuracy for cheekbone classification using a variety of weight 𝜔 of task-privacy while ensuring

input obfuscation using DP. MetaMorphosis has achieved similar results for intended task classification but

hides privacy 8.69% ∼ 20.42% more than DeepObfuscator [18] using smile classification task features and

11.69% ∼ 20.12% using cheekbone classification task features. Relation between 𝜔 and accuracy basically depends

on task-correlation and is interesting to investigate which we keep as our future work.
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Fig. 10. Producer-Consumer Deployment

5 SYSTEM DEPLOYMENT
For system deployment, the producer will send features, and the consumer will produce the outputs. But to build

such a setup, the consumer needs to know the ground truth to compute the loss function. If the features and

labels are shared for joint training, the attacker can eavesdrop on the features and design any system to capture

the feature output relationship. Instead, the labels are sent at a specific time using an encryption key. Then,

the features can be shared to do the training task. To replicate the scenario, we consider a Quadro RTX 4000

as the producer (server) and a Raspberry-pi as well as a Jetson Nano as the consumers (client) in Figure 10. At

the forward pass of training, the producer sends the intermediate features to the consumers. The consumers

produce the output, compute the loss function and send the computed gradient in the backward pass. Based on

the gradient, the producer updates its parameters. Based on input obfuscation, the producer is trained with a

DP-optimizer.

We demonstrate a split neural network using ResNet-18 model with different indices as split points and execute

the training. As an MLaaS platform, the service provider should offer features such that the consumer can

do the task with little effort. With the smaller consumer model size, the round trip time will be lower for the

accumulation of gradients by the producer. Table 9 shows the higher the round trip time with the higher feature,

the larger the client model size. Due to the usage of GPU by Nano, the difference between the round-trip time of

Jetson Nano and Raspberry-Pi is significant.

We also investigate the effect of adding a task metamrophosis module to the overall server latency. The latency

of the metamorphosis module depends on the input shared by the encoder and its size. Figure 10 shows the effect

of inference latency of adding the metamorphosis module with the encoder for running the smile classification
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Table 9. Round trip time of sending features and collecting the gradients vs the consumer (client) model size vs the
intermediate feature size.

Server Model Client Model Raspberry Pi Jetson nano Feature Feature size

(MB) (MB) RTT (ms) RTT (ms) KB

42.66 0.02 3.95 0.73 512 × 1 × 1 1.99

10.64 32.04 112.67 10.11 256 × 4 × 4 14.86

0.61 42.07 173.23 18.60 64 × 16 × 16 65.92

Table 10. Effect of MetaMorphosis module to Server latency

MetaMorphosis Model Split Server MetaMorphosis Server (ms)

Module Index Size Module Size Latency (ms)

✗ ResNet-18 5 640.60 KB 54.5 KB 0.068

✓ 0.106

✗ ResNet-18 7 11.20 MB 791.80 KB 0.244

✓ 0.265

✗ ResNet-18 8 44.70 MB 3.20 MB 0.293

✓ 0.359

task with the encoder, smile metamorphosis module, and the classifier. The little difference in latency proves the

metamorphosis module to be a lightweight one.

6 ABLATION STUDY
We evaluate the performance of the Cross-SEC module, and we also experiment without crossing the connections

after getting the attention of one portion of the features. In Table 11, joint training of segmentation and depth

estimation is done where the task-privacy module is the Cross-SEC module and SEC module where no cross-

connection between features occurs. Cross-SEC morphosis module performs better in achieving the metrics for

segmentation and depth estimation than the SEC module. Regarding task privacy, cross-SEC achieves lower

pixel accuracy, mIOU for segmentation with depth features, and lower absolute error for depth estimation with

segmentation features than SEC module.

To observe the trade-off between input and privacy attribute obfuscation, we change the encoder and classifier

size by changing the split index of the ResNet-18 model. We identify an increase in privacy attribute leakage with

the decrease of the classifier model size and expansion of the encoder model size (Table 12). We have found the

gender classifier accuracy 45.14%, and 61.25 with lowering the classifier size from 42 MB to 33.6 MB. It is even

worse for a classifier having 0.006 MB. We observe that with the increase of the encoder model and the decrease

of the classifier model, it is difficult for the intended classification task to meet the input obfuscation and task

privacy together. As more noise is fed to the encoder model to maintain the 𝜖-DP while training, less performance

is desired with the decreased classifier model size, as also evident from Figure 7. DeepObfuscator used VGG-16

where only 1 MB portion is defined as feature provider, and the 536 MB is designated to the intended class
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Table 11. Importance of Cross-SEC module over SEC module without cross attention

MetaMorphosis Methods Segmentation Depth

Module mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓)
— MTL-SEC 57.79 93.39 0.0148 45.07

Segmentation MTL-SEC 57.79 93.39 0.1022 110.09

Depth 3.92 23.97 0.0148 45.07

— MTL-Cross-SEC 59.79 93.49 0.0141 31.89

Segmentation MTL-Cross-SEC 59.79 93.49 0.1079 99.07

Depth 1.47 7.33 0.0141 31.89

Table 12. Input-attribute obfuscation trade-off

Method Model Provider Classifier MetaMorphosis Classifier Accuracy (%)

Size Size Module

(MB) (MB)

DeepObfuscator [18] VGG16 1.0 536 universal gender 55.85

MetaMorphosis ResNet18 3.00 42.00 gender gender 95.44

smile smile 87.78

gender smile 42.69

smile gender 45.14

11.97 33.60 gender gender 94.19

smile smile 82.09

gender smile 42.56

smile gender 61.35

47.9 0.006 gender gender 92.74

smile smile 58.83

gender smile 42.33

smile gender 38.65

classifier whereas in MetaMorphosis, even using a small model ResNet-18, with higher encoder size, we achieve

almost the same accuracy as DeepObfuscator and hides privacy attribute better by lowering gender classification

task. Finding the optimal split index between the encoder and the task classifier is an interesting area to achieve

input obfuscation and task privacy. We have kept this discussion as our future work.

7 RELATED WORK
Various methods for solving complex segmentation and depth estimation-based multi-task learning are discussed

in the literature [4, 31, 40]. A knowledge distillation technique is proposed by Liu et al. [23] specifically for

semantic segmentation tasks. Nguyen et al. [30] proposed a convolutional neural network to identify modified

images, and the trained network can give a segmented mask for the modified region. An empirical study has been

conducted by Standley et al. [34] to identify the factors that influence the performance of multi-task learning
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and proposed a framework to limit the number of multi-task models based on the correlation of tasks. SSIM [41]

provides an image quality assessment metric called structural similarity (SSIM) to evaluate the similarity between

two images. It can also be used as a loss function to impose dissimilarity between features by shifting the value

close to zero. Attention modules are proposed in the literature [39, 47] to capture important features for target

accuracy without dimensionality reduction. Chen et al. [6] propose a gradient normalization algorithm for

training multi-task models to balance the training processes of different tasks. The algorithm improves accuracy

and decreases the over-fitting effects for various kinds of tasks and on different datasets. Transformer-based

cross-task attention mechanism [25] projects the features of one task to another. But the notion of distinct feature

generation to achieve privacy is absent. In collaborative intelligence, to build a more efficient system, many layer

output compression methods [7, 8, 44] and gradient compression methods [36] are suggested. Other [38, 48]

focuses on multi-task feature compression. These compression techniques, referred to as Video Coding for

Machine (VCM) [43], aims to reduce the communication overhead while maintaining the system performance,

while many efforts [14, 15, 22, 32, 46, 47] are also devoted to optimizing the computational overhead. On the

other hand, to build a good collaborative intelligent system, besides improving its efficiency, privacy-preserving

feature encoding schemes also need to protect the privacy of data holders. In the case of differential privacy in

deep learning, the DP-SGD algorithm was proposed by Abadi et al. [1]. Many variants of differential privacy,

such as label differential privacy, are discussed in [12]. Table 1 illustrates the comparison of MetaMorphosis with

recent similar literature.

8 CONCLUSION
In this paper, we propose MetaMorphosis that enables input obfuscation and task privacy for multi-task learning

in a collaborative intelligence setup. In this paper, the main focus lies in sharing data and computation securely

between a deep feature provider-based MLaas platform and a number of consumers who subscribe to the provider

according to interest. To ensure this, MetaMorphosis has gone through a two-phase training scheme where the

first phase ensures input privacy and private attribute privacy. Then the second training phase ensures task

privacy among shared tasks through a unique squeeze-excitation based MetaMorphosis module. Experimental

results on different domain datasets show the supremacy of MetaMorphosis over recent multi-task and adversarial

learning methods. The MetaMorphosis also positively affects the sequential addition of new tasks in a multi-task

environment because of its two-phase training scheme. This paper opens up some questions and disadvantages

of having a universal feature for a split learning system as well as in a split federated learning system. As the

performance of a federated learning system mostly depends on the honesty of the clients, the intuitive creation of

task features despite the task correlation is still challenging with the increase in the number of tasks. In the future,

we will focus on how task-variant features can be used to enable more privacy in federated learning systems.
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