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Binary similarity analysis is critical to many code-reuse-related issues, where function matching is its fundamental task. “1-to-1”
mechanism has been applied in most binary similarity analysis works, in which one function in a binary file is matched against one
function in a source file or binary file. However, we discover that the function mapping is a more complex problem of “1-to-n” (one
binary function matches multiple source functions or binary functions) or even “n-to-n” ( multiple binary functions match multiple
binary functions) due to the existence of function inlining, different from traditional understanding.

In this paper, we investigate the effect of function inlining on binary similarity analysis. To support our study, a scalable and
lightweight identification method is designed to recover function inlining in binaries. 88 projects (compiled in 288 versions and
resulting in 32,460,156 binary functions) are collected and analyzed to construct 4 inlining-oriented datasets for various similarity
analysis tasks, including code search, OSS (Open Source Software) reuse detection, vulnerability detection, and patch presence test.
Then, we further study the extent of function inlining, the performance of existing works under function inlining, and the effectiveness
of existing inlining-simulation strategies. Results show that the proportion of function inlining can reach nearly 70%, while most
existing works neglect it and use “1-to-1” mechanism. The mismatches cause 30% loss in performance during code search and 40% loss
during vulnerability detection. Moreover, most inlined functions would be ignored during OSS reuse detection and patch presence test,
thus leaving these functions risky. We further analyze 2 inlining-simulation strategies on our dataset. It is shown that they miss nearly
40% of the inlined functions, and there is still a large space for promotion. By precisely recovering when function inlining happens, we
discover that inlining is usually cumulative when optimization increases. Thus, conditional inlining and incremental inlining are
suggested to design a low-cost and high-coverage inlining-simulation strategy. 1

CCS Concepts: • Software and its engineering→ Search-based software engineering;Maintaining software; • Security and
privacy→ Software and application security.

Additional Key Words and Phrases: binary similarity analysis, function inlining, 1-to-1, 1-to-n

1 INTRODUCTION

According to a report published by Gartner [53], over 90% of the development organizations stated that they rely on
open source components. Although proper use of open-source code helps reduce the development cost, improper use of
open-source code may bring legal and security risks. Developers may unintentionally violate open-source licenses,
consequently causing great financial loss to software companies. For example, Cisco and VMware were exposed to
serious legal issues because they did not adhere to the licensing terms of the Linux kernel [1, 3]. Moreover, vulnerabilities
are easy to exploit in open-source software since its code is accessible. Software systems that use the vulnerable code
and do not patch in time will suffer from security risks [82]. Binary code similarity analysis works are proposed to
resolve these code-reuse-related issues.

The fundamental task of binary code similarity analysis is to match the query binary function and target source/binary
functions. Here, the query function is the function in a binary absence of its origin, and the target function represents
functions that may be related to a license, vulnerability, or patch. Given the query binary function, finding its similar
binary functions is called binary2binary matching. Binary2binary matching [39, 51, 63, 68, 84] has various applications
1New Paper
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including binary code search [43, 44, 64, 76], vulnerability detection [40, 52] and patch presence test [78]. Given the
query binary function, finding its similar source functions is called binary2source matching. Binary2source matching
[35, 45, 49, 50, 54, 58, 59, 65, 71, 81] is critical to many code-reuse-related tasks, including binary2source code search
[81] and OSS reuse detection [35, 50]. The matching mechanism of both binary2binary matching and binary2source
matching is always considered as “1-to-1” in most existing works, i.e., one function in a binary file is matched against
one function in a source file or binary file. However, we discover that such mapping is usually a more complex problem
of “1-to-n” or “n-to-n” due to the existence of function inlining [14], which differs from traditional assumptions.

(a) Source function scm_send (b) Function scm_send 

without inlining

(c) CFG  of netlink_sendmsg

inlining scm_send

(d) Function mapping of binary function netlink_sendmsg

static __inline__ int scm_send(struct socket *sock, struct msghdr *msg,

-                                  struct scm_cookie *scm)

+                                 struct scm_cookie *scm, bool forcecreds)

{

memset(scm, 0, sizeof(*scm));

+ if (forcecreds)

+     scm_set_cred(scm, task_tgid(current), current_cred());

unix_get_peersec_dgram(sock, scm);

if (msg->msg_controllen <= 0)

return 0;

return __scm_send(sock, msg, scm);

}

scm_set_cred

[scm.h]

scm_destroy_cred

[scm.h]

scm_send

[scm.h]

scm_destroy

[scm.h]

……

netlink_sendmsg

[af_netlink.c]

netlink_sendmsg

[af_netlink.o]

Inlined Source Functions

Original Source Function Binary Function

Fig. 1. “1-to-n” matching cases brought by function inlining

Figure 1 shows a motivating example when detecting vulnerable functions under inlining. Figure 1 (a) shows the
source code of function scm_send in vulnerable version and patched version in the project Linux [26] for CVE-2020-16593
[2]. As code reuses of this vulnerable function may exist, the vulnerability would be propagated to disparate binaries.
Detecting the influenced binaries requires searching whether there is a function in the binary similar to the vulnerable
function in the source code. To support this process, Figure 1 (c) depicts the complete CFG (Control Flow Graph) of a
binary function netlink_sendmsg that will be checked, with a partial CFG shown in Figure 1 (b). Each node represents a
basic block, and the array represents the control flow between them.

Following the “1-to-1” mechanism, we cannot find an individual binary function that is matching to the function
scm_send. Analyzing the debug information, we found the scm_send’s code is compiled into another function named
netlink_sendmsg. However, the existing works calculate a low similarity score between the function scm_send and the
target binary function netlink_sendmsg, indicating they are unmatched and thus leading to a failure that the vulnerability
in netlink_sendmsg is missed.

Function inlining causes the failure of the “1-to-1” matching mechanism. Figure 1 (d) shows inlining happen
to function netlink_sendmsg. Function scm_send, called by netlink_sendmsg, is inlined into netlink_sendmsg. When a
function inlining occurs, it replaces the call-site statement inside a caller with the function body of the callee. As a result,
the produced binary function will contain multiple source functions. Even more, the function inlining can be nested,
meaning that an inlined function may further inline another function. As shown in Figure 1 (d), the scm_send, inlined by
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netlink_sendmsg, inlines scm_set_cred. We can observe that the mapping between binary function netlink_sendmsg and
its original source functions is no longer a “1-to-1” mapping but a “1-to-n" issue — one binary function maps multiple

source functions, sometimes even in a nested inlining manner. Thus, the existing “1-to-1” matching mechanism, which
tries to match two functions with unequal semantics, suffered the expected failure.

“1-to-n" issues bring a great challenge to existing binary2source matching works, as we have shown. Caused
by the function inlining, the function mapping in binary2binary matching has become “1-to-n” and even “n-to-n”.
However, to the best of our knowledge, few existing works have systematically studied the effect of function inlining
on binary2source and binary2binary matching tasks (together, we call binary code similarity analysis). It is still unclear
the extent of function inlining, and its impact on existing binary similarity analysis works. This paper will address this
issue, and concretely we will investigate the three research questions.

RQ1: To what extent will inlining happen during compilation? To answer this RQ, we will evaluate the frequency and
degree of function inlining, which can demonstrate the wild presence of function inlining in binary code similarity
analysis tasks. This RQ will be answered in Section 4.

RQ2: What is the effect of function inlining on the performance of existing binary code similarity analysis works? To
answer this RQ, we will evaluate the performance of existing works that do not consider function inlining or do not
fully handle function inlining (which account for the majority). The decrease in performance indicates the importance
of considering function inlining. We will answer this RQ in Section 5.

RQ3: Can existing inlining-simulation strategies solve them? Existing works have proposed strategies to simulate the
results of function inlining (here, we call them inlining-simulation strategies). To answer this RQ, we will evaluate the
effectiveness of existing inlining-simulation strategies from the inlining cost and coverage of inlined functions. The
shortcomings of existing inlining-simulation strategies indicate directions for improvement. This RQ will be answered
in Section 6.

We first construct four inlining-oriented datasets for four binary code analysis tasks, including code search, OSS
reuse detection, vulnerability detection, and patch presence test to support our study. Furthermore, we propose a
scalable and lightweight identification method that can automatically recover function inlining in binaries. Based on
our labeled dataset, we then investigate the extent of function inlining, the impact of function inlining on existing
binary code similarity works, and the effectiveness of existing inlining-simulation strategies. Finally, we discuss the
interesting findings and give our suggestions for designing more effective inlining-simulation strategies.

Our main contributions are listed below:
• To the best of our knowledge, we are the first to comprehensively evaluate the effect of function inlining on
binary code similarity analysis tasks.

• We create the first function inlining dataset by designing a scalable and lightweight identification method that
can automatically recover function inlining in binaries (Section 3).

• Our study recovers the high frequency and high degree of function inlining (Section 4). Averagely the proportion
of function inlining can range from 40% to 70% and a binary function can inline 2-4 source functions.

• We conduct five experiments to evaluate the performance of existing binary code similarity works under function
inlining (Section 5). Code search suffers a 30% decline in detecting functions with inlining while OSS reuse
detection and patch presence test miss most inlined functions.

• And we take a deep analysis of existing inlining-simulation strategies (Section 6) and point out the directions for
designing more effective strategies (Section 7).

To facilitate further research, we have made the source code and dataset publicly available [32].
3
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2 PRELIMINARY

This section will introduce existing static binary code similarity analysis works, commonly-used inlining strategies,
and the research scope of our work.

2.1 Binary Code Similarity Analysis

2.1.1 Binary2binary code matching. According to the granularity to conduct matching, existing binary2binary
matching can be classified into instruction level, basic block level, and function level method.

Bindiff[8], Kam1n0[43] and Asm2Vec[44] are instruction level methods. To conduct matching, Bindiff and Kam1no
are working on the raw assembly instructions and conducting sub-graph matching to find similar functions. Instead,
Asm2Vec trains the embedding for the assembly code and matching functions using function-level embedding by lifting
instruction-level embedding.

Deepbindiff[46] is a basic block level method to conduct binary diffing. To conduct matching, Deepbindiff first
constructs a connected control flow graph of two binaries by merging their common-used library calls and strings.
Then it applies TADW[80] to learn embeddings of basic blocks. Finally, they obtain the matching by calculating the
similarities of embeddings.

Function level matching methods [37, 40, 52, 64, 76, 78, 79] are the most widely-used methods when conducting
binary2binary code matching. Tracy [40] extract the data flow strands from functions and matching functions by the
hash of strands. Gemini[76] uses the CFG (control flow graph) augmented with block attributes as the representation of
a function and trains a Siamese network for function matching. SAFE [64] use a self-attentive network [61] directly
on instruction embeddings to obtain the function embeddings. Vulseeker [52] works on labeled semantic flow graphs
(LSFG) and uses its embedding to find vulnerable functions. BinXray [78] uses diffs between vulnerable version and
patch version to conduct path presence test.

Among these binary2binary matching works, Bingo [37, 79] and Asm2Vec [44] especially propose selective inlining-
simulation strategies to tackle the challenges that function inlining brings. However, our work is different from theirs.
We aim to provide a systematical and general understanding of function inlining and its impacts. Moreover, in our
work, we also evaluate the effectiveness of their strategies leveraging our unique insights of function inlining.

2.1.2 Binary2source code matching. Existing binary2source code matching works can be classified into feature-
based methods and learning-based methods.

Feature-based methods [45, 49, 50, 54, 59, 65, 71] are commonly used by early works. BAT [54] considers textual
strings as features to match source and binary code. BinPro [65] extracts similar features but utilizes machine learning
algorithms to compute optimal code features for the matching. B2SFinder [50], a state-of-the-art feature-based method,
considers three types of features, including string, integer, and control-flow features. As these features are sometimes
rare at the function level, most feature-based methods conduct matching at the file level.

CodeCMR [81] is a learning-basedmethod for function-level binary2sourcematching. CodeCMRmodels binary2source
matching as a cross-modal retrieval task, with the source function code and binary function code as two neural network
inputs. The model output is the similarity between them. CodeCMR also extracts string and integer features to supply
the inputs. It has achieved fast and precise matching by developing a deep learning method.

2.2 Function Inlining

Function inlining [56] conducts function expansion, replacing a function call with the callee body. Besides that function
inlining benefits decreasing the cost of method calls, its major purpose is to enable additional compilation optimizations
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[70]. Though there are passes that can be used for inter-procedural optimizations, inlining the callee function can
convert inter-procedural optimizations into intra-procedural optimizations, facilitating more optimizations.

On the other hand, function inlining can cause an increase in binary code size and compilation time. It is a trade-off
to determine when to inline by a balance between these benefits and costs. Prior researches have proposed lots of
inlining strategies [33, 38, 41, 42, 47, 55, 57, 83] from different aspects. We will introduce inlining strategies adopted in
GCC [15] and LLVM [25], two of the most popular compilers.

GCC and LLVM follow a similar workflow for function inlining, including inlining decision and inlining conduction.
To decide which call-sites should be inlined, they consider user-forced inlining, user-suggested inlining, and normal
inlining candidates. User-forced inlining, such as “__𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒__(𝑎𝑙𝑤𝑎𝑦𝑠_𝑖𝑛𝑙𝑖𝑛𝑒)”, will first be considered to be inlined,
as long as the call-site of this function does not violate fundamental requirements. User-suggested inlining is specified by
users using the keyword “inline” to decorate function definitions. Such decorated functions will be possible candidates
to be inlined, but whether to inline still depends on the strategy of the compiler. Normal inlining candidates will be
identified and determined according to the strategies used in GCC and LLVM themselves.

GCC uses a priority-guided inlining algorithm to decide which call-sites should be inlined. They first define the
inlining priority of a function call by pre-estimating the benefit of this inlining. Then they conduct inlining following
the priorities. At the same time, the cost of inlining also increases. Once the total cost of inlined methods reaches a
maximal threshold as configured, the inlining process will stop.

Instead, LLVM uses a prediction-driven inlining method to determine function inlining. It first classifies functions
into hot and cold ones according to the times they are called. Then each call-site will be assigned with measurements of
inlining benefit and inlining cost [4]. If the cost value is lower than the benefit value, this call-site will be inlined [18].

Besides, compilers also implement specific settings for small-size functions and functions that are called only once.
For example, when compiling a program with the option of “-O1", GCC-10 applies “-finline-functions-called-once” to
conduct inlining. This option will inline all static functions called only once no matter whether they are marked with
“inline” or not. Moreover, if a function called once is inlined, then the function will not be compiled as an individual
function in the binary[19], such as the function scm_send in Figure 1.

2.3 Research Scope

Before introducing our work, we first clarify our research scope. Our work investigates the impact of inlining strategies
used in common compilers on static function-level binary code similarity analysis works. Other function inlining
strategies or instruction level, basic block level and file level method is beyond our scope.

We focus on C/C++ programs compiled by GCC and Clang with O0-O3. The main architecture of binaries is in
X86-64, but we also analyze datasets compiled in 8 architectures. Moreover, we only consider the inlining of user-defined
functions in this paper. The inlining of library functions is similar to user-defined functions, but library functions may
differ when the compilation environment changes.

3 DATASET CONSTRUCTION

As few studies have researched the impact of function inlining on binary code similarity analysis work, an inlining-
oriented dataset is needed. To fill the gap, we will first collect 88 projects for different applications and propose a
scalable and lightweight identification method to recover function inlining in binaries automatically. As illustrated
in Figure 2, we first collect source projects and compile them into binaries under diverse configurations (Section 3.1).
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Based on the source code and binaries, we propose an automatic identification method to identify function inlining in
binaries (Section 3.2).

Source

Projects
Compilation Binaries

Function Inlining 

Identification
Dataset with 

Ground Truth

Fig. 2. Workflow of dataset construction

3.1 Dataset Collection

In this work, we focus on C/C++ programs and two popular compilers, GCC [15] and Clang [10]. We have collected four
datasets by employing and extending Binkit [22, 60], a binary code similarity analysis benchmark. The compositions
and compilation settings of these dataset are listed in Table 1.

Table 1. Composition of four datasets

Dataset # of Projects Representative Projects Compilation Setting Versions Binary Functions
I 51 Coreutils[11], Findutils[13] Table 2 288 18,783,986
II 24 bzip2[29], minizip[30] gcc-8.2.0, X86-64, O0-O3 4 190,611

III 12 Openssl[31], Binutils[9] gcc-8.2.0, X86-64, O0-O3,
inline, noinline 8 8,635,362

IV 1 Chromium[23] clang, debug, release 2 4,850,197

Table 2. Compilers, optimizations and architectures used in dataset I

Compilers gcc-4.9.4, gcc-5.5.0, gcc-6.4.0, gcc-7.3.0, gcc-8.2.0, clang-4.0, clang-5.0, clang-6.0, clang-7.0
Optimizations O0, O1, O2, O3
Architectures X86-32, X86-64, ARM-32, ARM-64, MIPS-32, MIPS-64, MIPSeb-32, MIPSeb-64

Dataset I - for code search. Dataset I was comprised by the 51 packages from GNU projects[24], compiled by 9
compilers, 4 optimizations, to 8 architectures (shown in Table 2), resulting in 288 compilation versions containing 67,680
binaries and 18,783,986 functions. Dataset I is collected fromBinkit[60]. This dataset containsmanywidely-used packages
such as Coreutils [11] which have been extensively used in binary similarity detection works [37, 48, 62, 75, 77, 81].

Dataset II - for OSS reuse detection. Dataset II was extended from a partial reuse dataset used in ISRD[77]
containing 24 programs with 74 partial reuses. It was originally compiled by GCC with O2 in X86-64. We extend it to 4
optimizations by using gcc-8.2.0. Dataset II is not extended to other architectures because existing OSS reuse detection
works do not include them. Dataset II was comprised of 96,085 source functions and 190,611 binary functions.

Dataset III - for vulnerability/patch detection. Dataset III was constructed from the dataset used in BinXray[78],
containing 479 CVEs and 6238 vulnerable functions. We generate two versions of Dataset III, including Dataset III
(without additional compilation flags) and Dataset III-NI (with flag “-fnoinline” to forbid inlining). Dataset III is comprised
of 8,635,362 binary functions.

Dataset IV - for application binaries. Apart from these three datasets, we also construct a dataset by compiling
chromium[23] with Clang in its debug and release optimization to X86-64 to form the dataset IV. Dataset IV is comprised
of 4,850,197 binary functions. This dataset will provide a vision of function inlining in large application binaries.

3.2 Function Inlining Identification

In this section, we will first illustrate terminologies that we will use throughout our paper and then introduce our
function inlining identification method.
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Algorithm 1:Method to generate function-level mappings
Input: Source project 𝑆 , Binary with debug info 𝐵
Output: Function mapping 𝐹𝑀𝑏2𝑠

1 Function Preprocessing(𝐵, 𝑆):
2 𝐿𝑀𝑏2𝑠 = Extract_Address_to_Line_Mapping(𝐵) // return a list of (address, line) mapping

3 𝑆𝑀𝑙2𝑓 = Extract_Line_to_SF_Mapping(𝑆) // return a dict of line to function mapping

4 𝐵𝑀𝑎2𝑓 = Extract_Address_to_BF_mapping(𝐵) // return a dict of address to function mapping

5 return 𝐿𝑀𝑏2𝑠 , 𝑆𝑀𝑙2𝑓 , 𝐵𝑀𝑎2𝑓 ;
6 𝐿𝑀𝑏2𝑠 , 𝑆𝑀𝑙2𝑓 , 𝐵𝑀𝑎2𝑓 = Preprocessing(𝐵, 𝑆);
7 𝐹𝑀𝑏2𝑠 = {};
8 for (address, line) in 𝐿𝑀𝑏2𝑠 do // traverse all address-to-line mappings
9 𝑆𝐹 = 𝑆𝑀𝑙2𝑓 [𝑙𝑖𝑛𝑒 ];

10 𝐵𝐹 = 𝐵𝑀𝑎2𝑓 [𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ];
11 if 𝐵𝐹 not in 𝐹𝑀𝑏2𝑠 then
12 𝐹𝑀𝑏2𝑠 [𝐵𝐹 ] = [];
13 end
14 if 𝑆𝐹 not in 𝐹𝑀𝑏2𝑠 [𝐵𝐹 ] then
15 𝐹𝑀𝑏2𝑠 [𝐵𝐹 ] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑆𝐹 ) // add mapped source functions to the binary function dict

16 end
17 end
18 return 𝐹𝑀𝑏2𝑠 ;

3.2.1 Terminology. To make the representation more clear, we first illustrate our notions of the functions from both
source and binary. Usually, as shown in Figure 1 (d), when function inlining happens, a binary function (netlink_sendmsg)
is compiled from the original source function (netlink_sendmsg) and some inlined source functions (scm_send, scm_set_cred

and etc.). Here, we named the produced binary function (netlink_sendmsg) as BFI (binary function with inlining), the
original source function (netlink_sendmsg) as OSF, and the inlined source functions (scm_send, scm_set_cred and etc.)
as ISFs. Similarly, binary function without inlining is named as NBF (normal binary function), NBF mapped source
function as NSF (normal source function). Moreover, binary function as BF and source function as SF. These notions
will be used throughout the paper.

3.2.2 Function inlining identification method. To identify function inlining, we first construct function mappings from
source code to binaries, which can also serve as the ground truth for binary code similarity analysis. When compiling a
program in debug mode, compiler will record the mapping from binary instructions to source instructions. Following
that mapping, we further find the binary function that binary instructions belong to and the source function that source
instructions belong to. Thus, function-to-function mapping can be generated.

Algorithm 1 formalizes our method for generating function-level mappings for datasets. The method leverages the
line mapping implied by the relation between binary address and source code line, provided in the debug mode. By
extending line mapping results, the method will generate a function-level mapping between binary functions and
source functions. We will introduce the algorithm with an example in Figure 3.

Our method first compiles source code with the “-g” option and leverages Dwarf [12] to produce the .debug_line
section in binary. To extract the line-level mapping, we uses Readelf [20] to parse binaries (line 2). As shown in Figure
3, the line mapping contains the mapping between source file lines and binary addresses.

Next, the method extracts line-to-function mapping in the source code by employing Understand [21] and extracts
address-to-function mapping in the binary code by employing IDA Pro [17]. Understand and IDA Pro are two state-of-art
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source function: usage

binary function: usage

Line-level mapping

Function-level mapping

(md5sum.c 287) →  usage

(b2sum  0x401C81) →  usage

Source file: md5sum.c

Line: 287

Address: 0x401C81

Binary: b2sum

(md5sum.c 287) →  usage

(b2sum  0x401C81) →  usage

Source file: md5sum.c

Line: 287

Address: 0x401C81

Binary: b2sum

Fig. 3. Example of extending line-level mapping to function-level mapping

commercial tools and have been widely used in academia [46, 67, 69] and industry [5, 6, 28]. Understand is a static
analysis tool to identify source entities (e.g., files, functions) and dependencies. By exploring source entities, we can infer
which entity the code line belongs to (line 3). IDA Pro recovers the function boundary [34] from binaries, outputting
binary address to binary function (line 4). For example in Figure 3, source line 287 belongs to the source function usage,
and binary address 0x401C81 belongs to binary function usage.

Finally, our method extends the above line-level mapping results to function-level mapping by combining these three
mappings (lines 8-17). As shown in Figure 3, now we can get the function mapping between source function usage and
binary function usage.

Our datasets collected in Section 3.1 are labeled by our automatic method. According to the mapping results between
BFs and SFs, we can easily identify BFs produced by function inlining (i.e., BFI). Simply, we identify BFs mapped to more
than one SFs as BFIs and those mapped to one SF as NBFs. By identifying the OSF or NSF from which BFs are compiled,
we can also easily establish binary2binary function-level mappings. Our datasets with function-level mappings can
support the study in our work.

Besides, our method does not rely on any modification of the compilers and can be applied to any binaries compiled
in debug mode. Note that Understand and IDA Pro can be substituted with other tools with similar functionalities. We
also implement a tool using tree-sitter[27] and Ghidra[16], facilitating free usages.

4 INVESTIGATION ON THE EXTENT OF FUNCTION INLINING

Before analyzing the extent of inlining, we first discover that inlining is not the same in all circumstances. Firstly,
inlining is defined by the compiler. Thus, inlining is influenced by the compilation settings. Secondly, the compiler
decides whether to inline by considering the features of a call site, which will differ in different projects. Thus inlining
also depends on the projects. Finally, we noticed that different applications also care about different parts of inlining.
Thus, in this section, we propose three research questions (RQs) to help understand the extent of function inlining.

4.1 RQ1.1: What Is the Extent of Function inlining under different compilations?

Figure 4 shows the statistics of function inlining in dataset I compiled by 8 architectures, 9 compilers, and 4 optimizations.
Due to page limit, we only present results in clang-7.0 and gcc-8.2.0. In Figure 4, “Inlining ratio” shows the percent
of BFIs in BFs, “ISFs/BFI” represents the number of ISFs that a BFI inlines, “BFIs/ISF” represents the number of BFIs
that an ISF is inlined into. Here we calculate these values by average. These metrics measure three aspects associated
with function inlining: happening frequency in binary functions (Inlining Ratio), inlining degree in binary functions
(ISFs/BFI), and inlining degree in source functions (BFIs/ISF).

4.1.1 Statistics in default Ox optimizations. For statistics of all 64 compilation options, we can see that the inline
ratios range from 0.94% compiling with clang-7.0 in O1 to ARM64 to 41.67% compiling with gcc-8.2.0 in O3 to MIPS64.
And when a binary function is generated with function inlining, at least 1.39 ISFs are inlined averagely. Moreover,
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(a) Clang

(b) GCC
Fig. 4. Function inlining statistics in different compilation settings

according to our observation, a BFI may inline 200 different source functions to form the final binary function. When
we turn the view to BFIs/ISF, an ISF will be inlined by at least 1.22 BFIs on average, and in some cases, an ISF may be
inlined into 244 BFIs.

Statistics of different optimizations. For compilation settings from the three levels, we start with the most
fundamental setting — optimizations. No matter what arch or compiler is, there is a straight increase in inlining ratios
from low optimizations (i.e., O0, O1) to high optimizations (i.e., O2, O3). Same with the inlining ratios, a BFI tends to
inline more ISFs, and an ISF tends to be inlined by more BFIs with higher optimizations. When applying the O3 option,
more than 36% of BFs will inline ISFs. As released binaries are often compiled under high optimizations to ensure their
efficiency, we believe that function inlining is a common phenomenon.

Statistics of different compilers. The influence of different compilers is not directly pushed on generated binaries
but through its inlining strategy to effect optimizations. An evident difference between GCC and Clang is that when
compiling in O1, GCC produced a binary function with higher inlining ratios than Clang. This is because GCC applies
"-finline-functions-called-once” when using O1, as we have illustrated in section 2.2. Besides, the inlining ratio of
GCC grows gradually from O0 to O3, while ratios of Clang are divided into two parts: low optimizations and high
optimizations. This is also caused by the inlining strategies of compilers. GCC gradually adds options to generate O0 to
O3 while Clang uses "always inliner" pass in O0 and O1, and "inliner" pass in O2 and O3.

Statistics of different architectures.When applying high optimizations, all 64-bit architectures have a little higher
inlining frequency and degrees than their corresponding 32-bit architectures except X86. Among these 8 architectures,
MIPS-64 has the highest inlining ratio, while ARM-64 has the highest inlining degree.

4.1.2 Statistics of using LTO. Apart from the above compilation settings, we also noticed that LTO (Link-Time
Optimizations) would also enable inlining across compilation units. Figure 5 shows the inlining statistics in Coreutils
v8.29 using Clang with and without LTO. We use abbreviations to represent the same metrics in Figure 4, such as IR
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for Inlining Ratio, B2S for ISFs/BFI, and S2B for BFIs/ISF. Compared with binaries without LTO, binaries enabled with
LTO have 30% more inlining ratios. And when compiling in O3 enabled with LTO, more than 70% of the BFs are BFIs.
Apart from the increasing frequency of inlining, 2 more ISFs are inlined into the BFIs when using LTO averagely. The
increasing frequency and extent of inlining bring more challenges to existing binary code similarity works.

Fig. 5. Function inlining statistics with LTO

(a) Dataset II (b) Dataset III
Fig. 6. Distribution of critical SF in BFs

Answering RQ1.1: Inlining happens in high optimizations, and its ratio usually ranges from 30% to 40% when
applying O3. However, inlining under different compilers may differ at the same optimizations. Besides, when combining
O3 with LTO, inlining ratios can raise to 70%, and averagely a BFI can inline 4 ISFs.

4.2 RQ1.2: What Is the Extent of Function Inlining in Different Projects?

Different projects may have different inlining statistics due to their coding style and design rule. To avoid getting a
biased understanding, we first analyze inlining statistics in four kinds of projects, including system code from dataset I,
zip/unzip, timing, and data transformation code from dataset II, cryptography, database, and image processing code
from dataset III, and browsers from dataset IV.

Table 3. Function inlining statistics in different kinds of projects

D I II III IV
Opt O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 Og Or
IR 2.7% 18.4% 26.4% 39.3% 6.5% 35.6% 40.2% 48.1% 22.2% 34.8% 39.0% 46.5% 6.4% 57.9%

B2S_avg 2.35 2.25 2.27 2.67 1.86 2.08 2.16 2.45 2.27 3.20 3.23 3.39 1.89 3.53
B2S_max 62 76 89 111 63 70 145 121 2756 1727 1781 2073 36 139
S2B_avg 1.41 1.35 1.53 1.86 2.99 1.90 1.94 2.17 2.72 3.02 2.89 2.80 1.67 2.58
S2B_max 25 74 82 76 46 106 106 139 525 892 872 900 73 229

Table 3 shows the inlining statistics of these four datasets. Among the first three datasets, dataset II has the highest
inlining frequency, and dataset III has the largest inlining degree. In particular, we notice that sometimes a BFI in
dataset III can inline more than 2000 ISFs, and an ISF can be inlined into more than 800 BFIs. This is caused by some
extremely-long call chains in the cryptography module of Openssl [31], and we noticed that long call chains are also
common in the dataset I and II. And in dataset IV, we observe higher inlining ratios in the released binary compared
with dataset I-III which are compiled with default Ox optimizations, indicating large applications may use additional
custom optimizations to further ensure the efficiency of the released executable.

Answering RQ1.2: Generally speaking, inlining widely exists in different kinds of projects. And in some large
application binaries, inlining may happen more frequently.
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4.3 RQ1.3: What Parts of Inlining Are Cared for in Different Applications?

Different applications care about different parts of inlining due to their objectives. For example, code search aims to find
target functions with similar functionality of the query function; thus, it needs to search BFs originated from the same
OSF when function inlining happens. OSS reuse detection and vulnerability/patch detection aim to search functions
containing the code of the reused or vulnerable functions; thus, they need to search BFs containing the same ISFs. Here,
we focus on the inlining under OSS reuse detection and vulnerability/patch detection, and analyze the existence and
proportion of target SFs in the query BF.

As shown in Figure 6(a), we divided the relation between query BF and target SF into three classes: NSF, OSF, and
ISF. For example, OSF means that the target SF is the OSF of the query BF, while ISF means that the target SF is an ISF
of the query BF. Similar to Figure 6(a), in Figure 6(b), OSF means that query BF and target BF share the same OSF while
ISF means the NSF of target BF (which is an NBF) is an ISF of the query BF.

For OSS reuse detection, we noticed that when optimization goes from O0 to O3, ISF is gradually counting for the
largest part, and NSF decreases from more than 60% to nearly 2%, which indicates the majority reuse between source
projects will be inlined when applying high optimization, making it a new challenge for existing works.

For vulnerability/patch detection, when applying high optimization, OSF becomes the majority where NBFs and
BFIs need to be matched. Besides, 30% of vulnerable functions are also inlined into BFIs, and finding these BFIs is also a
task of existing works.

Answering RQ1.3: Code search works cares about the BFIs with the same OSF, while OSS reuse detection and
vulnerability/patch detection also care about the BFIs with reused or vulnerable ISFs. The proportion of reused or
vulnerable ISFs is not rare. Thus, they are also needed to be considered when conducting matching.

4.4 Answer to RQ1

In summary, function inlining widely exists in high optimizations and different projects. For released binaries, the
inlining ratios range from 35% to more than 70%, and a BFI inlines 2-4 ISFs on average. Code search works should
consider the unequal semantics between functions that inlining has brought. Besides, 80% of reused SFs and 30% of
vulnerable SFs are inlined to BFIs when applying high optimization. OSS reuse detection and vulnerability/patch
detection should also care about the hidden risky functions inlined into binary functions.

5 PERFORMANCE OF EXISTINGWORKS UNDER INLINING

This section will carry out several evaluations on the performance of existing works under inlining. Directly, we first
split existing binary code similarity analysis works into binary2source matching and binary2binary matching works.
Then we set different objectives for different applications. As we illustrated in Section 4.3, code search only needs to
match BFs with the same functionalities, while OSS reuse detection and vulnerability/patch detection need to match
every reused function. Thus, in our evaluation, apart from BFIs with the same OSF that code search works are required
to accomplish, existing OSS reuse detection works and vulnerability/patch detection works are also evaluated on finding
BFIs containing reused or vulnerable ISFs.

As inlining always comes with high optimizations, excluding the influence from other added optimization options is
necessary. To evaluate the effect merely from inlining, we first select SFs that can produce BFs under all compilation
settings. Then we split these SFs into two classes: OSFs whose BFs compiled in high optimization are BFIs and NSFs
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whose BFs are all NBFs. The only difference for BFs generated from these two classes is whether inlining has happened.
Thus evaluations conducted on these two split datasets only reflect the influence of inlining.

For all works selected for evaluation, we use its default setting in its code or its paper and present its direct output.

5.1 Evaluation of Binary2source Matching Works

For binary2source matching works, we select CodeCMR[81] targeting two application areas: code search and OSS
(open-source-software) reuse detection. To suit the applications, we use dataset I to evaluate the task in code search and
dataset II for OSS reuse detection, and here are the results:

5.1.1 Binary2source code search . We select CodeCMR because it is the state-of-the-art function level binary2source
code searching work. And its application binaryai[7] has been released for public usage. We analyze the impact of
inlining on the performance of binaryai at a downstream task of code search: retrieving similar SFs for the query BF.

Cross-optimization evaluation for CodeCMR. Figure 7(a) shows our evaluation of CodeCMR in BFIs and NBFs.
We use the same metrics (recall@1 and recall@10) used in CodeCMR to evaluate its performance. As shown in Figure
7(a), blue lines present the performance of matching OSFs with their BFIs, and red lines present the performance of
matching NSFs with their NBFs. When matching functions without inlining, we can see a smooth curve for both
recall@1 and recall@10, though they suffered a subtle loss when matching NSFs with NBFs from O0 to O3. But when
matching functions with inlining, we can see a drastic loss from O0 to O3, about 30% for recall@1 and 25% for recall@10,
which indicates that function inlining has brought a great challenge to CodeCMR.

(a) Cross-optimization evaluation (b) Inlining-degree evaluation

Fig. 7. Evaluation of CodeCMR under inlining

Inlining-degree evaluation forCodeCMR.To further analyze the influence of inlining on CodeCMR, we rearrange
the dataset into classes by their inlining influence degrees. In detail, we calculate the ratio between the total length of
ISFs and the length of the OSF to define the influence degree that inlining has on matching a BFI with an OSF. And for
matching pairs with different inlining degrees, we calculate their average recall@1 and recall@10 to form Figure 7(b).

In Figure 7(b), blue lines show the change of recall@1 and red lines for the recall@10. Inlining influence degree as
“1” represents matching pairs that ISFs of BFI have a 1x to 2x length equal with the OSF of BFI. As shown in Figure
7(b), both recall@1 and recall@10 decrease dramatically when inlining influence degree increase. In detail, recall@1
reaches nearly 80% when the ISFs have a smaller length than the OSF but falls directly to 0 when the total length of
ISFs is larger than the length of OSF. Recall@10 decreases when the inlining influence degree ranges from 0 to 10 and
experiences a fluctuation between 10 and 30. But in general, when the inlining influence degree is larger than 1, it has
become particularly difficult for CodeCMR to find the correct OSFs.

12



1-to-1 or 1-to-n?
Investigating the effect of function inlining on binary similarity analysis TOSEM, 2022,

5.1.2 OSS reuse detection. As we illustrated in Section 2, existing feature-based binary2source matching works
cannot precisely detect software reuse at the function level. Thus, we extend CodeCMR to detect partial reuses.

Table 4. Function similarity for OSS reuse detection

similarity O0 O1 O2 O3
NSF 77.37% 73.31% 68.17% 58.12%
OSF 66.27% 71.42% 67.60% 58.08%
ISF 10.54% 9.01% 8.42% 5.93%

Table 5. Function similarity for vulnerability detection

similarity O0 O1 O2 O3
NSF 89.36% 93.43% 92.68% 94.11%
OSF 82.69% 84.02% 85.92% 80.57%
ISF 46.16% 63.39% 64.34% 55.80%

Table 4 shows the results of CodeCMR in detecting three types of reuse corresponding to three classes in Section 4.3.
When matching OSFs with BFIs, CodeCMR returns a similarity a little lower than matching NSFs with NBFs. However,
when searching ISFs for BFIs, CodeCMR can only return a similarity of less than 10% on average. As a result, CodeCMR
can detect most NSFs and OSFs reused in NBFs and BFIs, but missed most ISFs that are inlined into BFIs.

5.2 Evaluation of Binary2binary Matching Works

For binary2binary matching works, we select SAFE [64] for code search, Vulseeker [52] for vulnerability detection, and
BinXray [78] for patch presence test. SAFE is evaluated on dataset I, while Vulseeker and BinXray are evaluated on
dataset III.

5.2.1 Binary2binary code search. We select SAFE for code search as it can represent the common workflow of
most recent learning-based methods: training a model to produce embedding, input functions to obtain embeddings,
and comparing embeddings for similarities.

Fig. 8. Cross-optimization function similarity for SAFE Fig. 9. Cross-inlining results of BinXray

Figure 8 shows the function similarity that SAFE obtained for cross-optimization code search. To reveal the impact
of function inlining, we divide the matching cases into normal cases, which only compares two NBF and inlining cases
where at least one function is a BFI. In Figure 8, we use blue lines to represent the similarity in normal matching and
red lines for inlining matching. Besides, we use ‘G’ for GCC and ‘C’ for Clang. And x-coordinate shows the detailed
optimization setting of the experiments. For example, the first O1 with “–O0–” below represents searching query BFs
generated by O0 in target BFs generated by O1.

In general, SAFE suffers a 20% loss in similarity when detecting NBFs at the normal cross-optimization task (without
inlining), but the loss increase to more than 40% when detecting BFIs (with inlining). Interestingly, we noticed that
inlining in clang has a greater impact on SAFE than gcc, and this difference becomes more obvious when crossing O0,
O1 to O2, O3.
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5.2.2 Vulnerability detection. We select Vulseeker for vulnerability detection. To see the effect of inlining, we
recompile dataset III with “-fno-inline” to create a dataset without inlining (dataset III-NI). Then we use vulnerable
functions in dataset III-NI to generate fingerprints and functions in dataset III as the target. Results are shown in three
types corresponding to three classes in Section 4.3.

As shown in Table 5, Vulseeker obtained a similarity of more than 90% for normal matching cases, a similarity of 80%
when searching BFI, but a similarity of less than 65% when searching inlined functions. As lower similarities indicate
bigger difficulties in obtaining the target function, BFIs, which inline vulnerable ISFs, are very hard to find.

5.2.3 Patch presence test. We select BinXray for patch presence test. As BinXray targets detecting patches at
the same optimization, we conduct two experiments: default and cross-inlining. The default experiment generates
fingerprints from binary functions compiled in O2 with inlining and search in binaries compiled in the same setting. The
cross-inlining experiment generates fingerprints from binary functions compiled in O2 without inlining but searches
binary functions compiled in O2 with inlining. Here are the results.

Figure 9 shows the results of default experiment and cross-inlining experiment. The number of rightly identified
functions drops when detecting NBFs in the cross-inlining experiment compared with the default experiment, and
this gap grows much larger for BFIs. Only about 2/5 of the vulnerable BFIs are rightly classified in the cross-inlining
experiment, while 3/5 fall to “cannot analyze”.

Interestingly, although the rightly identified cases decrease dramatically, wrongly identified only increase a little.
Instead, more cases become hard to be analyzed. That is because the analysis of BinXray relies on its successful
identification of the patch boundary. For BFIs with vulnerable OSF that we mention in section 4.3, BinXray cannot find
the similar patch boundary derived from dataset III-NI.

Besides, another problem is that BinXray regards the functions having the same name with vulnerable function as
the suspicious function to conduct detecting. Thus BFIs which has inlined vulnerable ISFs will all be missed. Note that
these BFIs with vulnerable ISFs account for 30% when compiling in O3 as shown in Section 4.3.

5.3 Answering to RQ2

In summary, code search works suffer a 20%-30% performance loss when detecting functions with inlining. Ignorance
of semantics from inlined functions reveals their inherent defect in detecting function similarities. Besides, OSS reuse
detection and vulnerability/patch detection works cannot detect inlined functions. Thus, attackers or plagiarists can
inline these risky functions into binary functions to bypass the detection.

6 EVALUATION OF EXISTING INLINING-SIMULATION STRATEGIES

In section 5, we have shown that existing works suffer from the challenges that inlining brings. To resolve these
challenges, existing works propose inlining-simulation strategies to simulate the inlining results of compilers. In this
section, we will introduce existing inlining-simulation strategies and evaluate their effectiveness against function
inlining in two fundamental tasks.

6.1 Introduction of Existing Inlining-simulation Strategies

We first introduce the strategies used in two existing works: Bingo[37] and ASM2Vec[44].
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Bingo. Bingo proposes a selective inlining-simulation strategy to recursively expand callee functions for more
precise similarity detection. To decide whether a callee should be inlined, Bingo listed 6 patterns for inlining conduction,
and we summarize them into the following 5 cases where 2-5 are towards UD (User-Defined) functions.

1. if the callee function is a library function, inline it.
2. If the UD callee function and its caller recursively call each other, inline it.
3. If the UD callee function only calls library functions, and more than half of library functions are not termination

functions (e.g., exit and abort), inline it.
4. If the UD callee function only calls library functions, and more than half of library functions are termination

functions, do not inline it.
5. If the UD callee function calls other UD functions, the inlining is decided by the following equation 1.

𝛼 (𝑓𝑐 ) = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (𝑓𝑐 )/(𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (𝑓𝑐 ) + 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑓𝑐 )) (1)

In equation 1, in-degree and out-degree refer to the call relation between the callee 𝑓𝑐 and other UD functions in
the FCG (Function call graph). Bingo considers that the lower the value of 𝛼 (𝑓𝑐 ), the more likely the callee should be
inlined. Thus when 𝛼 (𝑓𝑐 ) is lower than a threshold, this callee will be inlined. In Bingo’s original setting, this threshold
is set to 0.01.

ASM2Vec. The inlining-simulation strategy of ASM2Vec employs the strategy of Bingo, but with some modifications
and additional filters. On the one hand, ASM2Vec change the recursively inlining-simulation strategy into a one-layer
inlining-simulation strategy, where they only expand the first-order callees. On the other hand, they defined a metric to
remove lengthy callees, as shown in equation 2.

𝛿 (𝑓𝑠 , 𝑓𝑐 ) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑐 )/𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑠 ) (2)

In equation 2, 𝑓𝑐 represents for the callee function and 𝑓𝑠 for the caller. The length of the function is measured by
the number of lines of instructions. When 𝛿 is less than 0.6 or 𝑓𝑠 is comprised of less than 10 lines of instructions
(considered as a wrapper function), inlining will happen.

6.2 Evaluating Strategies on Finding Similar BFIs

As finding BFIs with the same OSF is the main objective of existing binary code similarity analysis works, we first
evaluate their effectiveness in finding similar BFIs. According to their settings, the inlining-simulation strategies will be
conducted for both the query BF and target BF, and the 𝐵𝐹𝐼 ′s produced by the inlining-simulation strategies help find
similar BFIs.

To evaluate their effectiveness, we implement the inlining-simulation strategies of Bingo and ASM2Vec and apply
them to dataset I. For each BF, Bingo and ASM2Vec will generate the 𝐵𝐹𝐼 ′ using their inlining-simulation strategies. In
detail, we use IDA[17] to disassemble binaries and extract features used for inlining selection. And we provide two
metrics to evaluate the effectiveness of their strategies.

𝑐𝑜𝑠𝑡 = 𝐵𝐹𝐼 ′1 − 𝐵𝐹1 + 𝐵𝐹𝐼 ′2 − 𝐵𝐹2 (3)

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐵𝐹𝐼 ′1 ∩ 𝐵𝐹𝐼 ′2
𝐵𝐹𝐼 ′1 ∪ 𝐵𝐹𝐼 ′2

(4)

In Equation 3 and 4, 𝐵𝐹1 and 𝐵𝐹2 are two BFs that are need to be compared, and 𝐵𝐹𝐼 ′1 and 𝐵𝐹𝐼
′
2 are the 𝐵𝐹𝐼

′s generated
by the inlining-simulation strategies proposed by Bingo and ASM2Vec. Equation 3 calculates the number of inlined BFs
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for both 𝐵𝐹1 and 𝐵𝐹2, and Equation 4 calculates the similarity of produced 𝐵𝐹𝐼 ′1 and 𝐵𝐹𝐼
′
2. And we measure the 𝐵𝐹𝐼 ′ in

equation 3 by the BFs it contains and 𝐵𝐹𝐼 ′ in equation 4 by the SFs it contains.
Figure 10 shows the evaluation results of Bingo and ASM2Vec. To facilitate comparison, we also present the cost and

similarity without applying inlining strategies (without inlining in Figure 10). The dotted line represents the similarity
and the solid line for the cost. In general, compared with not applying strategies, Bingo averagely selects 4-5 BFs for
inlining to obtain a 5% increase in its obtained similarity. And ASM2Vec can reduce 0.25 BFs for inlining compared to
Bingo while losing 1-2% in the similarity.

Fig. 10. Effectiveness of existing inlining-simulation strategies on binary2binary matching

From the results, we can notice that Bingo and ASM2Vec are selective towards callees as recursively inlining all
callees will cause a cost to inline nearly 55 callees while they only need to inline 4-5 callees. And their effectiveness is
quite visible — a 5 % increase in similarity. However, there is still a large space to improve, as when detecting functions
cross O0 to O3, existing inlining-simulation strategies can only help guarantee that 80% of SFs in 𝐵𝐹𝐼 ′1 and 𝐵𝐹𝐼 ′2 are
matched. And we noticed that some BFs, which both are the callees of 𝐵𝐹1 and 𝐵𝐹2, are also inlined by 𝐵𝐹𝐼 ′1 and 𝐵𝐹𝐼

′
2,

helping increase the function similarity.
In general, Bingo and ASM2Vec can help existing works improve their accuracy in finding similar BFIs, but there is

still a large space for improvement.

6.3 Evaluating Strategies on Finding Inlined Functions

In our evaluation of existing binary similarity analysis works, we noticed new requirements in some specific areas,
including OSS reuse detection, vulnerability detection, and patch presence test, where inlined reused and inlined
vulnerable functions also need to be detected. In this section, we will evaluate the ability of Bingo and ASM2Vec in
finding inlined functions.

Bingo. To facilitate evaluation, we first apply Bingo to dataset I and analyze its inlining decisions towards BFs. As
Bingo has 3 cases (2, 3, 5) that callees (UD functions) will be inlined, to evaluate the effectiveness of its inlining-simulation
strategies, we summarize the inlining decisions under the above 3 cases in O0-O3, which is shown in Table 6.

In table 6, R, L, and 𝛼 respectively represents inlining forRecursive call in case 2, inlining for callees with only Library
call in case 3 and inlining determined by 𝜶 in case 5. BFNN represents BFs that do not need to be inlined, while BFN
represents BFs needed. To facilitate analysis, we only present results of comparing BFs generated by low optimization
to BFs generated by high optimizations, and we analyze its inlining conduction for the BFs in low optimizations. For
example, the first value 20.56% indicates that, when matching BFs generated by O0 to BFs generated by O1, among all
inlined functions, 20.56% are BFs which are not needed to be inlined but inlined, as it falls to case 5 and its 𝛼 satisfies
Bingo’s requirements.
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Table 6. Inlining decision of Bingo for BFs

Kind Case O0-O1 O0-O2 O0-O3 O1-O2 O1-O3 O2-O3

BFNN(BF Not Needed)
𝛼 20.56% 21.57% 21.79% 20.26% 20.14% 25.07%
L 68.56% 45.48% 42.53% 50.53% 46.68% 57.47%
R 4.22% 4.57% 4.59% 5.56% 5.50% 3.21%

BFN(BF Needed)
𝛼 0.14% 0.32% 0.32% 0.15% 0.15% 0.00%
L 6.41% 27.85% 30.49% 22.83% 26.71% 8.84%
R 0.12% 0.22% 0.28% 0.69% 0.81% 5.42%

coverage 78.51% 67.65% 60.68% 72.42% 65.01% 74.33%

For an effective inlining-simulation strategy, the percentage of BFNN should be low as they do not need to be inlined,
and the percentage of BFN should be high as they need to be inlined. But from table 6, we can see that nearly 3/4 of
inlined functions are BFNNs. To be more specific, among the three metrics, we noticed that only L had selected a large
amount of BFNs while 𝛼 and R rarely select BFNs. Bingo’s strategies waste a lot of cost in inlining unnecessary callees.

Besides, table 6 also shows the coverage of needed inlined functions in each matching. When the compilation setting
is not so diverse, Bingo can cover more than 70% inlined functions. But when comparing O0 to O3, 40% of inlined
functions remain uncovered, making the results less complete.

ASM2Vec. ASM2Vec proposed two measures to reduce the functions Bingo chooses to inline. They have a effect
in reducing the inlining candidates (see Section 6.2). However, we argue that their restrictions are still so strict that
they would suffer additional misses of ISFs. To provide a comprehensive understanding of boundaries for inlining, we
conduct a study to analyze inlining from SFs that comprise the final BFIs.

Figure 11(a) shows the distribution of depth for BFIs. We take the example in Figure 1 (d) to illustrate the meaning of
depth. In Figure 1 (d), BFI netlink_sendmsg has inlined four source functions, including scm_set_cred and scm_send. And
scm_send is called by OSF netlink_sendmsg and scm_set_cred is called by ISF scm_send, where we recognize the depth of
scm_send as 1 and the depth of scm_set_cred as 2. Finally, we use the maximum of depths (i.e.,2) as the depth of this BFI.
As shown in Figure 11(a), hundreds of thousands of BFIs inline ISFs with a calling depth of 2-3, and hundreds of BFIs
inline ISFs even through 8 layers of the call graph. 30% of the BFIs have a depth of more than 1 layer.

(a) Depths of BFIs (b) Lengths of ISFs (c) Ratio of ISF/OSF

Fig. 11. Distribution of metrics for inlined source functions
Figure 11(b) shows the distributions of ISFs lengths. Though lots of ISFs have fewer than 10 lines, we noticed that tens

of thousands of ISFs are above 100 lines. Even thousands of ISFs with a length above 1000 are still inlined. Interestingly, the
largest ISF is “aarch64_opcode_lookup_1” with 19083 lines of code which are inlined by the OSF “aarch64_opcode_lookup”
with less than 10 lines of code. And this inlining happens during the compilation of Binutils compiling with GCC in
O1. This is actually caused by the “-finline-functions-called-once” option as the ISF “aarch64_opcode_lookup_1” is only
called by the OSF “aarch64_opcode_lookup”.
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Figure 11(c) shows the distribution of ratios between ISF and OSF. For all ISFs, we noticed that ratios of ISF/OSF
range from 0 to more than 1000. Only less than 1/3 of ISFs have a less than 0.6 of 𝛿 that will be inlined according to the
ASM2Vec strategies, while 50% of the ISFs have a larger length than their OSF.

When using one-layer inlining and removing candidates whose 𝛿 >= 0.6, ASM2Vec additionally misses ISFs. The
missing of these ISFs not only influences the performance in finding the OSF of BFI but also its ability to detect BFIs
that have inlined reused or vulnerable ISFs.

6.4 Answer to RQ3

Bingo and ASM2Vec can help find similar BFIs, but there is still a large space for promotion. When applying to detecting
inlined functions, they miss nearly 40% of the inlined functions. More effective inlining-simulation strategies are needed
to resolve the effect of function inlining on binary code analysis works.

7 TOWARDS MORE EFFECTIVE STRATEGIES

This section will discuss how to design a more effective inlining-simulation strategy to help further reduce the inlining
cost and find more ISFs. In detail, we first recover the matching patterns that inlining brings, and based on the findings,
we propose several suitable measures to help develop a more effective strategy.

7.1 Investigation of Matching Patterns Under Inlining

Thematching pattern inlining brings to binary2source matching is “1-to-n” compared with the existing “1-to-1” matching
mechanism. However, this becomes much more complex for binary2binary matching. Here, we summarize the patterns
of function-level matching under function inlining, as shown in Figure 12.

(e)

(f)

n-to-n matching

(e)

(f)

n-to-n matching

(c)

(d)

1-to-n matching

(c)

(d)

1-to-n matching

(a)

1-to-1 matching

(b)

(a)

1-to-1 matching

(b)

Binary Function Similar Source Function

Need to Be Matched Function Call

Different Source Function

Fig. 12. Binary2binary matching patterns under inlining

1-to-1 matching. “1-to-1” matching is usually the pattern that most existing binary2binary work applies. Figure 12
(a) just shows the matching without function inlining. And another matching with function inlining is also “1-to-1”
matching, where two BFs have inlined the same ISFs and thus have equal semantics.

1-to-n matching. “1-to-n” matching is similar to the pattern in binary2source matching. Figure 12 (c) shows the
similar matching with binary2source matching. Apart from that, as shown in Figure 12 (d), matching the BFI A with the
BFI B, which has inlines all ISFs in A and other ISFs, is also an “1-to-n” matching.

n-to-n matching. “n-to-n” matching reveals the most complex matching patterns when conducting binary2binary
matching. Figure 12 (e) and (f) shows two classes of “n-to-n” matching. In detail, (e) shows two BFIs which have inlined
different ISFs and the common semantics of these two BFIs only come from their shared OSF. (f) describe the BFI pairs
which share the OSF and other ISFs.
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Existing inlining-simulation strategies are conducted both at the query and target functions, so they can resolve
these three matching patterns. However, we recovered that not all these patterns are common in all matching cases.
Thus, we could focus only on one or two particular patterns to resolve the challenges that inlining brings.

Table 7. Distribution of binary2binary matching patterns

Pattern a b c d e f
Percent 63.80% 6.33% 25.70% 3.11% 0.82% 0.21%

Table 7 shows the proportion of binary2binary matching patterns by comparing BFs originated from the same OSF
but compiled with different architectures, compilers, and optimizations in dataset I. Interestingly, pattern e and f account
for only 1% even with distant compilation settings. Instead, “1-to-1” matching accounts for the most common part as
70%, and “1-to-n” matching accounts for the rest 29%. To be more specific, comparing BFIs compiled in low optimizations
with BFIs compiled in high optimizations are mostly cases falling to the pattern (c) and (d), which indicates the inlining
is usually cumulative when optimization increases.

7.2 Suggestions for Designing More Effective Strategies

Considering the evaluation results of Bingo and ASM2Vec and proportion of matching patterns in binary2binary
matching, we find that existing strategies have three main shortcomings:

First, existing strategies conduct inlining for all cases on two sides. However, 70% of matching cases do not need
inlining, while 29% only need inlining at one side. Only 1% of matching cases need inlining at two sides. Second, inlining
unnecessary functions will bring difficulties in identifying the true match. For example, Bingo inlines some functions
both in two functions, where different BFs with the same callees after inlining will also become similar. Third, many
ISFs are missed as the side-effect of reducing the inlining candidates. For example, the restriction of Bingo makes it
miss nearly 40% of inlined functions, and ASM2Vec applies two restrictions for candidates resulting in more missed
ISFs. As a result, it cannot help detect BFIs with vulnerable ISFs inlined. To overcome the shortcomings listed above, we
propose several suggestions to reduce the inlining cost and help find the inlined functions.

Necessary preprocessing to reduce candidates. In binary2source matching, user-forced inlining candidates
should be first identified. For example, functions with “__𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒__(𝑎𝑙𝑤𝑎𝑦𝑠_𝑖𝑛𝑙𝑖𝑛𝑒)” will be inlined. Functions with
“__𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒__(𝑛𝑜𝑖𝑛𝑙𝑖𝑛𝑒)” will not be inlined. Thus, these functions can be determined whether to inline before applying
strategies. Further, callees of not inlined functions can be filtered, and callees of inlined ones can be added to candidates.

Inspection of compilation settings to decidewhether to apply strategies. Leveraging someworks designed for
toolchain provenance recovery [36, 66, 72–74], the compilation setting of binaries can be inferred. Then we could decide
whether to apply strategies according their compilation settings. For example, in binary2source matching, strategies
are not needed if the binary is generated without inlining (such as “-O0”). In binary2binary matching, strategies are not
needed if binaries are generated in the same compilation setting.

Relaxing strategies of Bingo and ASM2Vec to recover more ISFs. Section 6 reveals the effectiveness of Bingo
and ASM2Vec in reducing candidates but at the cost of missing inlined functions. We find that the strategy of Bingo
and ASM2Vec is too strict. We can relax their restriction to obtain more inlined functions. For example, changing the
restriction from 𝛼 < 0.01 to 𝛼 < 0.5 helps increase the similarity by 10% while only inlining 5 more BFs and increasing
the depth of BFIs from 1 to 2 can improve the coverage of ISFs from 70% to nearly 93%.

Incremental inlining-simulation strategy to help locate ISFs. Considering that the most matching pattern is
“1-to-n” when inlining happens, we do not need to expend all suitable callees at both sides. Interestingly, we find that
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we can conduct an inlining trail to filter inlining candidates if the method can distinguish between more similar and
less similar function pairs. For function pairs such as the example in Figure 12 (c), we named that NBF as A and BFI as
B. Initially, we discover many inlining candidates for both A and B. For A, we take a trail to inline one of the candidates
into A to form A with inlining. Then we compare the similarity between A and B to the similarity between A with
inlining and B. If the similarity increase with inlining, we regard it as a suitable candidate and continue. Otherwise, the
candidate, along with its callees, can be filtered. By conducting the inlining trail incrementally, we can quickly reduce
the unnecessary branches and focus on some branches with deeper depth.

8 THREATS TO VALIDITY

Dataset labeling method. As our dataset labeling method is based on existing tools, the accuracy of dataset labeling
depends on the accuracy of existing tools. In fact, we notice that there are difficulties for understand in parsing source
entities, so we use a conservative approach to label the source code. In detail, we run understand in its “strict” mode
where it will accurately identify the entity or add it to the unresolved list. And we manually label the unresolved entities
to complement them.

Inspecting inlining from the generated binaries. Some readers may wonder why we inspect inlining from the
generated binaries instead of the compiler designs. There are three reasons. First, understanding the inlining strategies
from compilers’ source code seems feasible, but this requires great manual effort. Moreover, as the inlining strategies of
different compilers in different versions will differ, we regard directly extracting inlining statistics from binary as a
more general way. Second, inlining results rely on not only the inlining strategies but also the features of the source
project. For example, the inlining decision of GCC depends on the total cost of all inlined call-sites; thus, without the
exact project, the inlining decision will not be clear. Third, we also combine some inlining strategies with the inlining
statistics in binary. We think using strategies to assist in understanding function inlining is a good complement for
inspecting function inlining in real binaries.

Metrics for evaluating existing works. In Section 5, we follow the following principles to determine the metrics
for evaluating existing works. If the work has used a metric to evaluate its effectiveness, we directly use it. Otherwise,
we use its direct output, such as the similarities between functions, to present its results. We do not choose to implement
a new metric because the function similarities are enough to present their effectiveness under inlining, as the metrics
used to evaluate downstream tasks are all based on function similarity.

9 CONCLUSION

For the first time, our work investigates the effect of function inlining on binary similarity analysis research. Four
datasets are constructed, and an automatic identification method is proposed to facilitate the analysis of function
inlining. Our analysis finds that 36%-70% binary functions have functions inlined in high optimizations, while most
binary code similarity still regards function mapping as “1-to-1”. This mismatch causes 30% loss in performance during
code search and 40% loss during vulnerability detection. Moreover, inlined functions are nearly all ignored during
OSS reuse detection and patch presence test. Furthermore, existing inlining-simulation strategies usually produce less
complete inlining results, leaving the binary similarity analysis under function inlining still challenged.

We propose several suggestions to design a more effective inlining-simulation strategy, but we still regard it as
unfinished work. We hope that more researchers can pay attention to function inlining and conduct more research to
resolve function-inlining-related issues.
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