
ar
X

iv
:2

01
2.

12
60

7v
4

 [
cs

.D
M

]
 2

7
O

ct
 2

02
2

PTAS for Sparse General-Valued CSPs∗

Balázs F. Mezei Marcin Wrochna

University of Warsaw

m.wrochna@mimuw.edu.pl

Stanislav Živný

University of Oxford

standa.zivny@cs.ox.ac.uk

October 28, 2022

Abstract

We study polynomial-time approximation schemes (PTASes) for constraint satisfaction
problems (CSPs) such as Maximum Independent Set or Minimum Vertex Cover on sparse
graph classes.

Baker’s approach gives a PTAS on planar graphs, excluded-minor classes, and beyond.
For Max-CSPs, and even more generally, maximisation finite-valued CSPs (where con-
straints are arbitrary non-negative functions), Romero, Wrochna, and Živný [SODA’21]
showed that the Sherali-Adams LP relaxation gives a simple PTAS for all fractionally-
treewidth-fragile classes, which is the most general “sparsity” condition for which a PTAS
is known. We extend these results to general-valued CSPs, which include “crisp” (or
“strict”) constraints that have to be satisfied by every feasible assignment. The only con-
dition on the crisp constraints is that their domain contains an element which is at least
as feasible as all the others (but possibly less valuable).

For minimisation general-valued CSPs with crisp constraints, we present a PTAS for
all Baker graph classes — a definition by Dvořák [SODA’20] which encompasses all classes
where Baker’s technique is known to work, except for fractionally-treewidth-fragile classes.
While this is standard for problems satisfying a certain monotonicity condition on crisp
constraints, we show this can be relaxed to diagonalisability — a property of relational
structures connected to logics, statistical physics, and random CSPs.

1 Introduction

Min-Ones and Max-Ones, studied by Khanna and Motwani (under the names of TMIN and
TMAX, respectively) [31] and by Khanna, Sudan, Trevisan, and Williamson [32], are Boolean
CSPs in which one seeks a feasible solution (a 0–1 assignment satisfying all constraints)
minimising/maximising the number of variables assigned the label 1. Classical examples

∗An extended abstract of this work appeared in Proceedings of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2021) [39]. Stanislav Živný was supported by a Royal Society University
Research Fellowship. Work mostly done while Balázs F. Mezei and Marcin Wrochna were employed at the
University of Oxford. This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The paper
reflects only the authors’ views and not the views of the ERC or the European Commission. The European
Union is not liable for any use that may be made of the information contained therein. This research was
funded by UKRI EP/X024431/1. For the purpose of Open Access, the authors have applied a CC BY public
copyright licence to any Author Accepted Manuscript version arising from this submission. All data is provided
in full in the results section of this paper.

1

http://arxiv.org/abs/2012.12607v4

are the Minimum Vertex Cover and the Maximum Independent Set problem, respectively.
A natural generalisation to larger alphabets is the problem in which one seeks a solution
to a CSP instance while minimising/maximising a sum of unary functions. With injective
unary functions, such problems have been studied under the name of Strict-CSP by plumar,
Manokaran, Tulsiani, and Vishnoi [36], and Min/Max-Solution by Jonsson, Kuivinen, and
Nordh [29]. With arbitrary unary functions, such problems have been studied under the
name of Min-Cost-Hom by Gutin, Hell, Rafiey, and Yeo [23], Takhanov [46], and others [25,
24, 40]. In this paper we consider the still more general setting of general-valued CSPs, where
constraints are functions which give values to every possible assignment on a tuple of variables;
we allow ∞ or −∞ values to express crisp (also known as strict) constraints, which have to
be satisfied by every feasible (finite-valued) assignment. While a lot of research is devoted
to exact algorithms or optimal approximation ratios in APX-hard cases (see [30, 27, 37]
for surveys), we seek the most general conditions that allow to obtain a polynomial-time
approximation scheme (PTAS).

Baker [1] gave an elegant method (sometimes known as the shifting or layering technique)
for constructing polynomial-time approximation schemes (PTASes) which applies to many
such problems, with the condition that the input instance’s graph (the Gaifman graph) is
“sparse”. This was initially presented for planar graphs, but it is known that similar structural
properties are exhibited by all proper minor-closed graph classes [20, 12, 11] and beyond: e.g.
graphs embeddable in a fixed surface with few intersections per edge [38, 19], or sparse unit
ball intersection graphs in few dimensions [26] (but not e.g. 3-regular expanders: bounded
degree is not sufficient to get a PTAS even for Independent Set [2]). Dvořák [15] defined
fractionally-treewidth-fragile classes — a natural generalisation of earlier sparsity conditions
— which encompasses all these examples. A class of graphs is fractionally-treewidth-fragile if
one can remove vertices in a randomised way so that each vertex is removed with arbitrarily
small probability ε, but the treewidth after removal is always bounded, the bound depending
on ε only. He showed that if this notion of sparsity can be efficiently certified in a class of
graphs, then this suffices to guarantee a PTAS, at least for a few problems such as Weighted
Maximum Independent Set. On the other hand it is not known whether this suffices for
Minimum Vertex Cover, for example.

To remedy this, Dvořák [16] later defined Baker classes and proved that (an effective
version of) this condition suffices to provide a PTAS to all monotone optimisation problems
expressible in first-order logic (including of course Vertex Cover). Very roughly, a class of
graphs is Baker if one can reduce each graph in it to the empty graph by a bounded number
of the following steps: either remove a single vertex, or select a breadth-first-search layering
and recurse into all subgraphs that can be induced by a few consecutive layers. Dvořák
proved that the family of Baker classes still includes all the examples discussed above; on the
other hand, it is strictly included in the family of fractionally-treewidth-fragile classes (and
hence less general) [14]. It is worth mentioning that proper minor-closed graph classes can
be shown to be Baker (and fractionally-treewidth-fragile) relatively easily, without using the
Graph Minor Structure theorem, in contrast to the earlier, less general definitions (see [16]
for details).

In order to provide a PTAS for a class of general-valued CSPs, a sparsity condition is
not enough: we also need to restrict what types of constraints can be used in an instance.
Otherwise, even if the values to be optimised are trivial, either 0 or infinity, one could use the
crisp constraints to express 3-Colouring, which is NP-hard even on planar graphs of bounded
degree [10]. In fact, as long as all crisp constraints are available, for any possible restriction

2

on Gaifman graphs, either the restriction implies bounded treewidth, making the problem
exactly solvable, or it is hard to decide whether the optimum is zero or infinite, by a result of
Grohe, Schwentick, and Segoufin [22]. We will hence require a condition which ensures that
one can easily decide whether a feasible solution (of finite value) exists. This usually takes
the form of a monotonicity condition.

On the other hand, some sparsity condition is also necessary : on general Gaifman graphs,
there is no restriction of constraint types that would result in a general-valued CSP that
admits a PTAS but is not solvable exactly in polynomial time.1 In this sense our work
follows the line of “uniform” or “hybrid” CSPs, which include restrictions on both the input’s
Gaifman graph (left-hand side restrictions) and on the types of constraints (right-hand side
restrictions); see [9] for a survey. However, unlike that line of work, we look for PTASes
instead of exact solvability, which also lets us go well beyond planar graphs and beyond very
specialised algebraic algorithms.

1.1 Related work

The exact solvability of general-valued CSPs has been characterised for left-hand side restric-
tions [8] (tractable cases are precisely classes that have bounded treewidth, up to a certain
notion of homomorphic equivalence) and right-hand side restrictions [34] (tractable cases
are precisely delineated by certain algebraic properties); both results include the case where
infinite values are allowed.

As discussed above, there are no PTASes for general-valued CSPs with only left-hand
side or only right-hand side restrictions, beyond exactly solvable cases. In fact Khanna et
al. [32], in their work on Min-Ones and Max-Ones with right-hand side restriction, remark
that “Our framework lacks such phenomena as PTAS” and discuss left-hand side restrictions
as an interesting avenue for future work for that reason. Similarly [29] and [30] ask in the
context of right-hand side restricted Min-Solution and Max-Solution problems: “Under which
restrictions on variable scopes does Max Sol admit a PTAS?”.

Very recently, PTASes for left-hand side restricted Max-CSP without crisp constraints,
such as Max-Cut, have been studied by Romero, Wrochna, and Živný [44]. More generally,
they consider so-called finite-valued CSPs, where the only right-hand side restriction is having
finite, non-negative values. They showed a PTAS is possible for every fractionally-treewidth-
fragile class of Gaifman graphs. In fact the algorithm is simply the Sherali-Adams linear
programming relaxation (with a growing number of levels giving a better and better approx-
imation), which is oblivious to the graph structure and does not require it to be efficiently
certified in any way.

As for constant-factor approximations, Raghavendra’s celebrated result gave the best ap-
proximation ratio, assuming the Unique Games Conjecture of Khot [33], for all right-hand
side restricted Max-CSPs (and also finite-valued CSPs) [41]. Analogous results for monotone
Strict-CSPs were obtained by Kumar et al. [36]. Constant-factor approximation algorithms
have been established for right-hand side restricted Min-Cost-Hom on special graphs by Hell,
Mastrolilli, Nevisi, and Rafiey [24], and for all graphs and some digraphs by Rafiey, Rafiey,
and Santos [40].

1This follows from the NP-hardness result of Kozik and Ochremiak [35], which actually shows APX-hardness;
for earlier, explicit APX-hardness results for CSPs see, e.g., [29, 28]. However, we remark non-trivial PTAS
examples are known for “surjective” maximisation finite-valued CSPs [18].

3

1.2 Our results

As in most research on constraint satisfaction, our main motivation is to understand the
mathematical structure that governs efficient computation and, if at all possible, to obtain
complexity classifications of large fragments of CSPs. In this paper, the goal was to push
the tractability frontier of general-valued CSPs that admit polynomial-time approximation
schemes. In particular, we try to understand what right-hand side restrictions make Baker’s
technique possible, tentatively answering the aforementioned questions from [32, 29, 30]. We
show that the most general results known for Vertex Cover and Independent Set (PTASes
on all Baker or fractionally-treewidth-fragile classes, respectively) can be extended to any to
general-valued CSPs with a certain monotonicity restriction, and even further.

To clearly separate left-hand side and right-hand side restriction, it is convenient to phrase
a general-valued CSP (VCSP) as the problem of optimising the value of a function between
two valued structures. Precise definitions are given in Section 2. Briefly, a valued structure A

consists of a (finite) domain A and a collection of functions fA : An → Q∪{±∞}, indexed by
symbols f belonging to a set of symbols σ called a signature. For two (finite) structures A,C,
the value of an assignment h : A → C is an expression of the form

∑

fA(x)fC(h(x)). We
will be seeking to find either the minimum or maximum value over all assignments, denoted
minval(A,C) and maxval(A,C) respectively. Feasible assignments are those of finite value.
The reader should think of the left-hand side structure A as of a set of variables A together
with weighted constraint scopes: for x ∈ An, fA(x) = w 6= 0 means that the instance applies
the constraint “f” to variables in x with weight w. The right-hand side structure C encodes
the alphabet C (to which an assignment h maps each variable) and the collection of available
constraints, which could be arbitrary Q∪{±∞}-valued cost functions in general. An instance
of the VCSP is a pair (A,C); its Gaifman graph, denoted by G(A), is a graph whose vertex
set is the domain A with edges between two vertices that occur together in a constraint of
non-zero weight.

Minimum Solution

For minimisation, we first consider (Q≥0∪{∞})-valued right-hand side structures C, in which
the sets of zero-valued tuples and finite-valued tuples are anti-monotone, in the following sense.
There is a total order ≤⊤ on C, and for all tuples x,y ∈ Cn with x ≤⊤ y (coordinate-wise)
we have that for all non-unary function symbols f of C:

• fC(x) <∞ implies fC(y) <∞, and

• fC(x) = 0 implies fC(y) = 0.

Intuitively, larger tuples are more feasible. We call valued structures C satisfying this con-
dition Min-Sol structures. We define Min-SolG to be the general-valued CSP restricted to
instances (A,C) where A is a Q≥0-valued structured with G(A) ∈ G and C is a Min-Sol
structure.

For example, Weighted Minimum Vertex Cover is equivalent to the Min-Sol case where C
is the structure with domain {0, 1} and 0 ≤ 1 and with a 2-ary cost function fC(0, 0) = ∞,
fC(1, 0) = fC(0, 1) = fC(1, 1) = 0, and a unary cost function uC(0) = 0, uC(1) = 1.

We show that Min-SolG admits a PTAS for all graph classes G that are efficiently Baker.
(Dvořák’s definition is somewhat involved but we give an exposition in Section 4). As discussed
above, this captures essentially all graph classes where a version of Baker’s technique is known

4

to apply (including excluded-minor classes and more), except for fractionally-treewidth-fragile
classes. We remark that already the very special case of Minimum Vertex Cover is not known
to admit a PTAS on fractionally-treewidth-fragile classes.

Simultaneously, our results are less restrictive on the right-hand side, as unlike in earlier
work such as the framework of Strict-CSP of [36], we allow arbitrary values strictly between 0
and∞ (not only on unary constraints). Once we realise this is possible, however, the algorithm
turns out to be a rather standard application of Baker’s technique: the only difference is that
we increase the number of layers to account for the maximum ratio between finite, positive
values (which is a constant depending on values of C only).

The main novelty in our work is establishing the existence of a PTAS under a weaker
assumption on the right-hand side structure C – we only require that C should be a diago-
nalisable structure. (As we will show in Lemma 3.5, all Min-Sol structures are diagonalisable
and thus our result establishes a PTAS for Min-Sol structures as a special case.) Diagonalis-
ability is a notion derived from the work of Brightwell and Winkler [6] in the case of graphs
and Briceño, Bulatov, Dalmau, and Larose [5] in the case of relational structures (which are
more general than graphs). The precise definition of diagonalisability is technical and can
be found in Section 3.1. For relational structures, one characterisation is that a structure C

is diagonalisable if and only if the two projection homomorphisms π1, π2 : C × C → C (de-
fined as πi(x1, x2) = xi) are connected by some sequence of homomorphisms ψ : C × C → C

such that consecutive homomorphisms in the sequence differ at only one vertex, and all the
homomorphisms in the sequence are idempotent (meaning ψ(x, x) = x). This turns out to
be equivalent to saying that for all structures A, the set of all homomorphisms from A to
C is connected in a similar sense. A few other characterisations connect diagonalisability to
statistical physics via “mixing” properties. Diagonalisability is also equivalent to finite dual-
ity (the existence of finitely many obstructions to having a homomorphism into C), a notion
important to the study of CSPs via logic [7]. For these and many other equivalent definitions
of diagonalisability, cf. [5, Corollary 6.3 and Theorem 3.6] with J = V (H).

Our main result for minimisation (proved in Section 4) is an approximation scheme for
instances (A,C) where A comes from a Baker class and C is diagonalisable. One should think
of the functions f1 and f2 as polynomials depending on the size of the graph G(A).

Theorem 1.1. Let G be an (f1, f2)-efficiently Baker class. Then, for any ε > 0 and any
instance (A,C) of general-valued CSP where A is a Q≥0-valued structured with G(A) ∈ G
and C is diagonalisable, we can find a solution of value at most (1 + ε)minval(A,C) in time
f1(|A|) + f2(c|A|) · c

1/ε where c depends on C and G only.

Here the constant c depends polynomially on |C| and exponentially on the maximum ratio
between certain finite positive values of C. Since every class of graphs that excludes a minor
is (O

(

n2
)

,O(n))-efficiently Baker [16, Theorem 2.1], Theorem 1.1 in fact gives an EPTAS on
such classes for any fixed diagonalisable structure C.

Intuitively, diagonalisability allows to interpolate between any two homomorphisms, and
we show this gives a natural way to combine partial solutions in the way needed in Baker’s
technique (generalising the simple combination used for Vertex Cover: taking the set-theoretic
sum of solutions). This proof (Theorem 3.7), which is an entirely new connection between
diagonalisability and approximation, is our main contribution.

5

Maximum Solution

For maximisation, we extend the results of [44], which restricted the right-hand side C to be
Q≥0-valued. We additionally allow −∞ values, but the set of tuples y ∈ Cn with fC(y) = −∞
is restricted to be monotone in the following very weak sense. There is an element c⊥ ∈ C
such that whenever y is feasible (fC(y) 6= −∞) and y′ is a tuple obtained from y by replacing
some of its elements with c⊥, then y′ is still feasible (fC(y′) 6= −∞).

We call structures C satisfying this condition Max-Sol structures and we define Max-SolG
to be the general-valued CSP restricted to instances (A,C) where A is a Q≥0-valued structured
with G(A) ∈ G and C is a Max-Sol structure.

For example, Weighted Maximum Independent Set is equivalent to the Max-Sol case
where C is the structure with domain {0, 1}, with a 2-ary function fC(1, 1) = −∞, fC(0, 0) =
fC(1, 0) = fC(0, 1) = 0, and a unary function uC(0) = 0, uC(1) = 1 (so c⊥ = 0).

Our main result for maximisation (proved in Section 5) is the following.

Theorem 1.2. Let G be a class of graphs that is fractionally-treewidth-fragile. Then Max-SolG
admits a PTAS.

More precisely, for all ε > 0, there is an algorithm that given (A,C), outputs a value

between maxval(A,C) and (1+ε)·maxval(A,C) in time (|A|+ |C|)k(ε), where k(ε) is a function
depending on G only.2

The algorithm in Theorem 1.2 does nothing more than solve a Θ(k(ε))-th level of the
Sherali-Adams linear programming relaxation. This allows the algorithm to be oblivious to
the graph structure, i.e. we do not assume that the fractional-treewidth-fragility of G can
be efficiently certified. Thus the left-hand side restriction on Gaifman graphs is the most
general for which a PTAS is known; as discussed earlier, it includes excluded-minor classes
and more. In fact similarly to [44], we conjecture that Max-SolG does not admit a PTAS
for any G that is not fractionally-treewidth-fragile. Since Max-SolG is strictly more general
(by allowing negative infinite values), this conjecture might be easier to prove than the one
in [44].

On the other hand, this approach does not give an EPTAS even when C is fixed (i.e.
the exponent of |A| increases with ε), and it does not construct an assignment — it only
approximates the optimum value. In contrast, given a class of graphs G for which fractional-
treewidth-fragility can be efficiently certified (which includes essentially all known examples),
it is straightforward to construct solutions to Max-SolG of value at least (1− ε) ·maxval(A,C)

in time |A| · |C|k(ε).
Our main contribution in proving Theorem 1.2 is finding the right analogues of the def-

initions from [44] – a notion of “closeness” of structures, a dual notion that certifies this
closeness with concrete mappings (a distribution of “partial homomorphisms”, see Section 5),
and the proof of their equivalence (Lemma 5.7). In particular, while the name “partial homo-
morphism” may sound deceptively simple, we found that pin-pointing their definition (in the
context of MaxSol) proved to be a surprisingly intricate balancing act.

We complement Theorem 1.2 with simple constructions which show that it is impossible to
extend other results of [44] from the setting of purely optimisation Max-CSPs to the setting
of general-valued CSPs, which include crisp constraints. In [44] the notion of pliability is
defined (for Max-CSPs), which is a left-hand side restriction that takes the whole structure A

2If G is fractionally-tw-fragile with rate k(ε) (Definition 5.16), then the exponent in the running time is
O(k(Ω(ε))). See [17] for a fragility rates of various graph classes.

6

into account, not only its Gaifman graph, as done in this introduction so far; this allowed
the authors of [44] to show that the same framework applies not only to sparse, fractionally-
treewidth-fragile instances of Max-CSPS, but also to dense structures. We define an analogous
notion of strong pliability and show in Lemma 5.13, similarly to [44], the existence of a
PTAS (for general-valued CSPs) under the strong pliability assumption on the left-hand side
structure, which takes the whole structure A into account, not only its Gaifman graph. (Thus
this is a more general tractability result than Theorem 1.2.) However, in Appendix C we show
that even the simplest class of dense structures, namely the class of {0, 1}-valued cliques, does
not satisfy strong pliability. In fact, it is easy to show (cf. Appendix C) that the Max-Sol
problem is hard to approximate even when the left-hand side structures are restricted to
cliques.

Paper organisation Section 2 introduces basic notations and defines the studied compu-
tational problems. The main result for minimisation, Theorem 1.1, is technical and proved
in Section 4. In Section 3, we present the main ideas in the special case of planar structures.
The main result for maximisation, Theorem 1.2, is proved in Section 5. Some of the proofs
are deferred to Appendices A to C.

2 Preliminaries

For an integer k, we denote by [k] the set {1, . . . , k}. For a tuple x, we denote by xi its
i-th coordinate and by Set(x) the set of elements appearing in x. For two tuples x and y

of length n, we write (x,y) as a shorthand for ((x1, y1), (x2, y2), . . . , (xn, yn)). For a tuple
x of length n and a map h, we denote by h(x) the coordinate-wise application of h; i.e.,
h(x) = (h(x1), . . . , h(xn)).

General-valued CSPs A signature is a finite set σ of (function) symbols such as f , each
with a specified arity ar(f). For a set of values Ω ⊆ Q ∪ {−∞,+∞}, an Ω-valued structure
A over a signature σ (or σ-structure, for short) is a finite domain A together with a function
fA : Aar(f) → Ω for each symbol f ∈ σ. We denote by A,B,C, . . . the domains of structures
A,B,C,

We define tup(A) to be the set of all pairs (f,x) such that f ∈ σ and x ∈ Aar(f); and
tup>0(A) to be the set of all pairs (f,x) ∈ tup(A) with fA(x) > 0.

We assume a straightforward table encoding of structures: the interpretation fA of a
symbol f in a structure A is encoded as a collection of triples {(f,x, fA(x)) | (f,x) ∈ tup(A)}.
Thus, the size of a σ-structure A is roughly

|A| = |σ|+ |A|+
∑

(f,x)∈tup(A)

log |σ|+ ar(f) log |A|+ |enc(fA(x))|

where enc(·) denotes a reasonable encoding for elements of Q.
We consider the following computational problem.

Definition 2.1. An instance of the general-valued CSP (VCSP) consists of an ordered pair
of σ-structures (A,C). For a mapping h : A→ C, we define the value of h to be

val(h) =
∑

(f,x)∈tup(A)

fA(x)fC(h(x)).

7

The goal is to find the minimum or maximum value over all possible mappings h : A → C,
denoted minval(A,C) or maxval(A,C), respectively.

On the left-hand side we will only use Q≥0-valued structures, with letters A,B; on the
right-hand side we will only use Q≥0 ∪ {∞} or Q≥0 ∪ {−∞}-valued structures, respectively,
for minimisation and maximisation, with letters C,D.

For λ ≥ 0 we write λA for the rescaled σ-structure with domain A and fλA(x) := λfA(x),
for (f,x) ∈ tup(A). For a σ-structure A and subset of the domain X ⊆ A, we define A[X]
to be the restriction of A to X. That is, A[X] is a σ-structure over the domain X, and
fA[X](x) = fA(x) for each f ∈ σ and x ∈ Xar(f).

Following the influential work on decision CSPs by Grohe, Schwentick, and Segoufin [22],
and Grohe [21], we will focus on fragments of the VCSP parametrised by the class of left-
hand side structures (or their underlying class of graphs). Given a σ-structure A, the Gaifman
graph (or primal graph), denoted by G(A), is the graph whose vertex set is the domain A,
and whose edges are the pairs {u, v} for which there is a tuple x and a symbol f ∈ σ such
that u, v appear in x and fA(x) > 0.

For a graph parameter p and a structure A, we define p(A) := p(G(A)) to be the parameter
of the Gaifman graph of A. In particular, the treewidth of A is defined as tw(A) := tw(G(A)).
(We will only use treewidth and excluded minors as black-boxes and thus will not need their
definitions. The reader is referred to Diestel’s textbook for details [13].)

Relational structures A relational σ-structure C includes for each symbol f ∈ σ a relation
fC ⊆ Car(f). We will view relational structures as {0,∞}-valued structures by associating
each function fC : Car(f) → {0,∞} to the relation given by the zero-valued tuples {x |
fC(x) = 0}. A homomorphism from a relational σ-structure C to a relational σ-structure D

is a map ψ : C → D that satisfies, for every f ∈ σ and every x ∈ Car(f), fD(ψ(x)) ≤ fC(x).
For an n-ary function f , we denote by Feas(f) and Opt(f) the n-ary relations defined by

Feas(f) = {x | f(x) <∞} and Opt(f) = {x | f(x) = 0}, respectively. Let C be a σ-structure.
The relational σ-structure Feas(C) contains, for each f ∈ σ, the relation Feas(fC); similarly,
the relational σ-structure Opt(C) contains, for every f ∈ σ, the relation Opt(fC).

Our results will be concerned with two particular types of right-hand side structures.

Maximum Solution

For the following definition, recall the example of Weighted Maximum Independent Set from
Section 1. One should think of the element c in this context as not selecting a vertex in an
independent set; the partial order on Cn then says that a subset of an independent set is also
independent.

Definition 2.2 (⊑c). For an element c of a set C, we denote by ⊑c the partial ordering
on C defined by c ⊑c x and x ⊑c x for all x ∈ C. This induces a partial ordering on Cn

coordinate-wise: we write x ⊑c y for x,y ∈ Cn if we can obtain x from y by changing some
(possibly none or all) of its coordinates to c.

Definition 2.3 (Max-Sol). Let σ be a finite signature. A σ-structure C is called a Max-Sol
structure if it is (Q≥0 ∪ {−∞})-valued and there is an element c⊥ ∈ C such that for all
f ∈ σ, the following holds: whenever fC(y) ≥ 0, we have fC(x) ≥ 0, for all x ⊑c⊥ y in
Car(f). Equivalently, if a tuple y has non-negative value (not −∞), then changing some of its

8

coordinates to c⊥ still gives a non-negative value. To avoid clutter, we write ⊑
⊥
in place of

⊑c⊥ , with the choice of c⊥ ∈ C implicit.
We denote by Max-SolG the restriction of the VCSP to instances (A,C) where A is a

Q≥0-valued structure with G(A) ∈ G and C is a Max-Sol structure.

Observe that every Q≥0-valued structure is a Max-Sol structure; thus Max-SolG is more
general than the restriction to Q≥0-valued right-hand side structures, which is the problem
considered in [44].

Example 2.4. As explained in the introduction, Max-Sol structures can capture problems
such as Weighted Maximum Independent Set. Another example is finding a 3-colourable in-
duced subgraph with the maximum number of edges: take C with domain C = {R,G,B,⊥}
(representing red, green, blue, as well as a fourth element corresponding to vertices not se-
lected into the induced subgraph) and a single symbol of arity two with values fC(R,R) =
fC(G,G) = fC(B,B) = −∞, fC(x, y) = 1 for x 6= y ∈ {R,G,B} and fC(x, y) = 0 other-
wise. This extends to maximising the number of vertices (by introducing a unary relation),
to weighted versions (by giving weights to vertices and edges of the left-hand-side structure
A), and to finding a maximum induced substructure satisfying an arbitrary CSP.

Remark 2.5. The “downward monotone Strict-CSP” from [36] corresponds to Definition 2.3
with some extra conditions. Firstly, there is a special unary symbol u ∈ σ such that uC

is Q≥0 valued and all other symbols f ∈ σ are {0,−∞}-valued (hence they express “strict”
constraints). Secondly, there is a total order on C, and for each symbol f ∈ σ other than u,
fC is anti-monotone; in other words, lowering some coordinates of a tuple in Car(f) can not
change its value from 0 to −∞. (Hence the minimum element plays the role of the bottom
label c⊥ ∈ C.)

Minimum Solution

Definition 2.6 (Min-Sol). Let σ be a finite signature. A σ-structure C is called Min-Sol if
it is (Q≥0 ∪ {∞})-valued and there is a total order ≤⊤ on C such that: for all f ∈ σ with
ar(f) > 1 and all tuples x,y ∈ Cn with x ≤⊤ y (coordinate-wise) we have:

• fC(x) <∞ implies fC(y) <∞, and

• fC(x) = 0 implies fC(y) = 0.

We denote by Min-SolG the restriction of the VCSP to instances (A,C) where A is a Q≥0-
valued structure with G(A) ∈ G and C is a Min-Sol structure.

Remark 2.7. The “upward monotone Strict-CSP” from [36] corresponds to Definition 2.6
with the extra conditions that there is only one unary symbol u, uC is monotone and injective,
and all other cost functions fC are {0,∞}-valued (hence they express “strict” constraints).

Remark 2.8. We observe that some structure (such as a total order) on the domain of a
right-hand side Min-Sol structure is needed: We show how to encode 3-Colouring of planar
graphs, which does not admit a PTAS (assuming P 6=NP).

Let G be a planar graph. Let A be a structure with domain V (G) over the signature
σ = {u, f} of arities 1 and 2, respectively. Let uA(x) = 1 for all x ∈ V (G), and fA(x, y) = 1
if {x, y} ∈ E(G) and 0 otherwise. Let C be a right-hand side structure with domain C =

9

{R,G,B, c⊤}. Here we think of R,G,B as three colours, and c⊤ as a fourth extra colour we
want to avoid using. We allow a monochromatic c⊤ edge. Let uC(x) = 1 for x = c⊤ and 0
otherwise; fC(R,R) = fC(G,G) = fC(B,B) = ∞, and 0 for other pairs of values (including
(c⊤, c⊤)). If G is 3-colourable then minval(A,C) = 0. Otherwise, minval(A,C) ≥ 1. Note
that fC respects the partial order ⊑c⊤, but it does not respect any total order on C.

3 Minimisation on planar structures

3.1 Diagonalisability

Briceño, Bulatov, Dalmau, and Larose defined the concepts of product structure, dismantlabil-
ity, adjacency, and link graph for relational structures [5]. In this section, we will extend these
concepts to valued structures in a natural way. In particular, our definitions (for structures)
coincide with the definitions in [5] (for relational structures) when viewed as {0,∞}-valued
structures.

Informally, we shall consider any two positive finite values to be basically equivalent,
because we will be able to bound differences between them by a constant factor; so we shall
consider an increase in value significant only if it increases from zero to positive or from
finite to infinite. For a structure C, we say an element a ∈ C is dominated by an element
b ∈ C if we can always replace a with b: for any mapping h : A→ C (from any structure A),
assignments to a can be changed to assignments to b without increasing val(h) significantly
(from zero to positive or from finite to infinite). A structure C is diagonalisable if in the
product C×C (defined below), one can remove dominated elements one by one until only the
diagonal {(c, c) | c ∈ C} is left. We will later see how this allows to “blend in” two different
mappings h1, h2 from A to C by considering them together as a mapping to C2.

We now proceed with formal definitions. Given two (valued) σ-structures C and D, we call
ψ : C → D a homomorphism from C to D if ψ is a homomorphism from Feas(C) to Feas(D)
and from Opt(C) to Opt(D) (in other words, finite-valued tuples map to finite-valued tuples
and zero-valued tuples map to zero-valued tuples). It will be more convenient to consider
both the Feas(C) and Opt(C) simultaneously. Thus with every structure C we will associate
a relational structure Rel[C], defined as follows.

Definition 3.1. Let σ be a valued signature. For any f ∈ σ, we denote by f1 and f2 two new
relational symbols of the same arity as f . Let C be a σ-structure and let σ′ =

⋃

f∈σ{f1, f2}.
Define the relational σ′-structure Rel[C] over the domain C as follows: for each f ∈ σ, let

f
Rel[C]
1 = Feas(fC) = {x | fC(x) <∞} and f

Rel[C]
2 = Opt(fC) = {x | fC(x) = 0}.

We can now define the concepts of interest for structures C via the already existing
concepts for relational structures Rel[C] from [5]. We use the following observation.

Observation 3.2. For x, y ∈ Q≥0∪{∞}, there exists M > 0 such that y ≤M ·x if and only
if:

• if x <∞, then y <∞, and

• if x = 0, then y = 0.

Given σ-structures C and D, we say that ψ : C → D is a homomorphism if ψ is a
homomorphism from Rel[C] to Rel[D]. Equivalently, ψ is a homomorphism if there exists

10

M > 0 such that for all (f,x) ∈ tup(C),

fD(ψ(x)) ≤M · fC(x).

Here we can use a uniform bound M because we only work with finite structures; it will be
convenient to use this equivalent definition to keep track of the bound M .

Given σ-structures C and D we define the product structure C × D as a σ-structure with
domain C ×D and for each f ∈ σ,

fC×D((x,y)) = fC(x) + fD(y).

Let π1(x, y) = x and π2(x, y) = y be the projections to the first and second coordinate,
respectively. Note that π1, π2 are homomorphisms from C2 to C for any C. See Figure 1.

0 3

1

C

0 3

1

0

3

1

a1 a2

a3

0

3

3

6

1 4

1

4

2

×

C C2

Figure 1: Left: a digraph structure C (the signature has a single symbol of arity 2) with three
vertices and three arcs (tuples) with finite values – the remaining arcs have infinite values
and are not drawn. Right: the product C×C (with three vertices a1, a2, a3 distinguished for
later).

We say that a ∈ C is dominated by b ∈ C if there is an M > 0 such that for all
(f,x) ∈ tup(C) with xi = a, we have

fC(x1, . . . , xi−1, b, xi+1, . . .) ≤M · fC(x).

We say that a ∈ C is dominated in C if a is dominated by b 6= a for some b ∈ C. A sequence
of σ-structures C0, . . . ,Cℓ is a dismantling sequence if there exists ai ∈ Ci such that ai is
dominated in Ci, and Ci+1 is the substructure of Ci induced by Ci \{ai}, for i ∈ {0, . . . , ℓ−1}.
In this case, we say that C0 dismantles to Cℓ. A structure C is diagonalisable if C2 dismantles
to the substructure induced by its diagonal ∆(C2) = {(c, c) | c ∈ C}.

Example 3.3. Consider C2 in Figure 1. Let f be the unique symbol (of arity two) in the
signature. Let a1, a2, a3 be the vertices as drawn and let b be the vertex of C2 with a loop of
value 2. Then, for example, the value of the arc from a3 to b is 4, or more formally, fC(a3, b) =
4. For the vertex a1, all incident arcs have value ∞ (formally, fC(a1, x) = fC(x, a1) = ∞
for all x ∈ V (C2)), so it is dominated by every other vertex. The vertex a2 is dominated by
b (with M = 4). After removing a2, the vertex a3 is dominated by b as well (this is false
before removing a2, because f

C(a3, a2) = 1 while fC(b, a2) = ∞, so we cannot guarantee

11

fC(b, x) ≤ M · fC(a3, x)). Thus C2,C2 \ {a1},C
2 \ {a1, a2},C

2 \ {a1, a2, a3} is a dismantling
sequence. Symmetrical vertices can be similarly dominated, hence C2 dismantles to ∆(C2),
meaning C is diagonalisable. On the other hand, C is not a MinSol structure (there is no
way to order the two peripheral vertices). We refer to [6] for more examples of dismantlable
graphs.

Homomorphisms ψ, φ from C to D are adjacent if there exists M > 0 such that for all
(f,x) ∈ tup(C) and y ∈ Dar(f) with yi ∈ {ψ(xi), φ(xi)}, we have

fD(y) ≤M · fC(x). (1)

Thus a is dominated by b in C if and only if the function s : C → C \{a} that maps a to b and
everything else identically is a homomorphism from C to C, and s is adjacent to the identity
homomorphism. (This is stronger than just s being a homomorphism, since fC(a, a, a) = 0
implies not only fC(b, b, b) = 0, but also fC(a, a, b) = 0, for example). Note that adjacency is
a symmetric but not a transitive property.

Finally, for σ-structures C and D, we define the link graph L(C,D) to be the simple
graph whose vertices are the homomorphisms from C to D, with edges between adjacent
homomorphisms.

The following theorem was proved in [5, Theorem 3.6] for relational structures but the
result easily extends to structures.

Theorem 3.4. Let C be a σ-structure. Then, the following are equivalent.

• C is diagonalisable;

• π1 and π2 are connected in L(C2,C) by a path of adjacent idempotent homomorphisms.
(We say a function ψ : C2 → C is idempotent if ψ(c, c) = c for all c ∈ C.)

Proof. This follows from the fact that Rel[C2] = Rel[C]2 and that our definitions are the
same as those of [5, Theorem 3.6] applied to H = C and J = ∆(C2). Specifically a function
φ : C → C is a homomorphism from C to C if and only if it is a homomorphism from
Rel[C] to Rel[C]. Similarly, a is dominated by b in C2 if and only if a is dominated by b
in Rel[C2] = Rel[C]2. Thus C is diagonalisable if and only if Rel[C]2 dismantles to its full
diagonal (not just any subset of it). Further φ,ψ : C → C are adjacent homomorphisms
from C to C if and only if they are adjacent homomorphisms from Rel[C] to Rel[C]. Finally,
π1, π2 are connected by a path of adjacent idempotent homomorphisms if and only if they are
J-connected by any homomorphism in L(Rel[C]2,C) in the sense of [5].

We now show that diagonalisability is more general than the Min-Sol condition.

Lemma 3.5. Let C be a Min-Sol structure. Then C is diagonalisable. Moreover, there is a
path on 3 vertices between π1 and π2 in L(C2,C).

Proof. Define φ : C2 → ∆(C2) by φ(x, y) = (max(x, y),max(x, y)), where max is with respect
to the total order on C. We claim for each (x, y) ∈ C2, a := (x, y) is dominated by b := φ(x, y).
Indeed, for each (f, (x,y)) ∈ tup(C2) with (xi, yi) = a and n := ar(f) > 1, we have

fC
2
((x1, y1), . . . , b, . . . , (xn, yn))

= fC(x1, . . . ,max(xi, yi), . . . , xn) + fC(y1, . . . ,max(xi, yi), . . . , yn)

≤M · fC(x1, . . . , xi, . . . , xn) +M · fC(y1, . . . , yi, . . . , yn)

=M · fC
2
((x,y)) ,

12

for some M > 0, where the inequality follows from the assumption that C is a Min-Sol
structure. For f ∈ σ with ar(f) = 1, we have that a is dominated by b because with M ≥ 2
we always have

fC
2
(b) = fC(max(x, y)) + fC(max(x, y)) ≤M · (fC(x) + fC(y)) =M · fC

2
(a).

Therefore, we can dismantle the non-diagonal elements (x, y) in any order to obtain a
dismantling sequence from C2 to the substructure induced by ∆(C2).

Let µ : C2 → C be defined by µ(x, y) = max(x, y), where max is with respect to the total
order defined on C. Then similarly as above, one can check π1, µ, π2 is a path in L(C2,C).

We remark that [5] show many other equivalent formulations, including a property known
as finite duality. They also discuss how finite duality allows to efficiently solve many problems
such as homomorphism extensions. However, in our setting it is Rel[C] rather than C that is
restricted, so such a property would not take finite, positive values of C into account.

Instead, our approach is based on Baker’s technique: we partition graph into breadth-
first-search layers and use the fact that the problem can be solved exactly on a subgraph
induced by a few consecutive layers. To merge such solutions into one, we use a small number
of overlapping layers and use the path between projections π1, π2 given by Theorem 3.4 to
“blend in” two solutions. By increasing the number of exactly solved, non-overlapping layers,
we can reduce any loss due to differences between finite, positive values.

3.2 PTAS

Baker’s approach relies on the following structural property of planar graphs, which is e.g. a
direct consequence of [4, Theorem 83].

Lemma 3.6. Let G be a planar graph and v0 ∈ V (G) be an arbitrary vertex. Let Li be the
set of vertices at distance exactly i from v0 (i.e. the ith layer of a BFS from v0). Then, the
subgraph induced by any t consecutive layers G[Li ∪Li+1 ∪ · · · ∪Li+t+1] has treewidth at most
3t.

Theorem 3.7. Let P be the class of planar graphs. Then, for any ε > 0 and any VCSP
instance (A,C) with G(A) ∈ P and C diagonalisable, we can find a solution of value at most
(1 + ε)minval(A,C) in time |A| · c1/ε where c depends on C only.

Proof. Let (A,C) be a VCSP instance as per the theorem. Generally, for any left-hand side
structure B, we will write valB(h) for the value of an assignment h : B → C with respect to
the instance (B,C), and write val(·) for valA(·) by default.

By Theorem 3.4 there is a sequence of adjacent homomorphisms ψ1, . . . , ψℓ from C2 to C

such that ψ1 = π1 and ψℓ = π2. Let M ≥ 1 be sufficiently large such that (1) holds for all
adjacent homomorphisms ψi and ψi+1, i ∈ {1, . . . , ℓ− 1}. Let k := ⌈2Mε ⌉.

Let A be a Q≥0-valued structure and let G = G(A) ∈ P be its Gaifman graph. Fix an
arbitrary vertex v0 ∈ A in G(A). For n ∈ Z, let Ln ⊆ A be the set of vertices whose distance
from v0 is in {nℓ+ 1, . . . , nℓ+ ℓ}. So Ln are intervals of ℓ layers, which partition the vertex
set A. See Figure 2. For each j ∈ Z and i ∈ [k] let

Bi
j := Ljk−i ∪ · · · ∪ Ljk−i+k,

13

so that Bi
j is a block of (k + 1) · ℓ consecutive layers. Iterating through the indices j gives

consecutive blocks that overlap on ℓ layers; the index i shifts which layers are in the overlap.
That is,

Bi
j ∩B

i
j+1 = L(j+1)k−i.

Define the overlaps Oi =
⋃

j B
i
j ∩B

i
j+1 for i ∈ [k]. We note that the O1, . . . , Ok are disjoint.

Consider an optimal solution h∗ : A→ C for the VCSP instance (A,C). As the Oi are all
disjoint, there exists i∗ ∈ [k] with

valA[Oi∗](h
∗|Oi∗) ≤

1

k
val(h∗) ≤

ε

2M
val(h∗).

We henceforth write Bj = Bi∗
j and O = Oi∗ . Note that, just as in Baker’s original approach,

the choice of i∗ is not available to the algorithm, as we do not know h∗. However, as the
number of choices for i ∈ [k] is linear in 1/ε, we can proceed with each possible i, construct
the solution h′ as discussed below and output the one with the lowest value val(h′).

Let A+ be a σ-structure with domain A defined by

fA
+
(x) =

{

M · fA(x) if Set(x) ⊆ O

fA(x) otherwise,

so that tuples which lie within O are amplified by a factor of M .
For each j, the Gaifman graph G(A+[Bj]) has treewidth at most O((k + 1)ℓ) = O(Mℓ/ε)

by Lemma 3.6. Thus for each j, we can find a tree decomposition [3] and compute an optimal

solution hj to (A
+[Bj],C) in total time |A|·|C|O(Mℓ/ε) via standard dynamic programming [42].

Then by optimality of hj ,
valA+[Bj](hj) ≤ valA+[Bj](h

∗|Bj
).

Therefore, summing over all j, we count the contribution of every constraint once, except
for constraints whose scope is contained in O (and thus in exactly two sets Bj), which are
counted 2M times in total:

∑

j

valA+[Bj](hj) ≤
∑

j

valA+[Bj](h
∗|Bj

)

= valA(h
∗) + (2M − 1) · valA[O](h

∗|O) ≤ (1 + ε) val(h∗).

(2)

dist. from v0

intervals of ℓ layers

0, 1, 2, . . . , ℓ, . . . , nℓ+ 1, nℓ+ 2, . . . nℓ+ ℓ, . . .

L−1 L0 Ln

blocks

interval of ℓ layers

overlap

L−1 L0 L1 . . . Lk Lk+1 . . . L2k . . . L3k . . .

B0
−1 B0

0 B0
1 B0

2

O0

Figure 2: Illustration of the sets Ln, B
i
j and O

i for i = 0 (other i look the same, just shifted).

14

Observe that for each x ∈ A, either x 6∈ O and there is a unique j for which x ∈ Bj, or
x ∈ O and there is a unique j for which x ∈ Bj ∩Bj+1. In the latter case, x ∈ L(j+1)k−i∗ and
we let s ∈ [ℓ] denote the unique s for which x is at distance exactly ((j + 1)k − i∗)ℓ+ s from
v0. Let h

′ : A→ C be defined as follows

h′(x) =

{

hj(x) if x ∈ Bj for a unique j

ψs

(

hj(x), hj+1(x)
)

if x ∈ Bj ∩Bj+1 and d(x, v0) = ((j + 1)k − i∗)ℓ+ s.

We claim that h′ is a solution to (A,C) with val(h′) ≤ (1 + ε)minval(A,C). Let (f,x) ∈
tup>0(A). Note that by definition of the Gaifman graph G(A), all xi are adjacent to each
other, so Set(x) is contained in one or two consecutive layers. Consider the following two
cases.

1. If Set(x) 6⊆ O, then there is a unique j such that Set(x) ⊆ Bj, and so h′(xi) = hj(xi) for
each i, because either: xi 6∈ O and so h′(xi) = hj(xi) by definition of h′, or xi is in the
last layer of Bj−1 ∩Bj and h

′(x) = ψℓ

(

hj−1(x), hj(x)
)

= π2
(

hj−1(x), hj(x)
)

= hj(x), or
analogously xi is in the first layer of Bj ∩Bj+1 and ψ1 = π1. Thus

fC(h′(x)) = fC(hj(x)). (3)

2. Else, if Set(x) ⊆ O, then there is a unique j such that Set(x) ⊆ Bj ∩Bj+1 = L(j+1)k−i∗.
Since Set(x) is contained in two consecutive layers, there is some s such that all vertices
in Set(x) are at distance ((j + 1)k − i∗)ℓ+ s or ((j + 1)k − i∗)ℓ+ s+ 1 from v0. Thus

h(xi) ∈
{

ψs

(

hj(xi), hj+1(xi)
)

, ψs+1

(

hj(xi), hj+1(xi)
)}

for each xi. Finally, as ψs and ψs+1 are adjacent

fC(h′(x)) ≤M · fC
2(

hj(x), hj+1(x)
)

=M ·
(

fC
(

hj(x)) + fC(hj+1(x)
)

)

. (4)

Thus, by (2) to (4),

valA(h
′) ≤

∑

j

valA+[Bj](hj) ≤ (1 + ε) val(h∗) = (1 + ε)minval(A,C),

and so h′ is the solution we seek.

Remark 3.8. In Theorem 3.7 it would be sufficient to require that C2 dismantles to any
substructure of its diagonal, as opposed to its full diagonal (as in the definition of diagonalis-
ability). By [5, Theorem 3.6] (extended as in Theorem 3.4) this is equivalent to saying that
C dismantles to a substructure I such that I is diagonalisable.

In this case, π1 and π2 are still connected in L(C2,C), but the homomorphisms in the
path connecting them will not be necessarily idempotent. However, the above proof (for the
case of planar graphs) did not rely on this property. This is in contrast with Theorem 1.1
(for Baker classes) where we actually use the fact that the homomorphisms are idempotent.

Since a Min-Sol structure C is diagonalisable by Lemma 3.5, we have the following corol-
lary.

15

Corollary 3.9. Let P be the class of planar graphs. Given any ε > 0 and instance (A,C) of
Min-SolP , we can find a solution of value at most (1+ε)minval(A,C) in time |A| · c1/ε, where
c depends on C only.

We remark the proof yields c1/ε = |C|O(Mℓ/ε), and for Min-Sol structures Lemma 3.5 yields
ℓ = 3; hence when the bound M is a constant (e.g. for {0, 1,∞}-valued Min-Sol structures)

the dependency on C is simply |C|O(1/ε).

4 Minimisation on Baker classes

4.1 Definition of Baker classes

A layering of a graph G is a function λ : V (G) → Z such that |λ(u) − λ(v)| ≤ 1 for adjacent
vertices u, v in G. That is, vertices of G are partitioned into layers λ−1(i) for i ∈ Z and edges
only go within one layer or between two consecutive layers.

Baker’s technique [1] relies on a layering of planar graphs such that the subgraph induced
by λ−1(I), for any interval I (a set of a few consecutive integers), has bounded treewidth
(the bound depending only on |I|), as formally stated in Lemma 3.6. As one might imagine,
this can be iterated: it would suffice that the subgraph induced by λ−1(I) itself has such
a “bounded treewidth layering”. Consider now the class of graphs obtained from planar
graphs by adding a single vertex, adjacent to all the others; then a layering can only have
three non-empty layers;3 nevertheless, an algorithm can easily circumvent this by guessing
the assignment to the single new vertex (i.e. iterating through all possibilities).

Dvořák [16] defined a Baker class as any class of graphs that can be dealt with in the
above ways. Informally, a class of graphs is Baker if any graph in the class can be reduced
to an empty graph by a bounded number of operations: either removing a single vertex, or
selecting some layering λ and continuing separately with every interval in that layering (each
subgraph induced by λ−1(I) for intervals I of at most some size). It turns out the notion of
treewidth is not necessary here, as graphs of bounded treewidth also form a Baker class.

Before we state the definition formally, let us make a few remarks. The idea of iteratively
going through “some layering” and then into “every interval” is conveniently phrased as a
strategy winning a game in a bounded number of rounds (this will be particularly useful when
we will want to state an assumption that the choices, including layerings, can be constructed
efficiently). Dvořák’s definition considers graphs with a total ordering of their vertex set.
Roughly speaking, this is to restrict the definition to “monotone” strategies, where the single
vertices to be deleted are decided upfront — this restriction won’t be important for us, but
we will state it as in [16] (let us also remark that layerings are not restricted by the ordering).
Finally, the definition is made a bit complicated by the fact that the number of consecutive
layers we may need to include in an interval may depend on how deep we go (how many
iterations of the game are done). This dependency is formalised as a function r below: for
a fixed problem and approximation ratio the reader should think of some arbitrarily quickly
increasing function r : N → N. We now proceed with the formal definition.

Definition 4.1. For a graph G and a function r : N → N, the Baker game on (G, r) is defined
as follows, for two players I and II. Player I starts by selecting a total ordering of V (G). A

3There can be a non-empty layer before the universal vertex, a layer containing the universal vertex, and
a layer after.

16

state of the game is a pair (G′, t) where G′ is an induced subgraph of G (with its ordering
inherited from G) and t is an integer describing how many rounds have passed. The initial
state is (G, 0) and Player I wins in t rounds if the state (∅, t) is reached, for any t. Otherwise,
in state (G′, t), Player I chooses one of the following actions:

• delete the first vertex v of G′, according to the ordering; Player II then takes no action
and the game continues in state (G′ − v, t+ 1);

• select a layering λ of G′; Player II then selects an interval I of at most r(t) (and no more
than |V (G)|) consecutive integers and the game continues in state (G′[λ−1(I)], t+ 1).

We say a function f : N → N is sub-additive if f(x) + f(y) ≤ f(x+ y).

Definition 4.2. For sub-additive4 functions f1, f2 : N → N, we say a class of graphs G is
(f1, f2)-efficiently Baker if for every function r : N → N there exists an integer tmax and an
algorithm such that: for all G ∈ G, the algorithm wins as Player I in the Baker game on
(G, r) in at most tmax rounds, using time f1(|G|) to compute the initial ordering and using
time f2(|G|) to determine the action at each state of the game.

As discussed in the introduction, efficiently Baker classes generalise excluded-minor classes.

Theorem 4.3 (Dvořák [16, Theorem 2.1]). Let G be a class of graphs that excludes a minor.
Then G is (O

(

n2
)

,O(n))-efficiently Baker.

4.2 PTAS

The proof for Baker classes largely follows the proof for planar graphs. To main difference
is that in order to handle exceptional vertices (also known as “apex” vertices) we will need
to guess and fix a partial assignment ρ on them. When “blending in” two assignments
hj(x) and hj+1(x) to some variable x into a single assignment ψs

(

hj(x), hj+1(x)
)

, we will
need to preserve the partial assignment ρ, if it is defined on x. This is why we need the
homomorphisms ψs : C

2 → C to be idempotent, so that ψs(ρ(x), ρ(x)) = ρ(x).

Theorem (Theorem 1.1 restated). Let G be an (f1, f2)-efficiently Baker class. Then, for any
ε > 0 and any instance (A,C) of general-valued CSP where A is a Q≥0-valued structured with
G(A) ∈ G and C is diagonalisable, we can find a solution of value at most (1+ε)minval(A,C)
in time f1(|A|) + f2(c|A|) · c

1/ε where c depends on C and G only.

Proof. For a structure A and an induced subgraph G′ of G(A), we write A[G′] as a shorthand
for the induced substructure A[V (G′)] of A.

Since C is diagonalisable, there is a sequence ψ1, . . . , ψℓ of adjacent idempotent homomor-
phisms C → C from ψ1 = π1 to ψℓ = π2. Let M be sufficiently large such that (1) holds
for all adjacent homomorphisms ψi and ψi+1. For ε > 0, define r(t) := 2Mℓ · ⌈1ε ⌉ · 2

t. Let
Algo be the algorithm certifying that G is efficiently Baker and let tmax be the integer that is
guaranteed to exists for r. Our algorithm starts by using Algo to compute the vertex ordering
of G(A).

We then proceed with a recursive procedure. The input of the procedure consists of an
instance A′, a partial assignment ρ from at most tmax elements dom(ρ) in A′ to C, and a state

4Sub-additivity is satisfied by any reasonable time-complexity bound function and is used implicitly in [16].

17

(G′, t) of the Baker game where G′ is equal to the Gaifman graph of A′ \dom(ρ). We describe
the procedure and claim inductively that it computes a solution of value at most eε/2

t
times

the optimum (among all total assignments that agree with ρ on dom(ρ)). Moreover, we claim

the procedure finishes in time at most (2|C| ·M · ⌈1ε⌉ · 2
tmax)

tmax · f2(|G
′| · 2tmax). Starting the

recursive procedure with the instance A, the state (G(A), 0), and empty ρ, this will conclude
the proof.

Let val(ρ) be the value of constraints fully contained in dom(ρ):

val(ρ) :=
∑

(f,x)∈tup(A)
Set(x)⊆dom(ρ)

fA(x)fC(ρ(x)).

Since all the assignment we consider will agree with ρ, val(ρ) will be a common part of all
of them. We will not include it in the approximation we inductively claim to get; that is, we
claim the recursive procedure will output an assignment h from A′ to C such that

valρ(h) ≤ eε/2
t
· valρ(h∗),

where valρ(h) is a shorthand notation for val(h)−val(ρ) and h∗ is an optimal solution, among
solutions that agree with ρ on dom(ρ).

In state (∅, t) for any t, our algorithm outputs the assignment ρ, which is a total assignment
since A′ \ dom(ρ) is empty. It is trivially optimal (among assignments that agree with ρ).

In state (G′, t), if Algo selects to delete the minimum vertex v of G′, we consider each
possible assignment to v in C, and recursively call the procedure with the state (G′−v, t+1),
the instance A′, and the assignment ρ extended to v. We output the best solution found this
way: since we consider all possible assignments, we get a solution as close to optimum as
guaranteed inductively for t+1. In the final running time, the branching over all assignments
to v in C will contribute at most a factor of |C|tmax .

If Algo selects a layering λ of G′, we consider each possible shift index i ∈ [k], where
k := (2M − 1) · ⌈1ε ⌉ · 2

t. This branching will contribute to the final running time a factor of

at most (2M · ⌈1ε ⌉ · 2
tmax)

tmax . For n ∈ Z, let

Ln := {nℓ+ 1, . . . , nℓ+ ℓ},

so Ln are intervals of length ℓ which partition Z;

Bi
j := Ljk−i ∪ · · · ∪ Ljk−i+k,

so Bi
j consists of k + 1 such intervals, of which the last one overlaps with Bi

j+1;

Oi :=
⋃

j

Bi
j ∩B

i
j+1 =

⋃

j

L(j+1)k−i,

so Oi are disjoint for different i ∈ [k]. Note that we chose r(t) to satisfy |Bj | = (k+1)ℓ ≤ r(t).
For a subset of integers I (such as Bi

j or O
i) we henceforth abuse notation and write A′[I]

as a shorthand for A′[λ−1(I) ∪ dom(ρ)] and h|I as a shorthand for h|λ−1(I)∪dom(ρ).

Let h∗ be an optimal solution to (A′,C) that agrees with ρ. Since Oi are disjoint for
different i ∈ [k], so are the constraints of A′[Oi] (i.e. those contained in λ−1(Oi) ∪ dom(ρ)),

18

except for those fully contained in dom(ρ) (and accounted for in val(ρ)). This implies there
exists a shift index i∗ ∈ [k] such that

valρ
A′[Oi∗]

(h∗|Oi∗) ≤
1

k
valρ

A′(h
∗).

We henceforth only consider the recursion branch where this holds and skip the superscript i∗,
and write Bj = Bi∗

j and O = Oi∗ .
Let A+ be a σ-structure with the same domain as A′, defined by

fA
+
(x) =

{

M · fA
′

(x) if Set(x) ⊆ λ−1(O) ∪ dom(ρ)

fA
′

(x) otherwise,

so that tuples which lie within λ−1(O) ∪ dom(ρ) are amplified by a factor of M .
For each j, we recurse into state (G′[λ−1(Bj)], t+1) computing solutions hj to (A+[Bj],C)

which agree with ρ and which by inductive assumption are almost optimal:

valρ
A+[Bj]

(hj) ≤ eε/2
t+1

· valρ
A+[Bj]

(h∗|Bj
).

Therefore, summing over j we get (by observing that every constraint is either fully contained
in dom(ρ), or contained in A+[Bj] for exactly one j, or contained in A+[O])

∑

j

valρ
A+[Bj]

(hj) ≤ eε/2
t+1

·
∑

j

valρ
A+[Bj]

(h∗|Bj
)

= eε/2
t+1

·
(

valρ
A′(h

∗) + (2M − 1) · valρ
A′[O](h

∗|O)
)

≤ eε/2
t+1

· (1 +
2M − 1

k
) valρ

A′(h
∗)

≤ eε/2
t
· valρ

A′(h
∗).

(the last inequality holds because we chose k to satisfy 1 + 2M−1
k ≤ 1 + ε

2t+1 ≤ eε/2
t+1

).
Observe that for each x ∈ A′ either λ(x) 6∈ O there is a unique j for which λ(x) ∈ Bj,

or λ(x) ∈ O and there is a unique j for which λ(x) ∈ Bj ∩ Bj+1 = L(j+1)k−i∗ . In the latter
case we let s(x) denote the unique s ∈ {1, . . . , ℓ} for which λ(x) = ((j + 1)k − i∗)ℓ + s. Let
h′ : A′ → C be defined as follows

h′(x) :=











ρ(x) if x ∈ dom(ρ)

hj(x) if λ(x) ∈ Bj for a unique j

ψs(x)(hj(x), hj+1(x)) if λ(x) ∈ Bj ∩Bj+1.

We claim that h′ is a solution to (A′,C) satisfying valρ(h′) ≤
∑

j val
ρ
A+[Bj]

(hj). This will

imply

valρ
A′(h

′) ≤
∑

j

valρ
A+[Bj]

(hj) ≤ eε/2
t
val(h∗),

concluding that h′ it is the solution we seek.
Let (f,x) ∈ tup>0(A

′). Note that since λ is a layering of G′ = G(A′) \ dom(ρ), there are
two consecutive levels which contain all xi ∈ Set(x) \ dom(ρ). Consider the three cases.

19

1. If Set(x) ⊆ dom(ρ), then for all j,

fC(h′(x)) = fC(ρ(x)) = fC(hj(x)).

2. Otherwise, if Set(x) 6⊆ λ−1(O) ∪ dom(ρ), then there is a unique j such that Set(x) ⊆
λ−1(Bj)∪ dom(ρ), and so h′(xi) = hj(xi) for each i (as some xi might be in the first or
the last layer of an overlap, but for those layers we have ψ1 = π1 and ψℓ = π2). Thus

fC(h′(x)) = fC(hj(x)).

3. Else, if Set(x) ⊆ λ−1(O)∪dom(ρ) (but Set(x) 6⊆ dom(ρ)), then there is a unique j such
that

Set(x) ⊆ λ−1(Bj ∩Bj+1) ∪ dom(ρ)

and there is some s such that

Set(x) \ dom(ρ) ⊆ λ−1
({

((j + 1)k − i∗)ℓ+ s, ((j + 1)k − i∗)ℓ+ s+ 1
})

.

Thus
h′(xi) ∈ {ψs(hj(xi), hj+1(xi)), ψs+1(hj(xi), hj+1(xi))}

for each xi ∈ Set(x) \ dom(ρ). Moreover, since ψs is idempotent, we can also write for
xi ∈ dom(ρ) that

h′(xi) = ρ(xi) = ψs(ρ(xi), ρ(xi)) = ψs(hj(xi), hj+1(xi)).

Therefore, as ψt and ψt+1 are adjacent, we have by definition of adjacency that

fC(h′(x)) ≤M · fC
2
(hj(x), hj+1(x)) =M · (fC(hj(x)) + fC(hj+1(x))).

This concludes the proof that valρ
A′(h′) ≤

∑

j val
ρ
A+[Bj]

(hj) and hence h′ is the solution we seek.

To check the running time, observe that every vertex of G′ is contained in λ−1(Bj) for
at most two j. Hence the total size of graphs G′[λ−1(Bj)] is at most 2|G′|. Since f2 is
sub-additive, the total time required to consider those graphs in this recursive call and all
sub-calls contributes a factor of at most f2(2

tmax |G′|).

5 Maximisation

To present our algorithm for maximisation, we first define what it means for two left-hand
side structures A,B to be “close”, in a sense relevant to approximately solving Max-Sol. We
then show that there is a dual view which allows to certify “closeness” by a fairly concrete
mapping: a distribution of partial homomorphisms. This is then used to show that values
given by Sherali-Adams linear programming relaxations of Max-Sol instances on A and on
B are also close. Since the level-k Sherali-Adams relaxation solves the problem exactly on
instances of treewidth O(k), it gives a PTAS for classes of structures that are “close” to
bounded treewidth, as formalised by the notion of “strong pliability” below. The proofs are
similar to those in [44]; the main new contribution is finding a suitable “dual” definition (a
distribution of partial homomorphisms) that makes the proofs work in the Max-Sol setting.
We remark we were unable to find an analogue for the Min-Sol setting.

20

5.1 Pliability

Definition 5.1. For two left-hand side σ-structures A,B, we say A strongly overcasts B,
denoted A � B, if for all Max-Sol σ-structures C, maxval(A,C) ≥ maxval(B,C).

In contrast, [44] defined (weak) overcasting in terms of Q≥0-valued structures C only,
instead of the wider class of Max-Sol structures. The “strong” qualifier is only to avoid
confusion with [44]: we will not consider weak overcasts in this paper, nor analogous weak
variants of the definitions given below.

Definition 5.2. The strong opt-distance between two left-hand side σ-structures A and B is
defined as

dopt(A,B) := inf{ε | A � e−εB and B � e−εA}.

Observation 5.3. Using the fact that maxval(λA,C) = λmaxval(A,C), it is an easy exercise
to see that dopt(A,B) = ∞ if exactly one of maxval(A,C),maxval(B,C) is −∞, or exactly
one of them is 0, for some Max-Sol σ-structure C; otherwise

dopt(A,B) = sup{ε | A 6� e−εB or B 6� e−εA} = sup
C

|lnmaxval(A,C)− lnmaxval(B,C)|.

where the latter supremum is over all Max-Sol σ-structures C such that neither is −∞ nor 0.
It follows that dopt is symmetric and satisfies the triangle inequality.

The only graph parameter p we consider in this paper will be treewidth, tw. Just as in [44],
one can prove that treedepth, or the Hadwiger number, give rise to equivalent definitions.

Definition 5.4. For a graph parameter p, a class of Q≥0-valued structures A is strongly
p-pliable (with rate k(ε)) if for all ε > 0 there exists k = k(ε) such that for every σ-structure
A ∈ A there exists a Q≥0-valued σ-structure B with p(B) ≤ k and dopt(A,B) ≤ ε.

5.2 Duality

Definition 5.5 (partial functions and homomorphisms). For a partial function g : A→ B and
a tuple x ∈ An, g(x) is defined as (g(x1), . . . , g(xn)) ∈ Bn if all coordinates are defined, and is
undefined otherwise. For y ∈ Bn, we define g−1(y) := {x ∈ An | g(x) is defined and equal to y}.

For left-hand side σ-structures A,B, a partial homomorphism from A to B is a partial
function g : A → B such that: for any positive tuple (f,x) ∈ tup>0(A), there is a positive
tuple (f,y) ∈ tup>0(B) such that yi = g(xi) whenever g(xi) is defined (and yi is arbitrary
otherwise — in particular yi 6= yj is allowed even if xi = xj). We denote the set of partial
homomorphisms from A to B by p-hom(A,B).

Remark 5.6. Partial homomorphisms can also be understood as follows. For a left-hand
side σ-structure B, let B+ be the left-hand side σ-structure with domain B ∪ {⋆}, where ⋆ is
a new element, where the value for f ∈ σ of arity n and an input x ∈ (B ∪ {⋆})n is defined as

fB
+
(x) := max

y∈Bn

x⊑⋆y

fB(y).

In particular fB
+
(x) = fB(x) for x ∈ Bn. Let Pos(A) be the relational σ-structure consisting

of positive tuples of A. Then a partial homomorphism g from A to B is the same as a
homomorphism from Pos(A) to Pos(B+) (undefined assignments are the same as assignments
to ⋆).

21

Lemma 5.7. Let A,B be left-hand side σ-structures. Then, the following are equivalent:

• A strongly overcasts B, i.e. for all Max-Sol σ-structures C, maxval(A,C) ≥ maxval(B,C);

• there is a distribution of partial homomorphisms ω : p-hom(A,B) → Q≥0 (
∑

g ω(g) = 1)
such that

E
g∼ω

fA(g−1(y)) ≥ fB(y) for all (f,y) ∈ tup(B).

(Here fA(g−1(y)) is a shorthand for
∑

fA(x) over all x ∈ g−1(y), i.e. all x ∈ Aar(f) such
that g(x) is defined and equal to y.)

We shall call a distribution ω from the second bullet point a strong overcast.

Proof. For one direction, suppose there is a distribution ω as in the second bullet and let C
be a Max-Sol σ-structure with a bottom label c⊥. Let h : B → C be a function achieving
maxval(B,C). For g ∈ p-hom(A,B), let h ◦⊥ g : A→ C denote the function which maps a ∈ A
to h(g(a)) if g(a) is defined and to c⊥ otherwise.

Therefore,

maxval(A,C) ≥ E
g∼ω

val(h ◦⊥ g) = E
g∼ω

∑

(f,x)∈tup(A)

fA(x)fC(h ◦⊥ g(x)). (⋆L)

We claim the expression (⋆L) is greater or equal to

maxval(B,C) =
∑

(f,y)∈tup(B)

fB(y)fC(h(y)). (⋆R)

Indeed, suppose first that (⋆L) is −∞, or equivalently, some summand in (⋆L) is negative.
Then there exists (f,x) ∈ tup>0(A) and g ∈ supp(ω) with fC(h ◦⊥ g(x)) = −∞. Since g
is a partial homomorphism, by definition there exists a positive tuple y ∈ Bar(f) such that
yi = g(xi) whenever g(xi) is defined. That is, fB(y) > 0 and h ◦⊥ g(x) ⊑

⊥
h(y). By the

assumption that C is a Max-Sol structure, fC(h(y)) = −∞. Since fB(y) is positive, this
gives a −∞ summand in (⋆R) and thus the inequality holds.

Otherwise, we can assume that every summand in (⋆L) is non-negative. In that case

(⋆L) = E
g∼ω

∑

(f,x)∈tup(A)

fA(x)fC(h ◦⊥ g(x))

≥ E
g∼ω

∑

(f,x)∈tup(A)
g(x) is defined

fA(x)fC(h ◦⊥ g(x))

= E
g∼ω

∑

(f,y)∈tup(B)

fA(g−1(y))fC(h(y))

=
∑

(f,y)∈tup(B)

fC(h(y)) E
g∼ω

fA(g−1(y))

≥
∑

(f,y)∈tup(B)

fC(h(y))fB(y) = (⋆R),

22

where after the first inequality it is still true that all summands are non-negative, and hence
the last inequality follows from the assumption about ω. This concludes the proof that
maxval(A,C) ≥ maxval(B,C).

For the converse, we will use the following variant of Farkas’ Lemma [43, Lemma A.2]:
Let A be an m× n rational matrix and b̄ ∈ Qm. Exactly one of the following holds:

• there are xi ∈ Q≥0 (i = 1, . . . , n) such that
∑

i xi = 1 and
∑

iAi,jxi ≥ bj for j =
1, . . . ,m;

• there are yj ∈ Q≥0 (j = 1, . . . ,m) such that
∑

j Ai,jyj <
∑

j bjyj for i = 1, . . . , n.

Suppose there is no distribution ω as in the second bullet. This means there are no
numbers ω(g) ∈ Q≥0 (for g ∈ p-hom(A,B)) such that

∑

g ω(g) = 1 and

∑

g∈p-hom(A,B)

ω(g)fA(g−1(y)) ≥ fB(y) for all (f,y) ∈ tup(B).

Thus by Farkas’ Lemma, there are numbers c(f,y) ∈ Q≥0 (for (f,y) ∈ tup(B)) such that

∑

(f,y)∈tup(B)

fA(g−1(y)) c(f,y) <
∑

(f,y)∈tup(B)

fB(y)c(f,y) for all g ∈ p-hom(A,B). (5)

Let C be the σ-structure with domain B ∪{c⊥}, where c⊥ is a new label, and with values
defined as follows for f ∈ σ of arity n and y ∈ Cn:

fC(y) :=























−∞ if ∀y′∈Bn : y′⊒
⊥
y f

B(y′) = 0

(in particular if y ∈ Bn and fB(y) = 0)

c(f,y) if y ∈ Bn and fB(y) > 0

0 otherwise; that is, if c⊥ ∈ y and ∃y′∈Bn : y′⊒
⊥
y f

B(y′) > 0.

We claim that C is a Max-Sol structure. By Definition 2.3, we need to show that for each
f ∈ σ, whenever fC(y) ≥ 0, we have fC(x) ≥ for all x ⊑

⊥
y. Let fC(y) = c(f,y) (second case

in the definition of fC) and x ⊑
⊥
y. If x ∈ Bn then fC(f,x) = c(f,x) and the claim holds as

c(f,x) ≥ 0. If c⊥ ∈ y then fC(y) = 0 and the claim holds again. Finally, if fC(y) = 0 from
the third case in the definition of fC, then for any x ⊑

⊥
y we have fC(x) = 0 (from the third

case). To show that maxval(A,C) < maxval(B,C), we claim that for every function g from
A to C = B ∪ {c⊥}, we have the following strict inequality:

val(g) =
∑

(f,x)∈tup(A)

fA(x)fC(g(x)) =
∑

(f,y)∈tup(C)

fA(g−1(y))fC(y)

<
∑

(f,y)∈tup(B)

fB(y)fC(y) = val(ι) ≤ maxval(B,C),

where ι denotes the inclusion function from B to C.
Indeed, suppose first that g, as a partial function from A to B, is not a partial homomor-

phism. Then there is an (f,x) ∈ tup>0(A) such that for all y ∈ Bar(f) with y ⊒
⊥
g(x) we

have fB(y) = 0. Thus fC(g(x)) = −∞ by definition. Thus the left-hand side of the inequality
is −∞, while the right-hand side is always non-negative.

23

max
∑

(f,x)∈tupA, s : Set(x)→C

λ(Set(x), s)fA(x)fC(s(x))

λ(X, s) =
∑

r : Y→C, r|X=s

λ(Y, r) for X ⊆ Y ∈
(

A
≤k

)

and s : X → C

∑

s : X→C

λ(X, s) = 1 for X ∈
(A
≤k

)

λ(Set(x), s) = 0 ∀(f,x) ∈ tup(A) with fA(x)fC(s(x)) = −∞

λ(X, s) ≥ 0 for X ∈
(A
≤k

)

and s : X → C

Figure 3: SAk(A,C), the Sherali-Adams relaxation of level k ≥ maxf∈σ ar(f) of (A,C).

Otherwise, we have

∑

(f,y)∈tup(C)

fA(g−1(y))fC(y) ≤
∑

(f,y)∈tup(B)

fA(g−1(y))fC(y) ≤
∑

(f,y)∈tup(B)

fA(g−1(y))c(f,y)

<
∑

(f,y)∈tup(B)

fB(y)c(f,y) =
∑

(f,y)∈tup(B)

fB(y)fC(y).

The first inequality follows from the fact that for (f,y) ∈ tup(C) \ tup(B) we have fC(y) ≤ 0.
The second follows from fC(y) ≤ c(f,y). The third, strict inequality follows from (5) since
g (as a partial function from A to B) is a partial homomorphism. The final equality follows
from the fact that if fC(y) 6= c(f,y) for (f,y) ∈ tup(B), then fB(y) = 0. This concludes the
proof that maxval(A,C) < maxval(B,C).

5.3 PTAS

We first define the Sherali-Adams LP hierarchy [45] for Max-Sol. Let (A,C) be an instance
of Max-Sol over a signature σ and let k ≥ maxf∈σ ar(f). We write

(A
≤k

)

for the set of subsets
of A with at most k elements. The Sherali-Adams relaxation of level k [45] of (A,C) is the
linear program given in Fig. 3, denoted by SAk(A,C), which has one variable λ(X, s) for each
X ∈

(A
≤k

)

and each s : X → C. We denote by maxvalk(A,B) the optimum value of SAk(A,C),
and define maxvalk(A,B) = −∞ if SAk(A,C) is infeasible.

Observation 5.8. Let (A,C) be an instance of Max-Sol, k ≥ maxf∈σ ar(f) and λ ≥ 0. Then,
maxval(λA,C) = λmaxval(A,C) and maxvalk(λA,C) = λmaxvalk(A,C).

Observation 5.9. Let (A,C) be an instance of Max-Sol. Then, for any k ≥ maxf∈σ ar(f),
maxvalk(A,C) ≥ maxval(A,C).

Proof. Let h : A → C be an optimal solution to (A,C). Consider the solution λ(X, s) =
1[s = h|X] for SAk(A,C). It is trivially feasible and achieves the value maxval(A,C).

The following easy result (proved in Appendix B) shows that an appropriate level of the
Sherali-Adams relaxation is exact for bounded treewidth.

24

Proposition 5.10. Let (A,C) be an instance of Max-Sol and k ≥ tw(A). Then, maxvalk(A,C) =
maxval(A,C).

Definition 5.11. Let A and B be left-hand side σ-structures, and k ≥ maxf∈σ ar(f). We
write A �k B if for all Max-Sol σ-structures C we have maxvalk(A,C) ≥ maxvalk(B,C).

Using the dual characterisation of strong overcasts (Lemma 5.7), we can show (and prove
in Appendix A) the following.

Proposition 5.12. Let A and B be left-hand side σ-structures, and k ≥ maxf∈σ ar(f). If
A � B, then A �k B.

We are now ready to prove our main tractability result for maximisation problems.

Lemma 5.13. Let A be a left-hand side σ-structure, ε ≥ 0 be small and k ≥ maxf∈σ ar(f).
Suppose that there exists a left-hand side σ-structure B such that dopt(A,B) ≤ ε and tw(B) ≤ k.
Then, for every right-hand side σ-structure C, we have that

maxval(A,C) ≤ maxvalk(A,C) ≤ (1 +O(ε))maxval(A,C).

Proof. By definition of dopt we have that,

A � eεB � e2εA,

and so
A �k e

εB �k e
2εA

by Proposition 5.12. From Observations 5.8 and 5.9 and Proposition 5.10 we obtain that,

maxval(A,C) ≤ maxvalk(A,C) ≤ eε maxvalk(B,C) = eεmaxval(B,C) ≤ e2ε maxval(A,C).

Finally, for ε small we have e2ε = 1 +O(ε), completing the proof.

Since maxvalk(A,C) can be computed in time (|A| · |C|)O(k), we obtain that any strongly
tw-pliable class of structures admits a PTAS.

Corollary 5.14. Let A be a strongly tw-pliable class of left-hand side structures. Then, the
class of Max-Sol instances (A,C) with A ∈ A admits a PTAS.

Specifically, if A is strongly tw-pliable with rate k(ε), then given A ∈ A,C, and ε > 0, we

can output a value between maxval(A,C) and (1+ ε)maxval(A,C) in time (|A| · |C|)O(k(Ω(ε))).

In the following subsection, we show that when we look at the class of Gaifman graphs
only, the appropriate condition is fractional-treewidth-fragility.

5.4 Fragility and pliability

To give Dvořák’s definition of fractional fragility [15] we first define ε-thin distributions.

Definition 5.15. Let F be a family of subsets of a set V and ε > 0. We say a distribution
π over F is ε-thin if PrX∼π[v ∈ X] ≤ ε for all v ∈ V .

25

We now give some intuition for the next definition. Consider the treewidth as a graph
parameter. The idea of a modulator, defined below, is to remove a subset X of the vertices
of a graph G to obtain a bound on the treewidth of the new graph G − X. The fractional
variant considers a distribution over modulators. An alternative view of fractional-tw-fragility
(obtained by LP duality [17]) is that for any ε > 0 there is k such that for any vertex weight
function on G, a removal of a set vertices X whose weight is an ε-fraction of the total weight
yields a graph G−X of treewidth at most k.

Definition 5.16. For a graph parameter p and a number k, we define a (p ≤ k)-modulator of
a graph G to be a set X ⊆ V (G) such that p(G−X) ≤ k. A fractional (p ≤ k)-modulator is a
distribution π of such modulators X. We say that a class of graphs G is fractionally-p-fragile
(with rate k(ε)) if for every ε > 0 there is a k = k(ε) such that every G ∈ G has an ε-thin
fractional (p ≤ k)-modulator.

We need some more notation. We denote the disjoint union of graphs G and H by G⊎H.
For σ structures A1, . . . ,Ak, we define the σ-structure B =

⊎k
i=1 Ai to be over the domain

B =
⊎k

i=1Ai and by fB(x) = fAi(x) whenever (f,x) ∈ tup(Ai), and 0 otherwise.
While we are mostly interested in the following result with treewidth as the graph param-

eter, we state it more generally since the proof is the same.

Lemma 5.17. Let p be a monotone5 graph parameter such that p(G⊎H) ≤ max(p(G),p(H))
for all graphs G and H and p(G) ≤ p(G−v)+1 for all v ∈ V (G). Let A be a class of structures
with bounded arity r such that the class G of their Gaifman graphs is fractionally-p-fragile (with
rate k(ε)). Then A is strongly p-pliable (with rate k′(ε) = k(Ω(ε/r)) + 1).

The proof closely follows the proof of [43, Lemma 4.6], where the same result was shown
for several particular monotone graph parameters.

Proof. Given ε > 0, A ∈ A, let π be a fractional (p ≤ k)-modulator such that for every
v ∈ V (G),

Pr
X∼π

[v ∈ X] ≤ ε. (6)

For each X ⊆ V (G) = A in the support of π (π(X) > 0), define A/X to be the σ-structure
obtained by contracting X to a single vertex and summing values. That is, let {⋆X} be a new
element and define gX : A→ (A−X) ∪ {⋆X} that maps X to ⋆X and A−X identically. Let
A/X be over the domain (A−X) ∪ {⋆X} and

fA/X (y) := fA(g−1
X (y)) =

∑

x∈g−1
X (y)

fA(x)

for each f ∈ σ of arity n and each y ∈ ((A −X) ∪ {⋆X})n.
Define BX = π(X) · A/X , and let B =

⊎

BX . By definition of π and properties of p, we
have p(G(BX)) ≤ p(G(A)−X) + 1 ≤ k + 1, and so p(G(B)) ≤ k + 1.

View gX as a function to B (instead of as function to BX ⊆ B), so that gX : A → B is
the (total) function mapping A−X identically to its copy in BX and mapping X to ⋆X . It is
clear that gX ∈ p-hom(A,B). Define the strong overcast ω : A → B to take the value gX with

5p(H) ≤ p(G) for all graphs G and subgraphs H of G.

26

probability π(X). To check this is indeed a strong overcast, observe that for (f,y) ∈ tup>0(B),
there is a unique X such that (f,y) ∈ tup(BX), hence

E
g∼ω

fA(g−1(y)) = π(X)fA(g−1
X (y)) = fB(y).

Define g : B → A to be the partial function mapping each element of BX−{⋆X} identically
to A, leaving it undefined on ⋆X . It is clear that g ∈ p-hom(B,A). Consider the overcast
ω′ : B → (1 − rε)A that is deterministically g. To check that ω′ is indeed a strong overcast,
let (f,x) ∈ tup(A). Then x is covered by copies in BX for those X that do not intersect x,
hence

fB(g−1(x)) = E
X∼π

[

1[X ∩ x = ∅] · fA(x)
]

= fA(x) Pr
X∼π

(X ∩ x = ∅)

≥ fA(x) · (1− rε),

where the final inequality follows by (6), the union bound, and the fact that |x| ≤ r. Hence
by Lemma 5.7 applied to ω and ω′,

A � B � (1− rε)A.

By construction p(G(B)) ≤ k + 1. Thus we have shown that assuming Gaifman graphs
of structures in A are fractionally-p-fragile with rate k(ε), then for every ε and for every
structure A ∈ A there is a structure B with p(G(B)) ≤ k(ε) + 1 and dopt(A,B) ≤ O(rε). As
r is fixed, this implies that A is strongly p-pliable (with rate k′(ε) = k(Ω(ε/r)) + 1).

Remark 5.18. In the above lemma, the assumption that A contains structures of bounded
arity r can be easily lifted, at least for p = tw. This is because the maximum arity of a
structure in A is bounded by the size of the largest clique in a Gaifman graph of a structure
in A. Since we assume that the class of their Gaifman graphs is fractionally-tw-fragile with
rate k(ε), the largest clique has at most 2k(12) + 2 vertices (otherwise any (tw ≤ k(12))-
modulator needs to contain more than half of the clique’s vertices, and there cannot be
a 1

2 -thin distribution of such modulators). Thus without loss of generality we can assume
r ≤ 2k(12) + 2.

Proof of Theorem 1.2. Let G be a class of graphs that is fractionally-treewidth-fragile and let
A be a class of structures with bounded arity with Gaifman graphs in G. Since treewidth satis-
fies the assumptions of Lemma 5.17, we have that A is strongly tw-pliable. By Corollary 5.14,
Max-SolG admits a PTAS.

If we only look at Gaifman graphs, one cannot use the presented approach to go beyond
fractionally-treewidth-fragile classes. This is because [43, Lemma 6.1] together with the above

Lemma 5.17 implies that for a class of graph G and an integer r, if A
(r)
G denotes the class of

all Q≥0-valued structures of arity at most r and whose Gaifman graphs are in G, then A
(r)
G

is strongly tw-pliable if and only if G fractionally-treewidth-fragile. In Appendix C, we give
a simple example of a class of structures (not parametrised by their Gaifman graphs) that is
strongly tw-pliable but not captured by fractional-treewidth-fragility.

27

References

[1] Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs. J.
ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

[2] Piotr Berman and Marek Karpinski. On some tighter inapproximability results (extended ab-
stract). In Proc. 26th International Colloquium on Automata, Languages and Programming
(ICALP’99), volume 1644 of Lecture Notes in Computer Science, pages 200–209. Springer, 1999.
doi:10.1007/3-540-48523-6_17.

[3] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In Proc. 25th Annual ACM Symposium on Theory of Computing (STOC’93), page 226–234. ACM,
1993. doi:10.1145/167088.167161.

[4] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput.
Sci., 209:1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

[5] Raimundo Briceño, Andrei Bulatov, Vı́ctor Dalmau, and Benôıt Larose. Dismantlability, con-
nectedness, and mixing in relational structures. J. Comb. Theory, Ser. B, 147:37–70, 2021.
arXiv:1901.04398, doi:10.1016/j.jctb.2020.10.001.

[6] Graham R. Brightwell and Peter Winkler. Gibbs measures and dismantlable graphs. J. Comb.
Theory, Ser. B, 78(1):141–166, 2000. doi:10.1006/jctb.1999.1935.

[7] Andrei A. Bulatov, Andrei A. Krokhin, and Benôıt Larose. Dualities for constraint satisfaction
problems. In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity
of Constraints: An Overview of Current Research Themes, volume 5250 of Lecture Notes in
Computer Science, pages 93–124. Springer, 2008. doi:10.1007/978-3-540-92800-3_5.

[8] Clément Carbonnel, Miguel Romero, and Stanislav Živný. The complexity of general-valued
constraint satisfaction problems seen from the other side. SIAM J. Comput., 51(1):19–69, 2022.
arXiv:1710.03148, doi:10.1137/19m1250121.

[9] Martin C. Cooper and Stanislav Živný. Hybrid tractable classes of constraint problems. In
Andrei A. Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 113–135. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/DFU.Vol7.15301.4.

[10] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-
complete. Discrete Math., 30(3):289–293, 1980. doi:10.1016/0012-365X(80)90236-8.

[11] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic Graph
Minor Theory: Decomposition, Approximation, and Coloring. In Proc. 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’05), pages 637–646. IEEE Computer Society,
2005. doi:10.1109/SFCS.2005.14.

[12] Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce Reed, Paul Seymour, and
Dirk Vertigan. Excluding any graph as a minor allows a low tree-width 2-coloring. J. Comb.
Theory B, 91(1):25–41, 2004. doi:10.1016/j.jctb.2003.09.001.

[13] Reinhard Diestel. Graph Theory. Springer, fourth edition, 2010.

[14] Zdeněk Dvořák. Personal communication. One construction is as follows: start with an arbitrarily
large integer m and for i from m down to 1, introduce an independent set of i new vertices and
connect them via paths of length i to all previous vertices.

[15] Zdeněk Dvořák. Sublinear separators, fragility and subexponential expansion. European J. Com-
bin., 52:103–119, 2016. arXiv:1404.7219, doi:10.1016/j.ejc.2015.09.001.

[16] Zdeněk Dvořák. Baker game and polynomial-time approximation schemes. In Proc. 31st An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pages 2227–2240. SIAM, 2020.
arXiv:1901.01797, doi:10.1137/1.9781611975994.137.

28

https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/S0304-3975(97)00228-4
http://arxiv.org/abs/1901.04398
https://doi.org/10.1016/j.jctb.2020.10.001
https://doi.org/10.1006/jctb.1999.1935
https://doi.org/10.1007/978-3-540-92800-3_5
http://arxiv.org/abs/1710.03148
https://doi.org/10.1137/19m1250121
https://doi.org/10.4230/DFU.Vol7.15301.4
https://doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1016/j.jctb.2003.09.001
http://arxiv.org/abs/1404.7219
https://doi.org/10.1016/j.ejc.2015.09.001
http://arxiv.org/abs/1901.01797
https://doi.org/10.1137/1.9781611975994.137

[17] Zdenek Dvořák and Jean-Sébastien Sereni. On fractional fragility
rates of graph classes. Electron. J. Comb., 27(4):P4.9, 2020. URL:
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i4p9,
arXiv:1907.12634.

[18] Peter Fulla, Hannes Uppman, and Stanislav Živný. The complexity of Boolean surjective
general-valued CSPs. ACM Trans. Comput. Theory, 11(1):4:1–4:31, 2019. arXiv:1702.04679,
doi:10.1145/3282429.

[19] Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica, 49(1):1–11, 9 2007. doi:10.1007/s00453-007-0010-x.

[20] Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinatorica,
23(4):613–632, 2003. doi:10.1007/s00493-003-0037-9.

[21] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen from
the other side. J. ACM, 54(1):1–24, 2007. doi:10.1145/1206035.1206036.

[22] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable? In Proc. 33rd Annual ACM Symposium on Theory of Computing (STOC’01),
pages 657–666. ACM, 2001. doi:10.1145/380752.380867.

[23] Gregory Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for minimum cost graph
homomorphisms. European J. Combin., 29(4):900–911, 2008. doi:10.1016/j.ejc.2007.11.012.

[24] Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. Approximation
of Minimum Cost Homomorphisms. In Proc. 20th Annual European Symposium on Algorithms
(ESA12), volume 7501 of Lecture Notes in Computer Science, pages 587–598. Springer, 2012.
doi:10.1007/978-3-642-33090-2_51.

[25] Pavol Hell and Arash Rafiey. The Dichotomy of Minimum Cost Homomorphism Problems for
Digraphs. SIAM J. Discrete Math, 26(4):1597–1608, 2012. doi:10.1137/100783856.

[26] Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S.S Ravi, Daniel J.
Rosenkrantz, and Richard E. Stearns. NC-approximation schemes for NP- and
PSPACE-hard problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998.
doi:10.1006/jagm.1997.0903.

[27] Peter Jeavons, Andrei A. Krokhin, and Stanislav Živný. The complex-
ity of valued constraint satisfaction. Bull. EATCS, 113, 2014. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/266.

[28] Peter Jonsson, Andrei A. Krokhin, and Fredrik Kuivinen. Hard constraint satisfaction
problems have hard gaps at location 1. Theor. Comput. Sci., 410(38-40):3856–3874, 2009.
doi:10.1016/j.tcs.2009.05.022.

[29] Peter Jonsson, Fredrik Kuivinen, and Gustav Nordh. MAX ONES generalized to larger domains.
SIAM J. Comput., 38(1):329–365, 2008. doi:10.1137/060669231.

[30] Peter Jonsson and Gustav Nordh. Introduction to the maximum solution problem. In Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Constraints: An
Overview of Current Research Themes, volume 5250 of Lecture Notes in Computer Science, pages
255–282. Springer, 2008. doi:10.1007/978-3-540-92800-3_10.

[31] Sanjeev Khanna and Rajeev Motwani. Towards a syntactic characterization of PTAS. In Proc.
28th Annual ACM Symposium on the Theory of Computing (STOC’96), pages 329–337. ACM,
1996. doi:10.1145/237814.237979.

[32] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The Approx-
imability of Constraint Satisfaction Problems. SIAM J. Comput., 30(6):1863–1920, 2001.
doi:10.1137/S0097539799349948.

29

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i4p9
http://arxiv.org/abs/1907.12634
http://arxiv.org/abs/1702.04679
https://doi.org/10.1145/3282429
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/s00493-003-0037-9
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/380752.380867
https://doi.org/10.1016/j.ejc.2007.11.012
https://doi.org/10.1007/978-3-642-33090-2_51
https://doi.org/10.1137/100783856
https://doi.org/10.1006/jagm.1997.0903
http://eatcs.org/beatcs/index.php/beatcs/article/view/266
https://doi.org/10.1016/j.tcs.2009.05.022
https://doi.org/10.1137/060669231
https://doi.org/10.1007/978-3-540-92800-3_10
https://doi.org/10.1145/237814.237979
https://doi.org/10.1137/S0097539799349948

[33] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th An-
nual ACM Symposium on Theory of Computing (STOC’02), pages 767–775. ACM, 2002.
doi:10.1145/509907.510017.

[34] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Roĺınek. The complexity of general-valued
CSPs. SIAM J. Comput., 46(3):1087–1110, 2017. arXiv:1502.07327, doi:10.1137/16M1091836.

[35] Marcin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Proc. 42nd International Colloquium on Automata, Languages, and Programming
(ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 846–858. Springer, 2015.
doi:10.1007/978-3-662-47672-7_69.

[36] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K Vishnoi. On LP-based
approximability for strict CSPs. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’11), pages 1560–1573. SIAM, 2011. doi:10.1137/1.9781611973082.121.

[37] Konstantin Makarychev and Yury Makarychev. Approximation algorithms for csps. In Andrei A.
Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages 287–325. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/DFU.Vol7.15301.11.

[38] Madhav V. Marathe, Harry B. Hunt III, and Richard E. Stearns. Level-treewidth property, exact
algorithms and approximation schemes. In Proc. 29th Annual ACM Symposium on Theory of
Computing (STOC’97). ACM, 6 1997. URL: https://www.osti.gov/biblio/471394.

[39] Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný. PTAS for sparse general-valued CSPs.
In Proc. 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’21), pages
1–11. IEEE, 2021. arXiv:2012.12607, doi:10.1109/LICS52264.2021.9470599.

[40] Akbar Rafiey, Arash Rafiey, and Thiago Santos. Toward a Dichotomy for Approximation of H-
Coloring. In Proc. 46th International Colloquium on Automata, Languages, and Programming
(ICALP’19), volume 132 of LIPIcs, pages 91:1–91:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. arXiv:1902.02201, doi:10.4230/LIPIcs.ICALP.2019.91.

[41] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proc.
40th Annual ACM Symposium on Theory of Computing (STOC’08), pages 245–254. ACM, 2008.
doi:10.1145/1374376.1374414.

[42] Bruce A Reed. Algorithmic aspects of tree width. In Recent advances in algorithms and combi-
natorics, pages 85–107. Springer, 2003.

[43] Miguel Romero, Marcin Wrochna, and Stanislav Živný. Treewidth-Pliability and PTAS for Max-
CSPs. Technical report, 10 2020. arXiv:1911.03204.

[44] Miguel Romero, Marcin Wrochna, and Stanislav Živný. Treewidth-Pliability and PTAS for Max-
CSPs. In Proc. 2021 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’21), pages
473–483. SIAM, 2021. arXiv:1911.03204, doi:10.1137/1.9781611976465.29.

[45] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J. Discrete Math.,
3(3):411–430, 1990. doi:10.1137/0403036.

[46] Rustem Takhanov. A Dichotomy Theorem for the General Minimum Cost Homomorphism
Problem. In Proc. 27th International Symposium on Theoretical Aspects of Computer Science
(STACS’10), LIPIcs, pages 657–668. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010.
doi:10.4230/LIPIcs.STACS.2010.2493.

[47] David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and Chro-
matic Number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

30

https://doi.org/10.1145/509907.510017
http://arxiv.org/abs/1502.07327
https://doi.org/10.1137/16M1091836
https://doi.org/10.1007/978-3-662-47672-7_69
https://doi.org/10.1137/1.9781611973082.121
https://doi.org/10.4230/DFU.Vol7.15301.11
https://www.osti.gov/biblio/471394
http://arxiv.org/abs/2012.12607
https://doi.org/10.1109/LICS52264.2021.9470599
http://arxiv.org/abs/1902.02201
https://doi.org/10.4230/LIPIcs.ICALP.2019.91
https://doi.org/10.1145/1374376.1374414
http://arxiv.org/abs/1911.03204
http://arxiv.org/abs/1911.03204
https://doi.org/10.1137/1.9781611976465.29
https://doi.org/10.1137/0403036
https://doi.org/10.4230/LIPIcs.STACS.2010.2493
https://doi.org/10.4086/toc.2007.v003a006

A Proof of Proposition 5.12

We closely follow the proof of [43, Proposition 5.3] but, given we are in a more general setting,
we have to be more careful.

Proof. Let C be a Max-Sol σ-structure, and let ω be an overcast from A to B. Recall that
for a tuple x we denote by Set(x) the set of elements appearing in x. For a partial function
g : A→ B and a subset X ⊆ A, g(X) denotes the set {g(x) | x ∈ X and g(x) is defined}. For
a function s : g(X) → C, s ◦⊥ g denotes the function from X to C defined as s(g(x)) when
g(x) is defined and c⊥ otherwise.

Let λ be an optimal solution to SAk(B,C). That is, for each subset Y of B of size at
most k, λ describes a distribution of functions to C using probabilities λ(Y, s) ∈ Q≥0 for
s : Y → C. For fixed g ∈ supp(ω), we define a solution λg to SAk(A,C) by sampling s from
this distribution and outputting s ◦⊥ g. Formally, for X ∈

(A
≤k

)

and r : X → C, we define

λg(X, r) :=
∑

s : g(X)→C

1[r = s ◦⊥ g] · λ(g(X), s).

Note that λg is a feasible solution. Indeed, for X ∈
(

A
≤k

)

the total probability is

∑

r : X→C

λg(X, r) =
∑

s : g(X)→C

(

∑

r : X→C

1[r = s ◦⊥ g]

)

·λ(g(X), s) =
∑

s : g(X)→C

1 ·λ(g(X), s) = 1;

while for Z ⊆ X ∈
(A
≤k

)

and r : Z → C, the marginal probability of obtaining r is

∑

t : X→C
t|Z=r

λg(X, t) =
∑

t : X→C
t|Z=r

∑

s : g(X)→C

1[t = s ◦⊥ g] · λ(g(X), s)

=
∑

s : g(X)→C

∑

t : X→C
t|Z=r

1[t = s ◦⊥ g] · λ(g(X), s)

=
∑

s : g(X)→C

1[r = (s ◦⊥ g)|Z] · λ(g(X), s)

=
∑

s : g(X)→C

1
[

r = (s|g(Z)) ◦⊥ g
]

· λ(g(X), s)

=
∑

s′ : g(Z)→C

(

1
[

r = s′ ◦⊥ g
]

∑

s : g(X)→C
s|g(Z)=s′

λ(g(X), s)
)

=
∑

s′ : g(Z)→C

1
[

r = s′ ◦⊥ g
]

· λ(g(Z), s′) = λg(Z, r).

Therefore maxvalk(A,C) is at least the expected value of the solution λg with g sampled from

31

ω:

maxvalk(A,C) ≥ E
g∼ω

∑

(f,x)∈tup(A)
r : Set(x)→C

λg(Set(x), r)f
A(x)fC(r(x))

= E
g∼ω

∑

(f,x)∈tup(A)
s : g(Set(x))→C

λ(g(Set(x)), s)fA(x)fC(s ◦⊥ g(x)), (∗L)

by definition of λg. We claim the expression (∗L) is at least

maxvalk(B,C) =
∑

(f,y)∈tup(B)
s : Set(y)→C

λ(Set(y), s)fB(y)fC(s(y)). (∗R)

Indeed, suppose first that some summand in (∗L) is negative. Then there exist g ∈
supp(ω), (f,x) ∈ tup(A), and s : g(Set(x)) → C such that λ(g(Set(x)), s), fA(x) > 0 and
fC(s◦⊥g(x)) = −∞. Since g ∈ p-hom(A,B), there is some y ∈ Aar(f) with fB(y) > 0 such that
g(xi) equals yi whenever it is defined. In particular g(Set(x)) ⊆ Set(y), hence λ(Set(y), s′) > 0
for some s′ : Set(y) → C such that s′|g(Set(x)) = s. This implies s′(y) ⊒

⊥
s ◦⊥ g(x), hence

fC(s′(y)) = −∞ by the assumption that C is a Max-Sol structure. Therefore (∗R) has a
summand λ(Set(y), s′)fB(y)fC(s′(y)) = −∞, so the claimed inequality (∗L) ≥ (∗R) holds.

Otherwise, we can assume that every summand in (∗L) is non-negative. In that case

(∗L) = E
g∼ω

∑

(f,x)∈tup(A), s : g(Set(x))→C

λ(g(Set(x)), s)fA(x)fC(s ◦⊥ g(x))

≥ E
g∼ω

∑

(f,x)∈tup(A), s : g(Set(x))→C

λ(g(Set(x)), s)fA(x)fC(s ◦⊥ g(x)) · 1[g(x) is defined]

= E
g∼ω

∑

(f,y)∈tup(B), s : Set(y)→C

λ(Set(y), s)fA(g−1(y))fC(s(y))

=
∑

(f,y)∈tup(B), s : Set(y)→C

λ(Set(y), s) E
g∼ω

[

fA(g−1(y))
]

fC(s(y))

≥
∑

(f,y)∈tup(B), s : Set(y)→C

λ(Set(y), s)fB(y)fC(s(y)) = (∗R),

where after the first inequality it is still true that all summands are non-negative, and hence
the last inequality follows from the fact that ω is an overcast. This concludes the proof that
maxvalk(A,C) ≥ maxvalk(B,C).

B Proof of Proposition 5.10

Proof. We reduce to [8, Theorem 5.4], which shows that bounded treewidth implies exact
solvability for minimisation of VCSPs with Q≥0∪{∞}-valued right-hand side structures. We
recast our relaxation into the framework of [8], which gives a more fine-grained relaxation.
The SA relaxation in that paper is found in Figure 2. As we restrict to k ≥ maxf∈σ ar(f),
in this case variables λ(f,x, s) in [8, Figure 3] may be replaced by variables λ(Set(x), s) by

32

equation (SA3) and the inclusion of the dummy function ρk in σk. The linear programs are
now equivalent, except in [8] right-hand side σ-structures are Q≥0 ∪ {∞}-valued, and it is
cast as a minimisation problem.

Let K := max(f,x)∈tup(C) f
C(x) ∈ Q≥0. Consider a new σ-structure C′ defined by

fC
′

(x) = K − fC(x),

so that C′ is Q≥0 ∪ {∞}-valued, and thus a valued σ-structure in the framework of [8].
We have,

max
∑

(f,x)∈tupA, s : Set(x)→C

λ(Set(x), s)fA(x)fC(s(x)) =

K
∑

(f,x)∈tupA

fA(x)−min
∑

(f,x)∈tupA, s : Set(x)→C

λ(Set(x), s)fA(x)fC
′

(s(x)).

The left term does not depend on the LP variables λ(X, s). Thus SAk relaxation is exact
by [8, Theorem 5.4].

C Max-CSP vs. Max-Sol on cliques

In [44], the PTAS results for Max-CSPs, with non-negative rational-valued right-hand side
structures, apply to many classes of dense structures as well. This is because the class of
cliques (as a {0, 1}-valued structures) and in fact any class of graphs with Ω(n2) edges, was
shown to be “tw-pliable”. In our case, because we consider more general right-hand side
structures, the definition of “overcasts” and “tw-pliability” changed to “strong overcasts”
and “strong tw-pliability” accordingly (simply by considering all Max-Sol right-hand side
structures in place of just Q≥0-valued structures). It turns out even the simplest class of
dense structures, the class of cliques, is not strongly tw-pliable.

Proposition C.1. Let σ be the signature with one symbol f of arity 2. Let A = {Kn | n ∈ N}
be the class of cliques, as σ-structures with fKn(x, y) = 1 if x 6= y and 0 otherwise, for
x, y ∈ [n]. Then, A is not strongly tw-pliable.

Proof. Suppose that A is strongly tw-pliable. Let ε = 1/10. There exists some k such that
for all n there exists a structure B with tw(B) ≤ k − 1 and dopt(Kn,B) ≤ ε.

Let n := 2k and B be such that tw(B) ≤ k and dopt(Kn,B) ≤ ε. It is an easy exercise
that for any graph G, χ(G) ≤ tw(G)+1, and therefore χ(G(B)) ≤ k, where χ(G) denotes the
chromatic number of G.

Consider the following class of Max-Sol structures: for each i, let Ci be a σ-structure over
the domain [i] ∪ {c⊥}, and let

fCi(x, y) =











−∞ if x = y, x, y ∈ [i],

0 if x = y = c⊥,

1 otherwise.

In other words, for a structure A the instance (A,Ci) asks to colour the vertices of A with i
colours (or assign it no colour, c⊥), such that there are no monochromatic edges and the total

33

weight of edges with at least one endpoint coloured is maximised. Then, maxval(Kn,Ci) =
i(n − 1) for i ≤ n. Further, for all i ≥ χ(G(B)), maxval(B,Ci) = maxval(B,Cχ(G(B))): the
optimal solution corresponds to any proper colouring of G(B) with colours [i]. As k ≥ χ(G(B)),
we have that maxval(Kn,C2k)/maxval(Kn,Ck) = 2, but maxval(B,C2k)/maxval(Bn,Ck) = 1,
contradicting dopt(Kn,B) ≤ ε.

In view of Proposition C.1, one may ask whether it is possible to obtain a PTAS on cliques
via different means, not relying on our notion of strong tw-pliability. It turns ous that this is
not possible. This follows from an easy reduction from the Maximum Clique problem.

Lemma C.2 ([47, Theorem 1.1]). It is NP-hard to approximate Maximum Clique within a
factor opt1−ε for any ε > 0. That is, unless P=NP, for any ε > 0 there is no polynomial-
time algorithm taking a graph G and an integer r as input, that can distinguish between the
following cases:

• G has a clique of size at least r,

• G has no clique of size rε.

Proposition C.3. Let A = {Kn | n ∈ N} be the class of cliques (as defined in Propo-
sition C.1). Then VCSP restricted to instances (A,C) where A ∈ A and C is a Max-Sol
structure, does not admit a PTAS unless P=NP.

Proof. We reduce an instance G of Maximum Clique to a suitable VCSP instance. Given a
graph G on n vertices, define a σ-structure C over the domain V (G) ∪ {⋆} ∪ {c⊥} as follows.
Let

fC(x, y) =











−∞ if x, y ∈ V (G) and xy 6∈ E(G), or x = y = ⋆

1 if x = ⋆ and y ∈ V (G)

0 otherwise.

It is clear that C is a Max-Sol structure, and it is easy to see that maxval(Kn+1,C) =
Max-Clique(G): in any feasible homomorphism from Kn+1 to C, at most one vertex may map
to each element in V (G) ∪ {⋆}, and vertices that are not mapped to c⊥ or ⋆ have to map to
a clique in G. The optimal solution is achieved by mapping exactly one vertex to ⋆, one to
each vertex of a maximum clique in G and the remaining to c⊥.

Thus by Lemma C.2, unless P=NP there is no polynomial-time algorithm approximating
maxval(Kn+1,C) within any sublinear factor, let alone a constant factor approximation or a
PTAS.

Finally, we give a simple example showing that there are strongly tw-pliable (and therefore,
by Lemma 5.13, tractable) classes of structures that are not captured by fractional-treewidth-
fragility. Note that this does not contradict our conjecture made after Theorem 1.2 in Sec-
tion 1, as the conjecture is restricted only to classes parametrised by their Gaifman graphs.
The class of structures in the following proposition does not include all possible structures
over the Gaifman graphs.

Proposition C.4. Let σ be the signature with one function symbol f of arity 2. Let An

be σ-structure over the domain [n] defined by fAn(x, x) = 1 and fAn(x, y) = 1/n if x 6= y,
x, y ∈ [n]. (That is, An is clique with loops around each vertex, loops have weight 1, and
simple edges have weight 1/n.) Then, A = {An | n ∈ N} is strongly tw-pliable but G(A) is
not fractionally-treewidth-fragile.

34

Proof. First note that G(A) is the class of cliques with a loop on each vertex. As for any
(non-empty) X ⊆ V (Kn) we have tw(Kn−X) = n−1−|X|, it is easy to see that G(A) is not
fractionally-treewidth-fragile — alternatively, it follows from Proposition C.1 and Lemma 5.17
that the class of cliques is not fractionally-treewidth-fragile, and thus neither is the class of
cliques with a loop around each vertex, i.e. G(A).

We now show that A is strongly tw-pliable. Let ε > 0 be small, k := ⌈2/ε⌉ and n > k
arbitrary. We show that dopt(An, λAk) ≤ ε where λ := n

k .
Let ω be a random map from V (An) = [n] to V (Ak) = [k] and we check that it is an

overcast from An to λAk. It is clear that ω maps positive tuples to positive tuples. Further,
for e ∈ E(Ak) that is a simple edge (i.e. e = (x, y) for some x 6= y),

E
g∼ω

fAn(g−1(e)) =
1

n

(

n

2

)

2

k2
=
n− 1

k2
= λ

1

k
· (1− 1/n).

For e ∈ E(Ak) that is a loop (i.e. e = (x, x) for some x),

E
g∼ω

fAn(g−1(e)) =
n

k
+

1

n

(

n

2

)

1

k2
≥ λ.

As n > 2
ε , therefore An � (1− ε)λAk. By symmetry (as k > 2

ε also), λAk � (1− ε)An. Thus,
dopt(An, λAk) ≤ ε as claimed. It follows that A is strongly tw-pliable.

35

	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Preliminaries
	3 Minimisation on planar structures
	3.1 Diagonalisability
	3.2 PTAS

	4 Minimisation on Baker classes
	4.1 Definition of Baker classes
	4.2 PTAS

	5 Maximisation
	5.1 Pliability
	5.2 Duality
	5.3 PTAS
	5.4 Fragility and pliability

	A Proof of Proposition 5.12
	B Proof of Proposition 5.10
	C Max-CSP vs. Max-Sol on cliques

