

Edinburgh Research Explorer

Collection Skeletons - Declarative Abstractions for Data
Collections

Citation for published version:
Franke, B, Li, Z, Morton, M & Steuwer, M 2022, Collection Skeletons - Declarative Abstractions for Data
Collections. in B Fischer, L Burgueño & W Cazzola (eds), Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering (SLE 2022). Association for Computing
Machinery (ACM), pp. 189-201, The 15th ACM SIGPLAN International Conference on Software Language
Engineering, 2022, Auckland, New Zealand, 5/12/22. https://doi.org/10.1145/3567512.3567528

Digital Object Identifier (DOI):
10.1145/3567512.3567528

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 15th ACM SIGPLAN International Conference on Software Language Engineering (SLE
2022)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Nov. 2024

https://doi.org/10.1145/3567512.3567528
https://doi.org/10.1145/3567512.3567528
https://www.research.ed.ac.uk/en/publications/6ddc3156-a61f-4c51-8689-e05258a9bfbb

Collection Skeletons:
Declarative Abstractions for Data Collections

Björn Franke
bfranke@inf.ed.ac.uk
School of Informatics

University of Edinburgh
Edinburgh, Scotland, United Kingdom

Zhibo Li
zhibo.li@ed.ac.uk

School of Informatics
University of Edinburgh

Edinburgh, Scotland, United Kingdom

Magnus Morton
magnus.morton@huawei.com

Huawei Research Centre
Edinburgh, Scotland, United Kingdom

Michel Steuwer
michel.steuwer@ed.ac.uk
School of Informatics

University of Edinburgh
Edinburgh, Scotland, United Kingdom

Abstract
Modern programming languages provide programmers with
rich abstractions for data collections as part of their standard
libraries, e.g. Containers in the C++ STL, the Java Collec-
tions Framework, or the Scala Collections API. Typically,
these collections frameworks are organised as hierarchies
that provide programmers with common abstract data types
(ADTs) like lists, queues, and stacks. While convenient, this
approach introduces problems which ultimately affect appli-
cation performance due to users over-specifying collection
data types limiting implementation flexibility. In this paper,
we develop Collection Skeletonswhich provide a novel, declar-
ative approach to data collections. Using our framework,
programmers explicitly select properties for their collections,
thereby truly decoupling specification from implementation.
By making collection properties explicit immediate benefits
materialise in form of reduced risk of over-specification and
increased implementation flexibility. We have prototyped
our declarative abstractions for collections as a C++ library,
and demonstrate that benchmark applications rewritten to
use Collection Skeletons incur little or no overhead. In fact,
for several benchmarks, we observe performance speedups
(on average between 2.57 to 2.93, and up to 16.37) and also en-
hanced performance portability across three different hard-
ware platforms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’22, December 6–7, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9919-7/22/12. . . $15.00
https://doi.org/10.1145/3567512.3567528

CCS Concepts: • Software and its engineering → Ab-
straction, modeling andmodularity; Feature interaction.

Keywords: Containers, collections, data structures, proper-
ties

ACM Reference Format:
Björn Franke, Zhibo Li, Magnus Morton, and Michel Steuwer. 2022.
Collection Skeletons: Declarative Abstractions for Data Collections.
In Proceedings of the 15th ACM SIGPLAN International Conference
on Software Language Engineering (SLE ’22), December 6–7, 2022,
Auckland, New Zealand. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3567512.3567528

1 Introduction
Collections of data items are central to many fundamental
algorithms, and find use in all applications storing, process-
ing and retrieving data. Therefore, it is not surprising that
collections have been at the heart of Computer Science re-
search since the inception of the discipline. From lists, stacks,
queues through trees and maps to union/find data structures,
a great number of abstract data types (ADTs) [17] and con-
crete data structure implementations along with efficient
algorithms for the organisation and efficient retrieval of data
have been developed over the years [9].
While individual data structures and algorithms for gen-

eral data collections are well understood, there is less consen-
sus about the relationship, or more specifically, the hierarchy,
of different kinds of collections. The designers of collection
abstractions for different programming languages have taken
quite different approaches to organising collections in object-
oriented class hierarchies. For example, the C++ Standard
Template Library (STL) [24], the Java Collections Framework
(JCF) [21], and the Scala Collections Framework (SCF) [22] cap-
ture essentially the same collections in different ways. This is
because existing class hierarchies and design patterns for col-
lections are operation centric, where inheritance relationships
dictate the structure. Furthermore, specific non-functional
requirements like the prescribed algorithmic complexity of

https://doi.org/10.1145/3567512.3567528
https://doi.org/10.1145/3567512.3567528
https://doi.org/10.1145/3567512.3567528

SLE ’22, December 6–7, 2022, Auckland, New Zealand Li, et al.

certain operations in the C++ STL leave little choice when
implementing STL containers. Despite superficial similari-
ties between the collection hierarchies in the C++ STL, the
JCF and the SCF, there are major differences between the
frameworks and any programmer familiar with the funda-
mental concepts of one of the frameworks would need to
spend significant effort to familiarise themselves with the
other frameworks before becoming confident in their effi-
cient use [6]. To illustrate this we refer to the JCF, where a
Stack extends a Vector, which in turn implements a List; while
a LinkedList implements both a List and a Deque interface.
Figure 1 illustrates the hierarchies for both data collections,
which appear non intuitive in terms of semantic properties
of the collections represented. Why would a stack be a vector
or a list?

Stack

Vector

List

List

LinkedList

Deque

Figure 1. Excerpt from the Java Collections Framework,
showing the inheritance hierarchy for a Java Stack (left) and
LinkedList (right).

In this paper, we develop a novel approach to providing
user-facing abstractions for data collections. In our Collec-
tion Skeletons framework, programmers do not instantiate
a collection of a certain class (e.g. std::list<int> for a
list of integers), but instead, they explicitly specify prop-
erties that the collection must provide. The key idea is to
entirely decouple specification from implementation of col-
lections. Instead of abstract or concrete data types for their
data collections, programmers only specify the properties
their collections are relying on, thus giving the Collection
Skeletons framework the flexibility to select any concrete
implementation that provides the requested properties. For
this, we distinguish between two kinds of properties con-
cerned with 1) the semantics of collections, i.e. the expected
behaviour, and 2) their interfaces, i.e. the available methods
to access functionality. Although there are properties that do
not belong to either semantics or interfaces, e.g. memory ef-
ficiency of a data collection, those non-functional properties
are beyond the scope of this paper and are subject of our fu-
ture work. Unlike existing collection frameworks, Collection
Skeletons do not attempt to fit different kinds of collections
into a hierarchy, but instead we provide a single versatile
and parameterisable collection type.

Semantic properties refer to the expected behaviour of col-
lections. For example, whether or not a collection is allowed
to store duplicate entries, or if it is restricted to unique data

items, is a semantic property. Interface properties relate to the
provision of specific functions to interact with the collection,
e.g. whether or not a split-by-value operation for splitting
collections around a pivot element is provided. We discuss
these properties in detail in section 2.

We have prototyped our novel Collection Skeletons frame-
work as a C++ library. For its evaluation, we have rewrit-
ten several benchmark applications exercising collections
of different kind and nature, and executed them on three
different hardware platforms (6-core Intel NUC 10, 72-core
Intel Gold 6154 and 4-core Oracle Cloud Arm server). This
enables us to measure any potential overheads introduced
by our abstractions. In fact, we demonstrate that our Collec-
tion Skeletons introduce only negligible runtime overhead,
and deliver performance improvements on several occasions.
This is because our framework enables us to select an imple-
mentation different from the collection used in the original
code base, which results in higher performance. We also
show that the best possible implementation choice for a
given collection is program- and platform-dependent. This
is where the flexibility of Collection Skeletons is of clear
benefit: Concrete implementations can be flexibly swapped
out without modification of the user’s application code.

1.1 Motivating Example
Consider the linked-list example in Figure 2. Listing 1 shows
a code snippet with a loop traversing a user-defined linked
list as it would be commonly found in C code. The user
specifies a concrete implementation, here a single-linked
dynamically allocated list using a user-defined data type.
The traversal loop performs pointer-chasing to move from
element to element. The choice of implementation implic-
itly defines semantic properties, e.g. the order in which ele-
ments are stored and the possibility for duplicate elements.
Using the C++ STL as shown in Listing 2 the user utilises
a std::list collection data type, and the explicit pointer-
chasing from Listing 1 is replaced by a range-based for loop.
This notionally introduces a list abstract data type, where the
concrete list implementation is hidden behind an operational
list interface. The user relies on the properties provided by
the list ADT as defined in the C++ STL. In contrast, using the
Collection Skeletons approach shown in Listing 3, the user
makes explicit the properties (e.g. storage order, sequential
accessible) they request for their collection. We request a Seq
property since we subsequently iterate over the elements
one by one and we choose variable length since the num-
ber of elements contained in the collection is not statically
known, while we may rely on a specific storage order and
allow duplicates, possibly because part of an algorithm not
shown in the examples requires these properties.

We refer to the Seq property as an interface property since
it is linked with the provision of operational facility through
interface functions to iterate one by one over the collection.

Collection Skeletons:
Declarative Abstractions for Data Collections SLE ’22, December 6–7, 2022, Auckland, New Zealand

1 typedef struct nodes{
2 nodes *next;
3 int data;
4 };
5
6 for(;node;node=node ->next)

{
7 node ->data += 1;
8 }

Listing 1. User-defined list in C.

std::list <int > nodes;

for(auto& i : nodes) {
i += 1;

}

Listing 2. List using the C++ STL.

Collection <int , Seq , Dup , Variable
, Ordered > c;

for(auto& i : c) {
i += 1;

}

Listing 3. Collection Skeletons.

Figure 2. Motivating example showing the evolution of a linked list collection and its traversal expressed in C, C++ STL, and
eventually using Collection Skeletons. While the C programmer employs a user-defined linked list data structure, the C++
STL offers a pre-defined list collection. In contrast, using Collection Skeletons a programmer requests collection by explicitly
requesting the properties they rely on for maximal implementation flexibility.

Sequential accessible has also indicated that the collection
need to be ordered at the storage level.

Our motivating example shows Collection Skeletons pro-
vide a convenient abstraction to collection data types, which
avoid tedious and non-intuitive hierarchies of collections,
but instead equip the users to specify exactly the properties
they need for their application. We show in our evaluation
in section 4 how this abstraction incurs only negligible over-
head.
Overall, this paper makes the following contributions:

1. We develop a novel declarative approach to specifying
data collections, exposing individual properties to be
specified (rather than a pre-packaged sets of properties
like in ADTs),

2. we identify a set of useful semantic and interface prop-
erties, which capture the key aspects of data collections
programmers care about, and

3. we evaluate a prototype C++ library implementation
of our Collection Skeletons framework against legacy
benchmarks rewritten to make use of our new abstrac-
tion, and demonstrate negligible performance impact
across three different hardware platforms.

2 Collection Skeletons
Collection Skeletons compete with the concept of Abstract
Data Types for the specification of data collections. ADTs
are mathematical models for data types, which specify user-
facing signatures and semantics of operations on a data type.
Formally, ADTs are defined by either axiomatic semantics
or operational semantics of an abstract machine. Specific
properties of ADTs are thus expressed through the semantics
of the operations it provides, e.g. for a stack we might expect
a definition that captures that a pop operation following
immediately after a push x returns the value x, and the state
of the stack to be the same as it was before. In this sense,
ADTs implicitly define properties through semantics of its
operations. In addition, there is no notion of relationship

between ADTs. For example, users might perceive stacks and
queues are related collection data types that only differ in
their data retrieval order, but their respective ADTs do not
attempt to establish this similarity.
Collection Skeletons follow a different approach, where

all collections are derived from a single, versatile Collection
type by parameterisation. The parameters to this Collection
archetype are semantic and interface properties, respectively.
Semantic properties relate to e.g. whether data elements are
unique or if duplicate entries are allowed, whereas interface
properties specify available access functions for the program-
mer to interact with the collection.

We propose eight preliminary groups of properties to help
model the Collection Skeletons in our prototype library. Prop-
erties belonging to the same group exhibit similar features or
a twofold symmetrical dichotomy. By combining the proper-
ties following proper rules, different data collections can be
defined. Table 1 presents the eight groups of properties, their
definitions, and the API parameters which are abbreviations
to the properties for convenient use, in our library. We will
discuss the API parameters in section 2.
Using these declarative abstractions for data collections,

it is straightforward to define a data collection by specifying
only the desired properties. We integrate the property-based
model with modern C++ programming practice, making
the learning curve for end users as smooth as possible. Our
implementation employs C++ template meta-programming,
in which a collection can be defined as:

Collection <T,P1,P2 ,...Pn ,(F...)>

where T is the elementary data type of the collection and
P1 to Pn are parameters from API column of Table 1. F...
are optional parameters that maybe specified by the user
when necessary, which we will later discuss in detail. Using
rule based combinations of properties, different data collec-
tions, including the standards collection ADTs from other
collection frameworks, can be defined.

SLE ’22, December 6–7, 2022, Auckland, New Zealand Li, et al.

Table 1. Groups of properties, their definitions and API usage

Semantic property Definitions API Parameters

Uniqueness 𝑣𝑎𝑙 (𝑥) ≠ 𝑣𝑎𝑙 (𝑦)∀𝑥, 𝑦 ∈ c for Unique;
otherwise for Duplicated

Unique
Dup

Circularity 𝑣𝑎𝑙 (𝑝𝑜𝑠 (𝑖′ + 𝑖)) = 𝑣𝑎𝑙 (𝑖)∀𝑖 ∈ c and 𝑖′ = |c | for Circular;
otherwise for non circular

Circ
Noncirc

Interface property Definitions API Parameters

Variability |c |= 𝑠𝑖𝑧𝑒 where 𝑠𝑖𝑧𝑒 is a constant, for Fixed;
Otherwise for Varieble

Fixed
Variable

Iterable
∃iterator to iterate elements in the collection with forward direction ;
otherwise for Non-iterable
∃reverse iterator to iterate elements in a reverse order for an iterable collection

Iterable
Noniter
Bi_Iterable

Accessibility

∃𝑎𝑡 (𝑖𝑥) = 𝑥,where 𝑖𝑥 ∀𝑖 ∈ [0, 𝑠𝑖𝑧𝑒 − 1] and
𝑖𝑥 is the corresponding index, for randomly access;
∃𝑎𝑡 (𝑘𝑒𝑦) and ℎ𝑎𝑠ℎ (), 𝑎𝑡 (𝑘𝑒𝑦) = 𝑥 = ℎ𝑎𝑠ℎ (𝑘𝑒𝑦) for key-value access;
∃𝑛𝑒𝑥𝑡 (𝑐𝑢𝑟) = 𝑐𝑢𝑟 + 1 where 𝑐𝑢𝑟 is current postion,
for an Iterable & Ordered collection

Rnd

Hashable
Seq

Splitability 𝑠𝑝𝑙𝑖𝑡𝐴𝑡 (𝑝𝑜𝑠 ((𝑥1), 𝑝𝑜𝑠 (𝑥2), ...𝑝𝑜𝑠 (𝑥𝑛)), 𝑥𝑛 ∈ c
𝑠𝑝𝑙𝑖𝑡𝐴𝑡 (𝑥1, 𝑥2, ...𝑥𝑛), 𝑥𝑛 ∈ c

Nonsplit,SplitN, Splitable

UnionFind 𝑢𝑛𝑖𝑜𝑛 () and 𝑓 𝑖𝑛𝑑 () operations on disjoint sets UnionFind
Hybrid property Definitions API Parameters

Order

∃𝑝𝑜𝑠 (𝑥) < 𝑝𝑜𝑠 (𝑦)∀𝑥, 𝑦 ∈ c for Ordered;
otherwise for Unordered
𝑝𝑜𝑝 (𝑥) ⪯ 𝑝𝑜𝑝 (𝑦) ⇒ 𝑝𝑢𝑡 (𝑦) ⪯ 𝑝𝑢𝑡 (𝑥) for Last-in-first-out;
𝑝𝑜𝑝 (𝑥) ⪯ 𝑝𝑜𝑝 (𝑦) ⇒ 𝑝𝑢𝑡 (𝑥) ⪯ 𝑝𝑢𝑡 (𝑦) for First-in-first-out;
𝑝𝑜𝑝 (𝑥) ⪯ 𝑝𝑜𝑝 (𝑦) ⇒ 𝑐𝑜𝑚𝑝 (𝑥) < 𝑐𝑜𝑚𝑝 (𝑦) for First-in-best-out
𝑥 < 𝑦 ⇒ 𝑝𝑜𝑠 (𝑥) < 𝑝𝑜𝑠 (𝑦)∀𝑥, 𝑦 ∈ c for Order by value

Ordered
Unordered
LIFO
FIFO
FO
OrderByValue

2.1 Semantic Properites
Semantic properties affect the behaviour of the methods with
which collections are accessed or modified. For our minimal
prototype library we have implemented the following se-
mantic properties:
Uniqueness A collection can contain duplicated elements if
there are two or more equal elements, otherwise it is unique
(e.g., a set contains unique values). In Table 1 , function val()
returns the value of an element.

Circularity A collection is circular if the last and first
positions are connected, otherwise it is non-circular.

2.2 Interface Properties
Interface properties specify certain functionality, usually in
form of access methods to be provided by the collection. In
this work we consider the following properties of this kind:
Variability A collection is variable if its size can be changed
after construction, e.g. through a function insert; otherwise
it is fixed, having an invariant size during its life cycle.
Iterable An iterable collection can be iterated (i.e., accessing
its elements one after the other) through an iterator.
Accessibility This property specifies how elements of a col-
lection can be retrieved. For random access a [] operator
with which the user can get and set (if const keyword is
not specified) is provided. For sequential access through an

iterator we provide a Seq property, and for associate ele-
ment accesses, we provide a hashable property by which an
element is accessed via [] operator on an associative key.
Splitability If an ordered and non-circular collection can
be split at some position or index to other parts, then it is a
splitable collection. This is encapsulated in the behaviour of
function splitAt().
UnionFind This property provides union and find opera-
tions, which operate on set-like collections and provide a
collection abstraction to disjoint sets.

2.3 Hybrid Properties
Certain properties are of hybrid nature, i.e. they both specify
access methods and also change the way operations behave
semantically. An example of such a hybrid property is order :
Order This property is an interface property as LIFO or FIFO
order provide pop/push and queue/deque operation pairs,
respectively. However, order is simultaneously a semantic
property as the specified order influences the behaviour of
the iterator next function. Iterator based traversals of the
collection will yield different traversal orders depending on
the specified order (insertion/extraction order, ordered by
value, LIFO, FIFO, unordered).

With Collection Skeletons, it is straightforward to define
a data collection only with the combinations of the desired
properties in a declaritive way. To integrate the Collection
Skeletons with modern C++ programming practice andmake

Collection Skeletons:
Declarative Abstractions for Data Collections SLE ’22, December 6–7, 2022, Auckland, New Zealand

the learning curve for end users as smooth as possible, we
implemented the API of the Collection Skeletons with C++
template meta programming, where a collection can be de-
fined by a series of template parameters.

3 Library Design Principles
Our prototype Collection Skeletons library consists of two
essential components: (i) A programming API that receives
properties as declarative abstractions, and that is imple-
mented based on C++ template meta programming, acting as
the front end of the programming model; (ii) A multi-staged
pattern matching based mapping mechanism between the
declarative abstractions and the concrete internal data struc-
tures, which are currently based on C++ STL, Boost collec-
tions and other data structure libraries.

3.1 Programming API
We use C++ template metaprogramming for the implementa-
tion of our Collection Skeletons library. However, unlike the
C++ STL, which also utilises template metaprogramming,
we do not expose this to the application programmer. We
have designed the API so that it supports the programmer
in filling the template class with properties as type param-
eters. Thus, the user only needs basic knowledge on C++
programming to use our API.

Figure 3 provides an overview of the Collection interface
as provided by our prototype library. Here we denote the
property parameters enclosed in the angle brackets as the
property list. In this API, the first type parameter T is the type
of the elementary data to be stored by the data collection.
Following T, P1,P2 to Pn are different properties of the desired
data collection. These parameters of properties can found in
the column API Parameters from Table 1.

A special case exists when the parameter Fixed is provided,
i.e. the requested collection is Fixed, an unsigned integer
constant must be provided through a non-type of namespace
size as the fixed size of the collection.

Variadic type parameters (F...) are optional type param-
eters that may need to be applied when declaring a data
collection, e.g., an OrderByValue data collection where the
user requests a collection ordered by a value as specified by a
user-defined comparison function. Such a user-defined com-
parison function can be passed as input through the variadic
type parameters F....
Table 2 summarises interface properties and their cor-

responding member functions. For convenience, we have
defined a set of default methods available to all collections,
which are described in Table 3.

Besides directly declaring the data collectionwith property
list, users can also introduce a type alias to the property-
based representation to simplify further usage such as,

using Collection <T,P1,P2 ,...Pn> = C1

Figure 3. Overview of the Collection interface

where C1 is a type alias. With the type alias, the user can
declare a data collection in the following program without
repeatedly writing down the same complex Collection type.
This would e.g. allow the user to introduce a set alias for a
collection with the properties of a set.

For ease of use, we assume in our prototype library that all
the data collections are by default Duplicated, Non-Circular,
Iterable, and Ordered unless explicitly specified otherwise.

3.2 Multi-staged Pattern Matching and Mapping
Algorithm

Selected combinations of properties need to be checked for
consistency, and mapped onto available concrete data struc-
tures for implementation. This is the purpose of a multi-
staged pattern matching algorithm described in this section.

With a list of properties as an input according to Figure 3,
our library employs multi-staged pattern matching on the
property list and eventually selects a concrete data structure
providing those properties. If none of the available imple-
mentation data structures satisfy the requested properties
the compilation will be interrupted with an error message.
When a combination of property parameters can be satisfied
by at least one concrete implementation, we call this com-
bination of properties eligible and the implementation data
structures become eligible candidates. An overview of this
process is shown in Figure 4.

Conceptually, this process works akin to a database query
– the user-provided input property list is transformed into
a query, and our library performs a lookup over available
implementation data structures and their provided properties
through pattern matching. If a query can be matched, i.e.
the input property list is eligible, we return a concrete data
structure candidate and resume compilation; otherwise, if the
requested properties are found to be internally inconsistent
or no suitable implementation data structure that satisfies all
of the requested properties can be found, compilation will
be interrupted with an error message.

More detail of the pattern matching process is provided in
algorithm 1. In fact, rather than returning suitable implemen-
tation data structures directly, we introduce another level
of indirection through a dispatcher. This is for situations
when more than one suitable implementation data structure
can be found. Implementation candidates are wrapped in an

SLE ’22, December 6–7, 2022, Auckland, New Zealand Li, et al.

Figure 4.Resolving Properties to Concrete Data Structure Implementations through aMutli-Staged PatternMatchingAlgorithm

Table 2. Interface properties and their corresponding member functions

Properties Guaranteed functions Explanations

Variability Variable void insert(Iter iter, T elem)
Insert elem at position iter of collection
Fixed or const collection can not be inserted elements after initialisation.
For Collections with different interface properties, insert will be extended.

Iterable Iterable
Iter begin()
Iter end()
Iter next(Iter iter)

begin() returns an iterator to the beginning of an iterable collection
end() returns an iterator to the end of an iterable collection
next() returns the (immediately)next iterator/element
of the current iterator(iter)

Bi-Iterable

Apart from begin(), end(), and next()
Iter prev(Iter iter)
Iter rbegin()
Iter rend()

prev() returns the (immediately)previous iterator/element
of the current iterator(iter)
rbegin() returns a reverse iterator to the beginning of an iterable collection
rend() returns a reverse iterator to the end of an iterable collection

Accessibility
Random Iter operator[](size_t i) Access the element through an index
Hashable Iter operator[](Key key) Access the hashed result through a key

Seq Iter next(Iter iter)
Access the next element based on current element
in an Iterable & Ordered Collection

Order
FIFO Iter extract()

void put(T elem)

First put one gets extracted first
LIFO Last put one gets extracted first
FO Extracting order defined by a function

UnionFind UnionFind void union(C<T> set)
C<T> find(T elem)

Perform union operations on disjoint sets. Find if elem
is in the disjoint sets and return the set that contains it

Splitability Splitable tuple<Iter> splitAt(Iter iter)
tuple<Iter> splitAt(T elem)

Split a collection at iter
Split a collection at elem

Table 3. Default member functions

Default methods Explanations
size_t size() Return the size of a collection
bool isEmpty() Check if a collection is empty, true for empty, otherwise not empty
Collection()
Collection(size_t size)
Collection(const Collection& c)

Default Constructor
Constructor by size
Copy constructor

Intermediate Class, which ultimately returns one of the eli-
gible implementations. Incidentally, this intermediate class
concept also provides us with a convenient way of provid-
ing extensibility to our Collection Skeletons framework as

new data structure implementations can be added conve-
niently without change of the programming model or any
user application code.

For example, a might user request a sequential accessible
collection as follows:

Collection <int , Seq > c

Collection Skeletons:
Declarative Abstractions for Data Collections SLE ’22, December 6–7, 2022, Auckland, New Zealand

Both a double-linked and single-linked list meet the re-
quirement. In fact, in our prototype library, there are three
concrete data structure candidates wrapped from std::list,
std::forward_list and boost:slist available, whichwould
sastisfy the requested property. The corresponding structure
of the relevant intermediate class is shown in Figure 5. This
class acts as a type alias for the three template classes asso-
ciated with Macros. With predefined macro configurations
passed through the function FindOptimal, a single concrete
data structure will be selected and returned.
In our current prototype we resolve the selection of the

implementation data structure through Macros and C++ tem-
plate meta programming at compile time, but this step could
be automated and even performed adaptively at runtime, e.g.
using the CollectionSwitch framework [10].

Intermediate Class

#ifdef Condition1

using type =

#elif Condition2

using type =

#elif Condition3

using type =

...

𝑤1

𝑤2

𝑤3

Figure 5. Example overview of an intermediate class

Algorithm 1: Property-based data collection deduc-
tion
Input :Properties 𝒫=𝑃1,𝑃2...𝑃𝑛 ,

Elementary data type 𝑇 ,
Other template arguments, (𝐹 ...)

Output :The implementation or error information
1 for 𝑒 ←− E do
2 if 𝒫 ≡ 𝑒 then
3 𝑅←− Dispatcher(𝑒,𝑇 , 𝐹 ...)

4 𝑅
′ ←− FindOptimal(𝑅)

5 return 𝑅
′

6 for 𝑒
′ ←− E′ do

7 if 𝒫 ≡ 𝑒 ′ then
8 𝑅←− Error (𝑒 ′)
9 return compilation error toString(𝑅)

10 return Combination toString(𝒫) not yet
supported

3.2.1 DetailedDiscussion of theMatchingAlgorithm.
The algorithm accepts the declarative properties as well as
the elementary data type and other optional types param-
eters as input. In algorithm 1, 𝒫 is the set of properties
parameters declared; 𝑇 is the elementary data type to be
stored in the data collection, and 𝐹 ... are optional type param-
eters that maybe requested by the user. From line 1 to line
5, pattern matching of the eligible combinations of property
parameters is performed, where E is the set of all eligible
patterns of eligible combinations. Each time a pattern 𝑒 is
checked against𝒫. This algorithm then decides whether a
pattern matches, i.e. a case has been found, through

∀𝑥 : 𝑥 ∈ 𝑒 ⇐⇒ 𝑥 ∈ 𝒫 =⇒ 𝒫 ≡ 𝑒
After a case has been found, function Dispatcher in line 3
returns an intermediate class 𝑅 based on the combination
𝑒 and type parameters 𝑇 , and 𝐹 (if any). 𝑅 stores all the in-
formation regarding the properties, types, type traits, and
Macros that can be used by function FindOptimal to help
deduct the final concrete data structure. 𝑅 stores templates
for many concrete data structures, and new data structures
can be integrated to it without much work. Thus, the col-
lection skeletons are flexible as one exact declaration can
map to different concrete data structures, and with function
FindOptimal we can get the optimal underlying data struc-
ture. If, however, no match has been found in line 1 to line
5, then the algorithm 1 will go to the next stage – pattern
matching for erroneous declarations.
Expected common user errors such as putting a pair of

twofold symmetrical dichotomy properties into the same prop-
erty list, make that declarations ineligible. We have encoded
the error combinations in E′ and if a match is found, it means
the input declaration cannot be resolved to a concrete data
structure, and then a function Error generates error infor-
mation based on the pattern and stores the error informa-
tion in an intermediate class for error usage, denoted as 𝑅
again. After that, a compilation error will be triggered with
some human-readable information generated by function
toString with 𝑅. After pattern matching at the error stage,
if neither a concrete data structure is returned nor compila-
tion error triggered during line 6 to line 9, that means the
combination of properties is eligible but no concrete data
structure could be found. For example, in our prototype we
have not yet support for a collection that is of fixed size,
ordered, and hashable. A compilation error will be triggered
with a message stating that the input properties are not sup-
ported.

3.3 Rules of Properties and API Design
We have deliberately kept the programming API simple and
user friendly, however, some rules are applied to prevent non-
deterministic behaviour at code generation time, or more
specifically during the stage of mapping to concrete data
structures.

SLE ’22, December 6–7, 2022, Auckland, New Zealand Li, et al.

3.3.1 Theproperty list is order-free. Sequences of prop-
erty parameters in the property list are order-free, for exam-
ple

Collection <T, P1, P2, P3>

works exactly as
Collection <T, P2, P3, P1>

where P1,P2, and P3 are different properties that together
with T form an effective combination. Any permutation on
properties P1, P2, and P3, will eventually resolve to the same
result, i.e. the same concrete data structure or the same error
message.

3.3.2 Mutually exclusive properties cannot co-exist
in a property list. Some properties are mutually exclusive,
e.g. twofold symmetrical dichotomy properties, where a prop-
erty list cannot have both at the same time. For example, a
collection cannot be Ordered and Unordered at the same time,
nor can a collection allow duplicates and unique elements at
the same time. For example, a collection declared as

Collection <int , Dup , Unique > c

is not permitted. As a result, if mutually exclusive properties
are declared in the property list, e.g. the above ineligible
declaration, compilation will terminate with an error mes-
sage. These mutually exclusive cases are encoded in the error
patterns as stated in line 6 to line 9 of algorithm 1.

3.3.3 No guarantee on algebraic operations for prop-
erties. Users might expect to perform algebraic operations
on properties or property lists. However, our library does
not provide this facility at this stage. It is the user’s responsi-
bility to ensure consistent use of collections when extending
functions or declaring their own functions that operate on
the collections. For example, given two collections,

Collection <T, P1, P2, P3, P4> c1;

and
Collection <T1, P5, P6, F> c2;

where both declarations are eligible, T and T1 are elemen-
tary data types, F is an optional template argument. A user
might want to define a merge function that merges the two
collections c1 and c2. At this stage we do not regulate the
resulting type of the merged collection if the original collec-
tions comprise different property lists. Eventually, we feel
the semantic effects of such operations on distinct collection
types should be resolved by the user who must specify the
intended behaviour of such an operation.

3.4 Implementation of the Pattern Matching
Algorithm

As is shown in subsection 3.2, after receiving the declarative
representation through the front end, the pattern matching
algorithm operates on the properties to determine the re-
sulting concrete data structure. We also implemented the

pattern matching algorithm based on C++ template and type
traits, thus no modification has been done on the compiler
itself, making the prototype library more flexible.
template <typename T, typename ... Ts>

struct contains: std:: disjunction <std::

is_same <T, Ts >...> {};

Listing 4. Check if type is contained in variadic type list

Listing 4 presents a template class that operates on type
parameters to decide if a given type T is contained in the
variadic type list F.... Thus, a pattern matching on the
type parameters can be implemented based on the helper
functions in Listing 4.
/*type selects */

template <typename ... Args >

using selects = typename std:: disjunction <

Args ...>:: type;

/*type when to decide the conditions */

template <bool V, typename T>

struct when {

static constexpr bool value = V;

using type = T;

};

Listing 5. Compile time structures for pattern matching

Figure 6. Grammar of pattern matching implementation

Figure 6 presents the grammar of the pattern matching
implementation. In Listing 5, selects and when are the im-
plementation of the basic pattern matching grammar - when
the case matches, the corresponding class, i.e. the intermedi-
ate class will be selected.
struct CollectionTypeDispatcher{

using type = selects <

when <contains <Rnd , F...>:: value && !

contains <Fixed , F...>::value ,

typename pRnd <T>:: type >,

when <contains <Seq , F...>:: value && !

contains <Rnd , F...>::value ,

typename pSeq <T>:: type >,

...

...

>

Collection Skeletons:
Declarative Abstractions for Data Collections SLE ’22, December 6–7, 2022, Auckland, New Zealand

}

Listing 6. Pattern Matching

Listing 6 shows some examples of the patterns and their
corresponding intermediate classes. In Listing 6, for example,
the first when expression, if the condition is true, i.e. Variadic
types pack contains Rnd and do not contains Fixed, then an
intermediate class pRnd will be returned as the result of the
pattern matching.
template <typename T>

struct pRnd{

#ifdef WRAPPERSSTL

using type = wvector;

#else

...

#endif

};

Listing 7. Intermediate Class

Listing 7 shows an example of the intermediate class,
which is similar to Figure 5 mentioned before. Similarly,
we implement the pattern matching for the incorrect com-
binations of properties in the same way except that error
messages are enclosed in their corresponding intermediate
classes. For the eligible combinations not yet supported by
our library, we exploit static_assert to interrupt the com-
pilation and return a message to the user as described in
algorithm 1.

The Collection Skeleton library is fully implemented with
C++ and operates at the compile stage, meaning it can be
flexible and efficient.

We draw on the C++ STL, Boost and other data structure
libraries for our pool of concrete data structure implementa-
tion. Through the provided wrapping mechanism it is trivial
to extend our library with additional implementations, whilst
introducing only minimal runtime overhead.

4 Evaluation
We evaluate our Collection Skeletons library against bench-
mark suites includingOlden[4] and other open-source projects.
We have manually rewritten these legacy applications to
make use of our Collection Skeletons in order enable us to
test our Collection Skeletons in real-world scenarios. For this
we measure any performance overhead introduced by our
novel abstractions in a set of before/after experiments.
For the purpose of this evaluation we have manually

rewritten the legacy benchmarks written in C, but have re-
placed the low-level user-defined data structures and their
access functions with their equivalent collections from our
framework. No other code rewriting has been performed
and the same input data have been used to facilitate a like-
for-like comparison. Details of the benchmarks can be found
in Table 4, where we have manually identified the original
data structures from the benchmarks and their properties

from the problem domain. With the extracted properties, we
have replaced the original data structures with the declar-
ative counterparts from our library. Column Replaced are
concrete data structures before wrapped and obtained by
manually checking the declaration and the pattern matching
rules. In column Replaced(Underneath), list, set, vector,
map, queue, stack, and priority_queue are from the C++
STL, circular list and disjoint_set are from the Boost
library.
We use Clang 12 and Clang++ 12 for compilation of the

benchmarks, along with the "-O2" compiler flags. Besides, we
enable C++ 17 compiling by setting "-std=c++17" for Clang++
12. Experiments have been run on an Intel NUC 10(Intel
Desktop), and 72-core Intel Gold 6154(Intel Server), and a
4-core Ampere Altra platform(Arm Server), respectively.

4.1 Experimental Results
4.1.1 Overall performance. Figure 7 presents the results
of the speedup for the 17 benchmarks. From Figure 7 we
can see that most of the replaced benchmarks have simi-
lar or better computational performance than the baseline,
meaning little-to-no overhead has been introduced by our
Collection Skeletons. Some of the replaced benchmarks have
much better performance than the baseline ones, suggesting
that for some benchmarks, by replacing the data structures
of the original benchmarks, the performance can be greatly
improved. For some benchmarks, the speedup is not substan-
tial, e.g. the replaced ising benchmark only ran 4% faster than
the baseline. Since ising benchmark is a small benchmark
and does not consist of complex structures, the speedup is
still important to be recognised. The average speedup of
the 17 benchmarks across the three architectures is between
2.57-2.93.
Although there are differences in speedup on the three

architectures, e.g., for joseph benchmark, the speedup on
the three architectures is 11.20, 16.37, and 10.36, the overall
results show that the replaced benchmark have similar or
better computational performance for almost every bench-
mark on the three architectures, which supports that the
library has introduced little-to-no overhead and can even
increase performance.

4.1.2 Implementation Flexibility. As mentioned in sec-
tion 3 a single collection with a property list can lead to more
than one concrete data structure as candidates. Here we have
selected those benchmarks where this is the case and we
have evaluated the computational performance for each of
the feasible concrete data structures. We have found that
benchmark treeadd, bisort, ising, set, libactor, tinn, shor, sim-
pleHash, mp3, lud, kmeans and mri-q can be implemented
using different concrete data structures from our library. As
the mapping and deduction process is transparent to the
user, there is no need to modify any user code, but we only
need to modify some compile-time macros to control the

SLE ’22, December 6–7, 2022, Auckland, New Zealand Li, et al.

Table 4. List of the benchmarks, their data structures, extracted properties and replaced implementations

Benchmark Source Original Data structures Extracted properties
from problem domain Replaced(Underneath)

treeadd Olden[4] balanced binary tree Split2 tree2
ising Github[7] linked list Seq list
set Rosseta[8] linked list Unique set
libactor Github[13] linked list Seq list
tinn Github[18] array Rnd vector

shor Github[23] linked list
array Rnd vector

simpleHash Github[16] linked list (of linked lists) Rnd,Seq vector(of lists)
mp3 Github[27] linked list Unique set
scheduler Github[19] min heap FO, OrderByValue priority queue

md5 Github[14] hashmap OrderByValue,
Hashable,Unordered map

bisort Olden[4] binary tree Split2 tree2
lud Rodinia[5] array Rnd vector
kmeans Rodinia[5] array Rnd vector
mri-q Parboil[25] array Rnd vector
joseph Github[3] circular linked list Circ, Seq circular list

infix Github[12] queue
stack

Noniter,FIFO
Noniter,LIFO

queue
stack

kruskal Geeksforgeeks[1] map and array UnionFind disjoint_set

0.
90

1.
00

1.
01

1.
01 1.
02 1.
04 1.

09

1.
21 1.

26

1.
38

0.
76

0.
99

1.
16

0.
86

1.
28

1.
00

1.
35

1.
07

1.
34 1.
36

0.
65

1.
00

1.
28

0.
90

0.
99

1.
00

1.
97

1.
15

1.
32

1.
52

mr
i-q

bis
ort mp

3
tin
n

md
5

isin
g lud

tre
ea
dd

km
ea
ns

kru
sk
al

0.75

1.00

1.25

1.50

2.00

1.00

2.00

Sp
ee

du
p

Benchmark

 Intel Desktop
 Intel Server
 Arm Server

(a)

1.
46

1.
88

2.
17 2.
29

6.
11

7.
65

11
.2
0

1.
38

4.
31

2.
78

1.
03

9.
22

1.
87

16
.3
7

1.
33

9.
26

2.
54

1.
34

11
.6
5

1.
58

10
.3
6

sim
ple
Ha
sh inf

ix

sc
he
du
ler sh

or se
t

lib
ac
tor

jos
ep
h

1.5

3

6

12

1

2

4

8

16

Sp
ee

du
p

Benchmark

 Intel Desktop
 Intel Server
 Arm Server

(b)

Figure 7. Speedup of the benchmarks on three platforms

behaviour of the function FindOptimal operating on inter-
mediate classes, to swap out the concrete implementations.
The experiments have been performed on the three platforms
following the same method and the experimental results are
shown in Table 5.
From Table 5, we can conclude that for different target

platforms, the optimal underneath implementations can be
different, e.g. slist from Boost library is the optimal data
structure on Intel the desktop while list from STL is the

optimal data structure on the Intel server. Furthermore, for
some benchmarks, e.g. treeadd and bisort, the default chosen
collection is a binary tree implemented through pointers,
which is the de facto standard way; however, array-based
binary tree has better speedup according to Table 5.

4.1.3 Performance influencing factors. The size of the
data collection, i.e. the number of elements stored in the col-
lection, can have an impact on its performance and different

Collection Skeletons:
Declarative Abstractions for Data Collections SLE ’22, December 6–7, 2022, Auckland, New Zealand

Table 5. Optimal implementations for selected benchmarks

Benchmark Intel Desktop Intel Server Arm Server
Optimal Speedup Optimal Speedup Optimal Speedup

treeadd array_tree 1.61 array_tree 1.09 array_tree 6.37
bisort array_tree 1.21 array_tree 1.33 array_tree 1.54
ising slist 1.08 list 1.00 list 1.00
set unordered_set 6.09 unordered_set 9.22 unordered_set 11.65

libactor list 7.65 list 1.87 list 1.58
tinn vector 1.01 vector 0.88 vector 0.9
shor vector 2.29 vector 1.23 vector 1.34

simpleHash forward_list 1.61 forward_list 1.44 forward_list 1.36
mp3 flat_set 1.01 set 1.16 set 1.28
lud vector 1.09 vector 1.34 vector 1.97

kmeans vector 1.26 vector 1.34 vector 1.32
mri-q vector 0.90 vector 0.76 vector 0.65

64K 128K 512K 1M 8M 16M 32M 64M

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee
du
p

Input size

 Intel Desktop
 Intel Server
 Arm Server

Figure 8. Speedup by array-based binary tree for bisort regarding the input size

architectures may offer different performance trade-offs. We
further explore this for the bisort benchmark in Figure 8. The
performance for our three target platforms is shown for up
to 16M elements, where we treat the original pointer-based
implementation(tree2) as a baseline to evaluate the relative
performance of an array-based binary tree(array_tree2).
For up to around 512k elements we observe a slowdown of
the array-based binary tree over the original pointer based
implementation, but for larger collections the array-based
implementations outperform the original implementation by
up to 60%. While we exercise in our experiments manual con-
trol over the final implementation through passing different

Macros to function FindOptimal, an automated technique
such as ”CollectionSwitch" [10] could be employed to auto-
mate this step.

5 Related Work
Abstract data types provide a mathematical model of data
types and are defined through semantics of data access func-
tions. In practice, there exist greatly different implementa-
tions of the ADTs as there are no universal definitions of
even the most commonly used ADTs.
Transparently replacing and dynamically switching data

collections has been proposed in several papers, e.g. [10,

SLE ’22, December 6–7, 2022, Auckland, New Zealand Li, et al.

11, 15, 28]. However, none of these works expose collection
properties to the user, but use quantitative runtime data
to select an optimal implementation for a specific runtime
scenario. These works are typically Java based.

In [20], collection libraries from 14 languages are reviewed.
In their work, the authors discuss properties of collections,
which has partly inspired our work.

In [2], a framework that uses Concern-Oriented Reuse
(CORE) to capture many different kinds of associations, their
properties, behaviour and various implementation solutions
within a reusable artifact has been proposed. Their work
has focused on software reuse, which also inspired our work
regarding portability.
C++ ”concepts" have been introduced in C++ 20, speci-

fying the requirements on template arguments which can
also be used to specify the properties of a template class
[26]. However, in contrast with our collection skeletons, C++
concepts require the end-user to have a deep understanding
of C++ meta programming, which is not the case for our
novel abstraction library.
To the best of our knowledge, no previous work has pro-

posed to classify properties of data collections based on their
semantics and interface functions, and attempted to develop
a truly declarative approach of providing the user with data
collections.

6 Summary & Conclusions
We have introduced a declarative approach to specifying
data collections by exposing fundamental collection proper-
ties to the programmer. We show that our property based
approach to collections does not introduce performance over-
head, but instead opens up the opportunity for performance
improvements gained through greater implementation flex-
ibility, which is hidden from the application programmer.
Benchmark applications rewritten to make use of our novel
Collection Skeletons show favourable performance charac-
teristics across different target platforms.

In our future work we will explore the interaction of our
Collection Skeletons and Algorithmic Skeletons, opening up
further performance benefits from parallelisation. We will
also explore avenues to make data structure selection more
adaptive to the target machine and application context, e.g.
through the use of machine learning methods for optimal
selection of an optimal implementation data structure at
runtime.

Acknowledgements
The authors would like to thank the anonymous review-
ers for their constructive suggestions and comments. They
would also like to thank Chris Vasiladiotis for his help with
the revision. This workwas supported by grant fromHuawei-
Edinburgh Joint Lab.

References
[1] Chirag Agrawal. 2021. kruskal disjoint. https://www.geeksforgeeks.

org/kruskals-minimum-spanning-tree-using-stl-in-c/.
[2] Céline Bensoussan, Matthias Schöttle, and Jörg Kienzle. 2016. Asso-

ciations in MDE: a concern-oriented, reusable solution. In European
Conference on Modelling Foundations and Applications. Springer, 121–
137. https://doi.org/10.1007/978-3-319-42061-5_8

[3] Manish Bhojasia. 2013. joseph. https:www.sanfoundry.com/c-
program-solve-josephus-problem-using-linked-list.

[4] Martin Christopher Carlisle. 1996. Olden: parallelizing programs with
dynamic data structures on distributed-memory machines. Princeton
University.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC). Ieee, 44–54. https:
//doi.org/10.1109/iiswc.2009.5306797

[6] Lin Chen, Di Wu, Wanwangying Ma, Yuming Zhou, Baowen Xu, and
Hareton Leung. 2020. How C++ templates are used for generic pro-
gramming: an empirical study on 50 open source systems. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29, 1
(2020), 1–49. https://doi.org/10.1145/3356579

[7] Chris. 2020. ising benchmark. https://github.com/compor/mischung-
suite/blob/master/programs/ising/data/original_source/ising.c.

[8] Rosseta Code Contributors. 2022. Rosetta Code — Rosetta Code,. https:
//rosettacode.org/wiki/Rosetta_Code [Online].

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2001. Introduction to Algorithms (2nd ed.). The MIT Press.

[10] Diego Costa and Artur Andrzejak. 2018. Collectionswitch: A frame-
work for efficient and dynamic collection selection. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization.
16–26. https://doi.org/10.1145/3168825

[11] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. 2017. Em-
pirical study of usage and performance of java collections. In Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering. 389–400. https://doi.org/10.1145/3030207.3030221

[12] Diego. 2021. infix to postfix. https://github.com/dlb04/infix-to-postfix.
[13] Jim Fisher. 2011. libactor. https://github.com/airplug/libactor.
[14] Damian Jarek. 2015. libactor. https://github.com/djarek/md5lamacz.
[15] Changhee Jung, Silvius Rus, Brian P Railing, Nathan Clark, and Santosh

Pande. 2011. Brainy: Effective selection of data structures. ACM
SIGPLAN Notices 46, 6 (2011), 86–97. https://doi.org/10.1145/2345156.
1993509

[16] Chris Lattner and Lauro Venancio. 2021. simple hash bench-
mark. https://github.com/llvm-mirror/test-suite/blob/master/
SingleSource/Benchmarks/Shootout/hash.c.

[17] Barbara Liskov and Stephen Zilles. 1974. Programming with Abstract
Data Types. In Proceedings of the ACM SIGPLAN Symposium on Very
High Level Languages (Santa Monica, California, USA). Association for
Computing Machinery, New York, NY, USA, 50–59. https://doi.org/
10.1145/800233.807045

[18] Gustav Louw. 2020. tinn. https://github.com/glouw/tinn.
[19] Jason Marcell. 2009. scheduler. https://github.com/jasmarc/scheduler.
[20] Stefan Marr and Benoit Daloze. 2018. Few versatile vs. many special-

ized collections: how to design a collection library for exploratory
programming?. In Conference Companion of the 2nd International Con-
ference on Art, Science, and Engineering of Programming. 135–143.
https://doi.org/10.1145/3191697.3214334

[21] Maurice Naftalin and PhilipWadler. 2006. Java Generics and Collections.
O’Reilly.

[22] Martin Odersky and Lex Spoon. 2019. The Architecture of Scala
Collections. https://docs.scala-lang.org/overviews/core/architecture-
of-scala-collections.html

[23] rafa32. 2017. shor. https://github.com/rafa32/Quantum-Shor.

https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-using-stl-in-c/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-using-stl-in-c/
https://doi.org/10.1007/978-3-319-42061-5_8
https:www.sanfoundry.com/c-program-solve-josephus-problem-using-linked-list
https:www.sanfoundry.com/c-program-solve-josephus-problem-using-linked-list
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1145/3356579
https://github.com/compor/mischung-suite/blob/master/programs/ising/data/original_source/ising.c
https://github.com/compor/mischung-suite/blob/master/programs/ising/data/original_source/ising.c
https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Rosetta_Code
https://doi.org/10.1145/3168825
https://doi.org/10.1145/3030207.3030221
https://github.com/dlb04/infix-to-postfix
https://github.com/airplug/libactor
https://github.com/djarek/md5lamacz
https://doi.org/10.1145/2345156.1993509
https://doi.org/10.1145/2345156.1993509
https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/hash.c
https://github.com/llvm-mirror/test-suite/blob/master/SingleSource/Benchmarks/Shootout/hash.c
https://doi.org/10.1145/800233.807045
https://doi.org/10.1145/800233.807045
https://github.com/glouw/tinn
https://github.com/jasmarc/scheduler
https://doi.org/10.1145/3191697.3214334
https://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html
https://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html
https://github.com/rafa32/Quantum-Shor

Collection Skeletons:
Declarative Abstractions for Data Collections SLE ’22, December 6–7, 2022, Auckland, New Zealand

[24] Alexander Stepanov and Lee Meng. 1995. The Standard Template
Library. Technical Report HPL-95-11(R.1). HP Laboratories.

[25] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing 127 (2012), 27.

[26] Peter Thoman, Florian Tischler, Philip Salzmann, and Thomas
Fahringer. 2022. The Celerity High-level API: C++ 20 for Acceler-
ator Clusters. International Journal of Parallel Programming (2022),
1–19. https://doi.org/10.1007/s10766-022-00731-8

[27] Timmy Whelan. 2002. mp3. https://sourceforge.net/projects/
mp3reorg/files/mp3reorg/.

[28] Guoqing Xu. 2013. Coco: Sound and adaptive replacement of java
collections. In European Conference on Object-Oriented Programming.
Springer, 1–26. https://doi.org/10.1007/978-3-642-39038-8_1

https://doi.org/10.1007/s10766-022-00731-8
https://sourceforge.net/projects/mp3reorg/files/mp3reorg/
https://sourceforge.net/projects/mp3reorg/files/mp3reorg/
https://doi.org/10.1007/978-3-642-39038-8_1

	Abstract
	1 Introduction
	1.1 Motivating Example

	2 Collection Skeletons
	2.1 Semantic Properites
	2.2 Interface Properties
	2.3 Hybrid Properties

	3 Library Design Principles
	3.1 Programming API
	3.2 Multi-staged Pattern Matching and Mapping Algorithm
	3.3 Rules of Properties and API Design
	3.4 Implementation of the Pattern Matching Algorithm

	4 Evaluation
	4.1 Experimental Results

	5 Related Work
	6 Summary & Conclusions
	References

