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The smart grid, regarded as the complex cyber-physical ecosystem of infrastructures, orchestrates advanced
communication, computation, and control technologies to interact with the physical environment. Due to
the high rewards that threats to the grid can realize, adversaries can mount complex cyber-attacks such as
advanced persistent threats-based and coordinated attacks to cause operational malfunctions and power
outages in the worst scenarios: The latter of which was reflected in the Ukrainian power grid attack. Despite
widespread research on smart grid security, the impact of targeted attacks on control and power systems is
anecdotal. This paper reviews the smart grid security from collaborative factors, emphasizing the situational
awareness. Specifically, we propose a threat modeling framework and review the nature of cyber-physical
attacks to understand their characteristics and impacts on the smart grid’s control and physical systems. We
examine the existing threats detection and defense capabilities, such as intrusion detection systems, moving
target defense, and co-simulation techniques, along with discussing the impact of attacks through situational
awareness and power system metrics. We discuss the human factor aspects for power system operators in
analyzing the impacts of cyber-attacks. Finally, we investigate the research challenges with key research gaps
to shed light on future research directions.
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1 INTRODUCTION

Smart Grid (SG) networks, as a part of Critical National Infrastructure (CNI), are deemed to be the
next evolutionary step of reliable and efficient power delivery networks [96]. Moreover, SG networks
have become an epitome of Industrial Revolution 4.0 (a.k.a. Industry 4.0), which has launched the
world into physical/virtual reality by introducing cyber-Physical Systems (CPSs), physical networks,
and cyber network architecture to control various processes efficiently [27]. Industry 4.0 is known
to optimize the computerization of Industry 3.0, and it is formed by combing Information and
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2 M.N.Nafees, et al.

Communication Technology (ICT) and Operational Technology (OT) for monitoring and control
processes, maintenance and predicting failures, and many other functions [115]. Compared to other
industry 4.0 environments such as the oil and gas industry, where implementing and leveraging
the real-time IT-OT paradigm is falling behind since operations of most oil and gas companies
are cross borders, and it is challenging to implement the industry 4.0 initiatives. However, SG
networks effectively employ advanced ICTs, Industrial Internet of Things (IIoT), big data analytics,
and Intelligent information processing along with OT to allow utilities to monitor and control
power generation, transmission, and distribution processes more efficiently, reliably, and securely.

IT systems in SG networks include data servers, communication technologies, and cloud infras-
tructure. OT systems are defined as computing systems to monitor, control, and manage physical
equipment and industrial operations. Such systems in SG infrastructure include Supervisory Control
and Data Acquisition (SCADA): computing system used for monitoring and controlling assets over
large geographical areas, Programmable Logic Controllers (PLCs)/Remote Terminal Units (RTUs):
industrial computers to execute simple logic processes, Phasor Measurement Units (PMUs): devices
used to estimate phase angle and magnitude of the voltage or current in the SG, and Actuators:
components that are responsible for driving the actual physical mechanism based on commands
from controllers such as PLCs.

Despite the significance of the SG’s cybersecurity, much of what is known about the complex
cyber-attacks against the SG is anecdotal. The attacks such as Advanced Persistent Threat (APT)
attacks and coordinated attacks, the brand of attacks used in Stuxnet and Ukrainian power grid,
challenge the SG’s security despite the presence of Intrusion Detection Systems (IDSs). Stuxnet,
which used zero-day exploits, covertly installed the malicious program onto the system to sabotage
the nuclear development program of Iran [107]. On the other hand, attackers performed a coor-
dinated cyber-attack on the Ukrainian power grid, which resulted in a massive power outage for
several hours affecting approximately 225,000 customers in 2015 [41]. Power was lost for six hours,
and the SG suffered a 130 MW load loss.

Cyber-attacks targeted at the SG’s control operations are commonly referred to as cyber-physical
attacks or OT attacks; the former is the major subset of the latter, and, as such, the terms can
be used interchangeably. SG cyber-attacks may also disrupt the Confendetialty, Integrity, and
Availability (CIA) triad of control systems: The CIA triad is an essential security goal of the SG in a
communication network, protection, management, and operation of the energy system [25]. In this
context, confidentiality attacks do not aim to modify the transmitted information; however, these
attacks aim to obtain the desired information. For instance, an attacker can mount an eavesdropping
attack to sniff wireless transmission between nodes on a communication network in the SG. To this
end, data integrity attacks aim to modify the legitimate processes and content of original data in the
SG. Some possible examples of such attacks are FDI, replay, message delay, and Man-in-the-Middle
(MITM) attacks, where an attacker may alter voltage and power flow sensors measurements, billing
data, and control commands to disable the operating states of the SG. Similarly, an availability
attack may not only modify the information; however, such attacks aim to destabilize authorized
access in the SG. Denial of Service (DoS), time-delay, and jamming attacks are the few common
examples of such attacks in the SG [35].

The above threats and cyber-attacks emphasize and stipulate the importance of effective detection
and monitoring system for the SG. Moroever, understanding the impact of such attacks and threats
is critical. Creating a high-fidelity model of the SG entails significant resources, which can be beyond
the reach of most, if not all, cyber-security researchers and experts. Therefore, co-simulation tools
can provide the experimental platform to analyze the impact and implications of complex multistage
attacks on the cyber and operational domain of the SG. Moreover, such co-simulation tools can
effectively provide essential training to power system operators to enhance Situational Awareness
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(SA) by demonstrating the impact of cyber-attacks. In this direction, SA includes being cognizant of
the current state and identifying any potential changes to that state [5]. In this context, the power
system operators should be able to discriminate disturbances between normal power operations and
cyber-attack-led changes. Cyber-physical situational awareness metrics need to be systematically
explored in conjunction with power system metrics to enhance SA. Metrics are critical in measuring
the overall security of the SGs’ SA, as also shown in [85].

1.1 Existing Surveys

As a popular area due to its critical significance, several studies (see, e.g., [57, 61, 67, 70, 124, 130])
have been dedicated to reviewing SG security from different perspectives. Surveys that focus on
SG cyber-attacks and detection have been presented in [22, 35, 57, 124]. To this end, Liang et al.
reviewed FDI attacks against modern power systems in which the authors discussed the physical
and economic impacts of successful attacks on the SG [57]. As an early effort to review FDI attacks,
they did not consider a broad range of cyber-physical attacks and did not cover other aspects of SG
security. Similarly, in [22], the authors specifically considered coordinated data injection attacks
and discussed defense in terms of secure PMU placement and distributed attack detection. In 2021,
the authors provided a good summary of cyber-physical attacks in terms of their target components
in the SG and provided several defenses, including watermarking and data-driven approaches [124].
In 2022, the authors analyzed the methods, tactics, and tools that attackers employ to perform
reconnaissance activities in the APT-like attacks [92]. The work provided a brief overview of the
coordinated power grid attack and linked the adversarial reconnaissance as part of complex attacks;
however, the SG security was not the scope of the paper.

Various surveys have specifically focused on the detection of cyber-attacks in the SG [32, 61,
63, 73, 87]. In 2021, Liu et al. Provided a deep analysis of rule learning techniques concerning
cyber-attack detection and their applications in IDS, emphasizing the potential of artificial neural
networks for rule induction in the SG [61]. In [63], the authors particularly focused on anomaly
detection using deep learning-based techniques for cyber-physical systems, including the SG.
The work provided a detailed taxonomy in terms of anomaly types, implementation strategies
concerning the deep learning model, and evaluation metrics. In [87], Radoglou-Grammatikis et el.
provided a comprehensive analysis of 36 Intrusion Detection and Prevention Systems (IDPs). A
survey on the detection algorithm, particularly for FDI attacks, is presented in [73]. The authors
provided a summary of model-based and data-driven algorithms to detect FDI attacks in the SG,
emphasizing the pros and cons of these algorithms. However, the work specifically considered the
detection of FDI attacks only.

In 2022, the authors discussed new findings and development regarding SG security issues and
privacy breaches [70]. In [130], a comprehensive overview of the cyber-physical energy system
is provided, in which the authors demonstrated and leveraged threat modeling methodology to
evaluate system performance under adverse scenarios while evaluating the system performance
using specific metrics. In [25], potential vulnerabilities in SG are investigated along with classifying
cyber-attacks based on confidentiality, integrity, availability, and accountability. The impact of FDI
and jamming attacks are surveyed by conducting experiments using co-simulation tools in [53]. In
this context, the authors reviewed various co-simulation tool and their characteristics applicable to
SG research. However, SG security was not the scope of the work.

In 2022, the authors in [5] provided a comprehensive review of cyber SA systems, emphasizing
key design principles, framework, classifications, data collection, analysis of the techniques, and
evaluation methods. Nevertheless, the review of the SA framework did not specifically cover SG
security. Moreover, the works [23] and [85] reviewed the application of SA technologies for SG
and system security metrics, respectively. Resilience metrics for power systems are reviewed in
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Table 1. Comparison with Existing Review Works

Complex
attack SG cyber- Co- CPSA and Ps
Ref. character- physical IDS . . . . Year
istics (e.g., attacks simulation metrics metrics
APT)
[70] ND % v/ ND LD ND 2022
[61] ND LD 7 ND LD ND 2021
[5] LD ND v ND v ND 2022
[67] ND ND v/ ND ND ND 2021
[130] ND % LD LD LD v 2021
[25] ND v v ND ND ND 2018
[92] % ND LD ND ND ND 2022
[32] ND % 7/ ND 7/ ND 2018
[124] LD % 7 ND LD ND 2021
63 ND v v ND LD ND 2021
13 ND LD ND ND ND v 2020
53 ND LD ND v ND ND 2019
73 LD v v ND LD ND 2019
85 ND ND LD ND v ND 2016
22 v v v ND ND ND 2012
78 ND v v ND ND ND 2020
87 LD v v ND LD ND 2019
57 ND v v ND ND ND 2016
88 ND ND ND ND ND v 2020
35 v v LD ND LD ND 2020
Ours v v 4 v v 2022
IDS: Intrusion detection system; CPSA: Cyber-physical situational awareness; PS: Power system; v - Detailed discussion; LD ~ Limited discussion; ND — No
discussion

[78] and [13]. Bhusal et el. [13] provided a critical review of power system resilience metrics
and evaluation methods. The survey also includes discussions on the universally accepted and
standardized definitions of metrics. However, the cyber-security of the SG was not the focus of the
survey paper.

1.2 Comparison with Our Survey

Despite the fact that SG security has become a central research topic for some time and previous
reviews have their own advantages, there are many scattered security aspects tailored for the
particular application domain, and a systematic organization of these individual aspects from an
SA perspective is missing. For example, some of the works presented in [57] and [22] focused
on reviewing the FDI and coordinated attacks, respectively. In contrast, our survey provides an
in-depth analysis of complex attack characteristics and all major attack types that fit with the
nature of SGs. In [124], cyber-physical attacks against the SG are discussed in terms of their target
components, but cyber-physical SA and power system metrics were not discussed from the attack
detection perspective. Other works [61, 63, 73] focused on reviewing the cyber-attack detection
techniques, while the other aspects of the SG security were not the scope of these papers. In [130],
threat modeling was used to evaluate system performance using metrics; however, complex attack
characteristics and SA were not the scopes of the work. In [5] and [85], the authors discussed the
cyber SA framework and system metrics, respectively. However, SG security was not the scope of
these works. To the best of our knowledge, our work is the first contribution that studies the aspects
of SG security from an SA perspective involving power system and security metrics, which differs
from the aforementioned surveys. Table 1 provides a comparison between the existing survey
papers and our paper in terms of the main covered areas and publication year.

1.3 Our Contributions

We believe that SG security entails recognizing the breadth of collaborative factors, including
SA-based dimensions that contribute to the overall cyber-physical security of the SG. Specifically,
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we need to answer the following research questions: (1) how can existing SG security be viewed in
terms of the threat models from the attackers’ perspective? (2) What are the complex cyber-attack
characteristics and types of existing cyber-physical attacks, along with the impacts of such attacks?
(3) What are the existing types of detection approaches, co-simulation, and visualization tools?
How can existing detection methods be categorized in terms of the performance evaluation from
the existing literature? (4) What key cyber-physical SA and power system metrics can be utilized to
measure the SG security state (e.g., SA for security decision-making)? (5) What are the challenges,
key research gaps, and future research directions for the SA-based cyber security of the SG?

Consequently, after recognizing a set of ways to motivate the understanding of the research
questions, we have chosen to review the SG security by simultaneously considering multiple aspects.
Therefore, this paper contributes to the literature by providing a detailed review of the SG security
landscape from multiple factors and dimensions, highlighting overall SA. The main contributions
are centered on answering the aforementioned research questions. This new security perspective
that combines power system metrics with other security aspects provides the Security Operation
Center (SOC) and power system operators with intuitive SA to respond to SG security threats. In
this sense, our work makes the following contributions:

e A comprehensive review of the nature of complex cyber-attacks: We have provided
an overview of the existing threat models and proposed a threat modeling framework,
specifically tailored for the SG, which is comprised of three parts, the adversary model, the
asset/vulnerability model, and the attack model. We then provided an in-depth analysis
of complex attack characteristics such as APT attacks, coordinated attacks, and cascading
attacks against the SG. More specifically, we discussed potential tactics and techniques in
the APT attacks, specifically tailored for the SG. By doing this, we discussed different attack
types that fit with the nature of the SG networks. We also revisited techniques and tactics
commonly used by the attackers to identify current trends and evaluate the impacts of these
attacks on critical operations.

e Analyzing Detection and Monitoring Capabilities: We have reviewed and detailed the
taxonomy of IDS and threat detection techniques against advanced cyber-attacks with recent
literature. To this end, we have reviewed the existing Machine Learning (ML), Deep Learning
(DL), and Federated Learning (FL) based techniques for cyber-attack detection in the SG.
Moreover, we have also discussed other detection and defensive techniques such as Moving
Target Defense (MTD). We revisited the simulation and visualization tools and techniques
employed in the SG, identified their limitations, and supported applicability (e.g., real-time)
to reflect on their effectiveness in real-world settings. In addition, we also discussed the role
and significance of the Security Operation Center (SOC) in the SG.

e Cyber-Physical Situational Awareness: We have provided an overview of the significance
of Situational Awareness (SA) and provided insights into the phases of SA such as situation
perception, comprehension, and projection. We have identified cyber-physical SA metrics
for the system operators to improve their decision-making capabilities. We then analyzed
cyber and power system metrics separately and discussed the importance of human factor
and awareness training in noticing the footprint of attacks in the SG.

e Challenges, key gaps, and future research directions: Finally, we have reflected on
identifying current research challenges and key gaps in line with our work’s scope. We then
highlighted the key areas of research where more work is needed as future research directions
to address the cyber-security issues of the SG.
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1.4 Paper Organization

Section 2 provides an in-depth discussion on the nature of cyber-attack. We discuss the recent
threat models, explain the attack characterization, review various cyber-physical attack types along
with their impacts, and provide specific attack classifications relevant to the nature of SG. Section 3
provides a survey of IDS, discusses the signification of Security Operation Center (SOC) monitoring
and visualization tools, and reviews co-simulation tools and techniques in SG. Section 4 discusses
cyber-physical situational awareness, power system metrics, human factors, and SA training needs.
Section 5 highlights the research challenges, key gaps, and future directions. Finally, we provide
the conclusion in section 6.

2 NATURE OF CYBER-ATTACKS

This section first explores the recent threat models to understand the possible combination of threat
stages. We then propose a threat model specifically tailored for the SG. We discuss the in-depth
analysis of complex attack characteristics such as APT, coordinated, and cascading attacks against
the SG. Finally, we discuss different attack types that fit with the nature of the SG networks.

2.1 Threat Models

Threat modeling is vital in discovering potential vulnerabilities in SG infrastructure. The primary
aim of threat modeling is to identify, classify and describe threats to highlight a campaign of attacks
or attackers. However, SG comprises multiple layers and assets; therefore, modeling all possible
scenarios can be challenging as it entails exhaustive resources and human effort.

STRIDE. Various threat modeling approaches have been proposed and adopted to understand
the nature of cyber-attack scenarios. For example, STRIDE (Spoofing, Tampering, Repudiation,
Denial of Service, and Elevation of Privilege) is a well-established threat modeling framework
for the security assessment of the infrastructure [45]. STRIDE mainly uses data flow diagrams to
map system threats to the corresponding vulnerable system asset to address security threats to
integrity, confidentiality, availability, authentication, authorization, and nonrepudiation. In [38],
the authors use the STRIDE model to create a threat model of a digital secondary substation
and its communication with the control center. However, it primarily addresses general types of
threats; therefore, to understand threat severity from the perspective of different components’
vulnerabilities and additional attack vectors, threat modeling needs to be addressed from multiple
perspectives.

MITRE ATT&CK. In 2020, MITRE corporation [6] launched the ATT&CK framework for ICS to
describe tactics, techniques, and procedures an attacker could use to compromise an infrastructure
stealthily. ATT&CK for ICS gathers threat intelligence from various sources such as enterprise
networks to ICS networks, leveraging threat intelligence to incorporate into the ICS system and field
devices such as PLCs, IEDs, and RTUs.Specifically, ATT&CK for ICS covers four primary categories:
(1) assets, (2) functional level, (3) tactics, and (4) techniques. To this end, assets include systems such
as engineering workstations, control servers, and HMI. Whereas functional level corresponds to
the Purdue architecture; for example, level 0 includes physical devices (e.g., sensors and actuators),
and level 2 includes SCADA, engineering workstations, and Human-Machine Interface (HMI). The
last two categories of the framework, tactics and techniques, refer to an attacker’s objective and
the activities an attacker employs to achieve his goal. In [128], MITRE ATT&CK is extended to
develop threat modeling against social-collective attacks. In this context, adversary behavior is
reflected to represent social, cyber, and physical domains of the SG, while the motivation of the
work is to demonstrate the propagation of the attack from the social-cyber interfaces to physical
system malfunctions.
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Table 2. SG Threat Model

Adversary Model

Component/Detail Description
Threat actors State-sponsored actors, terrorists, cybercriminals, hacktivists, cyber fighters, disgruntled employees
Attacker motivation Ransomware, competitor discrediting, cyberwarfare, economic gain, terrorism/political

Strong knowledge (operational information of cyber system and Jacobian measurement matrix of
Knowledge power system), limited knowledge (partial knowledge of network and system), zero-knowledge

(Blackbox attack)
Access Physical access, remote access, close proximity access
Resources Substantial privileges, limited privileges

Asset/Vulnerability Model

Component/Detail Asset/vulnerability

Sensors: insecure input validation [71]; Relays: buffer overflow [103]; Circuit Breakers: false autho-
Electrical assets rization and tripping [39]; ADC: malicious sampling frequency and range [14]; transmission lines:

physical attacks

PLCs: malicious firmware update and unauthorized command line access [30]; IEDs: time synchro-
Control system and wide-area monitoring con- | nization spoofing [104]; RTUs: weak protection mechanism [102]; HMI: vulnerable input/output
trol assets values manipulation [25]; Gateway: vulerable to protocol translation attack [10]; PMUs: vulnerable
to GPS spoofing [126]

Routers: vulnerable to various communication attacks, such as remote access and configuration

ICT assets settings; Switches: insecure authentication; Historian servers: buffer overflow vulnerability [14]
Modbus: vulnerable to integrity attacks [25]; DNP3: vulnerable scanning and packet modification
attacks [25] ; ICCP: vulnerable to integrity violation, interception and alteration [89]; GOOSE:

SG communication protocols vulnerable to integrity attacks [80, 122]; MMS: vulnerable to DoS attack, SMV: non-routable and non-
blocking; Profibus: lacks authentication and authorization controls; HART: vulnerable to integrity
attack
State estimation: injection/integrity attacks; AGC: malicious command injection and integrity attacks;

Processes and applications LFC: injection and scale attacks; UFLS: injection/integrity attacks; wide-area frequency control:
integrity attacks

Status Circuit breaker status, power factor, MW, current, voltage, geolocation status

Persons Power system operators, network engineers, administrators, developers, SCOs — vulnerable to social
engineering attacks

Attack Model

Component/Detail Description

Watering-hole, exploit internet-facing and remote access software, removable media, social engineer-

Initial access . S >
ing, supply chain, wireless compromise

Attack premise Attacks on cyber domain, invasive attacks, non-invasive attacks
Exploitation of vulnerabilities in any critical assets, processes, and communication protocols to
Exploit vulnerability mounts malicious threats. For example, if an adversary modifies PLC’s ladder logic, it can mount

direct threats to control process security

Cyber-attacks (Sinkhole, sybil, wireless compromise, MITM), physical attack (line cuts, damage
equipment), cyber-physical attack (DoS, control logic modification, modify module firmware)
Probability of attack propagation in any of the given domains - Electrical assets, control system
assets, ICT assets, SG communication protocols

Techniques/tools for lateral movement; for example, default credentials, socket duplication and lateral
tool transfer

Attack type

Attack propagation

Lateral movement

Attack frequency Iterative attacks, non-iterative attacks
Outages, DoS, cascading effect of failures, control process loops malfunctions, irreparable damage to
Attack impact the expensive equipment and generators, falsify operator interface and monitoring, disrupt real-time

data, historical data, and alarming

HMI: Human-Machine Interface, MUs: Merging Units, DNP3: Distributed Network Protocol 3, ICCP: Inter-Control Center Communications Protocol, GOOSE:
Generic Substation Events, MMS: Manufacturing Message Specification, SMV: Sampled Measured Value, LFC: Load Frequency Control, AGC: Automatic Generation
Control, UFLS: Under Frequency Load Shedding

Cyber Kill Chain. Another popular threat model framework is the "kill chain," which was
initially used as a military concept to understand the structure of the attack in the various phases
of the attack lifecycle. In this direction, the kill chain is defined as reconnaissance, weaponization,
delivery, exploitation, installation, command and control, and actions on objectives. The kill chain
can provide a holistic view of the attack patterns and phases, and it also includes mapping the tactics,
techniques, and tools used to mount attacks [5]. Lockheed Martin constructed the evolution version
of the kill chain known as the Lockheed Martin Intelligence-Driven Defense model (LMIDDM). The
Cyber Kill Chain framework is a component of LMIDDM that aims to increase the threat modeling
framework’s situational awareness and methodology maturity.

Proposed Threat Model for SG. There is no perfect method that can fulfill all the essential
criteria for infrastructure security; some threat models are focused on assets, others on adversaries,
some methods prioritize risk, and many others are tailored for IT systems. Therefore, we recommend
developing a holistic threat modeling that integrates both the IT and OT perspectives of the SG and
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8 M.N.Nafees, et al.

considers the business impact of the failure of physical components. The proposed threat modeling
framework in this manuscript incorporates the elements of various threat models in which the
MITRE ATT&CK knowledge base [9], NIST electric utility guidelines [68], and European Union
Agency for Cybersecurity (ENISA) threat landscape [105] are used as foundations specifically
tailored for the SG. The threat model is designed from an attacker’s point of view; understanding
the adversary model and types of attacks, processes, and the stages involved, greatly benefits the
defenders to better defend against complex cyber-physical attacks. Towards this end, the model
incorporates an adversary, an asset/vulnerability, and an attack model. We discuss the mitigation in
terms of detecting cyber-physical attacks, incorporating useful ICT and power system metrics, and
raising situational awareness in other Sections of this manuscript. Table 2 presents the proposed
threat modeling framework for the SG.

2.2 Characteristics of Attacks

In this subsection, we explore the characteristics of cyber-attacks to enhance the understanding
of challenges to SG security. Towards this end, we utilize the MITRE ATT&CK and the cyber kill
chain threat modeling approach to explain the stages of cyber-attacks.

2.2.1 Advanced Persistent Threat (APT) Attack. Advanced Persistent Threat (APT) is a dangerous
category of complex cyber-attacks against the SG infrastructure, and it is characterized by the
combination of multiple attack components [69]. APTs are often achieved by state-sponsored threat
actors that are well-funded, and they usually have significant resources to plan and execute the
attack on the SG’s infrastructure with an agenda of disrupting power operations at a large scale.
The initial infiltration techniques used by the attackers focus on specific targets, and the attack is
carried out surreptitiously. While some techniques used to establish a foothold are common, diverse
types of new stealthy penetration tools and malware are mainly utilized for the aforementioned
purpose. In this paper, we characterize stages of the APT attack based on Lockheed Martin’s cyber
kill chain [7] and MITRE ATT&CK framework [6] as these models are more relevant to the SG
infrastructure. We divide the attack into six stages, and we explain the goal of each stage.

Stage 1: Reconnaissance — The first stage in APT against the SG entails understanding and learning
about the target design and entry points. The threat actors employ various tactics to collect enough
information before moving to initial access to the system [92]. Adversaries aim to obtain technical
information such as SG topology and control system capabilities as well as information about
operator personnel during the reconnaissance phase. In [44], Keliris et al. demonstrate the feasibility
of collecting vital information of the power system, including its critical locations, by using the
publicly available Open-Source Intelligence (OSINT) datasets. In addition, the web-based search
engine "Shodan" can also provide essential information about the SG’s discoverable components
connected to the internet.

Stage 2: Weaponization — Adversaries create a malicious "remote" access malware tailored to
a specific vulnerability to infiltrate the system [98]. In some instances, adversaries may inject
malicious codes into the firmware of critical devices by performing supply chain attacks. For
instance, attackers may gain access to devices such as PLCs, smart meters, and sensors during the
supply chain process, thereafter, a malicious section of code can be inserted into the firmware of
these devices in a reliable manner. Other potential methods of implanting malware include emails
with infected attachments, the use of watering-hole domains, and injecting malware in removable
media such as USB.

Stage 3: Delivery — During this phase of APT, attackers aim to deliver their created malware
to the process control systems of the SG. Methods such as spear-phishing emails, spear-phishing
via service, watering-hole attacks, social media interactions, supply chain, and removable media
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Table 3. APT Tactics and Techniques for the SG

Reconnaissance
Tactic Technique/Tools Description
Attackers can obtain essential information from publicly available
resources such as Open Source Intelligence (OSINT) datasets
Adversaries may use “Shodan” search engine to identify SG’s
Utilize web-based search engine “Shodan” discoverable components connected to the internet to probe the
SCADA system for weaknesses
Attackers may use ICS-CERT advisories to search for vulnerabili-
ties in SG components
Understanding supply chains of SG’s field devices and other com-
Identify supply chains ponents may provide adversaries with higher chances to exploit
technology
Acquiring firmware versions of PLCs can help adversaries to test
and validate their malicious codes on similar firmware versions
before launching an actual attack
The attackers may masquerade as an internal employee to attempt
Social engineering for technical information to trick an actual employee to divulge technical information about
SG’s architecture
Job postings may give out information about the gaps or weak-
nesses in the skillset of any particular site
Open-source information of SG’s employees can be obtained by
Social media exploration adversaries via Facebook, Twitter, Instagram, etc. This can make
them potential target to social engineering attacks.
Adversaries may attempt to identify virtual groups of SG’s em-

Obtain OSINT datasets for SG

Technical intelligence gathering

Search vulnerabilities from ICS-CERT

Determine firmware versions of the devices
such as IEDs and PLCs

Identify targeted SG’s job postings

Employees information gathering

Identify virtual groups ployees and may attempt to join it using social engineering tech-
niques
‘Weaponization
Tactic Technique/Tools Description

An adversary may maliciously program the SG components dur-
ing the manufacturing process

Malware can be embedded as an attachment to emails e.g., MS
word doc with macros

Attackers may plan to implant a malware in the websites expected
to be visited by utility employees

Supply chain compromise

Malware Implant Email attachment

Use of watering-hole domains

Injecting malware in removable media USB can be used to transfer malware
Delivery
Tactic Technique/Tools Description
Spear-phishing Adversaries may send spear-phishing emails with a malicious
attachment

Social engineering Attackers may masquerade as third-party vendors and send emails

Spear-nhishing vi - t na
pear-phishing via service with a malicious attachment

Social media interaction Malicious attachments can be sent using social media platforms
Supply chain and removable media P.lanne.d delivery manipulation or trusted rela- Insi‘der en.lploye? can be used by an adversary to install field
tionship devices with malicious firmware
Exploitation and Installation
Tactic Technique/Tools Description
Exploitation for credential access Internal spear-phishing Attackers may use internal spear-phishing technique to gain ac-

cess to other user accounts
Valid accounts can be used by threat actors to gain access to

Remote services SMB/Windows admin shares .
remote connections

Zero-day exploits Malware implant Stealthy malware can be .insFalled to use a zero-day exploit in the
system for further exploitation

Password cracking Hydra, SecretsDump, etc. O.penfsource. ﬁ.'ee tools can be used to crack passwords to gain
high-level privilege access

Establishing local accounts Use of script to create local accounts Threat actors can create legitimate local accounts to prevent from

being locked outside the system
Command and Control (C2)

Tactic Technique/Tools Description
Remotely control of OT processes Malicious commands to relays, opening of | Having mﬁltr.ated from IT Fo OT, attackers can attempt to disrupt
breakers power operations by opening breakers
Post-Attack
Tactic Technique/Tools Description
Remove traces KillDisk IgJizenof various tools such as “KillDisk” to remove traces of intru-

are often successful. In some cases, the threat actors may involve operator personnel to upload
damaging malware to control system processes via USB [98]. Besides, backup paths are also created
to ensure persistent access to the system.

Stage 4: Exploitation and Installation — In this stage of the attack, malicious malware code is
executed to harvest user credentials in conjunction with the exploitation of vulnerabilities in the
system. An adversary may steal user credentials with high-level privileges to access a high level of
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power topology and sensitive information. Attackers may also try to access files pertaining to the
SCADA systems, such as the SCADA wiring diagram, and transfer the critical files using remote
file transfer software. Threat actors create local administrative accounts in the target system to
maintain their persistence in the environment. Also, several tools and software are installed from a
remote server to further exploit the communication between different devices.

Stage 5: Command and Control (C2) — The attackers move on to infiltrate from IT to OT in order
to disrupt OT operations and processes. Threat actors may gain access to SCADA interfaces, and
different critical power operations can be disrupted, such as power transmission to customers. For
example, attackers can open the breakers to cause a blackout.

Stage 6: Post-Attack — Following the accomplishment of the mission, attackers remove all the
traces of their operations for a clean exit. All the backdoors, log files, local user accounts, and
any other critical files are deleted by the attackers. For example, the attackers can use “KillDisk”
software to remove their traces of the intrusion.

Table 3 shows the corresponding APT stages of tactics and techniques employed by adversaries
along with their impacts as mapped in cyber kill chain stages.

2.2.2  Coordinated Attack. While a traditional cyber-attack aims to target the infrastructure op-
portunistically in one attempt, a coordinated attack follows the multi-stage attack pattern where
adversaries carefully mount a series of cyber-attacks in a coordinated manner to cause maximum
damage to the infrastructure [36]. The state-sponsored cyber terrorism has become more visible,
and thus the integrated, coordinated attack has become an imminent threat to Critical National
Infrastructure. The simultaneity of Distributed Denial of Service (DDoS) attacks coupled with other
integrity attacks is employed in launching a synchronized coordinated attack by the adversaries
[121].

The cyber-attack on the Ukrainian power grid is regarded as the epitome of a successfully
synchronized and coordinated cyber-attack on the SG. On December 23, 2015, a power black-
out occurred in Ukraine. Three power companies were mainly targeted and disturbed by this
remote coordinated attack. This attack had affected up to 225,000 customers across three different
distribution-level territories, including almost thirty substations and two power distribution centers.
The finding reports [16] suggest that the attack lasted for several hours. We map cyber kill chain
stages to reflect different phases of this attack.

Phishing Attack - The social engineering technique "Spear Phishing Email" was executed to
gain initial access to the network by delivering a malware "BlackEnergy-3" embedded in a Microsoft
Word document.

Malware Delivery - The destructive variant of malware "BlackEnergy-3" targeted Windows
operating systems of the network by exploiting the backward compatibility of Windows 7. The
malware successfully bypasses the watermark created by Windows upon switching on the boot
configuration option.

Credential Theft - Once the adversaries compromised the Windows domain controllers where
user networks are managed; user credentials were stolen to access the administrative level services.

Pivot to SG OT - The specific plugins in BlackEnergy were utilized to steal the users’ credentials
of the employees to get access to the SCADA control system. Upon getting access to Virtual
Private Networks (VPNs), Uninterruptible Power Supplies (UPS) were reconfigured. This phase was
also regarded as the reconnaissance phase in which attackers closely monitored the distribution
management system.

Craft Payload - The adversaries modified the firmware of Serial-to-Ethernet converters at
multiple substations. Such malicious firmware on the converters prevented the operators from
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sending control commands to re-close circuit breakers in the event of a blackout from the SCADA
network to substation control systems.

Execute Pre- Attack - The attackers managed to enter the SCADA system using the hijacked
VPNs and disabled the backup UPS that they had already reconfigured.

Pivot to OT Attack - The attackers employed multistage attacks, which involved remote
exploitation and lateral movements across multiple systems. More specifically, HMI was used to
open the power breakers remotely, which caused the power outage. Simultaneously, the Telephone-
Denial-of-Service (TDoS) attack was launched to prevent customers from reporting the outages by
calling call centers. Thousands of illegitimate and bogus calls flooded the call center’s system and
provided extra time to the adversaries to complete their mission.

Post-Exploit Attack - At the end of the attack, a variant of KillDisk Malware was used to
erase master boot records and log files on workstations to delay the restoration actions [56]. More
specifically, KillDisk removed a Windows system process linked to serial-to-ethernet communica-
tions. According to the attack analysis report [16], the outages were caused by manipulation of the
control systems, and BlackEnergy 3 and KillDisk were primarily used to enable the attack or delay
restoration efforts.

2.2.3 Cascading Attacks. The SG is a complex system where hundreds of thousands of nodes
are interconnected. The inter-dependencies of the components and functions in the SG make it
susceptible to one of the most critical concerns known as cascading failures [77]. A Single Point of
Failure (SPF) can propagate to other functions of the system, which can eventually trigger a power
outage [119]. In other words, fault in one power transmission line triggers the power system’s
physics law, which can reroute the power to other power transmission lines. Such a scenario
can potentially overload the power transmission line to the extent that it exceeds the threshold
capacity of transmitting power, eventually triggering cascading failures. Cascading failures can be
caused due to many factors such as human mistakes (e.g., inadvertently opening of breakers by any
operator), system malfunctions (e.g., power transmission line failures), severe weather conditions
(e.g., lighting strikes), and cyber-physical attacks (e.g., coordinated DDoS attacks launched by state-
sponsored actors). Many past incidents of cascading failures were caused by inadvertent factors that
triggered a power outage. For instance, the 2003 blackout in Italy was caused by an interdependent
cascading failure; the failure of a few power nodes malfunctioned several communication nodes
and triggered the failure of more power nodes [8]. Just because such failures occurred due to other
factors does not preclude them from occurring due to cyber-attacks in the future.

A combination of cyber-physical attacks in conjunction with the exploitation of power function’s
time criticality can be employed to cause larger blackouts [119]. Attackers can cause cascading
failures by launching a physical attack on sensitive branches or high voltage power transmission
line causing the power flow redistribution across other power transmission lines. In turn, the other
power transmission lines can get overloaded to the extent that they can exceed their threshold
capacity to transmit power which can cause failures in those lines as well. This fault propagation can
extend to other lines until most power transmission lines have failed, and it can eventually trigger
cascading failures. Once cascading failures happen, the fast sequential outages along cascading
paths can prevent corrective measures from controlling cascading propagation in time, leading to
further cascading failures and sequential outages [86].

2.3 Types and Impacts of Cyber-Physical Attacks

One possible way to understand the nature of attacks is to classify SG attacks as cyber, physical, and
cyber-physical attacks. In cyberattacks, adversaries manipulate the system without ever gaining
physical access to the device. In a physical attack, an adversary may gain physical access to a critical
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device or component in SG networks to physically damage it, disable it, or utilize the device in an
undesirable way [109]. One possible example is physically damaging the power transmission lines.
In cyber-physical attacks, the ultimate goal of the adversary is to manipulate or damage a particular
device or component in the SG by using cyber-attacks to disable the physical operations of the SG
[124]. For example, an adversary may mount False Data Injection (FDI) attacks on compromised
sensors or controllers to modify the input of a power plant so that false feedback on load frequency
control can be created: The attack can force the power system to oscillate at its resonant frequency.
In this subsection, we mainly focus on the cyber-physical attacks in the SG.

2.3.1 Physics Aware Control Command Attacks. The models of the underlying physical dynamics
that follow the laws of physics, such as Kirchhoff laws in power systems, are considered the driving
factor behind the control of the physical plant. Control commands are often used to stabilize the
physical plant based on the physical dynamics [34]. For example, control commands are used to
update the generation set-points by the PLCs to ensure the equilibrium between power generation
and consumption. Control signals and sensor readings are sent over a wireless communication
network. High-capability attackers with knowledge of the deployed detection system can access
the network, intercept the signals being sent, and manipulate the control commands by spoofing
the packets corresponding to the actual device model and configuration.

Timing-based Optimum Power Flow (OPF) Attack. Optimum Power Flow (OPF) determines
the generator set-points required for Automatic Generation Control (AGC) to minimize specific
objectives such as generation cost or power loss while satisfying operating constraints and meeting
demand [17]. A set of lower and upper bound thresholds are configured to define the system’s
safety. For example, 59.5-61 Hz is defined as the power grid’s upper and lower bound frequency
threshold. A controller such as PLC is used to send the control commands to the actuators to
configure the generation set-points to the generators to ensure power generation and consumption
stability. An advanced adversary who performs reconnaissance when attacking a targeted system
can make malicious modifications to the OPF algorithm via a control command; the adversary
can manipulate the safety-margin conditions of the system in conjunction with replacing the cost
minimization function with maximization to cause a more severe impact.

Aurora Attack. The aurora attack is designed to manipulate the breakers when the system and
generator slip out of synchronism before the protection system responds to the attack. Since factors
contributing to generator protections are intentionally delayed preventing unnecessary tripping,
attackers typically get a 15-cycle window to reclose the breaker before any protection device kicks
in [124]. The damage to the generator is caused by the electrical power output variation from the
generator and the rotating speed of the incremental generator during the aurora attack. Each time
the breakers are reclosed, the difference of frequency and phase angle between the main grid and
the generator may result in high torque and currents, leading to physical damage to the generators.

2.3.2  Measurement Integrity Attacks. The basic idea of a measurement integrity attack is to mali-
ciously modify the critical measurement values received from the sensors in the SG. These actions
can disrupt SG applications by modifying their control values, and certain attack types can benefit
bad actors to gain illegitimate financial gains.

Price Modification Attack. A price modification attack is realized when the attackers manipu-
late the electricity prices in small but predictable ways, giving them a competitive advantage in the
market. According to the US Energy Information Administration, the average price of electricity in
the US was 75 USD/MWh, with approximately 220 billion USD transactions, accounting for all the
energy consumption [106]. Therefore, price modification can also be utilized to manipulate the
energy market. Attackers can start with identifying the actual price in the network, inject false
pricing information over a more extended period to cause generation, economic, and financial losses
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to the utility. An attacker can carefully choose specific time slots in such attacks, e.g., when the
electricity is very expensive or cheap In [106], the authors used simulations to mount Manipulation
of Demand via IoT (MaDIoT) attacks by utilizing real-world data obtained from two major energy
markets to increase the profit of particular market players significantly.

AGC Attack. The Automatic Generation Control (AGC) is a wide-area frequency control ap-
plication that ensures frequency stability and keeps the power interchange between Balancing
Authority (BA) areas at the scheduled values. The tie-line power flow between BA areas and
frequency measurements from these sensing devices are sent to supervisory control and data
acquisition (SCADA) systems and control centers. AGC relies on remote sensors’ power flow and
frequency measurements to calculate the area control error (ACE). Automated control commands
on AGC generators are computed once every few seconds based on the ACE values [114]. SE can
reduce measurement noise and detect faulty sensor data. However, existing measurement validation
techniques such as the state estimation and Bad Data Detection (BDD) typically run once every a
few minutes, which cannot accommodate the second-level frequency of AGC. Therefore, attackers
can access remote sensors to mount false data injection attacks on power flow measurements. The
attacker may provide a wrong perception of the system load. For example, the attacker can trick any
area of AGC into believing that the power flow has increased/decreased; the action can cause the
incorrect computation of an ACE value sent to the generators [74]. Consequently, the wrong ACE
value sent to the generator will falsely ramp up/down the generator, which can cause generation
imbalance and destabilize systems’ frequency.

2.3.3 False Data Injection Attacks (FDIA). False data injection attacks aim to target data integrity:
An attacker forges sensor readings to introduce error into state variables and values calculations.
In the SG’s context, meters and sensors lacking tamper-resistance hardware increase the possibility
of being falsely injected with malicious readings. The attacker can mount such attacks to disrupt
the SG operations.

State Estimation Attack. State Estimation (SE) is one of the critical components in SG system
operation; it is used by Energy Management System (EMS) at the control center to ensure the
desired operation states of the SG. SE can be formalized by Z = h(x) + e, where Z is a measurement
vector, x is a state vector, h(x) is a nonlinear vector function, and e is the error vector. Towards this
end, the states estimator estimates voltages at all system buses in real-time by using SCADA data
and the system model. For the false data injection attack vector a in DC model, a = Hx’, where
H is the measurement matrix; x’ is the estimated state deviation due to the attack. To this end,
Xattack =X +x gets the same BDD residual r as the malicious measurements Z, = Z + a. SE attack
can significantly disrupt the auto control mechanism of the EMS, which could potentially lead to
system voltage collapse and economic loss.

Load Redistribution Attack. An adversary injects malicious measurements to power flow
and load buses measurements in a load redistribution attack. Such attacks are projected as a more
realistic attack where the attacker is not required to have all the power system topology information;
an attacker keeps the same phase angle variations at all targeted buses [124]. To increase the attack’s
impact, attackers can target initial contingency as a power system weak point. Towards this end,
attackers can utilize the weak point to redistribute power to cause severe physical damage to the
system. Moreover, coordinated load redistribution attacks with physical attacks can also cause a
cascading effect of failures in the power system.

2.3.4 Control Logic Modification Attacks. Control logic modification attacks aim to maliciously

manipulate the system’s control devices such as PLCs, RTUS, protective relays, and IEDs. An
attacker may also try to destabilize the control process loop functions of the SG. Attackers may
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inject malicious control commands into the actuator and compromise the sensor readings to keep
the attack stealthy [33].

Protection Relay Attack. An attacker can modify the control logic of protection relays. A
protective relay is a device designed to function as a safety mechanism to guard against faulty and
dangerous physical conditions in the SG. In the event of overheating power transmission lines or if
a generator goes out of synchronization, protective relays detect the anomaly and open a circuit
breaker, disconnecting the power transmission lines and saving critical hardware components [46].
An adversary can attempt to maliciously flip the control mechanism logic of protective relay zones
to open or close circuit breakers. The attack can have drastic consequences and could damage
generators beyond repair.

Generators’ Synchronization Attack. In this attack scenario, an attacker aims to cause a
severe impact on generators’ synchronization by modifying the PLC’s control logic, which is not
protected by any measure in most cases. The attacker modifies the control logic of the PLC to
destabilize the synchronization process by manipulating the speed of the generators. The effect of
the disrupted synchronization disables the power-sharing process of the generators. When one
generator supplies more power, the other generator cannot take over even after synchronization.
The attack can cause frequency incursions equipment damage.

2.3.5 Denial of Services (DoS) Attacks. DoS attacks aim to maliciously disrupt and sabotage the
availability of SG’s critical functions by inhibiting its nominal functionality. Such attacks can be
accomplished by blocking inbound or outbound communication or even time-critical functions of
the SG. The catastrophic impact of DoS attacks in the SG is a cascading failure or a blackout that
may leave thousands, if not millions, of customers without electricity.

Time-Delay Attack. A time-delay attack is a type of DoS attack where an attacker aims to
delay communication packets or measurements of sensors and actuators. For example, an adversary
can inject time delay in the AGC signal, the only automatic closed loop between the IT and the
control area of the power system. In this direction, the adversary can inject delays in data coming
from power flow and frequency measurement sensors. Attacks can be mounted by jamming the
communication channels, and such attacks can mislead AGC secondary control mechanisms, leading
to the wrong decisions at the wrong time and making the power system unstable [74].

Jamming Attack. Another type of DoS attack is a jamming attack, which aims to disrupt the
physical layer of the SG’s communication networks. In this attack scenario, an attacker can place a
jammer in close proximity to the communication channel to disrupt the data transmission [28].
Moreover, a jamming attack can compromise a subset of meter measurements by emitting additive
white Gaussian noise to the communication channels [49]. To this end, the financial loss to the
utility can be catastrophic if the attacker targets many smart meters: The financial loss can be more
significant if the attack is performed over a more extended period.

In Table 4, we summarize the objectives, means, and impacts of SG cyber-physical attacks.

2.4 Lessons Learned: Summary and Insights

Advancements in control systems and communication networks have automated the operation
of the SG; however, this growing reliance on the computing systems also opens the door to
complex cyber-physical attacks against the grid. In this context, a threat modeling can accurately
represent the SG elements, their inter-dependencies, as well as the possible attack types and system
vulnerabilities. Despite the available threat modeling frameworks, SG requires a framework that is
specifically tailored for it, considering the dynamics of the underlying power and communication
systems (see, e.g., [130]). To put into perspective, high-capability adversaries can use various
tactics and techniques to impact the physical operations of the SG. The nature of these tactics and
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Table 4. Objectives, Means, and Impacts of Smart Grid Cyber-Physical Attacks

Physics aware control command attacks

Attack Type

Target

Objective

Means

Impact

Timing-based
Optimum Power
Flow (OPF) attack

OPF, AGC mechanism,
generator

Cause damage to generators
and power system failures

Compromises PLC, obtain device
model and configuration of the PLC,
modify OPF algorithm via control
command

Incorrect observability, voltage in-
stability, power outage

Aurora attacks

Generators in power
plants

Cause damage to generators

Open and close circuit breakers

Electrical power output fluctuation,
loss of stability

Measurement integrity attacks

Attack Type

Target

Objective

Means

Impact

Price modifica-
tion attack

IoT devices, smart me-
ters, the price signal

Increase generation cost, un-
dermine the economic opera-
tion

Inject false pricing information, ma-
nipulate IoT devices and smart me-
ters

Economic losses, wrong control ac-
tions, loss of stability, power trans-
mission line overload

falsely ramp up/down the

Provide a wrong perception of the

Voltage instability, load imbalance,

AGC attack AGC, Generator ﬁzgenr:;or to generation im- system load by ACE manipulation under-frequency load-shedding
False Data Injection (FDI) attacks
Attack Type Target Objective Means Impact

State estimation
attack

State estimation, BDD

Disrupt the auto control
mechanism of the EMS

Measurement manipulation

Wrong control actions, loss of ob-
servability, and voltage stability

Load redistribu-
tion attack

State estimation, BDD

False perception of estimated
states

Measurement manipulation

Tripping of power transmission
lines, system instability, power out-
age

Control logic modi

ification attacks

Attack Type

Target

Objective

Means

Impact

Protection relay
attack

Protection relay set-
tings

power transmission lines dis-
connection

Relay zone settings manipulation

Wrong control actions, false power
transmission line overload, damage
to generators, load imbalance

cial losses to the utility

Generators’ Power generation/demand Rotor angle instability between
synchronization PLC, generator imbalance, generator’s | PLC control logic modification power generators, damage to gener-
attack damage, blackout ators
Denial of Services (DoS) attacks

Attack Type Target Objective Means Impact

X - Mislead AGC secondary con- . . . . . .
Time-delay  at- | Communication chan- . Inject delays in data, jamming the | Loss of control, incorrect observabil-

trol mechanisms, cause finan- Lo . . .

tack nel, AGC, smart meters communication channel ity, economic and financial losses

Jamming attack

Communication chan-
nel, smart meters

Disrupt the data transmis-
sion, cause financial losses to
the utility

Placing a jammer, emit additive
white Gaussian noise to the com-
munication channels

Delay in control actions, incorrect
observability, economic and finan-
cial losses

techniques may change as technology changes; new types of information are becoming relevant
in conjunction with new techniques to extract useful information for reconnaissance and exploit
vulnerabilities (see, e.g., [92]). To this end, adversaries can potentially launch a Ukrainian power grid
like coordinated attacks, destroy several pieces of equipment in the SG that can trigger cascading
effects of failures, and create blackouts lasting several orders of magnitude longer than the attacks
in Ukraine.

Another challenge is to defend against the APT-based threats that is usually performed over a
longer period; a collection of indicators of compromise and real-time monitoring can be an effective
way to counter such threats (see, e.g., [69]). Therefore, to motivate the understanding, researchers
need to generate novel attacks in their papers, analyze the impact of such attacks on the control
and physical systems, and identify the indicators of compromise (see, e.g., [18, 75, 91, 113]).

3 CYBER-ATTACK DETECTION AND MONITORING IN SG

This section presents the existing detection and monitoring techniques and tools in the SG paradigm.
In this direction, the significance of Security Operation Center (SOC) and existing co-simulation
tools are also discussed.

IDS in SG

Fundamentally, IDS are characterized in two ways: IDS deployment and IDS technique. The de-
ployment refers to how the data is collected before the intrusion detection analysis. Whereas the
detection technique defines “how” the data is analyzed to detect the intrusions in the system.

3.1
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3.1.1 Categorization based on IDS Deployments. According to IDS deployments, IDS can be cate-
gorized via many criteria such as Host-based IDS (HIDS), Network-based IDS (NIDS), cloud-based
IDS, IoT-based IDS, edge-based IDS, and distributed IDS. This subsection discusses the popular but
non-exhaustive categorization of IDS employed in the SG.

Host-based IDS (HIDS). HIDS is incorporated in independent devices on the network, and it
inspects the data maintained by the audit source, such as the logs data and processes stored by an
operating system. HIDS can be quite effective for the high-volume configurations as it provides
distributed control. Additional computing resources are required in HIDS, which can be quite
critical for the resource-constrained field devices in the SG as these devices are not designed to
have the full capability of a computing system.

Network-based IDS (NIDS). NIDS can inspect passing traffic on the connected network by
analyzing the patterns and attributes of communication protocols. Monitoring of external threats
and malicious intrusions are mainly monitored and detected by NIDS. NIDS have comparatively
limited visibility to monitor and inspect high bandwidth networks due to the high volume of data
passing through the communication network of SGs.

Cloud-based IDS. Cloud-based IDS is deployed to protect SG in a distributed environment as a
scalable and virtualized solution to protect against cyber-attacks in cloud computing. Such IDSs
are deployed to monitor cloud networks for detecting malicious activity in the SG [15]. A typical
cloud-based IDS framework consists of three principal components: data collector, cloud service
component, and cloud intrusion detection component.

IoT-based IDS. Integrating IoT-based devices facilitates the SG architecture to enable universal
monitoring for distributed energy generation and other applications. These IoT-based devices
gather, send, and act on operational data from their surroundings using sensors, embedded systems,
and communication hardware [112]. Adversaries may maliciously compromise these devices to
enter an IoT botnet and perform massive attacks on the SG applications. Therefore, IoT-based are
deployed to address stealthy and complex security threats against the SG. IoT-based IDS usually
employ big data analytics to detect anomalies and intrusions in the exposed data. However, such
IDS deployments must consider stringent conditions of low processing capability and high-volume
data processing.

Distributed IDS. Fully distributed IDS are deployed to address some limitations in centralized-
based IDS. In these types of IDSs, primarily two types of functions are incorporated: a detection unit
to collect data and a correlation unit responsible for the distributed correlation to find an anomaly
in the system. Distributed IDSs do not have a single point of failure as opposed to centralized IDS,
where one primary node failure potentially impacts the whole IDS system. Moreover, distributed
IDS can detect intrusion passing through the node itself, and these architectures are considered to
have better scalability in the context of the SG [72]. However, it is challenging to balance intrusion
detection accuracy and node resources such as processing power and memory in distributed IDS; it
is challenging, particularly in the settings of the SG where many resource constrained-based edge
devices are deployed.

3.1.2 Categorization based on Detection Technique. Intrusion detection techniques can be cate-
gorized into Signature-based detection, anomaly-based detection, hybrid IDS, specification-based
detection, and Moving Target Defense (MTD) based IDS. Table 4 presents a survey of these types
of IDSs in the SG, highlighting performance and features.

Signature-based IDS. The function of signature-based IDS is based on pattern matching tech-
niques to detect known attacks or previous malicious intrusions into the system. In other words,
if the characteristics of an attack are matched with the configured signatures, a corresponding
alarm is generated. The false-positive rate is low for signature-based IDS; however, the flip side of
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Table 5. Revisiting IDS in the Smart Grid

Signature-based IDS
Ref. Year Target Attack Method/Algorithm | Dataset Performance Highlighting Feature
Substation, . . . L.
[43] 2016 Photovoltaic Data integrity at- Stateful analysis Ngt re- | ot given Stateful anal}/sls plugin is devel-
inverter tack quired oped for Suricata IDPS
A rule template- | Not re- Utilizes an intrusion detection
[54] 2015 SCADA DoS attack based detectlijon uired Not given template to generate the signa-
q ture rules for the DNP3 protocol
Machine Learning-based IDS (Centralized, Distributed, and Federated-based Algorithms)
Accurac _ Cyber-Physical Anomaly Detec-
Data integrity at- Variational Mode 9;8‘51”/ >; call - tion System (CPADS) is devel-
SCADA, con- ata integrity 2 Decomposition Synthetic O>%, recall = oped that utilizes synchropha-
[108] | 2021 tack, control sig- P Y 99.0% sion= | °P Y P
trol center ack, control sig (VMD) and Deci- dataset 7%, precision = sor measurements and proper-
nal attack X 99.0%, f-measure X
sion Tree (DT) 299.0% ties of network packets to detect
e attacks
Scaling, ramping, Pecan Spatiotemporal patterns of sys-
Distribution random, and Bayes Classifier . _ tem measurements are inte-
[20] 2020 systems smooth  curve | (BC) Stretet Data TPR = 98.75% grated into a flexible BC for cy-
attacks por berattack detection
For scaling attack | Machine learning-based anom-
Pulse,  scaling, - Mean absolute | aly detection is proposed to de-
[21] 2019 Load forecast- | ramping, random, | Naive Bayes clas- | Synthetic percentage error | tectload forecasting attacks, and
ing and smooth curve | sification dataset = 10.22%, root | the aggregation approximation
attacks mean square | method is compared with the de-
error = 8.54% veloped method
New Eng-
. . land ISO 100 % detection | Prior information based on the
FDI attack, time- | Gaussian process
[74] 2021 AGC dela attaci< r uessionp load data, | probability in a | Gaussian processisutilized to de-
Y cer synthetic shorter time tect cyber-attacks on AGC
dataset
State-
- An isolation forest algorithm is
(4] 2019 State estima- | Covert data in- Isolation forest szziion for iiﬁritiBuj used to detect an attack on un-
tion tegrity attack feature 94.518% i:l;:rllei: data using unsupervised
dataset 8
Accuracy = | Federated learning is used to
Solar PV de/de Federated learn- | Synthetic 0.9750, precision | train data across devices in a de-
[127] 2021 and dc/ac con- | FDI attack Y p
verters ing dataset = 0.9690, recall = centralized manner to detect FDI
0.9613 attacks on solar PV converters
State Grid
Corpora- A decentralized, federated
[120] 2021 Energy con- | Forgeryattack,re- | Federated learn- | tion of | Accuracy =0.913 | learning-based detection system
sumption data | play attack ing China -0.919 is proposed to detect energy
(SGCC) thefts
dataset
Deep Learning-based IDS
Substation Unsupervised A deep learning-based cyber at-
automa‘tloln, MITM attack, FDI deep learning Synthetic Precision = 100%, tack deFecltlon lsystem for Power
[46] 2020 transmission transmission line protective re-
R attack autoencoder- dataset recall = 100% . R
protective Based detection lays is proposed for various at-
relays tack scenarios
. . Autoencoder is integration into
s Semi-supervised For 1250 labeled . .
Distribution dee learnin Synthetic data - Accuracy = d Generative Adversarial Net-
[125] 2020 system state | FDIattack P € Y Y= 1 work (GAN) framework for the
. . autoencoder- dataset 96.70%, precision L .
estimation . cyber-attack detection in a semi-
based detection =95.47% . . .
supervised deep learning setting
bAa:ezep ;eai‘;:lg}i A deep learning-based system is
Time-dela; at- N approa Synthetic For AGC - Accu- roposed to detect and charac-
[29] 2021 AGC Y sing hierarchical Y prop
tack rongg short-term dataset racy = 98% terize time-delay attacks against
memory model the AGC
Datasets
acquired
from  SG . .
SCADA, Mod- Autoencoder- lab, substa- For Modbus/TCP | A deep learning-based IDS is pro-
[110] 2021 bus protocol | Communication Generative tior; . hy- | Power plant — Ac- | posed is proposed to detect at-
(TCP), DNP3 protocol attacks Adversarial Net- dro ’0 ry curacy = 0.964, tacks in Modbus/TCP and DNP3
protocol work (GAN) plarrllt Wan FPR = 0.018 protocols
power
plant
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Hybrid-based IDS
Ref. Year Target Attack Method/Algorithm | Dataset Performance Highlighting Feature
Hybrid IDS technique based on
) Disable relay Fommon—path mining approach
Wld? _areéd | attack, command | Common path | Synthetic is proposed that le.arnsvtempo-
[81] 2015 monitoring R . Accuracy = 90.4% | ral state-based specifications for
injection attack, mining dataset L
system replay attack power system scenarios, includ-
play ing disturbances, normal control
operations, and cyber-attacks
Integration  of The proposed IDS utilizes at-
network-based, tack signatures, network pack-
[108] 2021 SCADA Data integrity at- | model-based, Synthetic forA(C)C"l"u:Cttackf ets, and secure phasor measure-
tack, DoS attack and machine | dataset 08.71% Y | ments to detect different stages
learning-based e of cyber-attacks while following
IDS the cyber-kill chain
Specification-based IDS
Malicious com- | Bayesian network . A spemﬁcgtlon—based IDS is pro-
Substation mand attack is used to create Correct classifica- | posed, which reads PMU current
u L L. ’ u . Not re- | tion of attacks for measurements, relay trip status,
[82] 2015 protection control logic | patterns  with . .
1 dificati t Al stat quired most of the given | the snort log, and the control
relay n:;) lk cation temp‘(?d state attack scenarios panel log and uses this informa-
attac ransttions tion to track system states
Real data . .
Behavior  and | was used A behavior-based IDS is pro-
[51] 2015 Substation DoS attack, specification- from a FPR =0, TPR =1, p(())ls ed“t:r i)l:)et}IEs(t:atﬁlsflsco F;;t:l:
. g GOOSE attack based method is | substation precision = 1 co using 1sica
used in  South ysis of network features and
Korea specification-based metrics
Moving Target Defense (MTD) based IDS
Transmission Graph-theory- . D-FACTS placement algorithm is
[59] 2021 system, state FDI attack based topology | Not re- | Detection proba- roposed to enhance the detec-
ystem, analysis for D- | quired bility = 0.9 prop
estimation FACTS placement tion of cyber-attacks
Secondary Stuxnet like MTD based ap- 100 % detection MTD based approach is applied
[116] 2019 voltase con- | attacks. stealth proach to change | Not re- robability in a to detect stealthily and Stuxnet
8 > Y system configura- | quired P Yy ike attacks in the control loops
trol FDI attack K shorter time
tion of the SG
MTD based
) a.pproach by ac Highest detection MTD based approach is pro-
. Coordinated tively perturbing I~ posed to detect coordinated
State estima- . 5 Not re- | probability for .
[52] 2019 tion cyber-physical the grid’s power uired MTD based an- cyber-physical attacks by per-
attack, FDI attack | transmission line q roach P turbing the power transmission
reactance using P line reactance
D-FACTS devices

this technique lies in the inability to detect zero-day or unknown attacks. To detect active power
limitation attacks in substations, [43] uses Signature-based IDS by developing a stateful analysis
plugin consisting of three main functions: 1) the application layer protocol decoder, 2) the rule
match engine, and 3) the state manager.

Anomaly-based IDS. In the anomaly-based IDS, a normal model of the behavior of a system is
defined using various techniques, including machine learning, deep learning, artificial intelligence,
and statistical methods. The deviation from the normal defined behavior is regarded as an anomaly,
which indicates a malicious activity or intrusion into the system [50]. Unlike most of the IDS in IT
infrastructure, where signature-based IDS are more commonly deployed due to the availability of an
abundance of signatures, anomaly-based IDS are more popular in ICS such as SGs due to the diverse
nature of protocols and networks. Even though anomaly-based IDS have a more false-positive rate
as compared to signature-based IDS, the ability to detect unknown attacks in anomaly-based IDS is
favored in SGs.

Machine Learning and Deep Learning-based IDS. Machine Learning (ML) and Deep Learning
(DL) techniques are applied in various fields of SG applications for anomaly-based methods. Feature
engineering is commonly employed in ML to extract leading attributes and features for classifying
attacks in the SG networks [63]. On the other hand, linear and non-linear processing layers are
used in DL techniques to extract discriminative or generative features for pattern analysis [37]. The
standard ML algorithms that are used to detect intrusions in the SG are Support Vector Machines
(SVM), Bayesian algorithms, k-nearest neighbor (KNN), random forest (RF), association rule (AR)
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algorithms, ensemble learning, k-means clustering, decision trees (DT), and Principal Component
Analysis (PCA). In contrast, DL techniques can be classified into discriminative and generative
techniques [60]. In this direction, Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs) are known as discriminative techniques. To this end, restricted Boltzmann
Machine (RBM), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep
Autoencoder (AE) are known as generative techniques.

In [108], the authors proposed architecture and methodology for a cyber-physical anomaly detec-
tion system (CPADS). The proposed ML-based methodology utilizes synchrophasor measurements
and network packet inspection to detect integrity attacks on measurement and control signals. The
relevant input features are derived using a rule-based approach, and variational mode decomposi-
tion (VMD) and decision tree (DT) algorithms are used for cyber-attack event classification and
decision logic. The proposed system exhibits promising results with 99.85% accuracy. In [46], a
DL-based cyber-attack system is proposed for power transmission line protective relays, including
distance protective relays, overcurrent protective relays, differential protective relays, and multiple
fault scenarios. The authors employed unsupervised learning by utilizing a convolutional-based
autoencoder for previously unseen cyber-attack detection. The proposed system is trained with
current and voltage datasets which are then utilized to detect malicious measurements. To detect
time-delay attacks in cyber-physical systems, a DL-based method leveraging a short-term memory
model to process raw data streams from sensors is proposed in [29]. The authors evaluated the
proposed model on the power plant control system and AGC, obtaining promising results with a
detection accuracy of 92% and 98%, respectively.

Federated Learning (FL) based IDS. Although ML and DL techniques are widely efficient in
detecting cyber-attacks in the SG, the prediction and true-positive accuracy decrease when network
scale increases; these techniques use a central entity to process all the data in the network. To over-
come such issues, Google proposed the concept of Federated Learning (FL) in 2016 [123]. Compared
to distributed ML, a multi-nodal system known to build a training model by utilizing different nodes
for independent training, FL algorithms are fundamentally different and are particularly effective
for addressing data privacy. FL algorithm enables the nodes to learn collaboratively without data
sharing with a centralized server; it uses a centralized model using decentralized model training.
The models are trained on the local nodes independently, and once the training phase is completed,
the models are sent back to the central server to be combined to create an efficient model. In [120],
the authors proposed a privacy-preserving FL framework to detect energy theft. The FL framework
consisted of a data center, a control center, and multiple detection stations. The results showed
high detection accuracy with low computation costs for energy theft detection.

Hybrid-based IDS. To overcome the high false-positive rate in anomaly-based detection, many
researchers have proposed hybrid IDS, which combines the aspects of signature-based IDS and
anomaly-based IDS to enhance the detection accuracy of all the attacks. In [81], authors have
proposed a hybrid IDS technique based on the common-path mining approach and Snort [90] to
detect anomalies in PMU’s data. Aspects of normal behavior and known cyber-attack signatures
are characterized in the common path. The proposed IDS can detect and differentiate between
normal operations, system disturbance, and cyber-attacks with an accuracy of 90.4%.

Specification-based IDS. Another IDS technique in the SG is specification-based detection.
This detection technique is similar to anomaly-based detection; however, it relies on manually
developed specifications instead of ML techniques. Therefore, predetermined rules for normal
behavior are defined for the specification-based technique, and any sequence of operations executed
outside of these rules is regarded as a security threat. To achieve high detection accuracy, the
specification-based technique is combined with anomaly-based detection. The cost of defining the
rules for specification-based detection in large CPS systems such as SG is a key disadvantage of
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this technique. In [51], the authors propose an IDS for IEC 61850 protocols using specification-
based metrics and statistical analysis of network features. The IDS was evaluated on the real data
from a substation in South Korea, and the results demonstrated optimum accuracy with the least
false-positive ratio.

Moving Target Defense (MTD) based IDS. Moving Target Defense (MTD) has emerged as
a solution to address security concerns against an adaptive attacker who aims to mount stealthy
attacks against the SG. The primary concept of the MTD includes constantly moving between
multiple surfaces such as network configurations and changing the open ports in order to add
uncertainty for the attacker. In the context of the SG, the MTD approach is mainly used to alter
the power system configurations by varying setpoints of Distributed Flexible AC Transmission
System (D-FACTS) devices in flexible AC transmission [58]. In [52], the authors proposed an MTD
design to detect coordinated cyber-physical attacks against the SG. The work incorporated the
MTD-based detection mechanism to invalidate the adversary’s knowledge by varying the SG’s
power transmission lines reactance’s via D-FACT devices. To minimize the defense cost, the authors
used a game-theoretic approach to identify the adequate subset link of the D-FACT deployment set.
The experimental results showed that the MTD-based approach could efficiently detect coordinated
cyber-physical attacks against the SG with low defense cost. To detect stealthy attacks, the authors
in [31] proposed an MTD-based approach that randomly changes the availability of the sensor
data; thus, making it harder for the adversary to mount stealthy attacks against the SG. To this
end,the authors formulated an optimization problem to find the parameters such as switching
signal probability that increases the detection of stealthy attacks.

3.2 SOC Monitoring and Visualization Tools

SG security requires a high alert-based monitoring system that allows the operators to query, mon-
itor, and visualize alerts. This subsection highlights the significant role of SOC in SG security, and
then we review current monitoring and visualization-based tools suitable for the SG infrastructure.

3.2.1 Security Operation Centre (SOC). A security operation Centre (SOC) is defined as a centralized
infrastructure made up of a team or a facility dedicated to detecting, preventing, evaluating, and
responding to security breaches in the infrastructure [2]. Moreover, a SOC is also referred to by
other names, such as Information Security Operations Centre (ISOC), Security Intelligence Centre
(SIC), and Cyber Security Operations Centre (CSOC). SOC plays a crucial role in implementing
and assessing regulatory compliance in the SG networks; tracking abnormal and security events,
vulnerability management, network flow monitoring, intrusion detection, and response planning
are integral roles of SOC.

The architecture of SOC in the context of SG can be divided into three parts: People, processes,
and technology. People are the most crucial part of SOC operations, where they ensure incident
monitoring management, alerting, event analysis, coordination and reporting, and investigations
and post-incident reports. Processes help SOC achieve its objectives, such as the incident response
process, SOC access control policy, and security operating procedures [24]. Technology in SOC
includes devices that can generate a log and feed the Security Information and Event Management
(SIEM) with the required data and events to be monitored.

In [3], the authors constructed semi-structured interviews with ten analysts to examine the
thought process in SOC analysts facing security threat events. The work results suggested that
simulation environments and physical proximity with analysts and vendors effectively transfer the
tacit knowledge in SOCs.

3.2.2  Visualization Tools. The real-time intelligent visualization system for the critical operations
of SG holds significant importance. Real-time monitoring and visualization tools can significantly
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Table 6. Smart Grid Co-Simulators and their Applications

Reference Name Power Simulator Network Simulator Real-time Targeted Application
[53] EPOCHS PSLF NS-2 No WAMS

[55] VPNET Virtual Test Bed (VTB) OPNET No Network Control

[53] GECO PSLF NS-2 No WAMS

[66] TASSCS PowerWorld OPNET Yes SCADA security

[97] CPSA MATLAB, PowerWorld GridSim Yes :g”e‘ system monitor-
[19] FNCS PowerFlow, GridLAB-D NS-3 Yes Real-time pricing

[53] GridSim TSTAT GridStat Yes WAMS

[94] Simulink, OPNET | Simulink OPNET/OMNeT ++ No SCADA security

improve SG’s operational security capabilities and monitoring processes. These tools can provide
operators in the control center with a much more dynamic view of the security posture of the
SG’s operations and services. Appropriate visualization tools can enable operators to respond to
dynamic threats and vulnerabilities in the infrastructure efficiently. The main components required
for monitoring and visualization tools in the SG infrastructure are detailed as follows [68].

Security Information and Event Management (SIEM) system — Aggregate and correlate all
the collected data from multiple sensors and generate alerts.

Physical Access Control System (PACS) — Contains sensors to monitor physical access in
the control center and sends information to Security Information and Event Management (SIEM)
system.

Log Aggregator - Collects log data from the operations facilities and sends it to the SIEM
system.

Historian — Receives SG’s operational data and stores in a server.

Application Monitor — Monitors IT applications for any anomalous behavior and sends it to
the SIEM system.

Analysis Workflow Engine — Automates executions of actions of events received in SIEM
system.

Analysis Tools — Examines data collected from the SIEM for any intrusions and report any
incident to security operators via visualization tool.

Visualization Tool — Generate alerts and provide visualization dashboard to correlate security
events.

3.3 Existing Co-Simulation Tools

Simulation tools are generally based on mathematical models depicting a real-world phenomenon
utilizing mathematical rules and language. There are many functions and security concepts in the
SG that cannot be directly applied to such infrastructure. Therefore, simulation tools are required
to test the functions and security-related concepts. In this direction, co-simulation is a special
kind of simulation in which communication and power system simulations are coupled together.
Co-simulation tools can provide insights into the relationship between power and communication
systems, and these tools are also actively used to analyze the impacts of different advanced cyber-
attacks on the different domains of SG infrastructure. For instance, the integrated simulation tool
for power and communication network can evaluate the impact of a malicious command attack on
RTUs concerning both power and communication systems [100].

Various communication networks and power system simulation tools already exist. For instance,
the most common power grid simulation tools are PowerWorld, OpenDSS, MATLAB/Simulink,
Modelica, and GridLAB-D. Similarly, NS-2, NS-3, OPNET, OMNeT ++, GridSim, and NeSSi are
popular network communication simulation tools.
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Table 6 provides an overview of some existing SG co-simulators. Each co-simulation tool is
based on targeted applications of the SG to understand the reciprocal effect under any event. For
instance, the co-simulator “Electric Power and Communication Synchronizing Simulator” (EPOCHS)
presented by [40] targets the application of wide-area monitoring and security. The EPOCHS is
an integration framework of PSLF, a power simulator, with NS-2, an open-source communication
network simulator. The co-simulator CPSA [97] evaluates the impact of malicious commands
on CPS. The tool can also detect bad measurement data in real-time and provide visualization
dashboards to guide the operators to take actions to mitigate the impacts of cyber-attack.

3.4 Lessons Learned: Summary and Insights

Few existing works proposed signature and specification-based techniques to detect attacks (see,
e.g., [43, 82]); the central issue can be associated with the requirements of power system and expert
knowledge and a substantial amount of human efforts in crafting rules. In the context of ML and
DL-based techniques, IDSs must incorporate temporal, spatial, and logical features to enhance
contextual based-detection (see, e.g., [47]). Generally, RNN models are used to capture temporal
relations, and CNN models are utilized to learn the context of the power flow and voltage time-series
sensor data (see, e.g., [50, 65]). However, the influence of the network traffic is not captured in the
detection approaches: The communication data can be quite valuable in providing context to the
attack detection, an essential factor for the SA of the SG [79]. For example, the same anomaly can
be classified as malicious or benign, depending on the correlation of communication and power
system metrics.

There are still many challenges to put into actual operation, such as integrating the additional
capabilities within the existing IDSs. More specifically, there are no publicly available datasets for
complex cyber-physical attacks such as APT attacks, coordinated attacks, and cascading attacks;
therefore, it is difficult to study the performance of detection systems against such attacks using
ML and DL techniques. Therefore, one of lesson is to develop an environment to generate artificial
attack sequences, based on frameworks like MITRE ATT&CK, to perform integrated monitoring,
detection, and analysis study, as well as generate datasets based on different scenarios (see, e.g.,
[18, 75, 91, 113]).

Some related works [59, 116] used MTD to detect stealthy attacks in the SG. However, more
research is required to efficiently place a reduced number of D-FACT devices to minimize the cost
of MTD deployment. Some work on federated learning, including intrusion detection in the SG, is
explored in [120, 127], showing prominent potential in the detection of coordinated-based attacks.
Finally, more detailed discussions need to be included in the papers regarding the pros and cons
of using real data from the SG, datasets from testbeds, and co-simulations. Without providing a
detailed analysis of the efficacy of the utilized datasets, it is elusive to determine the performance of
the IDS. Lastly, more work is needed to tackle the limitations of visualization tools that offer human
analysts and SOCs efficient perception, comprehension, and decision making in an automated and
real-time manner. For example, graph-based tools can be revisited to analyze the scalability issues,
and the tools can be hybridized by incorporating artificial intelligence-based contextual awareness
of the cyber-physical events in the SG.

4 CYBER-PHYSICAL SITUATIONAL AWARENESS (CPSA)

Understanding the environment at a macroscopic and microscopic level is essential for a system
operator to identify anomalies in the system and surroundings efficiently. This understanding
is referred to as Situational Awareness (SA) [129]. SA has been defined by various perspectives,
but the most widely accepted definition of SA is defined as “perception of the elements in the
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Fig. 1. Situational awareness framework for smart grid.

environment within a volume of time and space, the comprehension of their meaning and the
projection of their status in the near future” [26]. SA framework for SG is shown in Fig. 1

4.1 Cyber-Physical Situational Awareness Metrics

According to the NIST, “metrics are tools that are designed to facilitate decision-making and
improve performance and accountability through collection, analysis, and reporting of relevant
performance-related data” [42]. In line with the NIST guidance on security metrics, we construct
a CPSA group of metrics for SG that can assist SOCs and security analysts to make incisive and
informed decisions to alleviate the potential threats in the system. For example, network security
metrics can be used to examine the performance of deployed IDS and the efficacy of the reported
incidents. The use of these metrics also includes awareness around the protocol vulnerabilities in
the network and any failed logging attempt, which can assist SOCs in keeping track of any initial
intrusion attempt.

Similarly, system security, process security, and asset security metrics help SOCs to be familiar
with the vulnerabilities in the system, processes, and critical assets. These metrics also provide
guidance on the available operational and security capability the SOCs must deal with any security
threat. However, these metrics are not static, and the SOCs must ensure these metrics are updated
regularly. User vulnerability metrics relate to the user capabilities and security training of the SOCs
in dealing with the security threats to the SG. These metrics are useful in reflecting and realizing
an organization’s vulnerability and preparedness in a security threat-related event. In addition,
adversary model metrics provide the understanding of the threat capability of an adversary based
on other given metrics such as publicly available information or the probability of an insider threat.
However, such metrics have challenges when mapping the possible attacks, associated events, and
activities with the organization’s environment due to the decentralized nature of the SG. Table
7 lists cyber-physical situational awareness metrics and presents each given metric’s numerical
score/value.

4.2 Power System Metrics

Maintaining power system security is paramount in the operation of a SG. Power system metrics
provide quantifiable measures to assess the overall power system health. Good quality of power
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Table 7. Cyber Situational Awareness Metrics

Network/Communication Security Metrics

Metric Title

Description

Score/Value

IDS detection rates

Determines the reliability of installed IDS systems in the network and can be
estimated in the ratio scale.

n: total number of detected threats.

Loggings

Keeps a track of all logging attempts including abnormal VPN sessions into
the SCADA system.

n: number of failed login attempts and
abnormal VPN sessions.

Protocol vulnerabilities

Categorization of communication protocols based on security vulnerabilities.

n: number of communication protocols
with no encryption mechanism.

Access points

The number of all possible I/0 of a system and determines the vulnerable
access paths.

n: total number of potential entry points
in the system.

Reported incidents

A number of previously reported incidents for all the network components
and paths.

n: total number of previously reported in-
cidents for intrusions.

Asset Security Metrics

Metric Title

Description

Score/Value

Critical components

Identifies the significance of the components with respect to critical opera-
tions and functions.

[0,1]: 0 means not critical; 1 means critical
component.

Physical accessibility

The number of critical field devices that can be physically accessed by an
adversary

[0,1]: 0 means not easily accessible; 1
means not easily accessible.

System susceptibility

Probability of an attack based on vulnerabilities in the system.

[0,1]: 0 means susceptible; 1 means not
susceptible.

The number of attack paths that a system can be compromised can be calcu-

n: total number of paths available for an

Attack paths lated using attack graphs. intruder to breach the system.
s . . . . n: number of 3rd party software and de-
Supply chains Categorization of 3rd party devices for the contingency analysis following a vices with known vulnerability or previ-

security breach event.

ously reported for bugs.

Process Security Metrics

Metric Title

Description

Score/Value

Operational capacity

The operational capacity of critical power devices following a cyber-attack.

[0,1]: 0 means not operational; 1 means
operational.

Reaction time analysis

Evaluation of the delay between the identification of a malware and mitigation
response.

[t" - t]: total delay between identification
and response.

Initial disruption and
restoration

Length of time between initial disruption of operational process and restora-
tion of essential functions.

[t’ - t]: total delay between disruption and
availability.

Permanently lost data

Percentage of irrecoverable data lost relevant to operational processes.

[%]: higher percentage means more sus-
ceptible.

Confidence level in the
control loop processes

This metric defines the overall confidence in the components of control
loop processes such as trust level in sensor values and control commands in
controller.

[0,1,2,3,4...]: higher values means more
reliable.

System Vulnerability Metrics

Metric Title

Description

Score/Value

Severe vulnerabilities

Percentage of system with severe vulnerabilities based on Common Vulnera-
bility Scoring System (CVSS) scoring.

[%]: higher percentage means more sus-
ceptible.

Vulnerability analysis

Percentage of systems for which vulnerability has not been done.

[%]: higher percentage means more sus-
ceptible.

Time criticality

Percentage of communication protocol paths and processes in a system for
which time criticality is high.

[%]: higher percentage means more time
critical.

User Vulnerability Metrics

Metric Title

Description

Score/Value

Malware susceptibility

Evaluates the malware possibility that relates to the operator’s online behavior
with respect to installing the application. It can be estimated in the ratio scale.

[0,1]: 0 means more susceptible; 1 means
less susceptible.

Phishing susceptibility

Relates to human cognitive bias and awareness to flag a suspicious email as a
phishing email and can be measured on a ratio scale.

[0,1]: 0 means more susceptible; 1 means
less susceptible.

SA training

The number of staff in the control center with adequate knowledge and
training of SA.

n: total number of well-trained staff vs
total number of staff with insufficient SA
training.

Adversary Model Metric

Metric Title

Description

Score/Value

Threat capability

Mapping the assets and operations with the required level of technical skills
to compromise the system.

[0,1]: 0 means less technical skills needed
to compromise the operational process;
1 means more sophisticated skills are
needed to breach the operational process.

Insider attack

Percentage of insider attack possibility based on confidential reports.

[%]: higher percentage means more prob-
ability of an insider attack.

Supply chain

This metric determines the susceptibility level of supply chain risks for dif-
ferent components in the SG.

[0,1,2,3,4...]: higher values means more
vulnerable to supply chain attacks.

Publicly available infor-
mation

Percentage of publicly available information of different assets in the SG
from different sources such as Open-Source Intelligence (OSINT) datasets
and Shodan.

[%]: higher percentage means more sus-
ceptible.

[t’ - t]: Total delay between the events
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Power/Voltage Metrics

Metric Title

Description

Score/Value

Rapid Voltage Changes
(RVC) [12]

Parameter to quantify voltage disturbances and quality.

[0,1]: 0 means no contingency; 1 means
contingency

Production and load
mismatch [88]

Relates to mismatch between demand and supply mismatch due to cyber-
attack manipulation or misconfigurations.

[0,1]: 0 means no contingency; 1 means
contingency

Survivability [13]

Relates to the ability of the power system to match generation and demand
in case of cyber-attacks or power system failures.

[0,1]: 0 means non-survivable; 1 means
survivable

Transmission related
events resulting in loss
of load [84]

Relates to transmission related events resulting in loss of load, excluding
weather related power outages.

[0,1]: 0 means survivable; 1 means non-
survivable

Voltage dips [13]

Temporary drop of voltage in electrical system.

[0,1]: 0 means no contingency; 1 means
contingency

Frequency Metrics

Metric Title

Description

Score/Value

Customer average dis-
connection frequency

Relates to customer average disconnection or interruption frequency.

n: total number of customers discon-
nected vs time

index [13]

Number . of offline n: total number of offline power transmis-
power transmission | Total number of power transmission lines that go offline frequently. - . P

lines [84] sion lines vs time

Industrial Customer Av-
erage Interruption Fre-
quency Index (ICAIFI)
[101]

Relates to average frequency of all sustained interruptions to industrial and
commercial customers.

n: total number of industrial and commer-
cial customers disconnected vs time

Multiple interruptions
frequency [13]

Relates the percentage of customers with multiple disconnections or inter-
ruptions.

%: percentage of customers with power
disconnection vs time

Duration Metrics

Metric Title

Description

Score/Value

System Average Inter-
ruption Duration Index
(SAIDI) [101]

Relates to average duration of power disconnections or interruptions.

t: average duration of power disconnec-
tion

Recovery duration [83]

Relates to time required to full infrastructure recovery.

t: duration of full recovery

Customer Average In-
terruption Duration In-
dex (CAIDI) [48]

Relates to customer average duration of power disconnections or interrup-
tions.

t: average duration of customer power dis-
connection

Interruption duration
[101]

Relates to sustained outages lasting more than X hours.

t: duration of sustained power outage
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system metrics can assess and quantify the initial power system events to prevent large system
blackouts [118].

4.2.1 Aggregate Megawatt Contingency Overload (AMWCO). The AMWCO metrics provide the
sum of all the megawatts of overload in a given set of contingencies and are considered as the
security criteria for power systems [97]. The AMWCO for the whole system is calculated using the
aggregate percentage contingency overload (APCO) for each line. To this end, APCO for single line
j - k on Branch JK can be computed as:

APCOBRANCH]K% = ZOUeloadedjk(%Overload - 100)

Next, the product of APCO and line ratings gives us the AMWCO for the whole system in MW
that is calculated as [110]:

AMWCOBRANCH]K = ij APCO]K(MVAratingjk)
The sum of AMWCOs for all power transmission lines can be calculated as: [99]

AMWCOSyStem = ZSum—of—ull—lines AMWCOiine
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The higher value of the metric AMWCO points to the overloaded elements, whereas lower values
correspond to a more secure system [95]. To this end, AMWCO equals zero shows no overloaded
elements under any contingency. The co-simulation result using the 42-bus system presented in
[100] shows that AMWCO (system) is an efficient and reliable metric that can indicate malicious
events in the power system. For instance, results in [100] show that AMWCO (System) value
significantly deviated from the forecast value under the malicious command attack.

4.2.2  Other Power System Metrics. In [12], Rapid Voltage Change (RVC) has been defined as the
power quality metric to quantify voltage disturbance in the power grid. In [117], authors used
data obtained from PMU to identify RVC event that points to voltage disturbances in the power
grid. A global metric ‘Survivability’ has been introduced in [13]. This metric evaluates the power
system’s ability to match the generation and demand of electricity in case of failures and malicious
cyber-attacks. *Survivability’ metric is measured on a scale from "0-1", where "0" refers to the lowest
survivability/resilient level, and "1" represents the highest level. The authors applied this metric
to a real-transmission system in order to illustrate its effectiveness. An approach to link Faulted
Circuit Indicators (FCIs) to power outage using the Average Interruption Duration Index (SAIDI)
and Customer Average Interruption Duration Index (CAIDI), to track reduction in outage duration
has been proposed in [48]. These metrics indicate the total duration of power interruptions for the
average customer and the time required for restoration. Table 8 presents the power system metrics
along with description and score/value.

4.3 Human Factor and Situational Awareness Training

Human mistakes are considered as one of the major issues in security-related incidents in the SG [11].
Weak security implementation and human/system operator mistakes can lead to the propagation
of faults, cascading effects, and even blackouts. Sophisticated adversaries can surreptitiously isolate
the power components from the rest of the system by performing false command injection attacks,
and power operators must be able to identify these malicious commands, which could be legitimate
but false commands in the power system [100]. For example, the Ukrainian power grid attack, which
caused a blackout, targeted IT staff and system administrators of utility companies responsible
for electricity distribution [99]. According to the North American Electric Reliability Corporation
(NERC), sophisticated malware was inserted into the software supply chain, which exposed many
energy utilities to vulnerabilities [76]. Power operators need to be equipped and trained on the cyber
domain of the SG to understand the impact of cyber-attacks on power systems control processes
such as voltage control algorithms, topology re-configurations, and energy management systems so
they should be able to quickly identify the disturbances in the power and communication system.
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4.4 Lessons Learned: Summary and Insights

As defined by Endsley, SA comprises three main levels: perception, comprehension, and projection.
To achieve situation perception, understanding the attack types and threats is vital to help the data
gathering. Incorporation of suitable CPSA and power system metrics in the detection and threat
evaluation system can provide a higher perspective of the events with respect to their current
perspective and their future impact; an increased comprehension and projection of the evolving
cyber-physical events in the SG. To this end, the ultimate level of SA can be accomplished by
threat evaluation, decision making, and planning [5]. One lesson is that the overall SA of the SG
is mainly tied to the integration of CPSA metrics with the power system metrics. In turn, it will
allow the detection system to detect and predict contingencies in the overall system of the SG.
Furthermore, the ability to assess security posture, effectiveness, and impact for predictive analysis
is mainly dependent on the assumption that system operators have a comprehensive understanding
of the impacts caused by cyber-attacks on the communication and power systems. Therefore, it
poses severe challenges to maintaining SA as it involves the human factor and cyber and physical
interactions. Therefore, co-simulation tools need to be revisited from the perspective of operators’
training and analysis (see, e.g., [62, 97, 100]).

5 RESEARCH CHALLENGES, KEY GAPS, AND FUTURE DIRECTIONS

In this section, we endeavor to summarize open research challenges along with discussing key
gaps, and the future directions.

5.1 Understanding the impact of complex cyber-attacks

Challenges: The vision of an optimum defense and detection mechanism against complex cyber-
attacks is elusive without the deep analysis and understanding of the nature and impact of these
attacks. With such a small history of known coordinated and other complex attacks against the
SG, an experimental method to generate and execute attack sequences needs investigation [113].
Many researchers use assumptions such as probability and periodic distributions to model the
attack experiments. However, the attacks may not follow such distributions in realistic settings. For
example, Bernoulli distribution may not reflect the pattern for the drop of packets in all the DoS
attacks in the SG. Therefore, another challenge is to perform experiments with realistic assumptions
and manners.

It is not viable to perform experiments on the real SG system due to its critical nature. Moreover,
it is usually beyond the resources of researchers and cyber security experts to emulate the cyber-
physical system of the SG in order to perform analytical impact-based experiments. Therefore, there
is less confidence in assessing and understanding the nature and consequences of such advanced
attacks.

Key Gaps: Many researchers have performed experiments using co-simulation tools consisting
of communication and power system modules. A few researchers have also employed Hardware-
in-the-loop (HIL) simulation environment to simulate the complex cyber-attacks to comprehend
the effect of such attacks on the communication and power system. Other works include the
construction of a cyber-physical testbed [1], which is considered an instrumental technique for
evaluating cyber-attack. However, all these techniques and tools have some trade-offs; for instance,
the co-simulation tool may not offer accurate impact assessment. Similarly, cyber-physical testbed
does not offer a cost-effective solution.

Future Directions: Recently, an initiative "MITRE’S ATT&CK framework," has dedicated its
work towards collecting and categorizing techniques that are employed by the adversaries against
the ICS. Therefore, one of future work is to generate sequences of complex cyber-attacks based on
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the data provided by this framework and as well as data from other threat intelligence systems such
as Malware Information Sharing Platform (MISP) using a simulation tool in order to understand
the nature and impact of such attacks on the cyber and physical operations of the SG (see, e.g.,
[18, 75, 113]). The experiments should also include identifying the Indicators of Compromise (IoC)
in communication and power systems for all types of attacks.

Relevant mathematical equations of the power system need to be utilized to realistically simulate
the power system dynamics. Similarly, communication network simulation should consider the
packet loss, delay, and cyber security-related events to emulate the behavior of the system realisti-
cally. We also suggest that more work is required to practically use the co-simulators for real-time
impact monitoring of various cyber-attacks.

5.2 Detection, Visualization and, Monitoring of Attacks

Challenges: For cyber-physical attacks on the control process and communication system of the
SG, detection solutions are proposed based on state estimation (e.g., Kalman filter), specification,
rule, and statistical models (e.g., Gaussian model) [63]. The aforesaid methods learn the normal
operations and processes of the SG, including the communication traffic; however, these methods
entail power system and expert knowledge to classify the distribution of normal data. On the other
hand, ML and DL methods require realistic labeled datasets for better classification and regression-
based detection techniques: There are no publicly available datasets to study the patterns of attacks
such as APT and cascading attacks in the SG [111].

MTD has been proposed to detect stealthy attacks on cyber-physical systems such as SG. The
main advantage of MTD is that it makes it difficult for an adversary to mount a stealthy attack
due to the uncertainty added by the MTD mechanism. However, it is quite a challenging task to
decide precisely about the movement of the prevention surface. In addition, the precise timing of
the movement is also crucial [116]. In addition, employing a larger number of D-FACT devices can
increase the cost of the MTD application.

Key Gaps: The majority of existing work focuses on the detection of FDI attacks [73]. In
this direction, the existing works incorporate sensor values (e.g., power flow, frequency, voltage
magnitude) to detect attacks, ignoring communication and control system logs, which are quite
essential in Spatio-temporal correlation-based detection since FDI attacks are mainly mounted
through network packet injection. In this context, other works utilize PMU data for wide-area
monitoring and cyber-attack detection [64]. However, the sampling rate of PMU is quite high: Vast
computing resources are needed to process the multitude of generated data to detect cyber-attacks.

The existing detection and monitoring solutions are usually based on a SIEM system, which can
aggregate different events from different resources, such as intrusion events from SCADA systems
and control centers. However, the SIEM system is usually not entirely effective in correlating events
generated from industrial communication protocols. In light of the aforementioned problems and
gaps, we believe that more research and analysis are still required for SG intrusion detection and
monitoring.

Future Directions: Creating an optimal IDS and monitoring system for sophisticated attacks
would entail combining and correlating various anomaly detection events in communication and
the power system (see, e.g., [79]). For instance, many cyber-attacks on the communication layer
can induce an impact on the power system layer and vice versa. Detection tools in SG need to have
technological intelligence with a view to discriminate between cyber-attacks, natural events, and
normal load disturbances in power systems for optimum SA.

Many potential applications of federated learning, including intrusion detection in the SG, are
under-explored. To pick areas that are close to the authors’ interests, coordinated and cascading
attack detection in the wind turbines and other SG applications can be studied to benefit significantly
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from the use of privacy-preserving federated deep learning solutions (see, e.g., [120, 127]). In this
direction, federated learning can be further explored to utilize the correlation of temporal, spatial,
and logical features of actuators and sensors in the inter-process control loops of the SG to detect
stealthy FDI attacks.

More research work is required to formulate an automated way for the timing and movement of
MTD parameters. In addition, implementing MTD with the minimum number of D-FACT devices
can reduce the overall cost of the MTD-based detection solutions. Therefore, more work is required
to efficiently utilize the minimum D-FACT devices to enhance the detection system.

5.3 Cyber-Physical Situational Awareness (CPSA) and Power system Metrics

Challenges: While there are enough SA tools and products for enterprise networks for various
security events, these tools are ineffective in controlling system networks such as SGs. In addition,
human operators in the control centers of the SG are overwhelmed with a large amount of complex
data received from various field devices on different display screens. The abundance of data
generated from various devices can also prevent SA among human operators.

The significance of CPSA and power system metrics for SA has been emphasized in NIST
guidelines for "Situational Awareness for Electric Utilities" [68]. The metrics should incorporate the
Spatio-temporal variations in the SG and should be goal-oriented. Creating efficient CPSA security
metrics for power and communication systems entails real data for verification and validation
purposes. However, the lack of sharing such datasets among academic researchers and industrialists
for legitimate concerns is also a hindrance. Furthermore, all proposed metrics should be tested and
validated on reliable data obtained from the SG or testbed environments.

Key Gaps: Information sharing about threat intelligence and new malware is an important
step towards better SA within CNI. Some organizations contribute towards this by providing SA
information about malicious activity that they observe on their own sensor networks [93]. For
instance, the Brazilian National Computer Security Incident Response Team (CSIRT) uses its own
deployed honeypot project to collect information about attacks against the honeypots and provide
information to the requesting CSIRTs in other countries [93]. However, information about cyber-
attacks against real systems is not shared due to legitimate privacy and confidentiality concerns.
The contemporary SA tools collect data by PMU sensors to integrate the information for anomalous
data. However, the work mostly focuses on PMU-based SA, which does not offer overall SA in
SG for different applications. SA framework for SG requires the detection and monitoring across
the OT, IT, and physical Access of Control Systems (PACS) in a timely manner. The gap between
theoretical guidelines and practical tool development for the SG has not been fulfilled yet.

Future Directions: The integration of complex data from different system displays into a
single presentation screen would allow system operators to quickly visualize ongoing malicious
activity. The impacts of visualizing correlated information can minimize the analysis and response
time. This can be aided by automated cyber situational awareness software tools for optimum
alert correlation, damage assessment, and vulnerability analysis. Threat intelligence consisting of
technical data should be shared among academic researchers and industrialists. Organization may
have non-disclosure agreements and policies in place to ensure that confidential information shared
between academic researchers and industrialists is handled appropriately and remain secured.

5.4 Human Factor and Situational Awareness Training

Challenges: Human factors play a crucial role in maintaining overall security in the SG system.
Many complex attacks involve adversaries gaining initial access to the system due to human
mistakes. Most of the existing work lacks the stress on the human factor and the consequences
aroused from their mistakes.
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Key Gaps: There is clearly a gap between policy recommendation and policy implementation
practices in the SG. The OT security in the SG is yet to formulate more concise norms and standards,
which adds yet another obstacle in avoiding human mistakes.

In addition, physical testbeds and HIL simulations are effective ways of providing education
and training about the system. However, it may entail significant resources for constructing such
a setup. In comparison, co-simulation tools can be quite useful, particularly for power system
operators. However, co-simulation tools may not reflect the accurate behavior of communication
and power systems. In addition, existing co-simulation tools lack the 3D representation of the
system, which may be quite useful for the early career system operators to understand the impact
dynamics of cyber-attacks on critical operations of the SG.

Future Directions: Further research should be done to make the policy implementation practices
more viable in the SG, ensuring to minimize human mistakes and errors. System operators must be
given appropriate SA training to understand the notion of “risk” and “proportionate measures” in
tackling security issues in the SG. In addition, the social engineering attack detection framework
needs to be revisited to tackle initial infiltration attacks in the SG. Based on the regular training
session results, an internal vulnerability scoring system for the employees can construct metrics
for the social engineering attack detection framework.

6 CONCLUSION

In this review paper, we focused on the studies that provide detailed analysis about the nature of
complex cyber-attacks and their impacts on critical operations of the smart grid. We discussed
the recent threat models while proposing the threat modeling framework specifically tailored
for the smart grid. We then reviewed various complex attack characteristics and types from the
attackers’ techniques and tactics perspective. Afterward, we reviewed the detailed taxonomy of
existing cyber-attack detection techniques in the smart grid and discussed their performances
and capabilities. Additionally, we provided an overview of security operation centers and existing
visualization and co-simulation tools and provided their limitations and supported applicability
(e.g., real-time) to reflect on their effectiveness in real-world settings. Moreover, we identified cyber-
physical situational awareness and power system metrics for the system operators to improve their
decision-making capabilities. Furthermore, we discussed the human factor and the significance of
awareness training for the system operators to improve their capabilities in noticing the footprints
of attacks in the operational smart grid. We finalize this paper by reflecting current challenges
and key gaps in line with the scope of our work along with future directions to address them. To
conclude, we hope this review paper positively impacts the research community, and guides and
motivates researchers and operational technology engineers to build onto the existing promising
work that incorporates the trends of hybridizing existing techniques to improve cyber-attack
detection, impact monitoring, and visualization by leveraging security and power system metrics.
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