
BlueCov: Integrating Test Coverage and Model Checking with
JBMC

Matthias Güdemann
Munich University of Applied Sciences HM, Germany

Germany

Peter Schrammel
University of Sussex and Diffblue Ltd., UK

United Kingdom

ABSTRACT
Automated test case generation tools help businesses to write tests
and increase the safety net provided by high regression test cov-
erage when making code changes. Test generation needs to cover
as much as possible of the uncovered code while avoiding generat-
ing redundant tests for code that is already covered by an existing
test-suite.

In this paper we present our work on a tool for the real world
application of integrating formal analysis with automatic test case
generation. The test case generation is based on coverage analysis
using the Java bounded model checker (JBMC). Counterexamples
of the model checker can be translated into Java method calls with
specific parameters.

In order to avoid the generation of redundant tests, it is necessary
to measure the coverage in the exact same way as JBMC generates
its coverage goals. Each existing coverage measurement tool uses
a slightly different instrumentation and thus a different coverage
criterion. This makes integration with a test case generator based
on formal analysis difficult. Therefore, we developed BlueCov as a
specific runtime coverage measurement tool which uses the exact
same coverage criteria as JBMC does. This approach also allows for
incremental test-case generation, only generating test coverage for
previously untested code, e.g., to complete existing test suites.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; Software testing and debugging.

KEYWORDS
model-checking, test coverage, Java

1 INTRODUCTION
In recent years there has been steady progress in developing au-
tomated formal verification tools. Promising tools have emerged,
not only targeting the traditional domain of embedded C programs,
but also for languages such as Java that are predominantly used for
larger enterprise software systems [4]. For such systems, testing is
the primary way of obtaining confidence in the correct functioning
of the system [12]. While it is far from feasible to formally verify
such systems, automated verification tools can be used to verify
small subsystems or support the automation of the testing process.
An important use case is to automatically generate tests for untested
parts of the system [8, 11]. For that purpose, information about
uncovered code needs to be communicated to the verification tool
in order to reduce the computational effort and avoid generation of
redundant tests.

In this paper, we present the BlueCov tool which solves this
communication problem in practice for Java programs using the

bounded model checker, JBMC [4]. Similar ideas may apply to other
programming languages.

In Java, the imperative code is first compiled into a stack-based
language, the Java bytecode, which is interpreted by the Java Virtual
Machine (JVM). This compilation step abstracts away a great deal
of syntactic sugar and language-level complications. Also, libraries
which make up the vast majority of any real-world Java application
are supplied and linked on the bytecode level. Therefore, verification
tools also perform their analysis based on bytecode as input. The
stack-based bytecode is translated into a control flow graph (CFG) to
perform further analysis, such as abstract interpretation or symbolic
execution.

Code coverage measurement is performed by bytecode-level in-
strumentations. This information is used to avoid generating tests
for code that is already covered by an existing test-suite. The prob-
lem is now that the code structure on the bytecode level differs from
the CFG used by the verification tool in details that are relevant for
communicating structural code coverage information. Hence, it is
not straightforward to use test coverage information obtained from
coverage measurement tools, such as JaCoCo [9], in a verification
tool. An exact correspondence is required, however, in order to
satisfy the desired property of the analysis such as pruning paths
and avoiding the generation of redundant tests.

One way of achieving this is to pick a coverage measurement
tool and implement the exact same coverage criterion inside the test
generator, including all the oddities of the coverage measurement
tool and keep it up-to-date as the tool changes. If we wanted to
support further coverage criteria, e.g. modified condition / decision
coverage (MC/DC), then we would need to find an appropriate map-
ping from the existing coverage instrumentation or even modify
its instrumentation if it does not capture all information required.

We took a more maintainable and flexible approach here by de-
veloping BlueCov, which takes the coverage goals from the test
generator and performs the instrumentation accordingly. The cov-
erage criterion is hence defined by the test generator, i.e., JBMC in
our case.

BlueCov is much simpler than existing coverage measurement
tools, also because it does not require computing coverage per-
centages. Coverage percentages are highly dependent on the exact
coverage criterion and developers are often confused by mismatches
between numbers reported from different tools. We therefore do
not use BlueCov for reporting coverage percentages, but only for
communication with the test generator. Originally, BlueCov was
developed for and successfully used in the Diffblue Ltd Cover com-
mercial test case generator. It has now been open-sourced1.

This paper is an extended version of [7]. It is structured as follows:
Section 2 gives some background on JBMC and coverage analysis,

1https://github.com/diffblue/BlueCov

ar
X

iv
:2

21
2.

14
77

9v
1

 [
cs

.S
E

]
 3

0
D

ec
 2

02
2

https://github.com/diffblue/BlueCov

Conference’17, July 2017, Washington, DC, USA Matthias Güdemann and Peter Schrammel

Section 3 explains the combination of JBMC and BlueCov, Section 4
illustrates the approach with an example, Section 5 gives details on
the implementation and Section 6 concludes the paper.

2 BACKGROUND
2.1 JBMC— Java Bounded Model Checking
JBMC [4, 6] is a bounded model checker for Java which uses the
compiled class files as input. In this sense it could also analyze other
languages that are compiled to Java bytecode, e.g., Kotlin. It can
also read jar files which are a form of structured zip archive of class
files.

JBMC is a front-end to the CProver framework. CProver is also
used by the CBMC model checker for C [10]. JBMC translates the
Java bytecode into CProver’s internal GOTO program code. GOTO
is a simple sequential programming language which is very close to
C in its execution model. It represents the CFG of the program using
GOTO instructions to model CFG edges. Java bytecode on the other
hand is a stack-based low-level, assembly code like programming
language.

Only necessary classes and functions are translated to GOTO.
For this, JBMC performs an over-approximate reachability analysis
on the call graph. Only functions which are actually used are added
to the GOTO program.

JBMC uses the SMT solver built into CProver as backend, which
implements a reduction of bitvector, floating-point, array and string
theories to SAT. JBMC competes in the Java track at the Software
Verification Competition (SV-COMP) [1, 5], has won once and was
among the top three tools otherwise.

2.2 Coverage Analysis in JBMC
For test case generation JBMC currently uses the location coverage
criterion. This criterion tries to cover each bytecode in the class file.
For each CFG node corresponding to distinct bytecode instructions,
JBMC inserts an assertion node assert(false) representing the cover-
age goal into the CFG. An analysis with JBMC then tries to deduce
values for the input parameters of the method in such a way that
the assertions are reached. These synthesized input values are then
translated into executable test cases. For BlueCov other coverage
criteria are supported, too, e.g. branch, path or MC/DC coverage.

The translation from JBMC results to executable Java is not
trivial. Primitive values are relatively easy, but complex objects can
be difficult to create. This is true in particular when one does not
want to use reflection to create object instances. While reflection is
very powerful, it generally does not correspond to readable tests
a human tester would write. Reflection also allows for creation of
object states which could not be created programmatically, e.g.,
because internal invariants are not respected. The Java code test
case generation is proprietary to the company Diffblue Ltd Ltd. and
thus not part of the presentation here.

2.3 Testcase Minimization
In many applications JBMC will have to create multiple new test
cases in order to complete the test suite. Often there are different
possibilities to cover the remaining coverage goals. As each gener-
ated unit test might cover several coverage goals, it makes sense to

try to minimize the number of generated unit tests to complete the
coverage.

The underlying problem is the subset cover problem which is
NP-complete and can therefore be expensive to solve if the number
of tests is large. JBMC uses a greedy heuristic to approximate the
minimal number of new unit tests. First, traces are sorted by the
number of covered goals. Traces are then processed in this order,
collecting newly covered goals and dropping those traces that do
not cover any new goal. This is similar to the approach used by [14].

This approximation works well in practice to reduce the number
of generated test cases.

2.4 Java Specific Challenges
Java is an object-oriented programming language with an extensive
standard library. This poses some additional challenges for model-
checking of Java programs as compared to C programs. We give
some challenges here and illustrate how JBMC handles these. These
challenges can have a big impact on differences between reported
and measured coverage because JBMC might have a different model
than what is really executed.

Object Orientation Java methods often use the interfaces as
input parameters. As interfaces do not have an implementation, an
analysis tool has to use a class which implements the interface. This
often requires loading more classes than the ones that are actually
referenced in a class file. For example, using the List interface would
create a reference to List but would also require loading another
class that implements the interface, e.g., ArrayList.

Another challenge is the use of generics in the class file. Java uses
type erasure which means that there is no typing information in the
class files. In such case JBMC analyzes the bytecode instructions
for explicit casts without checks. As the compiler does have the
necessary information, it can emit instructions that do not check
the result after a cast.

Java Class Library An important challenge when analyzing
Java is the Java class library (JCL). It provides different data struc-
tures and algorithms. It is not feasible to simply load the JCL class
files, as the resulting model would be much too big. What JBMC
does is to provide a jar file that contains models of commonly used
parts of the JCL. Such models do not implement the respective
class functionality directly but contain a sufficient specification for
JBMC.

In the running example (cf. listing 12) in this paper, the core mod-
els library is used to find the model for the Math.abs function. In this
case the implementation is the same as the original implementation
in the JCL as shown in listing 4.

1 public s t a t i c f l o a t abs (f l o a t a) {
2 return (a <= 0 . 0 F) ? 0 . 0 F − a : a ;
3 }

Listing 1: Math.abs Implementation

For other functions JBMC provides a different implementation
which is functionally equivalent to the original one, but is easier for
the SMT solver to handle. An example for this is themax (maximum)
function for float parameters. The JBMC core models version of
this function is shown in listing 28. The commented-out section
contains the original code of the JCL. The JBMC implementation
is functionally equivalent according to the Ieee754 standard but

BlueCov: Integrating Test Coverage and Model Checking with JBMC Conference’17, July 2017, Washington, DC, USA

is simpler for JBMC to analyze. For example, it does not use the
Float.floatToRawIntBits method.

1 public s t a t i c f l o a t max (f l o a t a , f l oa t b) {
2 / / o r i g i n a l c od e
3 / / i f (a ! = a)
4 / / r e t u r n a ; / / a i s NaN
5 / / i f ((a == 0 . 0 f) &&
6 / / (b == 0 . 0 f) &&
7 / / (F l o a t . f l o a t T o R aw I n t B i t s (a)
8 / / == n e g a t i v e Z e r o F l o a t B i t s)) {
9 / / / / Raw c o n v e r s i o n ok s i n c e NaN

10 / / / / can ' t map t o − 0 . 0 .
11 / / r e t u r n b ;
12 / / }
13 / / r e t u r n (a >= b) ? a : b ;
14
15 / / JBMC co r e −mode l s imp l emen t a t i o n
16 i f (F l o a t . isNaN (a) | | F l o a t . isNaN (b)) {
17 return F l o a t . NaN ;
18 } e l se {
19 f l o a t r e s u l t = CProver . n o n d e t F l o a t () ;
20 / / c h o o s e r e s u l t i n such a way t h a t i t i s
21 / / t h e maximum o f a and b
22
23 CProver . assume ((r e s u l t == a | | r e s u l t == b)
24 && r e s u l t >= a && r e s u l t >= b) ;
25 return r e s u l t ;
26 }
27 }

Listing 2: Core Model version of Math.max

Some JCL functions are currently not implemented or modeled.
These functions simply return a nondeterministic value of the cor-
rect type when called. If this is a problem for an analysis, one
can additionally model the required function which increases the
precision of the analysis and of the test creation done by JBMC.

3 COMBINING JBMC AND BLUECOV
As explained above, there exist several tools which report coverage
of Java programs, but none uses precisely the same criteria as JBMC
does. For real-world project, it is an important goal to minimize the
effort to complete the test suite. This requires measuring the test
coverage in the exact way as JBMC does. Therefore, the BlueCov
tool was developed to facilitate integration with JBMC. It tracks the
exact Java bytecode instructions that it associates with its coverage
criterion. JBMC then provides this information to BlueCov, which
instruments the same bytecode instructions for runtime coverage
measurement. That way, we can close the gap between the execution
coverage that can be obtained from test execution and the generation
coverage that JBMC reports to have achieved during test generation.

The coverage goals determined by JBMC to drive its test gener-
ation are reported as JSON output. For each coverage goal JBMC
emits a Boolean flag covered or not covered. This is called the gen-
eration coverage of JBMC. JBMC also calculates values for the input
parameters for Java methods in order to reach the coverage goals.

If there is a mismatch in the understanding of the coverage cri-
teria between the test generator and the coverage measurement
tool then the generation coverage might be different from the exe-
cution coverage. The execution coverage is the coverage which is
reached when the code is actually executed on the JVM using the

input parameters calculated by JBMC. Figure 1 shows the overall
approach.

Class Files to Properties The first step is to give the class files
of the project under analysis to JBMC. It provides the option to show
the coverage goals (or properties) considered for generation coverage.
The output is given in JSON format and contains all the information
necessary for BlueCov to perform the bytecode instrumentation.

Property Instrumentation In the second step the BlueCov tool
takes the output of the JBMC coverage goals, the class files of the
project and a list of class files to instrument as its input. It then
proceeds by creating a database file and instruments the class files
with each coverage goal.

Measure Existing Coverage In the third step the existing test
suite of the project is run using the instrumented class files. During
this run, BlueCov registers when an instrumented coverage goal
is reached and increases a counter in the database file for each
reached coverage goal.

Coverage Report After the run of the test suite, BlueCov re-
ports the measured execution coverage. The report is in JSON format
and contains the hitcount for each coverage goal.

Enhance Test Coverage The BlueCov coverage report is then
used as input for JBMC create a minimal number of additional tests
to complete the coverage of the existing test suite. JBMC reports
the generation coverage that it achieved together with the generated
test inputs to the methods.

4 EXAMPLE USING BLUECOV
We use the example in listing 12 to illustrate the steps of our ap-
proach based on BlueCov. The below function FloatTools.sign re-
turns an int depending on the input float parameter. The intent is
to have a sign function of the input parameter x. The first case in
line 3 covers the “zero” value, i.e., a very small absolute value of
x and returns 0. The second case (line 5) returns −1 in case x is
negative and the third case (line 7) returns 1 in case x is positive.
The return statement in line 9 was added because the compiler
would otherwise emit the error error: missing return statement.

1 public c l a s s F l o a t T o o l s {
2 public s t a t i c int s i g n (f l oa t x) {
3 i f (Math . abs (x) < 1e −6)
4 return 0 ;
5 i f (x < 0)
6 return −1 ;
7 i f (x > 0)
8 return 1 ;
9 return −2 ;

10 }
11 }

Listing 3: Example Program

The existing test suite is shown in listing 15, i.e., testing each of
the three cases:

1 public c l a s s F l o a t T o o l s T e s t {
2 @Test
3 public void t e s t S i g n Z e r o () {
4 a s s e r t E q u a l s (0 , F l o a t T o o l s . s i g n (−1 e −10 f)) ;
5 }
6 @Test
7 public void t e s t S i g n N e g () {
8 a s s e r t E q u a l s (−1 , F l o a t T o o l s . s i g n (−10 f)) ;
9 }

Conference’17, July 2017, Washington, DC, USA Matthias Güdemann and Peter Schrammel

Figure 1: Overview of the Approach (JBMC — green, BlueCov — blue)

10 @Test
11 public void t e s t S i g n P o s () {
12 a s s e r t E q u a l s (1 , F l o a t T o o l s . s i g n (1 2 3 4 f)) ;
13 }
14 }

Listing 4: Test Suite for Example Program

4.1 Class files to Properties
JBMC converts the bytecode instructions of FloatTools.sign into its
internal GOTO representation and inserts coverage goals according
to the given coverage criterion. For location coverage, JBMC creates
9 location coverage goals for FloatTools.sign corresponding to the
ASSERT statements in the GOTO function below.2

F l o a t T o o l s . s i g n (f l o a t) / ∗ F l o a t T o o l s . s i g n : (F) I ∗ /
DECL re turn_ tmp0 : f l o a t b v [3 2]
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 1
ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 1
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 1
CALL j a v a . l a n g . Math . < c l i n i t > ()
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 1
CALL j a v a . l a n g . Math . abs : (F) F (x)
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 1
ASSIGN re turn_ tmp0 : = j a v a . l a n g . Math . abs : (F) F : : r e t u r n _ v a l u e
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 1

DEAD j a v a . l a n g . Math . abs : (F) F : : r e t u r n _ v a l u e
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 5
ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 2
/ / F l o a t T o o l s . j a v a l i n e 5 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 5
I F (NOT i s n a n (re turn_ tmp0)) AND

(re turn_ tmp0 < 1 . 0 0 0 0 0 0 e − 6)) THEN GOTO 1
/ / F l o a t T o o l s . j a v a l i n e 7 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 8
ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 3
/ / F l o a t T o o l s . j a v a l i n e 7 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 8

DEAD re turn_ tmp0
/ / F l o a t T o o l s . j a v a l i n e 7 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 8

GOTO 2
1 : DEAD re turn_ tmp0
/ / F l o a t T o o l s . j a v a l i n e 6 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 7
ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 4
/ / F l o a t T o o l s . j a v a l i n e 6 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 7
ASSIGN F l o a t T o o l s . s i g n : (F) I : : r e t u r n _ v a l u e : = 0
/ / F l o a t T o o l s . j a v a l i n e 6 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 7

GOTO 5

2Simplified to improve readability; the full output can be produced with the artifact
available at https://www.dropbox.com/s/a7pe39ygj5znuh4/bluecov.zip

/ / F l o a t T o o l s . j a v a l i n e 7 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 11
2 : ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 5
/ / F l o a t T o o l s . j a v a l i n e 7 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 11
I F i s n a n (x) OR (x >= 0) THEN GOTO 3
/ / F l o a t T o o l s . j a v a l i n e 8 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 13
ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 6
/ / F l o a t T o o l s . j a v a l i n e 8 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 13
ASSIGN F l o a t T o o l s . s i g n : (F) I : : r e t u r n _ v a l u e : = −1
/ / F l o a t T o o l s . j a v a l i n e 8 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 13

GOTO 5
/ / F l o a t T o o l s . j a v a l i n e 9 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 17
3 : ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 7
/ / F l o a t T o o l s . j a v a l i n e 9 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 17
I F i s n a n (x) OR (x <= 0) THEN GOTO 4
/ / F l o a t T o o l s . j a v a l i n e 10 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 19
ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 8
/ / F l o a t T o o l s . j a v a l i n e 10 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 19
ASSIGN F l o a t T o o l s . s i g n : (F) I : : r e t u r n _ v a l u e : = 1
/ / F l o a t T o o l s . j a v a l i n e 10 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 19

GOTO 5
/ / F l o a t T o o l s . j a v a l i n e 11 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 21
4 : ASSERT f a l s e / / g o a l F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 9
/ / F l o a t T o o l s . j a v a l i n e 11 F l o a t T o o l s . s i g n : (F) I b y t e c o d e − i n d e x 21
ASSIGN F l o a t T o o l s . s i g n : (F) I : : r e t u r n _ v a l u e : = −2
5 : END_FUNCTION

As Java bytecode is used for the analysis, there can be multiple
coverage goals per source code line. The coverage goals map to the
original source code as shown in listing 12. 3

1 public c l a s s F l o a t T o o l s {
2 public s t a t i c int s i g n (f l oa t x) {
3 i f (Math . abs (x) < 1e −9) / / g o a l 1 , g o a l 2
4 return 0 ; / / g o a l 4
5 i f (x < 0) / / g o a l 3 , g o a l 5
6 return −1 ; / / g o a l 6
7 i f (x > 0) / / g o a l 7
8 return 1 ; / / g o a l 8
9 return −2 ; / / g o a l 9

10 }
11 }

Listing 5: Mapping of Goals to Source Code

JBMC outputs information about the coverage goals in JSON for-
mat. For example, for goal FloatTools.sign:(F)I.coverage.1 it
produces an entry as shown below. This also includes information
3For readability, we write goal 1 for the goal with name FloatTools.sign:(F)I.
coverage.1.

https://www.dropbox.com/s/a7pe39ygj5znuh4/bluecov.zip

BlueCov: Integrating Test Coverage and Model Checking with JBMC Conference’17, July 2017, Washington, DC, USA

to map the bytecode information to the line information of the
source Java program.

1 {
2 " c l a s s " : " c o v e r a g e " ,
3 " c o v e r e d L i n e s " : " 5 " ,
4 " d e s c r i p t i o n " : " b l o c k ␣ 2 ␣ (l i n e s ␣ F l o a t T o o l s . j a v a : 5) " ,
5 " e x p r e s s i o n " : " f a l s e " ,
6 " name " : " F l o a t T o o l s . s i g n : (F) I . c o v e r a g e . 1 " ,
7 " s o u r c e L o c a t i o n " : {
8 " b y t e c o d e I n d e x " : " 1 " ,
9 " f i l e " : " F l o a t T o o l s . j a v a " ,

10 " f u n c t i o n " : " F l o a t T o o l s . s i g n : (F) I " ,
11 " l i n e " : " 5 "
12 }
13 }

Analogous entries exist for the other eight coverage goals. Each
has a unique name and a source location which it covers. For Java,
this source location contains the bytecode index of the goal, the
class name, the method name and the parameter and return value
types. 4

4.2 Property Instrumentation
Using the information about the goals as generated by JBMC, Blue-
Cov instruments the class files. It either creates an empty coverage
database file or adds new entries to an existing one. The default lo-
cation and name is blueCov.db. For each of the generated goals there
is a unique identifier used to identify the goal in the database file.
This UID is constructed from the fully qualified name, function pa-
rameter types and bytecode index, e.g., FloatTools.sign:(F)I@1
for UID 0.

The bytecode instructions of the signmethod first call theMath.abs
function which takes a float parameter and returns a value of type
float. This is shown below, first the original code then the instru-
mented code.

1 public s t a t i c int s i g n (f l o a t) ; / / o r i g i n a l c od e
2 Code :
3 0 : f l o a d _ 0
4 1 : i n v o k e s t a t i c #2
5 / / Method j a va / l ang / Math . ab s : (F) F
6 . . .
7
8 public s t a t i c int s i g n (f l o a t) ; / / i n s t r um en t e d c od e
9 Code :

10 0 : f l o a d _ 0
11 1 : g e t s t a t i c #17
12 / / F i e l d c ompany_ c o v e r a g e _ r e p o r t e r :
13 / / Lo rg / c p r o v e r / c o v e r a g e / Cove rageLog ;
14 4 : l d c #18 / / i n t 0
15 6 : i n v o k e v i r t u a l #24
16 / / Method o rg / c p r o v e r / c o v e r a g e / Cove rageLog . r e c o r d : (I) V
17 9 : i n v o k e s t a t i c #30
18 / / Method j a va / l ang / Math . ab s : (F) F

In the instrumented code first the static instance of CoverageLog
is loaded, then its record method is called with the UID 0. This
identifier corresponds to the above goal. This call increments the
hitcount for this goal in the BlueCov in-memory database.

The class itself does not contain the clinit static initializer as
it does not contain any static fields. A static field is needed by

4The full output can be produced using the artifact available at https://www.dropbox.
com/s/a7pe39ygj5znuh4/bluecov.zip

BlueCov and therefore it adds a static initializer to get the single-
ton org.cprover.coverage.CoverageLog object used for logging. The
generated bytecode instructions of the static initializer looks as
follows:

1 s t a t i c { } ;
2 Code :
3 0 : i n v o k e s t a t i c #43
4 / / Method o rg / c p r o v e r / . . . /
5 / / Cove rageLog . g e t I n s t a n c e : () Lo rg / . . . /
6 / / Cove rageLog ;
7 3 : p u t s t a t i c #15
8 / / F i e l d c ompany_ c o v e r a g e _ r e p o r t e r :
9 / / Lo rg / c p r o v e r / c o v e r a g e / Cove rageLog ;

10 6 : return

Each of the other coverage goals is instrumented analogously.
Each instrumentation uses three additional bytecode instructions,
each with a different UID for the database. The UID is loaded as a
parameter using the ldc or load constant bytecode instruction. 5

This code instrumentation causes a constant time overhead when
executing such instrumented bytecode. This could be a problem
in really long-running unit tests, in particular within loops. If the
exact number of hits is not required, then a further optimization
is possible which records only the first time a specific location
is covered and skips logging afterwards. This effectively reduces
the runtime overhead to a branch execution that can always be
predicted correctly after the first time.

4.3 Measure Existing Coverage
To measure the existing coverage, the record method of the Cover-
ageLog class is called each time a coverage goal is reached. When
called the first time for a specific coverage goal, the method in-
serts the key with value 1 into the hash map. At each further call,
the associated value is incremented, updating the hitcount entries
in the database. For this, BlueCov needs to be added to the Java
classpath.5

4.4 Coverage Report
After the test suite is finished, the coverage reporter of BlueCov is
called which reports the measured coverage. The reporter iterates
over all entries in the database and emits the measured hitcount
for each coverage goal.5

BlueCov emits a coverage report in JSON format which shows the
information of Table 1. The results for our example are as expected:
the condition in line 3 is executed for each unit test and therefore
the associated two goals are hit 3 times each. The condition in line
5 and the associated two goals are reached 2 times and the last test
in line 8 is reached one time only. Each return statement in line 4,
6 and 8 is reached exactly once. And finally the return statement in
line 9 is not reached at all.

4.5 Enhance Test Coverage
At a first glance, it seems that line 9 is simply dead code which
cannot be covered, but, when telling JBMC to cover the coverage

5For our example, the instrumentation, coverage measurement and coverage report
can be reproduced with the artifact at https://www.dropbox.com/s/a7pe39ygj5znuh4/
bluecov.zip

https://www.dropbox.com/s/a7pe39ygj5znuh4/bluecov.zip
https://www.dropbox.com/s/a7pe39ygj5znuh4/bluecov.zip
https://www.dropbox.com/s/a7pe39ygj5znuh4/bluecov.zip
https://www.dropbox.com/s/a7pe39ygj5znuh4/bluecov.zip

Conference’17, July 2017, Washington, DC, USA Matthias Güdemann and Peter Schrammel

goal name hit count

FloatTools.sign:(F)I.coverage.1 3
FloatTools.sign:(F)I.coverage.2 3
FloatTools.sign:(F)I.coverage.3 2
FloatTools.sign:(F)I.coverage.4 1
FloatTools.sign:(F)I.coverage.5 2
FloatTools.sign:(F)I.coverage.6 1
FloatTools.sign:(F)I.coverage.7 1
FloatTools.sign:(F)I.coverage.8 1
FloatTools.sign:(F)I.coverage.9 0

Table 1: Coverage Report for FloatTools.sign

goal 9, JBMC does in fact report that it can complete the test-suite
because it found a way to execute line 9.

The input value for this is an IEEE-754 “not a number” (NaN)
value. This is a valid value for the input parameter x and NaN values
have the property that each comparison with such a value evaluates
to false. Therefore, we can complete the test suite by adding the
unit test shown in listing 5.

1 @Test
2 public void t e s tS ignNaN () {
3 a s s e r t E q u a l s (−2 , F l o a t T o o l s . s i g n (F l o a t . NaN)) ;
4 }

Listing 6: Addtitionally Generated Unit Test

After adding this additional test and re-executing the full test-
suite, BlueCov reports coverage of all location coverage goals of
FloatTools.sign.

5 BYTECODE INSTRUMENTATION AND
COVERAGE MEASUREMENT

To perform the bytecode instrumentation in BlueCov we chose the
ASM 6 library. ASM is widely used to instrument Java bytecode,
e.g., in JaCoCo 7. It uses the visitor pattern for instrumentation.

The challenge here is being able to instrument the bytecode at the
right positions and to reliably get the information at runtime which
instrumented bytecode is executed. In particular, it is necessary
to make sure that even non-standard program termination like
uncaught exceptions or direct calls to exit via JNI do not prevent
the information from being stored persistently so that it can be
reported back to JBMC for test generation.

5.1 Bytecode Instrumentation
Each bytecode instruction is visited and can be changed. It is inter-
esting to note that ASM does not provide the information about
the byte offset or address of an instruction. As instructions exist
which can have different sizes, e.g., ‘iload 0’ and its specialization
‘iload_0’. Instead, we identify the bytecode instructions by their
bytecode index. The bytecode index is the sequence number of
bytecode instructions and is independent of the size in bytes. JBMC
provides the bytecode index for each coverage goal.

6https://asm.ow2.io/
7https://www.eclemma.org/jacoco/

Each bytecode instruction specified for instrumentation by the
coverage criterion of JBMC is instrumented by inserting the follow-
ing code directly before the bytecode instruction where uid is the
unique identifier of the instrumented location.

1 companyCoverageReporter . r e c o r d (u id) ;

This Java code is translated into bytecode by pushing the static
field companyCoverageReporter on the stack, then the uid of the
instrumented location and finally calling the record method of the
org.cprover.coverage.CoverageLog class.

This instrumentation is performed as shown in listing 28. Here
we show the visiting method for jump instructions. Analogous
methods exist for each of the other categories of bytecode instruc-
tions as well. It calls directly instrumentByteCode method with the
current bytecode index as argument which checks whether the
given bytecode index should be instrumented. If yes, the necessary
bytecode instructions and arguments are inserted into the code,
if no, nothing is done. On return to visitJumpInsn, the bytecode
index counter is incremented and the next bytecode instruction is
visited. In this way, all bytecode instructions are visited and each
one that corresponds to a coverage goal gets instrumented with the
necessary code.

1 public f ina l void v i s i t J u m p I n s n (f ina l int opcode ,
2 f ina l L a b e l l abe l) {
3 ins t rumentByteCode (b c L i n e) ;
4 b c L i n e += 1 ;
5 super . v i s i t J u m p I n s n (opcode , l abe l) ;
6 }
7
8 f ina l void i n s t rumentByteCode (f ina l int b c L i n e) {
9 i f (s h o u l d B e I n s t r u m e n t e d (b c L i n e)) {

10 la s tMethodWas Ins t rumented = true ;
11 / / g e t i n s t a n c e from s t a t i c f i e l d
12 / / push v a l u e t o r e c o r d
13 / / c a l l ` r e c o r d ` on Cove rageLog
14 super . v i s i t F i e l d I n s n (Opcodes . GETSTATIC ,
15 th i s . c lassName ,
16 " companyCoverageReporter " ,
17 " Lorg / c p r o v e r / c o v e r a g e / CoverageLog ; ") ;
18 super . v i s i t L d c I n s n (g e t U n i q u e I d e n t i f i e r (b c L i n e)) ;
19 super . v i s i t M e t h o d I n s n (Opcodes . INVOKEVIRTUAL ,
20 " org / c p r o v e r / c o v e r a g e / CoverageLog " ,
21 " r e c o r d " ,
22 " (I)V" ,
23 f a l s e) ;
24 debug (" added ␣ ID ␣ " + g e t U n i q u e I d e n t i f i e r (b c L i n e)) ;
25 i n s t r u m e n t e d L o c s . add (g e t U n i q u e I d e n t i f i e r (b c L i n e)) ;
26 }
27 }

Listing 7: Bytecode Instrumentation Implementation

5.2 BlueCov Runtime Coverage Measurement
At runtime, whenever an instrumented bytecode instruction is ex-
ecuted, there is a call to BlueCov to register the coverage of the
associated location. This increments the hit count of the corre-
sponding location. This happens in the CoverageLog class of the
org.cprover.coverage package. The record method is shown in list-
ing 9.

1 public void r e c o r d (f ina l int key) {
2 I n t e g e r i = inMemoryMap . g e t (key) ;
3 i f (i == null) {

https://asm.ow2.io/
https://www.eclemma.org/jacoco/

BlueCov: Integrating Test Coverage and Model Checking with JBMC Conference’17, July 2017, Washington, DC, USA

BlueCov Database Layout

countMap
uid [unique integer ID]
hitcount [hit counter for UID]

locMap
uid [unique integer ID]
description [unique description for each location]
1

1

descMap
description [unique description for each location]
uid [unique integer ID]1

1

nameMap
uid [unique integer ID]
name [name of location as given by JBMC]

1
1

lineMap
uid [unique integer ID]
lines [array of line numbers covered by location]

1

1

Figure 2: MapDB HTree objects

4 inMemoryMap . put (key , 1) ;
5 } e l se {
6 inMemoryMap . put (key , i + 1) ;
7 }
8 }

Listing 8: Recording Reaching a Coverage Goal

Storing this information persistently is realized using the mapDB
library8. This library provides a combination of Java collections
and on-disk database storage, i.e., there is a thread-safe hash map
which is in-memory and also mirrored on disk. The ER diagram of
the relevant part of the database is shown in 2.

5.2.1 Challenges. Using exact coverage measurement provides
some challenges which had to be addressed. For each bytecode
instruction which is instrumented for the coverage analysis, there
exists one call to get the CoverageLog singleton object and one call
to record execution of the corresponding bytecode instruction. The
required time to complete this has to be minimized in order to keep
execution time of the project under analysis reasonable.

To achieve this, BlueCov uses an in-memory database in its
normal execution mode and only writes the in-memory content to
the mapDB on-disk database on exit. This greatly reduces the time
required to execute the projects under test.

The drawback here is that it has to be guaranteed that the in-
memory database is correctly written at each possible program
termination. This is achieved by installing a shutdown hook for the
JVM runtime using the addShutdownHook method of the Runtime
class. This method takes a Thread as parameter, its run method get
called on normal exit but also if the JVM terminates due to a user
action or system-wide event9. When the hook is called the code
in listing 19 is executed and writes the in-memory content to the
on-disk database on exit.

1 public void run () {
2 i f (inMemory) {
3 db = makeDb () ;
4 countMap = db . hashMap (locCountMap)
5 . k e y S e r i a l i z e r (S e r i a l i z e r . INTEGER)

8https://mapdb.org/
9https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#
addShutdownHook(java.lang.Thread)

6 . v a l u e S e r i a l i z e r (S e r i a l i z e r . INTEGER)
7 . createOrOpen () ;
8 for (I n t e g e r key : inMemoryMap . ke ySe t ()) {
9 I n t e g e r o r i g = countMap . g e t (key) ;

10 i f (o r i g == null) {
11 o r i g = 0 ;
12 }
13 countMap . put (
14 key , o r i g + inMemoryMap . g e t (key)) ;
15 }
16 }
17 db . c l o s e () ;
18 }

Listing 9: Write In-Memory DB to Disk

5.3 Java Project Integration
BlueCov can easily be integrated into Maven projects. This requires
adding the necessary runtime libraries to the dependencies section
of the pom.xml file. The bluecov.jar file location is specified in
the plugins section of the pom.xml file. In this way, the coverage
analysis is used when Maven runs the test suite.

6 CONCLUSION
We presented an approach to focussing a Java test generator based
on bounded model checking on the uncovered test goals of an
existing test suite. BlueCov achieves this by performing a tailored
bytecode instrumentation that captures exactly the coverage goals
that correspond to a chosen coverage metric provided by the test
generation tool.

This avoids mismatches in the coverage criteria implemented in
existing coverage measurement tools and thus avoids the generation
of redundant tests. This direct integration of formal analysis and
test coverage analysis allows for reduction of cost of automated
test case generation and an increase in precision. The minimization
of newly generated tests increases clarity of the test suite which is
important for human testers interacting with the test suite.

As open-source software, BlueCov is freely available and can be
integrated into Java projects. Together with JBMC this can help in
analyzing and completing test suite coverage for projects.

https://mapdb.org/
https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#addShutdownHook(java.lang.Thread)
https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#addShutdownHook(java.lang.Thread)

Conference’17, July 2017, Washington, DC, USA Matthias Güdemann and Peter Schrammel

Related work. The CProver framework has been used to imple-
ment several test generation tools based on bounded model check-
ing, mainly for C programs, the most versatile one being FShell [8],
which offers a domain specific language for expressing arbitrary
coverage goals. The tool ChainCover [13, 14] aims at reducing the
initialization overhead of testing reactive systems by merging tests
into test scenarios.

Semi-automated approaches to closing test coverage gaps [11]
have been considered as well as automated ones, e.g. [3], but none
if these works considers the problem of filling coverage gaps by
exactly integrating with runtime coverage measurement in order
to avoid the generation of tests that overlap with existing automat-
ically or manually created test suites.

Future work. The proposed approach can be also taken to focus
model checking on untested code, similarly to conditional model
checking [2] except that the conditions are not based on information
from another verification engine, but a coverage analysis tool.

REFERENCES
[1] Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019.

In: Tools and Algorithms for the Construction and Analysis of Systems. Lec-
ture Notes in Computer Science, vol. 11429, pp. 133–155. Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

[2] Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: 20th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20),
SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. p. 57. ACM (2012).
https://doi.org/10.1145/2393596.2393664

[3] Bloem, R., Könighofer, R., Röck, F., Tautschnig, M.: Automating test-
suite augmentation. In: 2014 14th International Conference on Quality
Software, Allen, TX, USA, October 2-3, 2014. pp. 67–72. IEEE (2014).

https://doi.org/10.1109/QSIC.2014.40
[4] Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: A bounded

model checking tool for verifying Java bytecode. In: International Conference on
Computer Aided Verification. pp. 183–190. Springer (2018)

[5] Cordeiro, L.C., Kroening, D., Schrammel, P.: Benchmarking of Java verification
tools at the Software Verification Competition (SV-COMP). ACM SIGSOFT Softw.
Eng. Notes 43(4), 56 (2018), http://arxiv.org/abs/1809.03739

[6] Cordeiro, L.C., Kroening, D., Schrammel, P.: JBMC: bounded model checking
for Java bytecode - (competition contribution). In: Tools and Algorithms for the
Construction and Analysis of Systems. Lecture Notes in Computer Science, vol.
11429, pp. 219–223. Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_17

[7] Güdemann, M., Schrammel, P.: BlueCov: Integrating Test Coverage and Model
Checking with JBMC. In: Proceedings of the 38𝑡ℎ ACM/SIGAPP Symposium on
Applied Computing (SAC). ACM (2023). https://doi.org/10.1145/3555776.3577829

[8] Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Verification, Model Checking, and Abstract Interpretation, 10th International
Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings.
Lecture Notes in Computer Science, vol. 5403, pp. 151–166. Springer (2009).
https://doi.org/10.1007/978-3-540-93900-9_15

[9] JaCoCo: Java code coverage, https://www.jacoco.org/jacoco/
[10] Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. pp. 389–391. Springer (2014)

[11] Nellis, A., Kesseli, P., Conmy, P.R., Kroening, D., Schrammel, P., Tautschnig,
M.: Assisted coverage closure. In: NASA Formal Methods - 8th International
Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9690, pp. 49–64. Springer (2016).
https://doi.org/10.1007/978-3-319-40648-0_5

[12] Schrammel, P.: How testable is business software? In: 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020. p. 1.
IEEE (2020), https://arxiv.org/abs/2011.00630

[13] Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive sys-
tem testing. In: Testing Software and Systems - 25th IFIP WG 6.1 International
Conference, ICTSS 2013, Istanbul, Turkey, November 13-15, 2013, Proceedings.
Lecture Notes in Computer Science, vol. 8254, pp. 133–148. Springer (2013).
https://doi.org/10.1007/978-3-642-41707-8_9

[14] Schrammel, P., Melham, T., Kroening, D.: Generating test case chains for re-
active systems. Int. J. Softw. Tools Technol. Transf. 18(3), 319–334 (2016).
https://doi.org/10.1007/s10009-014-0358-6

http://arxiv.org/abs/1809.03739
https://www.jacoco.org/jacoco/
https://arxiv.org/abs/2011.00630

	Abstract
	1 Introduction
	2 Background
	2.1 JBMC— Java Bounded Model Checking
	2.2 Coverage Analysis in JBMC
	2.3 Testcase Minimization
	2.4 Java Specific Challenges

	3 Combining JBMC and BlueCov
	4 Example using BlueCov
	4.1 Class files to Properties
	4.2 Property Instrumentation
	4.3 Measure Existing Coverage
	4.4 Coverage Report
	4.5 Enhance Test Coverage

	5 Bytecode Instrumentation and Coverage Measurement
	5.1 Bytecode Instrumentation
	5.2 BlueCov Runtime Coverage Measurement
	5.3 Java Project Integration

	6 Conclusion
	References

