
CIRCLE: Continual Repair across Programming Languages
Wei Yuan∗

w.yuan@uq.edu.au
School of Information Technology

and Electrical Engineering
The University of Queensland

Australia

Quanjun Zhang∗
quanjun.zhang@smail.nju.edu.cn
State Key Laboratory for Novel

Software Technology
Nanjing University, China

Tieke He†
hetieke@gmail.com

State Key Laboratory for Novel
Software Technology

Nanjing University, China

Chunrong Fang†
fangchunrong@nju.edu.cn

State Key Laboratory for Novel
Software Technology

Nanjing University, China

Nguyen Quoc Viet Hung
henry.nguyen@griffith.edu.au

Institute for Integrated and Intelligent
Systems

Griffith University, Australia

Xiaodong Hao
mf21320054@smail.nju.edu.cn
State Key Laboratory for Novel

Software Technology
Nanjing University, China

Hongzhi Yin
h.yin1@uq.edu.au

School of Information Technology
and Electrical Engineering

The University of Queensland
Australia

ABSTRACT
Automatic Program Repair (APR) aims at fixing buggy source code
with less manual debugging efforts, which plays a vital role in im-
proving software reliability and development productivity. Recent
APR works have achieved remarkable progress via applying deep
learning (DL), particularly neural machine translation (NMT) tech-
niques. However, we observe that existing DL-based APR models
suffer from at least two severe drawbacks: (1) Most of them can
only generate patches for a single programming language, as a re-
sult, to repair multiple languages, we have to build and train many
repairing models. (2) Most of them are developed offline. Therefore,
they won’t function when there are new-coming requirements.

To address the above problems, a T5-based APR framework
equipped with continual learning ability across multiple program-
ming languages is proposed, namely ContInual Repair aCross Pro-
gramming LanguagEs (CIRCLE). Specifically, (1) CIRCLE utilizes a
prompting function to narrow the gap between natural language
processing (NLP) pre-trained tasks and APR. (2) CIRCLE adopts a
difficulty-based rehearsal strategy to achieve lifelong learning for
APR without access to the full historical data. (3) An elastic regu-
larization method is employed to strengthen CIRCLE’s continual
learning ability further, preventing it from catastrophic forgetting.
∗Both authors contributed equally to this research.
†Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534219

(4) CIRCLE applies a simple but effective re-repairing method to
revise generated errors caused by crossing multiple programming
languages.

We train CIRCLE for four languages (i.e., C, JAVA, JavaScript, and
Python) and evaluate it on five commonly used benchmarks. The
experimental results demonstrate that CIRCLE not only effectively
and efficiently repairs multiple programming languages in contin-
ual learning settings, but also achieves state-of-the-art performance
(e.g., fixes 64 Defects4J bugs) with a single repair model.

CCS CONCEPTS
• Computing methodologies → Lifelong machine learning; Ar-
tificial intelligence; • Software and its engineering → Software
testing and debugging; Software defect analysis; Empirical
software validation.

KEYWORDS
Automatic Program Repair, Neural Machine Translation, Lifelong
Learning, AI and Software Engineering
ACM Reference Format:
Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet
Hung, Xiaodong Hao, and Hongzhi Yin. 2022. CIRCLE: Continual Repair
across Programming Languages. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’22), July
18–22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3533767.3534219

1 INTRODUCTION
Automatic Program Repair (APR) is critical for software developers
since manually detecting and fixing bugs is a labor-intensive and
time-consuming task [81]. With the recent advances in deep learn-
ing (DL), a lot of APR approaches have been proposed to use neural
network techniques to learn the bug-fixing patterns from accessible

ar
X

iv
:2

20
5.

10
95

6v
4

 [
cs

.S
E

]
 3

 D
ec

 2
02

2

https://doi.org/10.1145/3533767.3534219
https://doi.org/10.1145/3533767.3534219

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yuan and Zhang, et al.

code repositories [5, 17, 87]. Assisted by deep learning’s powerful
ability to learn hidden and intricate relationships from massive
data, DL-based APRs achieve remarkable performance [25, 93].

Generally, the DL-based APRs is composed by two parts [12]:
an encoder that extracts the meaning of buggy code with nec-
essary context and converts it into fix-length vectors; and a de-
coder that generates the correct statements from the encoder’s
output [24, 34, 42]. These encoder-decoder models usually treat
the program repair task as a translation from buggy code to fixed
code. For example, Tufano et al. [77] adopt a classical neural ma-
chine translation (NMT) model to generate the fix patches. Co-
CoNut [45] utilizes two separate encoders to encode the buggy
lines and surrounding context. Further, CURE [25] employs GPT to
provide contextual embeddings for CoCoNut. Zhu et al. [93] design
a syntax-guided edit decoder to generate patches in a refined way.

Despite the recent achievements, existing DL-based APR tech-
niques have at least two limitations. First, most of them can only
fix bugs for a single language. If we want to repair codes for many
languages, we have to train and store a corresponding number of
models. In addition, these models are trained independently, which
limits them to transfer the latent knowledge learned from other
languages. We argue that such “single-language learning setting”
is artificial because the underlying code understanding and bug
identifying abilities may share a large common across languages.
For example, a developer who is proficient in certain language,
when (s)he reads code with unfamiliar language, (s)he can still un-
derstand the general ideas and intuitively point out the potential
problem. Recent research also indicates that multilingual training
data could improve performance on several code-related tasks (e.g.,
code summarization and method name prediction) [2, 53]. There-
fore, learning multiple languages fixing may be more efficient and
effective than separately learn different languages. Besides, the
scalability of cross-lingual repairing model will also be better than
these traditional APR models, since the prior one can handle vari-
ous languages with just one model. And the scalability problem will
probably be severer with the growing of neural network models’
size.

Another shortcoming for current APRs is that they are developed
in an offline manner, so they cannot continually improve their bug-
fixing ability. This shortcoming decreases the value of DL-based
APRs in real-world scenarios where new task requirements increase
constantly. The “task requirements increase constantly” refers to
that only a part of tasks are targeted to be solved at the first time and
new task requirements are proposed afterwards. This case happens
when tackling all tasks at once is very complex and time-consuming
or when the task requirements cannot be fully obtained initially. For
example, when companies decide to provide APR service, they tend
to provide service for the most in-demand programming language
in the first place, since creating a high-quality and enterprise-level
APR model is costly. Later, as the business grew, they would like to
enrich their APR service for other languages. In addition, collecting
bug-fixing corpus is also an adaptive and continual process, even
though all task requirements are covered initially, the model still
needs to expand their knowledge on new corpus. Conventional APR
models tend to overwrite the knowledge learned from previous
tasks when learning new tasks. As a result, every time the task

requirement increases, APR models have to be retrained on all
corpus, which is time-consuming.

Tomitigate the above issues, a newDL-based APRmodel that can
process multi-type programming languages and continually learn
defects fixing is desirable. However, there are two main challenges
in implementing such APR models. First, repairing defects cross
languages ismore difficult than for a single language [79]. Therefore,
it is essential to efficiently and effectively exploit the power of
deep learning [40], especially the large pre-trained neural network
models, which are commonly used in NLP [59, 63, 84]. Second,
models are prone to forget the knowledge obtained from previous
tasks when they are learning on new corpus or new tasks, i.e.,
they are struggling with catastrophic forgetting1 [16, 51]. How to
prevent this forgetting is non-trivial.

In this paper, we propose CIRCLE (short for ContInual Repair
aCross Programming LanguagEs), which is able to continually learn
bug fixing across multiple programming languages. To be specific,
CIRCLE incorporates a prompt template, a T5-based APR model,
and a re-repairing mechanism to address the first limitation and
challenge mentioned above (i.e. repairing across languages and
effectively utilizing pre-trained models). Concretely, T5 [64] is a
widely used NLP pre-trained model that exhibits a formidable ca-
pacity for handling multiple tasks [1, 50]. The prompt template
converts bug-fixing inputs into fill-in-the-blank form, closing the
gap between T5’s pre-trained task and program repair. This prompt
template helps model better exploit the knowledge learned from
pre-trained tasks [33, 41, 69, 71]. The re-repairing mechanism is
designed to eliminate incorrectly generated patches caused by cross-
ing languages.

To tackle the second issue and challenge (i.e., continually learn-
ing bug-fixing without catastrophic forgetting), CIRCLE applies
a rehearsal method and an elastic regularization. The rehearsal
method stores a small set of data from past datasets to simulate the
historical data distribution and replays them in the later learning
period. The main challenge is how to select the set of “represen-
tative data”. CIRCLE proposes a novel data selection scheme that
collects representative examples from historical data for bug re-
pairing based on the difficulty. However, since the size of selected
samples is desired to be small enough to reduce the resource costs,
solely using the difficulty-based example replay method cannot ad-
equately avoid the forgetting problem. Therefore, CIRCLE employs
a parameter updating regularization approach based on Elastic
Weight Consolidation (EWC) [29]. Moreover, CIRCLE calculates
the Fisher Matrix [74] on the chosen examples rather than on the
whole historical data to approximate EWC values so that it does not
need to keep the whole historical data. The EWC imposes restric-
tions on parameters that play a vital role in previous task learning,
forcing model to learn current and future tasks via adapting other
parameters.

Extensive experiments are conducted across 4 popular program-
ming languages (C, JAVA, JavaScript, and Python) on 5 benchmarks
to test the effectiveness of our CIRCLE. The experimental results
demonstrate that a single CIRCLE model can continually learn

1Catastrophic forgetting means that neural network model tends to completely forget
learned knowledge when learning new information.

CIRCLE: Continual Repair across Programming Languages ISSTA ’22, July 18–22, 2022, Virtual, South Korea

program repair crossing multiple languages settings without se-
verely forgetting previous knowledge. Furthermore, CIRCLE out-
performs the conventional state-of-the-art DL-based APRs which
are dedicated trained for certain language. At last, each compo-
nent’s importance is studied in the ablation study in detail. The
code, experimental results and processed data is available2.

To sum up, the main contributions of this paper are three-fold:

• We propose CIRCLE, a novel program repair framework that
can continually learn bug-fixing across multiple languages.
To the best of our knowledge, we are the first to exploremulti-
language program repair in continual learning scenarios.

• A prompt-based template is developed to convert program
repair into “fill-in-the-blank” task, allowing the pre-trained
model, T5, to perform the repair task effectively. A simple
but effective re-repairing mechanism is designed to revise
generation errors about crossing languages. In addition, a
novel difficulty-based example replay and an EWC-based
regularization method are proposed to mitigate catastrophic
forgetting in continual learning settings.

• Extensive experiments are conducted with 4 commonly used
programming languages and evaluated on 5 bug benchmarks
to demonstrate that CIRCLE can continually learn bug repair
crossing languages and outperform previous neural APR
models. Ablation studies and further analyses are presented
to discuss CIRCLE’s performance.

The remainder of this paper is organized as follows. Section 2
provides the basic background related to our work. Section 3 intro-
duces the details of our CIRCLE. Section 4 describes the datasets
and metrics adopted in this paper, followed by experimental results
and discussions. Section 5 presents the related work on program
repair and lifelong learning. Section 6 concludes our work.

2 BACKGROUND
2.1 DL-based APR
DL-based APRs have achieved state-of-the-art performance on pro-
gram repair task [9, 11, 45, 76, 88]. Most of them treat repairing
as a neural machine translation task and optimize an encoder-
decoder model on a set of bug-fix pairs to learn latent patterns
based on supervised learning. The inputs and neural model archi-
tectures of DL-based APRs are various. For example, CoCoNut [45]
separately encodes context and buggy codes by CNN networks.
SequenceR [11] abstracts the buggy context and takes it as input
together with buggy lines. Recently, pre-trained models are also
used in DL-based APRs. CURE [25] employs GPT as token embed-
ding layer. Mashhadi et al. [49] utilize CodeBERT to fix Java simple
bugs.

However, to the best of our knowledge, repairing multiple pro-
gramming languages’ defects via a single model is still underex-
plored. In light of this, we propose to employ the recent pre-trained
model T5 as the skeleton and build a repair model that can fix bugs
across languages.

2https://github.com/2022CIRCLE/CIRCLE.

task 1 task 2

onemodel learns from one task
onemodel solvesone task

task n

traditional learning

model 1

…

model 2 model n

multitask learning

task 1

model 1

learning

task 2

model 2

task n

…

learning

model n

onemodel learns from n tasks
onemodel solvesn tasks

task 1

model 1

task 2

model 2

task n

…

learning

model n

onemodel learns from current task
onemodel solvesn tasksknowledge

retain

continual learning

Figure 1: The difference among traditional learning, multi-
task learning, and continual learning paradigm.

2.2 Continual Learning
Continual Learning (also referred to as Lifelong Learning) is a type
of machine learning paradigm, which aims to continually learn new
tasks while not severely forget previously gained knowledge [60].
Formally, let 𝑓𝑡 denote the model trained in task 𝑡 , the new dataset
𝐷𝑡+1 for task 𝑡+1 is used to update the model 𝑓𝑡 . Continual Learning
attempts to ensure that after updating, model 𝑓𝑡+1 can have good
performance in all seen tasks 1 : 𝑡 + 1.

Figure 1 illustrates the difference among traditional learning,
multitask learning, and continual learning. With traditional learn-
ing settings, a model is trained on a certain dataset and can only
complete a single corresponding task. Multitask Learning and Con-
tinual learning are similar in the sense that they both attempt to
find a good solution across multiple tasks [54]. The main difference
is that Multitask Learning has to keep access to all previous data.
Once a new task and dataset are available, the model must be re-
trained on all historical datasets. Therefore, the cost of Multitask
Learning is much expensive than Continual Learning. Formally,
assuming that for task 𝑡 , the dataset size is 𝑑𝑡 and the training cost
(e.g. training time, computational resources) is 𝑐𝑡 . Then, in the task
requirements growth progressively scenario, until task 𝑡 arrives,

the total training cost for Multitask Leaning is
𝑡∑
𝑖=1

(𝑡 − 𝑖 + 1)𝑐𝑖 , and

Multitask Learning needs to store all historical data
𝑡∑
𝑖=1

𝑑𝑖 . Whereas

for Continual Learning, the training cost is
𝑡∑
𝑖=1

𝑐𝑖 and it only needs

to maintain current task’s dataset. Briefly, Multitask Learning is a
good choice for the issues that tasks and data are both changeless,
i.e., task requirements are clear, and all data are available at the
beginning stage, rather than for our paper’s focused problems.

https://github.com/2022CIRCLE/CIRCLE

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yuan and Zhang, et al.

The major challenge of Continual Learning is catastrophic for-
getting (or catastrophic interference), which indicates that artificial
neural networks tend to abruptly “forget” the knowledge of previ-
ously learned tasks [29]. There are three main families of methods
to mitigate this problem: Rehearsal, Regularization, and Architec-
tural methods. Rehearsal methods rely on collecting a part of typical
historical data, so that they can replay them in the future train-
ing [65–67]. Regularization methods apply some constraints to
model’s parameter updating, in order to strike a balance between
stability and plasticity [29, 73]. Architectural methods attempt to
dynamically change model’s modular, however, model parameters
will dramatically increase when the number of tasks grows [46, 83].
In this work, we focus on the hybrid of rehearsal and regularization
methods.

2.3 Prompt for Pre-trained Model
A prompt is a piece of tokens inserted in the input, so that the
original task can be formulated as a languagemodeling task. Prompt
is used to fill the gap between pre-trained tasks and the down-
stream task, facilitating finetuning process. Following Raffel et al.
and Khashabi et al. [28, 64], we manually design a set of prefixes as
prompt to concatenate each input component.

3 APPROACH
To address the limitations and challenges mentioned in Section 1,
we propose CIRCLE, a neural APR model that can continually learn
defects fixing. In this section, we introduce the design and imple-
mentation of CIRCLE. First, we present the overview of CIRCLE
in Section 3.1. CIRCLE aims to achieve both continual learning
and multiple language repairing, which is more complex and also
more practical than previous DL-based APRs. It is composed of five
parts. First, CIRCLE leverages a large pre-trained model as its model
skeleton to gain the strong learning ability (Section 3.3), meanwhile,
it employs a prompt function to effectively finetune the pre-trained
model (Section 3.2). Then, CIRCLE uses a novel difficulty-based
rehearsal method (Section 3.4) and a parameter importance-based
regularization (Section 3.5) to cope with forgetting problem. Finally,
a simple but effective re-repairing approach is utilized to erase
generation errors caused by crossing languages (Section 3.6).

3.1 Overview
Figure 2 presents the overview of our approach. As shown in the up-
per right part, CIRCLE can deal with task requirements increasing
due to its continual program repair learning ability. Without loss
of generality, we assume new language program repair tasks arrive
over time with their corresponding datasets. CIRCLE automatically
learns these tasks one by one based on task arriving order and does
not need to retrain on or store the whole previous tasks’ data.

For each task, CIRCLE consists of two stages: training stage and
testing stage. During training stage, a manually designed prompt
function at first converts the repairing input into a fill-in-the-blank
form. Our training set is composed of two subsets: the current task
corpus and a few examples selected from previous tasks. Then,
these processed data are fed into a T5-based APR model. T5 uti-
lizes a subword tokenization method to address out-of-vocabulary
(OOV) problem. Unlike previous work [25], we keep the original

tokenization vocabulary instead of building a new vocabulary us-
ing byte pair encoding (BPE) [70] algorithm. Because (1) we want
APR model to inherit the natural language understanding abil-
ity and start learning repairing from a good initial point; (2) BPE
needs to count the subwords frequency, however, the frequency
is dynamically changed crossing languages. The T5-based APR
generates candidate patches according to the prompted input and
a loss function is applied to evaluate this generation. To alleviate
catastrophic forgetting, CIRCLE should carefully update its param-
eters. Therefore, an EWC regularization is employed to compute
the “importance” of each parameter for previous tasks, avoiding too
much change of these more “important” parameters. Finally, APR
model is updated based on the loss and EWC regularization. When
the training is converged, we use this well-trained APR model to
select a small set of examples from current task corpus via a novel
data selection scheme. These selected examples are stored to be
replayed in the forthcoming task training.

During each task’s inference stage, the APR model receives all
seen languages’ buggy codes and repairs them through generating
a group of candidate patches. In multiple programming language
repairing scenarios, APR model is easy to incorrectly generate some
keywords, since they have very similar semantic meanings. For
example, Java and JavaScript’s “null” is similar to Python’s “None”
in both program and natural language aspects. In some cases, our
APR model will make mistakes about these keywords. However,
the number of such keywords is not too much. We simply build a
simple map to convert them after model’s generation.

3.2 Prompt based Data Representation
The input of CIRCLE is composed of two parts: the buggy code
and the surrounding context code. Traditional works attempt to
seperately encode these two parts and then merge the encoding
vectors [25, 45]. However, how to effectively fuse these seperated
encoding vectors and eliminate the semantic gaps between two
encoders is still worth discussing. Recently, Raffel et al. [64] pro-
pose a text-in-text-out input format, which concatenates different
input components with some prefixed prompt. This mechanism
is proved to be useful for finetuning pre-trained model in down-
stream tasks [27, 40]. In light of this, CIRCLE employs a manually
designed prompt template to convert buggy code and correspond-
ing context into a unified fill-in-the-blank format. As illustrated
in Figure 3, we utilize “Buggy line:”, “Context:” denote the buggy
line and context codes, and then we use “The fixed code is:” to
guide pre-trained model generate fixed program according to the
previous input. Since T5 is pre-trained in fill-in-the-blank tasks
with natural language, it is more natural for it to finetune on the
prompted data.

In addition, CIRCLE utilizes subword tokenization method to
address OOV problem. But we do not newly build a token vocabu-
lary because we want to fully exploit the pre-trained knowledge
from T5 and the frequency of tokens from the whole datasets is not
available as we mentioned in Section 3.1. In other words, finetuning
T5 in APR task can be viewed as “domain-adaptive” task to some
extent in this paper, i.e. the gap between down-stream task and
pre-trained task is close.

CIRCLE: Continual Repair across Programming Languages ISSTA ’22, July 18–22, 2022, Virtual, South Korea

task time line (requirement increase)
JavaScript
repair

CIRCLE

Python
repair

CIRCLE

Java
repair

CIRCLE

C/C++
repair

CIRCLE

task t
repair

…
CIRCLE

CIRCLE

testing stage (task t)

buggy code from task 1:t

…
prompt template

APR model plausible patches

…

…

buggy code correct code

dataset t

sa
m
pl
e
n

prompt template

prompt input correct code

processed dataset t

sa
m
pl
e
n

APR model
generated code correct code

loss calculation

ewc regularization

finetuning

difficulty-based
example collection

few samples

store

example
replay

training stage (task t)

re-repair

…

Figure 2: CIRCLE’s overview.

Optional

Model

Buggyline: n ^= n – 1
Context:
def bitcount(n):

count = 0
while n:

n ^= n - 1
count += 1

return count
The fixed code is: [P]

Model

traditional input prompt input

Figure 3: The comparison of traditional input and our
prompt-based input. The green text represents prompt,
which indicates the semantic meaning of each input com-
ponent. The prompt input formulates bug-fixing task as fill-
in-the-blank task, which is similar to T5’s pre-trained task.

3.3 T5 as APR Model Skeleton
T5 [64] is a kind of encoder-decoder transformer [80] model pre-
trained in many tasks on over 750 GB datasets, achieving state-
of-the-art performance on a variety of NLP tasks. Mastropaolo et
al. [50] show that T5 can also perform well in many code-related
tasks. Although they also employ T5 to solve an APR problem, we
are the first to use T5 for APR in the continual learning scenarios
and to solve the APR task with multiple languages simultaneously.

The encoder of T5 is a stack of transformer blocks, each of which
contains two subcomponents: a multi-head self-attention layer fol-
lowed by a position-wise feed-forward network. Layer normaliza-
tion [4], residual connectors [20], and dropout operation [72] are
also applied between each subcomponent to stabilize the training
process.

The decoder of T5 is much similar to the encoder but it has
attention mechanism after each self-attention so that it can attend
to the output of the encoder. In addition, the attention is causality-
enabled to avoid information leaking during decoding.

T5 comes in different sizes. In this paper, we do not modify the
vocabulary size and use the pre-trained “t5-base” as the training
starting point.

3.4 Difficulty-based Example Replay
One of the significant contributions of CIRCLE is that it enables
APRmodels to continually learn bug fixing. To achieve this, CIRCLE
incorporates a difficulty-based example replay and an EWC-based
regularization to avoid forgetting. In this part, we introduce the
novel difficulty-based example replay.

The core idea of example replay is to retain a small set of samples
from previous datasets, and replay these samples in later training.
As a result, model can avoid severely forgetting meanwhile does
not need to retrain on whole historical data. Straightforwardly, the
effectiveness of such rehearsal method largely relies on the selected
examples. In this work, we propose to select the representative
and diverse data based on difficulty. The intuition is that difficult
data might be more informative and useful for improving current
model. Since model has poor performance during previous training
with these difficult data, it might incline to first forget the pattern
learned from those data.

The difficulty selection criterion is as follows:

𝑑𝑡 (𝑥𝑡𝑖 , 𝑦
𝑡
𝑖) =

𝐿(𝑥𝑡
𝑖
, 𝑦𝑡

𝑖
|𝜃𝑡)��𝑦𝑡

𝑖

�� (1)

where 𝑥𝑡
𝑖
and 𝑦𝑡

𝑖
are the 𝑖-th data pair in task 𝑡 . 𝜃𝑡 is the model

that already well-trained in task 𝑡 . 𝐿(·|𝜃𝑡) is the loss function (e.g.
cross-entropy) conditioned on model parameter 𝜃𝑡 . Since long sen-
tences tend to accumulate higher loss values, we use the inverse
of 𝑦’s length as the normalization factor. Basically, Eq. 1 reflects
the confidence of model 𝜃𝑡 when repairing the data 𝑥𝑡

𝑖
, where a

higher value indicates 𝑥𝑡
𝑖
is more challenging to learn. We collect

𝑁 samples that can maximize Eq. 1 from task 𝑡 ’s datasets as the
difficult example set 𝐸𝑡 . 𝑁 is much smaller than the whole dataset
𝐷𝑡 . Consequently, for each task 𝑖 , we maintain a corresponding
example set 𝐸𝑖 .

During continual training of APR, the previously selected dif-
ficult example set 𝐸1:𝑡 are integrated to the coming task 𝑡 + 1’s
dataset. Therefore, the objective of training is to find 𝜃𝑡+1 that can
minimize the loss on the combined dataset:

𝜃𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑡

∑︁
(𝑥,𝑦) ∈𝐷𝑡+1∪𝐸1:𝑡

𝐿(𝑥,𝑦 |𝜃𝑡) (2)

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yuan and Zhang, et al.

3.5 Sampling-based EWC Regularization
Since the size of selected example set |𝐸1:𝑡 | should be as small as
possible to reduce computation and storage costs, the effects of
remembering old patterns are not strong enough. Therefore, we fur-
ther apply a constraint to avoid model losing previous knowledge.
This constraint is based on ElasticWeight Consolidation (EWC) [29],
which is widely adopted to overcome catastrophic forgetting in con-
tinual learning. EWC imposes restrictions on parameters according
to the importance of the parameters for previous tasks. The more
importance the parameters in previous tasks, the more tightly EWC
restricts their updating. EWC uses Fisher Matrix as a measure of
weight importance, the calculation is as follows:

𝐹𝑖 = ▽2𝐿(𝑥,𝑦 |𝜃𝑡−1,𝑖) (3)

𝐹𝑖 measures the importance of 𝑖th parameter in 𝜃𝑡−1. 𝐹𝑖 is used to
regularize model’s updating:

𝐸𝑊𝐶 (𝜃𝑡) =
∑︁
𝑖

𝜆𝐹𝑖 (𝜃𝑡,𝑖 − 𝜃𝑡−1,𝑖)2 (4)

where 𝜆 is hyper-parameter controls the contributions of EWC
regularization.

However, directly calculate Eq. 3 is unscalable, since it needs to
access to all historical data. To efficiently approaximate EWC, we
only calculate Fisher Matrix on the data collected by our difficulty-
based selection scheme, i.e. (𝑥,𝑦) ∈ 𝐸1:𝑡 . Furthermore, we only
sample𝑀 items from 𝐸1:𝑡 to further reduce the computation costs.

Finally, the objective function of training is changed to:

𝜃𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑡

(𝐸𝑊𝐶 (𝜃𝑡) +
∑︁

(𝑥,𝑦) ∈𝐷𝑡+1∪𝐸1:𝑡

𝐿(𝑥,𝑦 |𝜃𝑡)) (5)

3.6 Cross Language Re-repairing
After continual training, CIRCLE learns the latent repairing patterns
of multiple language and can generate correct patches. However,
unlike natural languages, programming language has strict formal
grammar. Therefore, CIRCLE still faces three problems due to the
complication of crossing language repairing. The first one is that
CIRCLE has possibility to generate keywords that have the same
semantic meaning but belongs to other languages. We name this
problem as “keywords mismatch”. For example, “None” in Python
has the same semantic meaning to “null” in Java. In some cases,
CIRCLE incorrectly generates “None” when fixing Java bugs. To
address this mismatch problem, we build a simple mapping table
to convert these mismatch words to corresponding one. Table 1
presents some examples from our keywords mapping table.

Table 1: Examples from keywords mapping table.

C Java JavaScript Python
1 NULL null null None
2 max Math.max Math.max max
3 min Math.min Math.min min
4* -> . . .
...

The other problem is “format mismatch”, which refers to gener-
ating correct tokens but with incorrect form. The typical example is

that CIRCLE tends to generate “==” as “= =” which will lead syntax
error. We simply build a regular expression to remove unnecessary
blank space.

Finally, since T5 model’s tokenizer is designed for natural lan-
guage, although it applies wordpiece algorithms, it still slightly
suffers out-of-vocabulary problem for a few rare symbols. In our
experiments, we find three symbols which are OOV tokens, how-
ever, they are frequently used in programming languages 3. When
generating these symbols, T5 will simply generate unknown tokens,
which is quite inappropriate. The re-repairing mechanism replaces
these unknown tokens with those special symbols.

4 EXPERIMENTAL SETUP
In this section, we introduce the experimental design, including
the research questions we studied, the training datasets, evaluation
benchmarks, and implementation details in the experiments.

4.1 Research Questions
CIRCLE is designed to fix multiple language bugs and to achieve
continually learning bug fixes. To this end, we explore the following
research questions (RQ):

• RQ1. Can CIRCLE effectively learn bug fixing in “task re-
quirements increase constantly” scenario?

• RQ2. What is the performance of a single CIRCLE model
compared to state-of-the-art APR methods?

• RQ3. What are the contributions of the different components
of CIRCLE?

4.2 Datasets
Following previous works [25, 45], we directly use the CoCoNut’s
training data released on Github4 as our method’s training corpus.
Same as these works, to make the evaluation realistic, we remove
Java data committed after 2006. The size of original datasets is very
large: 3 241 966, 480 777, 2 735 506, and 3 217 093 bug-fix pairs for
Java, Python, C, and JavaScript, respectively. Limitted of compu-
tation power, we randomly select a part of remaining data (0.4
million) for training. The following experimental results indicate
that training on such part of data still get great performance. We
utilize the prompt template to concatenate the context data and
buggy data, meanwhile, we truncate the inputs whose length are
longer than 512 after subword tokenization.

For RQ1, to better align with continual learning scenario in real
life, we assume that CIRCLE learns different languages repairing in
the order of the language’s popularity5: JavaScript → Python →
Java→ C. This setting is reasonable since in practice, companies
often attempt to build tools for the most popular part and then
refine them for other parts. The final trained CIRCLE model is used
to compare with all state-of-the-art APR models to answer RQ2.

3We test the following symbols: “+ - * / % ** // == != <> > < >= <= = += -= *= /= %= //=
**= & | ˆ « » { } \ \\ # $ ()” only find three symbols meet this requirement: “<”, “ˆ”, and
“{”.
4https://github.com/lin-tan/CoCoNut-Artifact/releases
5the popularity is according to language’s change rate on Github. https://madnight.
github.io/githut/#/pull_requests/2021/3

https://madnight.github.io/githut/#/pull_requests/2021/3
https://madnight.github.io/githut/#/pull_requests/2021/3

CIRCLE: Continual Repair across Programming Languages ISSTA ’22, July 18–22, 2022, Virtual, South Korea

4.3 Implementation Details
All of our approaches are built based on PyTorch. We use the
HuggingFace [85] implementation version of T5 and utilize “t5-
base” as the initial point, considering previous work recommenda-
tion [15, 64] and our devices’ limits. “t5-base” model contains 12
layers of transformer blocks and 12 attention heads. The optimizer
is AdamW [44] with 3𝑒 − 4 learning rate. For each task (or splitted
data in RQ2.), we train at most 20 epochs, and if the validation loss
does not decrease after 3 epochs, the training process will be early
stopped. The batch size is 64, the max length of input is set to 512,
and the 𝜆 of EWC is 110000. The size of example set in difficulty-
based example replay is restricted to 20000, which is much smaller
than the total size of training data.

In inference stage, we use beam search with 250 beam size. Mean-
while, we apply top-k and top-p sampling during each step’s token
selection. Then, we re-repair the generated patches using the map-
ping table mentioned in Section 3.6. As a result, at most 1000 candi-
date patches are created by CIRCLE. For evaluation purpose only,
following previous works [25, 45], three authors manually verify
plausible patches (i.e. patches that successfully pass the test) based
on ground truth patches (i.e., developer patches). And the plausible
patches is considered to be correct only if all three authors agree
it is equivalent to ground truth data semantically. All the training
and evaluation of our methods are conducted on one CentOS 7.7
server with eight Tesla V100-SXM2 GPUs.

4.4 Benchmarks and Baselines
We use five benchmarks with four popular programming lan-
guages: Defects4J [26] and QuixBugs [35] for Java, BugIDs [19]
for JavaScript, ManyBugs [31] for C, and QuixBugs [35] for Python,
all of which have been adopted in previous APR work [18, 25, 45].

In order to verify the continual learning ability of CIRCLE, i.e.
RQ1, we train a T5 model in the traditional finetuning way as our
baseline. Finetuning way means that with the progress of tasks,
model is initialized with checkpoint obtained from the last task
and then, it is finetuned with current task’s data. We name this
model as Finetuned-APR. The training and inference parameters of
Finetuned-APR is the same as CIRCLE. The comparison between
CIRCLE and Finetuned-APR indicates the superiority of our ap-
proaches in task streaming settings.

For RQ2, we employ five benchmarks commonly used for APR
that contain realistic bugs. To enable sufficient evaluations, we
compare CIRCLE against 30 APR techniques covering different
programming languages and technique categories. Specifically, all
APR tools in the previous evaluation [45] and three recent state-of-
the-art NMT-based tools [25, 93] are considered.

5 EVALUATION AND RESULTS
In this section, we evaluate CIRCLE and answer to four research
questions based on experimental results.

5.1 RQ1: Can CIRCLE effectively learn bug
fixing in “task requirements increase
constantly” scenario?

We compare CIRCLE with the Finetuned-APR which we mentioned
in Section 4.4. Note that the only difference between CIRCLE and

Finetuned-APR is that the latter does not incorporate continual
learning modules and is directly trained in a finetuning way. Fig-
ure 4 reports the performance trend of CIRCLE and Finetuned-APR
with regarding to the task progress. To be specific, during the learn-
ing progress, we account how many bugs the model can fix for
both current task and previous learned tasks. For example, after
model learned Task 3 (i.e. Java) APR, we calculate the number of
bugs it can fix on JavaScript (BugAID), Python (QuixBugs), and Java
(Defects4J and QuixBugs) benchmarks. In Figure 4, CIRCLE and
Finetuned-APR have the same performance for the first task. Then,
Finetuned-APR is gradually falling behind our CIRCLE. Moreover,
we can observe that: (1) For historical tasks, CIRCLE significantly
outperform Finetuned-APR. For instance, after Task 3, Finetuned-
APR can only repair 18 bugs on QuixBugs-Py, in contrast, CIRCLE
fixes 26 bugs. This observation supports the effectiveness of our
proposed continual learning modules. (2) Even for current tasks,
CIRCLE still have better performance than Finetuned-APR. Take
Task 2 as examples, Finetuned-APR correctly generates patches
for 23 bugs on QuixBugs-Py, however, CIRCLE generates correct
codes for 28 bugs. This observation supports our argument that the
underlying code understanding and patches construction abilities
are largely common among programming languages. As a result,
if model does not severely forget previous obtained knowledge,
this knowledge will help them in the following tasks. To further
demonstrate that the previous task’s knowledge is helpful, we train
a T5-based APR model for Python without learning any previous
task. It fixes 21 bugs, which is worse than Finetune-APR’s perfor-
mance on Task 2. This experimental result shows that although
Finetune-APR tends to forget most previous knowledge, it still re-
members a part of learned transferred knowledge and therefore,
achieve better performance than the independently trained model.

Besides, we also draw the estimated upperbound in Figure 4 to
show the “forgetting” problem that our CIRCLE still suffered. At
each task point, we choose the best performance that CIRCLE or
Finetuned-APR achieved on each benchmark as the upperbound
performance. This upperbound curve indicates the degree of for-
getting CIRCLE still suffers. Figure 4 shows that CIRCLE slightly
falls behind the estimated upperbound compared to Finetuned-
APR, further indicating the effectiveness of our continual learning
strategies.

5.2 RQ2: What is the performance of a single
CIRCLE model compared to the dedicatedly
trained state-of-the-art APR methods?

To evaluate the performance of CIRCLE, we compare it with state-
of-the-art techniques, including the traditional and DL-based ones.
We adopt the final trained CIRCLE in RQ1 to perform repair tasks
for five bug benchmarks across four programming languages. Table
2 shows the repair performance of a single CIRCLE model and the
all selected baselines. In Table 2, each cell is represented as 𝑥/𝑦,
where 𝑥 is the number of correct patches and 𝑦 is the number of
produced plausible patches. The results show that a single CIRCLE
model achieves state-of-the-art performance in different languages.

As shown in Table 2, CIRCLE fixes 120 bugs for all bug bench-
marks in four programming languages. For Java benchmark, CIR-
CLE fixes 19 bugs on QuickBugs, outperforming CoCoNut and is

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yuan and Zhang, et al.

Table 2: Comparison with state-of-the-art techniques. Note that due to the the accessible of source code and time consuming
of repair process, following the most of existing APR work [18, 93], we reuse the released results from the recent work [45].
Meanwhile, the results of most recent tools (i.e., CURE and Recoder) are extracted from the original papers. According to [45],
the two duplicated bugs (i.e., Closure 63 and Closure 93) are excluded since they are same with Closure 62 and 92, respectively.
(†) No plausible patch of Recoder is reported in the original work and five originally reported correct patches are false positives
in the latest official repository (https://github.com/pkuzqh/Recoder). (‡) The number is calculated by the exact match of the
generated patch and the developer patch, and indicates minimal number of correct patches.

FL ID Tool
Java C Python JavaScript

Defects4J QuixBugs ManyBugs QuixBugs BugAID
393 bugs 40 bugs 69 bugs 40 bugs 12 bugs

Standard

T1 Angelix - - 18/39 - -
T2 Prophet - - 15/39 - -
T3 SPR - - 11/38 - -
T4 Astor - 6/11 - - -
T5 LSRepair 19/37 - - - -
T6 DLFix 29/65 - - - -

Supplemented

T7 JAID 9/31 - - - -
T8 HD-Repair 13/23 - - - -
T9 SketchFix 19/26 - - - -
T10 ssFix 20/60 - - - -
T11 CapGen 21/25 - - - -
T12 ConFix 22/92 - - - -
T13 Elixir 26/41 - - - -
T14 Hercules 49/72 - - - -

Perfect

T15 SOSRepair - - 16/23 - -
T16 Nopol 2/9 1/4 - - -
T17 (j)Kali 2/8 1/2 3/27 - -
T18 (j)GenProg 6/16 0/2 2/18 - -
T19 RSRepair 10/24 2/4 2/10 - -
T20 ARJA 12/36 - - - -
T21 SequenceR 12/19 - - - -
T22 ACS 16/21 - - - -
T23 SimFix 27/50 - - - -
T24 kPAR 29/56 - - - -
T25 AVATAR 29/50 - - - -
T26 FixMiner 34/62 - - - -
T27 TBar 52/85 - - - -
T28 CoCoNut 44/85 13/ 20 7/- 19/21 3/-
T29 CURE 57 /104 26/35 - - -
T30 Recoder† 64/- - - - -
T31 CIRCLE 64/182 19‡/- 9‡/- 23‡/- 5‡/-

competitive with CURE. It is worthy noting that 19 bugs is calcu-
lated by exact match, which is usually the minimal of correct patch,
while CoCoNut and CURE run all generated patches against the
test suite. Meanwhile, CIRCLE correctly repairs 64 bugs and outper-
forms all of the previous traditional APR techniques on Defects4J
v1.2. In particular, CIRCLE repairs 23.1% (12 bugs) more bugs than
the state-of-the-art traditional approach (e.g., TBar). Meanwhile,
CIRCLE can fixmore bugs thanmost DL-based APR techniques (e.g.,
CoCoNut and CURE). CIRCLE is also found to be competitive with
the most recent DL-based approach, Recoder, which is reported
to be the first DL-based APR approach that has outperformed the
traditional APR approaches. For other three language benchmarks,

Table 2 shows that CIRCLE is the best technique on two of the
three benchmarks (i.e., fixs 19 bugs for QuickBugsPY, 9 bugs for
ManyBugs, 5 bugs for BugAID, respectively), indicating that the
repair ability across different programming languages with a single
CIRCLE model. It is worthy noting that most existing DL-based ap-
proaches (e.g., CURE) consider complex code-aware characteristics
(e.g., code edits and abstract syntax tree) [93], while CIRCLE treats
the program repair process as a simple machine translation task on
a sequence of tokens. We only use around 4.13% (400 000/9 675 342)
of the data dataset compared with CoCoNut. We also set the beam
size as 250 while CURE’s beam is configured to 1000. According
to previous work[58, 76], a larger training set and beam size may

CIRCLE: Continual Repair across Programming Languages ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Task1
JavaScript

Task2
Python

Task3
Java

Task4
C

Tasks

0

20

40

60

80

100

120

Nu
m

 o
f f

ix
ed

 b
ug

s

(4)/(4)

(5, 23)/(28)

(4, 18, 42, 19)/(83)
(5, 20, 41, 16, 9)/(91)

(4)/(4)

(5, 28)/(33)

(5, 26, 47, 21)/(99)

(5, 23, 64, 19, 9)/(120)

(4)/(4)

(5, 28)/(33)

(5, 28, 47, 21)/(101)

(5, 28, 64, 21, 9)/(127)Finetune-APR
CIRCLE
Upperbound

Figure 4: The performance trend comparison of traditional
training approach and our CIRCLE in “task requirements
increase constantly” scenario. The dot value (x)/(y) reports
model’s behavior on all seen tasks. The number in “x” shows
the performance on each benchmark following the order:
BugAID, QuixBugs-Py, Defects4J, QuixBugs-Java, andMany-
Bugs. “y” is the sum of “x”.

3

10

14

7

33

11 13

CIRCLE

RecoderCURE

11

15

29

4

16

12 2

CIRCLE

FixMinerTBar

Learning Tranditional

(a) Traditional approaches

3

10

14

7

33

11 13

CIRCLE

RecoderCURE

11

15

29

4

16

12 2

CIRCLE

FixMinerTBar

Learning Tranditional

(b) DL-based approaches

Figure 5: The overlaps of the bugs fixed by different ap-
proaches

lead to better repair performance. Despite these points, CIRCLE
still outperforms most of state-of-the-art APR techniques. Thus, we
highlight this direction of continual learning ability across multiple
programming languages for automatic program repair.

To investigate what extent CIRCLE complements existing APR
techniques, we further calculate the the overlaps of the bugs fixed
by different techniques. We focus on the Defecst4J benchmark as
it is widely evaluated by most previous APR work [34, 93] and
thus has rich performance results for overlap analysis. Two best-
performing traditional techniques (i.e., Tbar and FixMiner) and two
best-performing DL-based techniques (i.e., Cure and Recoder) are
selected. As shown in Figure 5, CIRCLE fixes 29 and 14 unique
bugs when compared with traditional and DL-based approaches.
Moreover, CIRCLE fixes 33, 44, 21 and 24 unique bugs compared

with TBar, FixMinder, CURE and Recoder, respectively. This result
shows that CIRCLE is complementary to these best-performing
existing techniques.

5.3 RQ3: What are the contributions of the
different components of CIRCLE?

We investigate the impact of four components of CIRCLE: (1) the
prompt-based data representation; (2) the cross language re-repairing;
(3) the lifelong module.

5.3.1 Impact of prompt-based data representation. According to re-
cent research in NLP [40], adding prompt in input during finetuning
can close the gap between the pre-trained task and down-stream
task. In this work, we use T5 as skeleton model, which is mainly pre-
trained with natural language tasks and therefore is much different
from the APR task. To fill such gap, we concatenate context code
and buggy code with some prompt words. Intuitively, these simple
prompt words mark the input with natural language, helping model
better exploit its pre-trained knowledge.

To investigate the actual impact of these prompt words, we train
two CIRCLE model on the Java dataset. One is fed with prompt-
based input and the other is fed with no-prompt input. Except
the input form, all the parameters of these two models are the
same. Figure 6 presents the loss curve of these two models. Within
same number of epochs, the prompt-based inputs let model reach
lower validation loss than no-prompt input. In other words, the
prompt-based input representation promotes the convergence of
the model.

1 2 3 4 5
epochs

0.66

0.68

0.70

0.72

0.74

lo
ss

w-prompt
w/o-prompt

Figure 6: The validation loss of with/without prompt as in-
put for the same model.

5.3.2 Impact of re-repairing. As mentioned in Section 3.6, we em-
ploy re-repairing mechanism to solve “keywords mismatch”, “for-
mat mismatch”, and “rare symbol” problems. In this subsection, we
detailly analyze the influence of this re-repairing mechanism.

Figure 10 displays the statistics of fixed bugs on all benchmarks
when using or not using re-repairing. As it shows, the simple re-
repairing mechanism improves the number of fixed bugs on all
benchmarks, demonstrating the efficacy of this module. Figure 7, 8,
9. contains three examples illustrating how re-repairing mechanism
addresses the “keywords mismatch”, “format mismatch”, and “rare
symbol” problems. For the first example, CIRCLE generates “NULL”

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yuan and Zhang, et al.

buggy line
- while True:
patch generated by developer
+ while queue:
patch generated before re-repairing
+ while (NULL!= queue)
patch generated after re-repairing
+ while (None!= queue)

Figure 7: Keywords mismatch example for BREADTH_
FIRST_ SEARCH from QuixBugs-Py

buggy line
- if (typeof opt.default!=’undefined’) self.default(key, opt.default);
patch generated by developer
+ if (typeof opt.default !== ’undefined’) self.default(key, opt.default);
patch generated before re-repairing
+ if (typeof opt.default!= = ’undefined’) self.default(key, opt.default);
patch generated after re-repairing
+ if (typeof opt.default!== ’undefined’) self.default(key, opt.default);

Figure 8: Formatmismatch example for INCORRECT_COM-
PARISON1_2011 from BugAID

buggy line
- if (excerpt.equals(LINE) && 0 <= charno && charno < sourceEx-

cerpt.length()) {
patch generated by developer
+ if (excerpt.equals(LINE) && 0 <= charno && charno <= sourceEx-

cerpt.length()) {
patch generated before re-repairing
+ re-repairing: if (excerpt.equals(LINE) && 0 <unk>= charno &&

charno <unk>= sourceExcerpt.length()) <unk>
patch generated after re-repairing
+ if (excerpt.equals(LINE) && 0<= charno && charno<= sourceEx-

cerpt.length()){

Figure 9: Rare symbol example for Closure #63 from De-
fects4J

in python patch, because the meaning of “NULL” is much similar to
“None” in both programming language and natural language. Our re-
repairing module corrects this mistake, letting the generated patch
be equivalent to the ground truth code. The second example shows
the procession that our re-repairing removes incorrect blank. In the
last sample, re-repairing fill rare symbols in the unknown token
position to generate the fixed code. From these example, we can
observe that T5 generally generates the correct patches, however,
it could make some naive mistakes. The re-repairing mechanism is
designed to fix these mistakes.

5.3.3 Impact of the continual learning module. The lifelong module
in CIRCLE is mainly performed by the combination of the difficulty-
based example replay and the sampling-based EWC regularization.
As the EWC’s value is calculated on the selected sample set, we
analyze them together. In deed, the “Finetune-APR” in RQ1 is the
version of CIRCLE removed lifelong learning module. In RQ1, we
show the impact of continual learning module through comparing

BugAID QuixBugs-PyQuixBugs-Java Defects4j Manybugs
Benchmarks

0

10

20

30

40

50

60

Nu
m

 o
f f

ix
ed

 b
ug

s

3

21

15

40

65

23
19

64

9

w/o re-repairing
w re-repairing

Figure 10: Number of fixed bugs on each benchmark with or
without re-repairing mechanism.

the overall performance of CIRCLE and Finetune-APR. Here, we
give a detailed example from our experiments to show the continual
learning’s influence in a sample-level. As shown in Figure 11, when
the java training set is first given, both CIRCLE and Finetune-APR
can generate the correct patch, which is the same as the developer
patch. However, Finetune-APR forgets to generate the condition
“endIndex < 0” when the new C/C++ training set is in involved.

buggy line
- if (endIndex < 0) {
patch generated by developer
+ if ((endIndex < 0) || (endIndex < startIndex)) {
patch generated by CIRCLE
+ if (endIndex <0 || startIndex >endIndex){
patch generated by Finetune-APR
+ if (endIndex <startIndex){

Figure 11: Continual learning example for Chart #9 fromDe-
fects4J

5.4 Case Study
For multiple languages repairing, one common concern is that
“can model distinguish different meanings of the same keywords
among different languages?”. For example, “def” is a keyword in
Python, but it can be a variable name in other languages. Will
model be confused with such phenomenon? To investigate this
question, we conduct case study on two samples selected from
QuixBugs-Java and QuixBugs-Py. Specifically, we choose the Java
and Python version of BITCOUNT program as an example. We
replace the variable name “n” with “def” in Java version, and replace
“n” with “public” in Python version. As shown in Figure 12, text
with blue color represents the variable name replaced with other
languages’ keyword. Our CIRCLE can correctly generate the patch
without influenced by the ambiguious meaning of other language’s
keywords.

CIRCLE: Continual Repair across Programming Languages ISSTA ’22, July 18–22, 2022, Virtual, South Korea

context line (Java)
public class BITCOUNT { public static int bitcount(int def) { int
count = 0; while (def != 0) { def = (def ˆ (def - 1)); count++; } return
count; }}

buggy line
- def = (def ˆ (def - 1));
patch generated by developer
+ def = (def & (def - 1));
patch generated by CIRCLE
+ def = (def &(def - 1));
context line (Python)

def bitcount(public): count = 0 while public: public ˆ= public - 1
count += 1 return count

buggy line
- public ˆ= public - 1
patch generated by developer
+ public &= public - 1
patch generated by CIRCLE
+ public &= public - 1

Figure 12: Case study for keyword meaning’s ambiguity.

6 RELATEDWORK
6.1 APR
Over the past decade, researchers have proposed a variety of tech-
niques to generate patches based on different hypotheses [17, 56].
Following recent work [6, 39, 92], we categorize them into fourmain
categories: heuristic-based [32, 47, 90], constraint-based [14, 52, 86],
template-based [30, 37, 38] and DL-based repair techniques [34, 45,
93].

Recently, DL-based repair techniques, which attempt to fix bugs
enhanced by machine learning techniques, is getting growing atten-
tionRecently, due to the large available open-source code. Tufano et
al. [77] extensively evaluate the ability of adopting neural machine
translation techniques to generate patches from bug-fixes commits
in the wild. Li et al. [34] adopt a tree-based RNN encoder-decoder
model (i.e., DLFix) to learn code contexts and transformations from
previous bug fixes. Lutellier et al. [45] propose a new context-aware
NMT architecture (i.e., CoCoNut) that represents the buggy source
code and its surrounding context separately, to automatically fix
bugs in multiple programming languages. Jiang et al. [25] propose a
novel approach (i.e., CURE) combines a program language model, a
code-aware search strategy, and a subword tokenization technique.
The results demonstrate CURE can outperform all existing tech-
niques on two popular benchmark (i.e., Defects4J and QuixBugs)
when published. Recently, Zhu et al. [93] use a syntax-guided edit
decoder (i.e., Recoder) with provider/decider architecture to ensure
accurate patch generation. Compared to existing work, CIRCLE is
the first work that aims to address the the generalizability issue of
APR by repairing multiple languages in a lifelong learning scenario.

6.2 Continual Learning
The general concept and technical categories of Continual Learning
has been introduced in Section 2.2. Recently, to better fit real life
applications, where tasks and data always change, Continual Learn-
ing has been widely used in many Natural Language Processing
(NLP) [7, 57, 89] and Computer Vision (CV) areas [60], such as:

Named Entity Recognition [55], Neural Machine Translation [8],
Dialogue Systems [36], Question Anwering [61], Text Classifica-
tion [10, 23], Image Classification [13, 48, 78], and so on. However,
none of existing works studied Automatic Program Repair (APR)
with Continual Learning before. This paper is the first one to ex-
plore continually learning APR tasks.

The idea of continual learning starts in 1990s [75]. However,
achieving continual learning is challenging because of catastrophic
forgetting [16, 29]. Most of recent continual learning works focus
on dealing with the forgetting problem. Generally, these methods
can be classified into three categories: Rehearsal, Regularization,
and Architectural methods. Rehearsal methods aim to replay some
selected data in the forthcoming task. iCaRL [66] is one of the most
well-known rehearsal method. It selects training data using Herd-
ing techniques [82]. Based on the replaying idea, some works build
generators for previous task to create pseudo data for future learn-
ing [21, 22]. Regularization approaches replies on additional loss
term to consolid learned knowledge. The classical regularization
method is EWC [29]. It restricts the update of “important” parame-
ters. Except EWC, other regularization methods such as GEM [43],
MAS [3], IS [91] are also widely used to tackle catastrophic for-
getting. Architectural approaches prevent forgetting by applying
modular changes to neural network models [46, 62, 68, 83]. How-
ever, they will dynamically increase models’ parameters when the
number of tasks grows up. In this paper, we combine rehearsal
method with regularization to achieve lifelong learning in APR.

7 CONCLUSION
In this paper, we propose CIRCLE, an automatic program repairing
framework that can continually learn to fix bugs crossing vari-
ous programming languages. Specifically, CIRCLE consists of five
components: a prompt-based representation, a T5-based model, a
difficulty-based example replay, an EWC-based regularization, and
a re-repairing mechanism. The T5-based model is the skeleton of
APR model. The prompt-based representation converts program
repairing to fill-in-the-blank task, filling the gap between T5’s pre-
trained task and APR task. The difficulty-based replay and EWC-
based regularization are two lifelong strategies, enabling CIRCLE
to continually update its parameters according to the incremen-
tal task requirements. Finally, a simple yet effective re-repairing
method is applied to eliminate the form error caused by multiple
languages repairing. To the best of our knowledge, it is the first
time to construct an APRmodel simultaneously addressing multiple
programming languages based on continual learning approaches.
We conduct extensive experiments with 4 programming languages
on 5 benchmarks to demonstrate the effectiveness of our CIRCLE.
Experimental results show that our CIRCLE (1) can continually
learn bug fixing crossing languages; (2) achieves state-of-the-art
performance on all benchmarks using a single model.

ACKNOWLEDGEMENT
This work is partially supported by the National Key Research
and Development Program of China (2021YFB1715600), National
Natural Science Foundation of China (No. 62141215), Australian
Research Council Future Fellowship (No. FT210100624), and Aus-
tralian Discovery Project (No. DP190101985).

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yuan and Zhang, et al.

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified Pre-training for Program Understanding and Generation. arXiv
preprint arXiv:2103.06333 (2021).

[2] Toufique Ahmed and Premkumar Devanbu. 2021. Multilingual training for
Software Engineering. arXiv preprint arXiv:2112.02043 (2021).

[3] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and
Tinne Tuytelaars. 2018. Memory aware synapses: Learning what (not) to forget.
In Proceedings of the European Conference on Computer Vision (ECCV). 139–154.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[5] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27.

[6] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2021. Evaluating and
Improving Unified Debugging. IEEE Transactions on Software Engineering (2021).

[7] Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-jussà. 2020. Con-
tinual lifelong learning in natural language processing: A survey. arXiv preprint
arXiv:2012.09823 (2020).

[8] Yue Cao, Hao-RanWei, Boxing Chen, and XiaojunWan. 2021. Continual Learning
for Neural Machine Translation. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 3964–3974.

[9] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
2020. Codit: Code editing with tree-based neural models. IEEE Transactions on
Software Engineering (2020).

[10] Hongxu Chen, Hongzhi Yin, Tong Chen, Quoc Viet Hung Nguyen, Wen-Chih
Peng, and Xue Li. 2019. Exploiting centrality informationwith graph convolutions
for network representation learning. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 590–601.

[11] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

[12] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[13] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales
Leonardis, Greg Slabaugh, and Tinne Tuytelaars. 2021. A continual learning
survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021).

[14] Thomas Durieux and Martin Monperrus. 2016. Dynamoth: dynamic code synthe-
sis for automatic program repair. In Proceedings of the 11th International Workshop
on Automation of Software Test. 85–91.

[15] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph
Angerer, Silvia Severini, Florian Matthes, and Burkhard Rost. 2021. CodeTrans:
Towards Cracking the Language of Silicon’s Code Through Self-Supervised Deep
Learning and High Performance Computing. arXiv preprint arXiv:2104.02443
(2021).

[16] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128–135.

[17] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2017), 34–67.

[18] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-
pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 19–30.

[19] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. 2016. Discovering bug
patterns in JavaScript. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering. 144–156.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[21] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma,
Dongyan Zhao, and Rui Yan. 2018. Overcoming catastrophic forgetting for
continual learning via model adaptation. In International Conference on Learning
Representations.

[22] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua, and Hanwang Zhang.
2021. Distilling Causal Effect of Data in Class-Incremental Learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3957–3966.

[23] Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. 2021.
Continual Learning for Text Classification with Information Disentanglement
Based Regularization. arXiv preprint arXiv:2104.05489 (2021).

[24] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT international symposium on software testing
and analysis. 298–309.

[25] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[26] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[27] Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and
Richard Socher. 2019. Ctrl: A conditional transformer language model for con-
trollable generation. arXiv preprint arXiv:1909.05858 (2019).

[28] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord,
Peter Clark, and Hannaneh Hajishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single qa system. arXiv preprint arXiv:2005.00700 (2020).

[29] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[30] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. : Mining relevant fix patterns for
automated program repair. Empirical Software Engineering 25, 3 (2020), 1980–
2024.

[31] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236–1256.

[32] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering 38, 1 (2011), 54–72.

[33] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

[34] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. Dlfix: Context-based code
transformation learning for automated program repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 602–614.

[35] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. 55–56.

[36] Bing Liu and Sahisnu Mazumder. 2021. Lifelong and continual learning dialogue
systems: learning during conversation. Proceedings of AAAI-2021 (2021).

[37] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar:
Fixing semantic bugs with fix patterns of static analysis violations. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 1–12.

[38] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Tbar:
revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 31–42.

[39] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the efficiency of test suite based program repair. In Proceedings of ICSE.

[40] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. arXiv preprint arXiv:2107.13586
(2021).

[41] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2021. GPT Understands, Too. arXiv preprint arXiv:2103.10385 (2021).

[42] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 298–312.

[43] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for
continual learning. Advances in neural information processing systems 30 (2017),
6467–6476.

[44] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[45] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis. 101–114.

[46] Massimiliano Mancini, Elisa Ricci, Barbara Caputo, and Samuel Rota Bulo. 2018.
Adding new tasks to a single network with weight transformations using binary
masks. In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. 0–0.

[47] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library
for java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis. 441–444.

[48] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bag-
danov, and Joost van de Weijer. 2020. Class-incremental learning: survey and
performance evaluation on image classification. arXiv preprint arXiv:2010.15277

CIRCLE: Continual Repair across Programming Languages ISSTA ’22, July 18–22, 2022, Virtual, South Korea

(2020).
[49] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Automated

Program Repair of Java Simple Bugs. arXiv preprint arXiv:2103.11626 (2021).
[50] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,

Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336–347.

[51] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[52] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. 691–701.

[53] Zhu Ming, Suresh Karthik, and K. Reddy Chandan. 2022. Multilingual Code
Snippets Training for Program Translation. In Proceedings of the Thirty-Sixth
AAAI Conference on Artificial Intelligence.

[54] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and
Hassan Ghasemzadeh. 2020. Linear mode connectivity in multitask and continual
learning. arXiv preprint arXiv:2010.04495 (2020).

[55] Natawut Monaikul, Giuseppe Castellucci, Simone Filice, and Oleg Rokhlenko.
2021. Continual Learning for Named Entity Recognition. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence.

[56] Martin Monperrus. 2020. The living review on automated program repair. (2020).
[57] Thanh Tam Nguyen, Chi Thang Duong, Matthias Weidlich, Hongzhi Yin, and

Quoc Viet Hung Nguyen. 2017. Retaining data from streams of social platforms
with minimal regret. In Twenty-sixth International Joint Conference on Artificial
Intelligence.

[58] Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo. 2022.
SPT-Code: Sequence-to-Sequence Pre-Training for Learning the Representation
of Source Code. arXiv preprint arXiv:2201.01549 (2022).

[59] Daniel W Otter, Julian R Medina, and Jugal K Kalita. 2020. A survey of the usages
of deep learning for natural language processing. IEEE Transactions on Neural
Networks and Learning Systems 32, 2 (2020), 604–624.

[60] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (2019), 54–71.

[61] Anselmo Peñas, Mathilde Veron, Camille Pradel, Arantxa Otegi, Guillermo
Echegoyen, and Alvaro Rodrigo. 2021. Continuous learning for question an-
swering. In Increasing Naturalness and Flexibility in Spoken Dialogue Interaction:
10th International Workshop on Spoken Dialogue Systems. Springer Singapore,
337–341.

[62] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić,
Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. arXiv preprint arXiv:2007.07779 (2020).

[63] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
2020. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences (2020), 1–26.

[64] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[65] Tiago Ramalho and Marta Garnelo. 2019. Adaptive posterior learning: few-shot
learning with a surprise-based memory module. arXiv preprint arXiv:1902.02527
(2019).

[66] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. icarl: Incremental classifier and representation learning. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2001–
2010.

[67] Anthony Robins. 1995. Catastrophic forgetting, rehearsal and pseudorehearsal.
Connection Science 7, 2 (1995), 123–146.

[68] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

[69] Timo Schick and Hinrich Schütze. 2020. Exploiting cloze questions for few shot
text classification and natural language inference. arXiv preprint arXiv:2001.07676
(2020).

[70] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine
translation of rare words with subword units. arXiv preprint arXiv:1508.07909
(2015).

[71] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, EricWallace, and Sameer Singh.
2020. Autoprompt: Eliciting knowledge from language models with automatically
generated prompts. arXiv preprint arXiv:2010.15980 (2020).

[72] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[73] Peng Su, Shixiang Tang, Peng Gao, Di Qiu, Ni Zhao, and Xiaogang Wang. 2020.
Gradient Regularized Contrastive Learning for Continual Domain Adaptation.
arXiv preprint arXiv:2007.12942 (2020).

[74] Brian Thompson, Jeremy Gwinnup, Huda Khayrallah, Kevin Duh, and Philipp
Koehn. 2019. Overcoming catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). 2062–2068.

[75] Sebastian Thrun. 1998. Lifelong learning algorithms. In Learning to learn. Springer,
181–209.

[76] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 25–36.

[77] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM Transactions on Software
Engineering and Methodology (TOSEM) 28, 4 (2019), 1–29.

[78] Gido M Van de Ven and Andreas S Tolias. 2019. Three scenarios for continual
learning. arXiv preprint arXiv:1904.07734 (2019).

[79] Rijnard van Tonder and Claire Le Goues. 2019. Towards s/engineer/bot: Principles
for program repair bots. In 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). IEEE, 43–47.

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[81] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How long will it take to fix this bug?. In Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 1–1.

[82] Max Welling. 2009. Herding dynamical weights to learn. In Proceedings of the
26th Annual International Conference on Machine Learning. 1121–1128.

[83] YemingWen, Dustin Tran, and Jimmy Ba. 2020. Batchensemble: an alternative ap-
proach to efficient ensemble and lifelong learning. arXiv preprint arXiv:2002.06715
(2020).

[84] ThomasWolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue,
Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al.
2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. 38–45.

[85] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[86] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2016), 34–55.

[87] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. A
comprehensive study of automatic program repair on the QuixBugs benchmark.
Journal of Systems and Software 171 (2021), 110825.

[88] He Ye, Matias Martinez, and Martin Monperrus. 2021. Neural Program Repair
with Execution-based Backpropagation. arXiv preprint arXiv:2105.04123 (2021).

[89] Wei Yuan, Hongzhi Yin, Tieke He, Tong Chen, Qiufeng Wang, and Lizhen Cui.
2022. Unified Question Generation with Continual Lifelong Learning. arXiv
preprint arXiv:2201.09696 (2022).

[90] Yuan Yuan and Wolfgang Banzhaf. 2018. Arja: Automated repair of java pro-
grams via multi-objective genetic programming. IEEE Transactions on Software
Engineering 46, 10 (2018), 1040–1067.

[91] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning
through synaptic intelligence. In International Conference on Machine Learning.
PMLR, 3987–3995.

[92] Quanjun Zhang, Yuan Zhao, Weisong Sun, Chunrong Fang, Ziyuan Wang, and
Lingming Zhang. 2022. Program Repair: Automated vs. Manual. arXiv preprint
arXiv:2203.05166 (2022).

[93] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 341–353.

	Abstract
	1 Introduction
	2 Background
	2.1 DL-based APR
	2.2 Continual Learning
	2.3 Prompt for Pre-trained Model

	3 Approach
	3.1 Overview
	3.2 Prompt based Data Representation
	3.3 T5 as APR Model Skeleton
	3.4 Difficulty-based Example Replay
	3.5 Sampling-based EWC Regularization
	3.6 Cross Language Re-repairing

	4 Experimental Setup
	4.1 Research Questions
	4.2 Datasets
	4.3 Implementation Details
	4.4 Benchmarks and Baselines

	5 Evaluation and Results
	5.1 RQ1: Can CIRCLE effectively learn bug fixing in ``task requirements increase constantly'' scenario?
	5.2 RQ2: What is the performance of a single CIRCLE model compared to the dedicatedly trained state-of-the-art APR methods?
	5.3 RQ3: What are the contributions of the different components of CIRCLE?
	5.4 Case Study

	6 Related Work
	6.1 APR
	6.2 Continual Learning

	7 Conclusion
	References

