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ABSTRACT
Sequential recommender models typically generate predictions in a
single step during testing, without considering additional prediction
correction to enhance performance as humans would. To improve
the accuracy of these models, some researchers have attempted
to simulate human analogical reasoning to correct predictions for
testing data by drawing analogies with the prediction errors of
similar training data. However, there are inherent gaps between
testing and training data, which can make this approach unreliable.
To address this issue, we propose an Abductive Prediction Correction
(APC) framework for sequential recommendation. Our approach
simulates abductive reasoning to correct predictions. Specifically,
we design an abductive reasoning task that infers the most prob-
able historical interactions from the future interactions predicted
by a recommender, and minimizes the discrepancy between the in-
ferred and true historical interactions to adjust the predictions. We
perform the abductive inference and adjustment using a reversed
sequential model in the forward and backward propagation manner
of neural networks. Our APC framework is applicable to various
differentiable sequential recommender models. We implement it
on three backbone models and demonstrate its effectiveness. We
release the code at https://github.com/zyang1580/APC.
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Figure 1: Illustration of prediction correction methods. 𝐻
and 𝑌 denote historical interactions (i.e., causes) and future
interactions (i.e., results), respectively.𝑌 is themodel predic-
tion, and 𝐻 is the inferred historical interactions given the
prediction 𝑌 . Δ is the difference to guide the correction. The
real and dotted lines represent the prediction and prediction
correction processes, respectively.

1 INTRODUCTION
Sequential recommendation [29] involves predicting the next item
based on a user’s historical interaction sequence. In recent years,
many sequential recommender models have been developed, and
they have achieved significant success [4, 6, 11, 20, 26]. However,
these models typically make predictions in a one-shot manner,
where recommendation decisions are made with a simple forward
propagation of the trained models. This decision procedure appears
to differ from that of humans, who often engage in further checking
and revision of predictions, particularly when dealing with difficult
samples. To further enhance the quality of recommendations, it
is crucial to incorporate the ability of prediction correction into
sequential recommendation.

Prior research has attempted to improve recommender model
predictions by simulating one of the fundamental aspects of human
thought: analogical reasoning [7]. As illustrated in Figure 1 (a),
this approach involves retrieving similar training data for a testing
candidate and adjusting the testing predictions by adding the pre-
diction errors of such training data [15, 16]. However, we contend
that this approach is unreliable to correct predictions for sequen-
tial recommender models due to inherent differences between the
training and testing data [2, 6, 30, 31], including: 1) the model has
already fitted the training data, but not the testing data; and 2) the
training data pertains to the past, while the testing data pertains
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to the future. Such differences can lead to significant drifts in pre-
diction errors between similar training and testing data, making it
difficult to reliably correct testing predictions by analogy.

In addition to analogical reasoning, humans can also utilize ab-
ductive reasoning to evaluate their results, a key component of
counterfactual thinking [17]. Abductive reasoning involves infer-
ring the most plausible explanation, or causes, for the obtained
results [1, 18]. As depicted in Figure 1 (b), during testing, humans
can use abductive reasoning to infer the causes for their results
and then adjust those results by making the inferred and observed
causes more consistent. Unlike the analogy-based approach, this
method corrects the results by referencing the observed part of the
testing instance rather than other instances. Therefore, simulat-
ing human abductive reasoning could be a promising approach to
correct model predictions in sequential recommendation without
relying on the prediction errors of training data.

To simulate human abductive reasoning for prediction correction
in sequential recommendation, a key step is to design an appropri-
ate abductive reasoning task. Since causes typically precede results,
a user’s past interactions and future interactions can be regarded
as the cause and result in abductive reasoning, respectively. Based
on this, we can formulate the abductive reasoning task as inferring
the user’s historical interactions from the predicted future inter-
actions. The predictions can then be corrected by minimizing the
discrepancy between the inferred historical interactions and the
true historical interactions. However, a critical challenge is how to
transfer the obtained discrepancy information to the predictions for
correction effectively. Furthermore, there is a trade-off between the
degree of correcting predictions and the risk of introducing errors
when applying abductive reasoning. Thus, it is essential to strike a
balance between the correction of the predictions and the reliability
of the inference results in the abductive reasoning process.

To address these issues, we propose a novel Abductive Prediction
Correction (APC) framework, which includes a reversed sequential
recommender model specifically designed for abductive reasoning
tasks. Our framework corrects the predictions of a given recom-
mender model through two key steps: abduction and adjustment.
First, the APC framework uses the abductive model to infer the his-
torical interactions that are most likely to have led to the predicted
future interactions. Second, it adjusts the predictions of the original
model by minimizing the difference between the inferred and true
history using gradient descent. The difference information obtained
from the abductive model is effectively utilized for correcting the
predictions. To prevent over-correction, we only consider the top-
𝑁 ′ ranked candidate items and reject the correction if it does not
provide additional information gain for the abductive inference.

The main contributions of this work are summarized as follows:
• We propose to simulate human abductive reasoning to correct
recommender predictions for further enhancing performance.
• We propose the APC framework for sequential recommendation,
which is applicable to differentiable sequential recommenders.
• We conduct experiments with three sequential recommender
models, verifying the superiority of our proposal.

2 RELATEDWORK
Sequential recommendation. Early sequential recommendation
methods focused on modeling transition information based on
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Figure 2: Overview of our abductive prediction correction
framework. The real lines represent the initial prediction
process. The dotted lines represent the correction process
with two key steps: abduction inference and adjustment.

Markov Chain assumption [19]. Later, many neural networks have
been employed to better leverage sequential information, such as
RNN [10], CNN [22, 28], Attention networks [11, 20, 29], GNN [3,
24] and MLP [32]. Recently, contrastive learning has also been
applied to sequential recommendation [12, 25]. However, to our
knowledge, none of these works have studied prediction correction.
One may think that our method is similar to bidirectional models
such as BERT4Rec [20] and DualRec [29], as they both leverage
future information for prediction. However, there are inherent dif-
ferences: we leverage the information for correcting predictions
during testing, while they are only during training.
Prediction correction. Prediction correction for machine learning
models has gained increasing attention in various areas, e.g., trans-
portation prediction [13], medicine [23], trajectory prediction [21],
and recommendation [15, 16, 27]. In recommendation, previous
research can be divided into two lines. First, [15, 16] use analogy
reasoning during testing to correct recommender predictions and
enhance recommendation performance. Second, [27] focuses on
knowledge distillation with ground-truth labels. All these methods
rely on the prediction errors of training data, while we avoid using
such prediction errors by employing abductive reasoning.

3 METHOD
Before presenting the proposed framework, we first introduce the
problem, the basic concepts, and the notations in this paper.
3.1 Problem Formulation
Let𝑢 ∈ U and 𝑣 ∈ V denote a user and an item, respectively, where
U (V) denotes the set of all users (items). Each user corresponds
to a chronological interaction sequence 𝑆𝑢 = [𝑣1, . . . , 𝑣𝑡 , . . . , 𝑣𝑇 ],
where 𝑣𝑡 ∈ V is the 𝑡-th item interacted by 𝑢, and 𝑇 represents
the length of the sequence1. Let D = {𝑆𝑢 |𝑢 ∈ U} denote the
interaction sequences of all users. We build a sequential recom-
mender model 𝑓𝑅 by fitting D. During testing, given a sequence
𝑆𝑢 = [𝑣1, . . . , 𝑣𝑡 , . . . , 𝑣𝑇 ] for a user𝑢, 𝑓𝑅 could generate a recommen-
dation score for each candidate item, indicating how likely the item
would be the (𝑇+1)-th interacted item. Normally, the recommender
generates the final recommendation list based on the prediction
scores. Differently, we aim to further improve the recommendation
performance by correcting the predictions generated by 𝑓𝑅 .

1We apply padding if the sequence contains fewer than𝑇 interactions.
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3.2 Abductive Prediction Correction
Framework

We describe prediction correction using abductive reasoning, in-
cluding the framework and its components.
3.2.1 Overall Framework. Inspired by human abductive reason-
ing, we develop a generic Abductive Prediction Correction (APC)
framework for sequential recommendation (Figure 2). The frame-
work simulates abductive reasoning to construct a task of inferring
the historical interactions based on the predictions of the recom-
mender model 𝑓𝑅 , and then corrects the predictions according to
the inferred results. To achieve this, apart from the recommender
model 𝑓𝑅 , we additionally build an abductive model 𝑓𝐴 , a reversed
sequential model, which could infer the past interactions given the
future interactions. Then, we utilize the abductive model to correct
the predictions generated by 𝑓𝑅 with two key steps:
1) abduction (black dotted lines in Figure 2), which infers the most

possible historical interactions given the predicted scores of 𝑓𝑅 ,
2) adjustment (red dotted lines in Figure 2), which updates the

prediction scores by minimizing the difference between inferred
and observed historical interactions in a gradient descent manner.

The two steps iterate until convergence or a maximum number of
iterations is reached. Next, we present details for each key part.
3.2.2 Recommender and Abductive Models. In our framework, the
recommender model 𝑓𝑅 could be any well-trained embedding-based
sequential recommender model, e.g., SASRec [11]. That means, 𝑓𝑅
deals with the input interaction sequence by converting the inter-
acted items to corresponding embeddings. Formally, given a testing
sequence 𝑆𝑢 = [𝑣1, . . . , 𝑣𝑡 , . . . , 𝑣𝑇 ], 𝑓𝑅 generates a recommendation
(prediction) score 𝑦𝑣 ∈ [0, 1] for each candidate item 𝑣 as:

𝑦𝑣 = 𝑓𝑅 (𝑣; [𝑒𝑣1 , . . . , 𝑒𝑣𝑇 ]), (1)

where 𝑒𝑣1 denotes the learned item embedding for item 𝑣1 in 𝑓𝑅 ,
similarly for others. The abductive model 𝑓𝐴 is a reversed sequential
model which infers the past interactions according to the future
interactions. To simplify, we keep the model architecture of 𝑓𝐴 the
same as that of 𝑓𝑅 . We train 𝑓𝐴 by fitting the reversed interaction
sequences D−1 = {𝑆−1

𝑢′ |𝑢
′ ∈ U}, where 𝑆−1

𝑢′ is the reversed 𝑆𝑢′

(e.g., 𝑆−1𝑢 = [𝑣𝑇 , . . . , 𝑣1]), and keep the training process2 similar to
that of the recommender model 𝑓𝑅 .
3.2.3 Prediction Correction. After the recommender model 𝑓𝑅 gen-
erates predictions scores for user𝑢, we take two key steps to correct
the prediction scores with the well-trained abductive model 𝑓𝐴:
Step 1. Abduction. In this step, we use the abductive model 𝑓𝐴 to
infer the historical interactions with the prediction scores generated
by 𝑓𝑅 . The abductive model 𝑓𝐴 is an embedding-based sequential
model that cannot directly utilize the prediction scores. To address
the issue, we convert the prediction scores into a dummy item
embedding, making them manageable by 𝑓𝐴 . Specifically, we gen-
erate the dummy item embedding 𝑒 via embedding fusion with the
prediction score-related weights as follows:

𝑒 =
∑︁
𝑣∈V′𝑢

𝑤𝑣𝑒𝑣, (2)

whereV ′𝑢 denotes the candidate items considered during the cor-
rection process for user 𝑢, 𝑒𝑣 is the learned embedding for item 𝑣

2We use the training method taken by the paper proposing the recommender model.

in 𝑓𝐴 , and 𝑤𝑣 is a prediction score-related weight to control the
contribution of 𝑒𝑣 to 𝑒 . Formally,

𝑤𝑣 =
(𝑦𝑣)𝜂∑

𝑣′∈V′𝑢 (𝑦𝑣′ )
𝜂
, (3)

where 𝜂 > 0 is a hyper-parameter to smooth the prediction scores,
and 𝑦𝑣 is the prediction score generated by 𝑓𝑅 with Equation (1).

Here, 𝑒 could represent a dummy item 𝑣 that 𝑓𝑅 predicts as the
(𝑇+1)-th interacted item for𝑢. We first inject 𝑣 into the first position
of the reversed interaction sequence of 𝑢. Then, we take 𝑓𝐴 to infer
how likely the historical item 𝑣𝑡 (𝑡 < 𝑇 ) was interacted by 𝑢 at
the 𝑡-th position, with the sub-sequence [𝑣, 𝑣𝑇 , 𝑣𝑇−1, . . . , 𝑣𝑡+1] as
model input. Formally,

𝑝𝐴 (𝑣𝑡 | [𝑣, 𝑣𝑇 , . . . , 𝑣𝑡+1 ]) = 𝑓𝐴 (𝑣𝑡 ; [𝑒, 𝑒𝑣𝑇 , . . . , 𝑒𝑣𝑡+1 ]), (4)

where 𝑝𝐴 (𝑣𝑡 | [𝑣, 𝑣𝑇 , . . . , 𝑣𝑡+1]) denotes the inferred probability, and
𝑒𝑣𝑇 denotes item embedding in 𝑓𝐴 for 𝑣𝑇 , similarly for others. Next,
we take the following loss ℓ to quantify how the inferred results
match true historical observations:

ℓ = − 𝑙𝑜𝑔 (𝑝𝐴 (𝑣𝑡 | [𝑣, 𝑣𝑇 , . . . , 𝑣𝑡+1 ])) . (5)

A small ℓ means less difference between the abductively inferred
and true historical interactions.
Step 2. Adjustment. We next minimize ℓ , the difference between
the inferred and true history, to update the prediction scores in the
gradient descent manner. That is, we treat the prediction scores
{𝑦𝑣 |𝑣 ∈ V ′𝑢 } as learnable parameters, and take the gradient de-
scent method to update {𝑦𝑣 |𝑣 ∈ V ′𝑢 } with the optimization goal of
minimizing ℓ . Formally,

𝑦𝑣 ← 𝑦𝑣 − 𝛼
𝜕ℓ

𝜕𝑦𝑣
, (6)

where 𝜕ℓ
𝜕𝑦𝑣

denotes the gradient of 𝑦𝑣 w.r.t. ℓ , and 𝛼 refers to the
learning rate to control the update step size. Obviously, the abduc-
tion and adjustment steps correspond to the forward and backward
propagation of 𝑓𝐴 , respectively. We iteratively run the two steps
until convergence or a maximum number of iterations is reached.
3.2.4 Preventing Over-correction. As the abductive model could
also make mistakes, we take two strategies to avoid over-correction:
ControllingV ′𝑢 . Instead of correcting the predictions for all candi-
dates, we only focus on correcting the candidate items with top-𝑁 ′
(initial) prediction scores. That means,

V′𝑢 = {𝑣 |𝑦𝑣 ranks in the top 𝑁 ′ among all candidate items}. (7)

Here, 𝑁 ′ is greater than the length of the final recommender list.
Besides avoiding over-correction, this strategy could also help re-
duce computation costs, which is crucial for recommendation since
there are usually efficiency requirements during online serving.
Information gain-based strategy. Another strategy is to reject
the correction if the corrected results cannot bring information gain
for inferring historical interaction, compared to only using the se-
quence without injecting 𝑣 , i.e., [𝑣𝑇 , . . . , 𝑣𝑡+1]. Specifically, after the
last iteration is finished, we compute ℓ defined in Equation (5) again
and compare it with another ℓ ′ gotten with [𝑣𝑇 , . . . , 𝑣𝑡+1]. Formally,
ℓ ′ is computed similarly to ℓ , having: ℓ ′ = −𝑙𝑜𝑔(𝑝𝐴 (𝑣𝑡 | [𝑣𝑇 , . . . , 𝑣𝑡+1])),
where 𝑝𝐴 (𝑣𝑡 | [𝑣𝑇 , . . . , 𝑣𝑡+1]) = 𝑓𝐴 (𝑣𝑡 ; [𝑒𝑣𝑇 , . . . , 𝑒𝑣𝑡+1 ]) is the proba-
bility — how likely 𝑣𝑡 was the 𝑡-th interacted item of𝑢 — abductively
inferred by 𝑓𝐴 without using 𝑣 . Then, we reject the prediction cor-
rection if ℓ > ℓ ′, and recover the initial prediction scores.
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Table 1: Performance of backbone models, DTEC, and our
APC compared. ‘R@10’/‘N@10’ is Recall@10/NDCG@10.
‘Ori’ is the backbone model without prediction correction,
and ‘+DTEC’/‘+APC’ is with DTEC/APC applied.

Backbone Dataset Beauty ML1M
Method R@10 N@10 R@10 N@10

SASRec
Ori 0.0294 0.0157 0.2481 0.1284

+DTEC 0.0295 0.0158 0.2479 0.1283
+APC 0.0325 0.0176 0.2505 0.1297

DualRec
Ori 0.0590 0.0359 0.2173 0.1214

+DTEC 0.0592 0.0360 0.2171 0.1215
+APC 0.0594 0.0360 0.2240 0.1237

Caser
Ori 0.0195 0.0098 0.2775 0.1469

+DTEC 0.0193 0.0097 0.2770 0.1468
+APC 0.0198 0.0102 0.2787 0.1474

Recommendation. After finishing the prediction correction, we re-
rank the candidate items inV ′𝑢 based on the corrected prediction
scores, and select the top-𝑁 ranked items as final recommendations.
4 EXPERIMENTS
We conduct experiments to verify the effectiveness of our proposal.
4.1 Experimental Setting
Datasets. We conduct experiments on two representative datasets:
Amazon-Beauty (Beauty) [14], which includes user reviews of prod-
ucts in Amazon, and MovieLens-1M (ML1M) [8], which is a movie
rating dataset collected by GroupLens Research3. We preprocess the
dataset following the setting in the SASRec work [11]. Specifically,
we discard users and items with fewer than five interactions, and
for each user, we select the most recent interaction for testing, the
second most recent interaction for validation, and the remaining
interactions for training.
Compared methods. To show the effectiveness of the proposed
APC framework, we apply it to three representative sequential
recommender models: 1) SASRec [11], which is a left-to-right self-
attention model, 2) DualRec [29], which is a bi-directional self-
attention model, and 3) Caser [22], which is a CNN-based model. On
the one hand, we directly compare with these backbone models to
study whether our method could further enhance the performance
of these models. On the other hand, we compare APC with a SOTA
analogy-based prediction correction method named DTEC [16].
Evaluationmetrics and hyper-parameters. To evaluate the top-
N (N=10) recommendation performance, we take two metrics: Re-
call@N and NDCG@N, and compute them with the all-ranking pro-
tocol — all non-interacted items are the candidates. For all methods,
we search the learning rate, 𝐿2 regularization coefficient, dropout
ratio in [1e-2, . . . , 1e-4], [1e-1, 1e-2, . . . , 1e-6], and [0, 0.3, . . . , 0.7],
respectively. For the special hyper-parameters of backbone models,
we search them in the ranges provided in their paper. For our APC,
we set the 𝑁 ′ in Equation (7) as 50, and search 𝜂 of Equation (3) in
[0.5, 1, 2, 3]. When computing ℓ in Equation (5), we take the items
interacted by other users in the same mini-batch as negative items.
4.2 Results and Discussion
Overall performance. We summarize the results in Table 1, where
we have the following observations:
• When applying our APC to the three different types of back-
bone models (SASRec, DualRec, and Caser), our APC consistently
improved recommendation performance in all metrics on both

3https://grouplens.org/datasets/movielens/.
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Figure 3: The effect of the size of V ′ (i.e., 𝑁 ′) on the per-
formance of APC. ‘RI’ denotes the relative improvements of
APC over SASRec on Beauty in corresponding metrics.

datasets. These results demonstrate that conducting prediction
correction can further enhance recommendation performance.
• In contrast, DTEC cannot consistently improve the recommen-
dation performance and may even harm it. DTEC corrects the
predictions of candidate items for a user by drawing analogies
with the prediction errors of similar training items the user has
engaged with. However, inherent differences exist between train-
ing and testing data, particularly in sequential recommendation
where temporal drifts exist, making its correction unreliable. The
results confirm the superiority of simulating abductive reasoning
to correct predictions in sequential recommendation.
• SASRec outperforms DualRec on ML1M, but DualRec performs
better on Beauty. However, our method enhances the perfor-
mance of DualRec on both datasets, indicating its distinctiveness
from other bidirectional methods. It effectively utilizes the future-
to-past information of sequences through abductive reasoning.

In-depth analyses. To prevent over-correction, during prediction
correction, we only consider the candidate items with top-𝑁 ′ initial
prediction scores, i.e.,V ′𝑢 in Equation (7). We next investigate how
the size of V ′𝑢 (i.e., 𝑁 ′) affects the relative improvements (RI) of
our APC over backbone models in recommendation performance.
Figure 3 summarizes the validation results on the Beauty dataset
regarding the backbone model SASRec.We find that as𝑁 ′ increases,
the RI in Recall@10 first increases and then slightly decreases, while
the RI in NDCG@10 first increases and then decreases significantly.
This suggests that a larger 𝑁 ′ is beneficial for recalling related
items, but an excessively large𝑁 ′may reduce the ranking quality of
related items. Therefore, it is crucial to choose an appropriate value
of 𝑁 ′ to avoid over-correction or under-correction. Additionally,
when 𝑁 ′ = 𝑁 = 10, the RI in NDCG is greater than 9%, further
verifying that APC can improve the ranking quality for a fixed item
list. Besides, we find that 𝑁 ′ has much greater impacts than the
information gain-based strategy, so we omit the latter here.

5 CONCLUSION
In this work, we introduce a universal APC framework for sequen-
tial recommendation inspired by human abductive reasoning. The
framework formulates an abductive task of deducing the past inter-
action based on future interaction and minimizes the discrepancy
between the inferred and actual history to correct predictions. We
apply this framework to three representative sequential recom-
mender models and validate its effectiveness. In the future, we
plan to extend the framework to other recommendation tasks such
as collaborative filtering [9]. We also plan to leverage advanced
techniques such as uncertainty [5] to prevent over-correction.

https://grouplens.org/datasets/movielens/
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