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ABSTRACT
In addition to relevance, diversity is an important yet less studied
performance metric of cross-modal image retrieval systems, which
is critical to user experience. Existing solutions for diversity-aware
image retrieval either explicitly post-process the raw retrieval re-
sults from standard retrieval systems or try to learn multi-vector
representations of images to represent their diverse semantics. How-
ever, neither of them is good enough to balance relevance and diver-
sity. On the one hand, standard retrieval systems are usually biased
to common semantics and seldom exploit diversity-aware regular-
ization in training, which makes it difficult to promote diversity by
post-processing. On the other hand, multi-vector representation
methods are not guaranteed to learn robust multiple projections. As
a result, irrelevant images and images of rare or unique semantics
may be projected inappropriately, which degrades the relevance
and diversity of the results generated by some typical algorithms
like top-𝑘 . To cope with these problems, this paper presents a new
method called CoLT that tries to generate much more representa-
tive and robust representations for accurately classifying images.
Specifically, CoLT first extracts semantics-aware image features by
enhancing the preliminary representations of an existing one-to-
one cross-modal system with semantics-aware contrastive learning.
Then, a transformer-based token classifier is developed to sub-
sume all the features into their corresponding categories. Finally,
a post-processing algorithm is designed to retrieve images from
each category to form the final retrieval result. Extensive experi-
ments on two real-world datasets Div400 and Div150Cred show that
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CoLT can effectively boost diversity, and outperforms the existing
methods as a whole (with a higher 𝐹1 score).
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1 INTRODUCTION
With the popularity of the Web and its applications, increasing data
are created and posted to the Web, which triggers the rapid devel-
opment of web search and information retrieval techniques [41, 57].
Among them, cross-modal data retrieval [2, 3, 46, 46, 48, 62, 63, 71]
enables users to conveniently acquire desirable information in dif-
ferent forms. A typical example is cross-modal image retrieval
(CMIR in short) [5, 37, 49, 50, 59, 66]. CMIR takes a textual query
as input to retrieve images with matched semantics, has been de-
ployed in many web applications like Instagram and Flickr, and
gains increasing research attention [12, 21, 27, 29, 54].

Nowadays, the relevance of cross-modal image retrieval systems
has been significantly advanced by recent works [28, 30, 50, 60]
and large-scale one-to-one pre-trained encoders [36, 53] with the
help of massive image-text pairs crawled from the web. However,
existing models are prone to return a list of retrieved images with
similar semantics. Often, the queries submitted by ordinary users,
especially those in the form of short keyword-based texts without
concrete context [35, 47], very likely have broad semantics, and thus
are semantically ambiguous and uncertain. For example, given the
coarse-grained query “dog", the user may expect dog images with
diverse semantics (e.g. different breeds, colors, and body shapes).
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Figure 1: Illustrations of (a) typical cross-modal image re-
trieval systems; (b) learning-based multi-vector retrieval
systems; (c) our CoLTmethod. Red star represents the query.
Points of different colors denote images of different seman-
tics. Gray points represent irrelevant images, and triangles
represent the prototypes of the corresponding semantics.
Dotted circles denote the projection regions.

Obviously, keyword-based queries are prone to match various re-
trieval results, but a list of images with similar semantics cannot
meet the diverse requirements of different users, thus deteriorating
their retrieval experience [43, 64].

To address the aforementioned drawback, the task of keyword-
based diverse image retrieval [15, 17, 18, 20], is proposed, which
takes a short keyword-based text as input to search a list of im-
ages with high relevance and rich semantic diversity. Recent ap-
proaches can be roughly divided into two groups. The first group is
post-processing based approaches [10, 25, 33, 38–40, 40, 61]. These
methods usually apply existing cross-modal encoders to extracting
features. Then, various algorithms (e.g. re-ranking [61] and clus-
tering [33]) are adopted to promote the diversity. However, these
methods often cannot obtain a good retrieval list with balanced
relevance and diversity, due to the limitations of one-to-one projec-
tion. For instance, as shown in Fig. 1(a), on the one hand, in typical
one-to-one projection, (W1) the query feature (the red star) is likely
to be surrounded by images of common semantics (the brown points)
due to the long-tail distribution of the training data, which will
make the top-𝑘 result set full of images of similar semantics. On the
other hand, (W2) image features with different semantics are less
distinguishable because of the ignorance of modeling diversity [64],
which will hurt the performance of some algorithms like clustering.

The second group is a set of learning-based approaches [1, 42, 43,
52, 64, 70] that try to use various techniques (e.g. graph [43], metric
learning [5, 46] and multiple instance learning [55, 70]) to model the
diversity. Compared with the one-to-one projection that projects
each image to a vector in the latent space, these methods [42, 52, 64]
embed each image (or text query) into multiple vectors around
the relevant features to obtain their diverse representations for
top-𝑘 search, namely multi-vector projection. Unfortunately, such a
projection is not robust enough and unable to handle images of rare

or unique semantics. As shown in Fig. 1(b), (W3) some irrelevant
outliers (the grey points) will be mistakenly projected to represent
diversity. Besides, (W4) some images of rare or unique semantics
(the blue points), will very possibly be projected into some remote
regions where the top-𝑘 algorithm cannot reach.

To overcome the weaknesses (i.e.,W1∼W4) of the existing meth-
ods, in this paper we propose a novel approach called CoLT (the ab-
breviation of Semantics-awareContrastiveLearning andTransformer)
for keyword-based image retrieval. In particular, to overcome W1,
W2 and W3, CoLT extracts stable, representative and distinguish-
able image features with the help of a new semantics-aware con-
trastive learning (SCL) loss. As shown in Fig. 1(c), the core idea
of SCL is to project images of similar semantics (e.g. dogs of the
same breed) to vectors around their matched semantic prototype
that keeps a proper distance from the other prototypes (e.g. dogs
of different breeds and irrelevant images) and the query feature to
better model the diversity. As for coping with images of rare seman-
tics (W4), instead of utilizing top-𝑘 algorithm as in existing works,
CoLT employs a powerful transformer-based token classifier (TTC)
to generate the final retrieval results. Specifically, in TTC the image
and query features are concatenated as an input token sequence.
Subsequently, TTC classifies each token into a relevant semantic
category to distinguish the images of various semantics. Finally, a
flexible post-processing algorithm is designed to select images from
various semantic categories (both common and rare semantics), to
form the final retrieval results. Such a design offers our method four-
fold advantages: (i) High semantic relevance. CoLT improves the
robust one-to-one projection of pre-trained cross-modal encoders,
which is much more stable than recent multi-vector projection-
based methods. (ii) High semantic diversity. CoLT not only makes
the image features much more distinguishable via semantics-aware
contrastive learning but also uses a transformer-based token clas-
sifier to mine rare semantics. (iii) General and easy-to-use. CoLT
can be directly stacked at the end of various existing cross-modal
encoders, without modifying their structures and parameters, and
boost the performance in a plug-and-play manner. (iv) Easy-to-
control.We can modify the post-processing algorithm in CoLT to
flexibly balance semantic relevance and semantic diversity without
re-implementing the model.

Contributions of this paper are summarized as follows: (1) We
pinpoint the limitations of existing methods and present a novel
approach called CoLT for keyword-based diverse image retrieval.
CoLT first extracts high-quality and distinguishable semantics-
aware features and then classifies the features to generate the final
retrieval list. (2) We develop a semantics-aware contrastive loss in
CoLT to extract more robust and representative features. (3) To bet-
ter mine semantic diversity, we design a transformer-based token
classifier to generate the retrieval results. (4) We conduct extensive
experiments on two real-world datasets Div400 and Div150Cred,
which show that our method can effectively boost the diversity,
and outperforms the existing methods as a whole with a higher 𝐹1
score.
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Table 1: A qualitative comparison between CoLT and major
existingmethods from three dimensions: feature projection,
retrieval result generation and performance.

Method Projection Generation Performance

CLIP [36] One-to-one top-𝑘 Low diversity
MMR [38] One-to-one Re-ranking Low diversity

UMONS [40] One-to-one Clustering Low relevance
VMIG [64] Multi-vector top-𝑘 Medium relevance & diversity
CoLT (ours) SCL TTC High relevance & diversity

2 RELATEDWORK
2.1 Cross-Modal Image Retrieval
Typical cross-modal image retrieval methods [34] can be roughly
divided into two categories: cross-modal similarity measurement
based methods [44, 58, 65, 73] that directly calculate the cross-
modal distance and common space learning-based methods [4, 31,
46, 56, 71] that map the query and images into a shared space
via various techniques like attention mechanism and generative
adversarial network etc. Nowadays, thanks to the transformer struc-
ture and pre-training techniques, large-scale pre-trained encoders
(e.g. CLIP [36], ALIGN [22], GroupViT [53], and U-BERT [60]) have
shown their superiority in relevance-based retrieval tasks. Although
these methods have significantly improved the retrieval relevance,
their ignorance of modeling semantic diversity hurts the semantic
diversity of their retrieval lists.

2.2 Diverse Retrieval
Existing diverse retrieval approaches roughly fall into two groups.
The first group is post-processing based methods [6, 10, 25, 33, 38–
40, 40, 61], which usually use existing feature encoders [7, 8, 14,
26, 36] to generate features, then mine the diversity with a post-
processing algorithm. Among them, [40] first filters irrelevant im-
ages, then clusters the rest via DBSCAN [9] to promote diversity.
MMR [38] is proposed to re-rank the retrieval list to balance diver-
sity and relevance. Bo and Gao [1] extract keywords to control the
diversity of the results. The second group includes recently pro-
posed learning-based methods, which aim to represent the semantic
diversity in the latent space [1, 42, 43, 52, 64, 70]. In particular, Su
et al. [43] propose a dynamic intent graph (GRAPH4DIV) to balance
content and intent in a document. Song and Soleymani [42] utilize
multiple transformers to extract visual features. Wu and Ngo [52]
design an inactive word loss to expand the semantic concepts to
represent various video contents. VMIG [64] embeds each image
and text query into multiple vectors via multiple instance learning.
Although these methods succeed in boosting the semantic diversity
of the retrieval results, they perform unsatisfactorily in guaran-
teeing semantic relevance and mining images of rare semantics.

2.3 Differences between Our Method and
Existing Works

To expound the differences between CoLT and typical existing
methods, in Tab. 1 we present a qualitative comparison from three
dimensions: how are images and queries projected? how are the

final retrieval results generated? and how is the performance in
terms of both relevance and diversity? As presented in Tab. 1, re-
cent pre-trained cross-modal encoders (e.g. CLIP [36]) cannot model
semantic diversity well due to the limitations of the one-to-one
projection. Two typical post-processing based methods MMR and
UMONS are poor at either modeling diversity [38] due to the lack
of an accurate diversity measurement mechanism or guarantee-
ing relevance due to clustering irrelevant features together. The
recently proposed VMIG suffers from the robustness issue due
to the uncertainty of multi-vector projection and the rare seman-
tics handling issue caused by the top-𝑘 search algorithm, which
leads to undesirable performance. Our method CoLT is the only
retrieval method that achieves both high semantic relevance and
rich semantic diversity thanks to the proposed semantics-aware
contrastive learning (SCL) and powerful transformer-based token
classifier (TTC). Experiments and visualization studies demonstrate
the advantages of our method.

3 METHODOLOGY
3.1 Overview
Given a text query 𝑄 and an image dataset D, our aim is to gen-
erate a retrieval list R that consists of 𝐾 images of high semantic
relevance and diversity. Fig. 2 shows the architecture of our method
CoLT, which is composed of six components: a fixed feature encoder
𝑓 that takes 𝑄 and D as input to generate initial query feature ℎ𝑞
and visual features {ℎ𝑖𝑣}, i.e., {ℎ𝑞, {ℎ𝑖𝑣}} = 𝑓 (𝑄,D), a visual fea-
ture re-encoder 𝑔 that re-encodes the visual features with the help
of the semantics-aware contrastive learning (SCL) module, and the
transformer-based token classifier (TTC) 𝜙 that takes the query fea-
ture ℎ𝑞 and the re-encoded image features ℎ̂𝑖𝑣 as an input token
sequence to subsume each token into a suitable semantic category
according to their representations. The TTC module consists of two
sub-modules: the token classification transformer that is composed
of 𝐿 transformer encoder layers, and a fully-connected layer as
the classifier. Finally, a post-processing module is adopted to select
typical images from these categories as the final results. During
training, a token-wise data augmentation module is used to make
full use of the training data, which is employed between the SCL
module and the TTC module.

3.2 Semantics-aware Contrastive Learning
In CoLT, we first use a fixed pre-trained feature encoder 𝑓 to extract
preliminary high-quality and robust visual features and query fea-
ture. Nevertheless, as mentioned above, these one-to-one projected
features are not distinguishable enough to support effective diverse
retrieval. Ergo, a visual feature re-encoder 𝑔, which is implemented
by a multi-layer perception and powered by a novel semantics-
aware contrastive learning is used to refine the image features to
promote semantic diversity. In particular, for each visual feature
ℎ𝑖𝑣 , we re-encode its representation as follows:

ℎ̂𝑖𝑣 = ℎ
𝑖
𝑣 + 𝛽𝑔(ℎ𝑖𝑣), (1)

where 𝛽 is a hyper-parameter used to control the learned re-encoded
feature𝑔(ℎ 𝑗𝑣). Inwhat follows, we introduce the proposed semantics-
aware contrastive loss in detail.
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As shown in Fig. 3, the goal of semantics-aware contrastive
learning (SCL) is: (1) Enlarging the distance between query feature
and irrelevant features; (2) Enlarging the distance between relevant
image features and irrelevant image features; (3) Enlarging the
distance among image features of different semantics, which makes
these features more distinguishable while benefiting diversity; (4)
Shrinking the distance between the query feature and relevant
image features, which can improve accuracy as (1) and (2); (5)
Shrinking the distance among image features of similar semantics.
In SCL, we use semantic category prototypes stored in a bank B
to efficiently compute (3) and (5), which can avoid inputting a
large batch size. As a result, each image query will be projected
to a position with suitable distance between the query feature, its
matched semantic prototypes, unmatched semantic prototypes, and
irrelevant image features.

Here we discuss the implementation of the proposed semantics-
aware contrastive learning. In SCL, the positive pairs include (1)
relevant image-query feature pairs and (2) relevant image-category
prototype pairs, while the negative pairs are (3) irrelevant image-
query feature pairs and (4) irrelevant image-category prototype
pairs. For a query ℎ𝑞 with a set of relevant image features {ℎ̂𝑟,𝑖𝑣 }
and a set of irrelevant image features {ℎ̂𝑖𝑟,𝑖𝑣 }. Let B(𝑖) denotes the

𝑖−th semantic category prototype stored in the bank and 𝐺 (·) is a
function that maps the image features to the corresponding indices
of the matched semantic category prototypes, the loss of SCL can
be formulated as follows:

L𝑠𝑐𝑙 = −𝑙𝑜𝑔

(1)︷                 ︸︸                 ︷
Σ𝑖𝑒𝑥𝑝 (ℎ𝑞 · ℎ̂𝑟,𝑖𝑣 /𝜏) +

(2)︷                             ︸︸                             ︷
Σ𝑖𝑒𝑥𝑝 (B(𝐺 (ℎ̂𝑟,𝑖𝑣 )) · ℎ̂𝑟,𝑖𝑣 /𝜏)

Σ𝑖𝑒𝑥𝑝 (ℎ𝑞 · ℎ̂𝑖𝑟,𝑖𝑣 /𝜏)︸                  ︷︷                  ︸
(3)

+ Σ𝑖, 𝑗𝑒𝑥𝑝 (B( 𝑗) · ℎ̂𝑖𝑟,𝑖𝑣 /𝜏)︸                       ︷︷                       ︸
(4)

+(1) + (2)
,

(2)
where 𝜏 is a hyper-parameter used to control the temperature.

The category prototypes stored in the bank B play an important
role in the proposed SCL. Therefore, they need to be initialized and
updated during training to obtain accurate and latest representa-
tions. Ergo, we use the fine-grained textual description features
extracted by the fixed feature encoder to initialize the bank. As
for update, exponential moving average (EMA) [11, 24, 68, 72] is
utilized to update the category prototypes:

B(𝐺 (ℎ̂𝑟,𝑖𝑣 )) = 𝛼B(𝐺 (ℎ̂𝑟,𝑖𝑣 )) + (1 − 𝛼)ℎ̂𝑟,𝑖𝑣 , (3)

where 𝛼 is the momentum coefficient used to update the bank.

3.3 Transformer-based Token Classification
After obtaining a set of representation features, the next problem
is how to generate the final result of high relevance and diversity.
To this end, a powerful transformer-based token classifier (TTC) is
developed to do feature fusion and token classification. Specifically,
we treat each feature as a token, and concatenate the query feature
ℎ𝑞 and 𝑁 image features {ℎ̂𝑖𝑣}𝑁𝑖=1 to form the input token sequence,
i.e., I = [ℎ𝑞, {ℎ̂𝑖𝑣}𝑁𝑖=1]. Here, to avoid irrelevant tokens, only 𝑁 im-
age features semantically most similar to the query feature are used.
We sort the image features with respect to their cosine similarity
with the query feature, and generate the corresponding ground
truth Y = {𝑦𝑖 }𝑁+1

𝑖=1 in terms of their fine-grained semantic annota-
tions. It is worth mentioning that in TTC, all the irrelevant image
features and the query feature are labeled with special indexes to
further distinguish them. As shown in Fig. 2, 𝐿 transformer en-
coder layers [45] powered by multi-head self-attention and feed
forward layers are used to fuse these tokens. Subsequently, a fully
connected layer is stacked as a classifier to do prediction. Formally,
the predictions of TTC can be written as follows:

{𝑝𝑖 }𝑁+1
𝑖=1 = 𝜙 (I), (4)
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where 𝑝𝑖 is the predicted distribution probability of the 𝑖−th token.
Cross entropy loss is served as the classification loss to train TTC:

L𝑐𝑙𝑠 = −Σ𝑖𝑦𝑖𝑙𝑜𝑔(𝑝𝑖 ) . (5)

After classifying each image token into an appropriate category, a
post-processing algorithm 𝑡 is applied to generate the final retrieval
list. That is, selecting 𝑋 images with the highest similarity to the
query feature from each semantic category:

R = 𝑡 ({𝑝𝑖 }𝑁+1
𝑖=1 , 𝑋 ). (6)

Finally, after selecting images from ⌊𝑘/𝑋 ⌋ semantic categories, a
retrieval list R of length 𝑘 is obtained.

3.4 Token-wise Data Augmentation
Due to the lack of specific fine-grained annotations, directly training
our model onD is prone to over-fitting. Therefore, to better exploit
the potential of the transformer-based token classification module,
we employ token-wise data augmentation to enrich the input tokens
I. In particular, four different kernel operations are introduced:

Query perturbation: We perturb the query feature ℎ𝑞 as fol-
lows: MIXUP [67] the query feature with a relevant image feature
ℎ̂
𝑟,𝑖
𝑣 with a probability of 𝑝𝑞 . Formally, let _ ∼ 𝐵𝑒𝑡𝑎(1.0, 1.0), we

generate the perturbed query feature as follows:

ℎ𝑞 =𝑚𝑎𝑥 (_, 1.0 − _)ℎ𝑞 +𝑚𝑖𝑛(_, 1.0 − _)ℎ̂𝑟,𝑖𝑣 . (7)

Image perturbation:We perturb the image feature ℎ̂𝑟,𝑖𝑣 as fol-
lows: MIXUP the image feature with a relevant query feature ℎ𝑞
with a probability of 𝑝𝑣 . By sampling _ from 𝐵𝑒𝑡𝑎(1.0, 1.0), we have

ℎ̂
𝑟,𝑖
𝑣 =𝑚𝑎𝑥 (_, 1.0 − _)ℎ̂𝑟,𝑖𝑣 +𝑚𝑖𝑛(_, 1.0 − _)ℎ̂𝑞 . (8)

Deletion:We delete an image feature with a probability of 𝑝𝑑 .
Copy: We copy an image feature with a probability of 𝑝𝑐 .
Among the 4 operations, query perturbation and image per-

turbation directly augment the features without modifying the
semantics-aware representations, which is beneficial to the robust-
ness of the model while the operations of deletion and copy can
enhance the model’s ability of distinguishing rare and similar to-
kens, respectively. Following the experience in [51], we perform
data augmentation to the input tokens I in such a manner: sam-
pling each data augmentation operation in the following order: (1)
query perturbation; (2) deletion; (3) copy; (4) image perturbation,
then individually performing the selected operation on each token.

3.5 Training and Evaluation Algorithms
The training procedure of CoLT is presented in Alg. 1, which can be
divided into three steps. First, the initial query feature and image
features are extracted by 𝑓 (L2). Then, we train the visual feature
re-encoder by the proposed semantics-aware contrastive learning
(L3-L9) to re-encode the preliminary features to semantics-aware
ones. Finally, we take the query feature and the re-encoded image
features as input to train the transformer-based token classifier
with the help of token-wise data augmentation (L10-L16).

The evaluation procedure is given in Alg. 2, which is like this:
we first generate the initial features (L2), then re-encode the image
features (L3). Subsequently, take these features as tokens to generate
the predicted distribution probabilities (L4-L5). Finally, using the
post-processing algorithm 𝑡 to generate the final retrieval list R.

Algorithm 1 The training of CoLT.
1: Input: Fixed feature encoder 𝑓 , visual feature re-encoder
𝑔, transformer-based token classifier 𝜙 , query 𝑄 , and image
dataset D

2: ℎ𝑞, {ℎ𝑖𝑣} = 𝑓 (𝑄,D)
3: initialize B with fine-grained description
4: while 𝑔 is not convergenced do
5: ℎ̂𝑖𝑣 = ℎ

𝑖
𝑣 + 𝛽𝑔(ℎ𝑖𝑣)

6: ℎ̂
𝑟,𝑖
𝑣 , ℎ̂

𝑖𝑟,𝑖
𝑣 ∼ 𝑔(ℎ𝑖𝑣)

7: Compute L𝑠𝑐𝑙 via Eq. (2)
8: Optimize 𝑔 according to L𝑠𝑐𝑙

9: Update B via Eq. (3)
10: while 𝜙 is not convergenced do
11: I = [ℎ𝑞, {ℎ̂𝑖𝑣}𝑁𝑖=1]
12: Perform data augmentation to I according to Sec. 3.4
13: Obtain the final I according to Sec. 3.3
14: {𝑝𝑖 }𝑁+1

𝑖=1 = 𝜙 (I)
15: Compute L𝑐𝑙𝑠 via Eq. (5)
16: Optimize 𝜙 according to L𝑐𝑙𝑠

17: return 𝑔 and 𝜙

Algorithm 2 The evaluation of CoLT.
1: Input: Fixed feature encoder 𝑓 , visual feature re-encoder 𝑔,

transformer-based token classifier 𝜙 , query 𝑄 , image dataset
D, and post-processing algorithm 𝑡 with its hyper-parameter
𝑋

2: ℎ𝑞, {ℎ𝑖𝑣} = 𝑓 (𝑄,D)
3: ℎ̂𝑖𝑣 = ℎ

𝑖
𝑣 + 𝛽𝑔(ℎ𝑖𝑣)

4: I = [ℎ𝑞, {ℎ̂𝑖𝑣}𝑁𝑖=1]
5: {𝑝𝑖 }𝑁+1

𝑖=1 = 𝜙 (I)
6: R = 𝑡 ({𝑝𝑖 }𝑁+1

𝑖=1 , 𝑋 )
7: return R

4 PERFORMANCE EVALUATION
4.1 Research Questions
In this section, we evaluate the proposed method by conducting
extensive experiments to answer the following research questions:
RQ1: How does CoLT perform in comparison with the state-of-

the-art cross-modal image retrieval models in terms of both
relevance and diversity?

RQ2: Can the proposed semantics-aware contrastive learning and
the transformer-based token classifier effectively boost rele-
vance and diversity?

RQ3: How do different components/parameters contribute to the
effectiveness of CoLT?

4.2 Datasets and Metrics
Here we briefly summarize the datasets and metrics used in our
paper. More details can be referred to [19]. Two datasets are used
in our paper:
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Table 2: Performance comparison with the state-of-the-art
methods on Div400. P@k and CR@k are evaluation metrics
for relevance and diversity, respectively. F1@k evaluates the
overall performance regarding both relevance and diversity.

Method P@10 P@20 CR@10 CR@20 F1@10 F1@20
IMRAM [5] 79.22% 76.98% 28.93% 33.79% 42.38% 46.96%
FCA-Net [13] 79.98% 78.42% 29.91% 34.90% 43.54% 48.30%
CLIP [36] 90.17% 87.92% 35.68% 52.97% 51.10% 65.60%
MMR [38] 86.79% 84.52% 36.96% 53.88% 51.85% 65.81%

UMONS [40] 79.28% 73.37% 44.71% 63.24% 57.17% 67.93%
DESA [35] 76.50% 73.82% 39.47% 52.82% 52.07% 61.58%
Su et al. [43] 77.55% 74.50% 35.66% 45.77% 48.85% 56.70%
VMIG [64] 82.31% 83.01% 40.37% 59.46% 54.17% 69.28%
CoLT (ours) 84.45% 85.48% 47.06% 64.16% 60.44% 73.30%

Div400: Div4001 is collected by the MediaEval Workshop [18].
It contains 396 queries with 43, 418 images. All queries are mainly
related to tourist locations and the average length of queries is
3.7 words. On average, the ground truth of a query covers 11.8
semantic categories of images in the dataset. Each image has a
coarse-grained textual description (e.g. “Big Ben”) and a fine-grained
one (e.g. “partial view”).

Div150Cred:Div150Cred2 is derived from the competition dataset
for diverse social image retrieval in 2014 [16]. It has a total of 153
queries with 45, 375 images. The ground truth of a query averagely
covers 22.6 semantic categories of images in the dataset.

Three metrics are used to evaluate the performance, including
precision (𝑃 ) for measuring semantic relevance, cluster recall (𝐶𝑅)
for measuring semantic diversity, and the 𝐹1 score of 𝑃 and 𝐶𝑅 to
measure the overall balanced performance. Specifically, we calculate
the evaluation metrics of the top-𝑘 results, where 𝑘 is set to 10 and
20 by following [64]. In the rest of this paper, we use P@k, CR@k,
and F1@k to denote the 𝑃 , 𝐶𝑅, and 𝐹1 value of the top-𝑘 results,
respectively. Higher P@k indicates better relevance, and higher
CR@k means richer semantic diversity.

4.3 Implementation Details
CoLT is implemented in PyTorch-1.10. All experiments are con-
ducted on 4 NVIDIA 3090 GPUs with 24GB memory. The model is
trained using the Adam [23] optimizer with a learning rate of 10−5
for the visual feature re-encoder 𝑔 and 10−4 for the transformer-
base token classifier 𝜙 . The batch size is set to 32. 𝜏 , 𝛼 , 𝛽 , and 𝜖
are set to small values: 𝜏 = 0.2, 𝛼 = 0.01, 𝛽 = 0.02, and 𝜖=0.01 by
following [11, 24, 69, 72].𝑋 , 𝑁 , and 𝐿 are set to 1, 200, and 8 through
ablation study. The probabilities used for data augmentation are set
by following [51]. In particular, we have 𝑝𝑞 = 0.5, 𝑝𝑣 = 0.2, 𝑝𝑑 = 0.2
and 𝑝𝑐 = 0.2. All different semantic categories (or simply semantics)
in each dataset are stored as prototypes. As a result, we store 629
prototypes for Div400 dataset while 725 for Div150Cred dataset.

4.4 Comparing with SOTA Methods (RQ1)
To demonstrate the effectiveness of our method CoLT, we compare
it with several state-of-the-art approaches, including three typical
cross-modal image retrieval methods: IMRAM [5], FCA-Net [13]

1http://multimediaeval.org/mediaeval2014/diverseimages2014
2http://campus.pub.ro/lab7/bionescu/Div150Cred.html

Table 3: Performance comparison with the state-of-the-art
methods on Div150Cred.

Method P@10 P@20 CR@10 CR@20 F1@10 F1@20
CLIP [36] 96.02% 95.04% 23.48% 35.32% 37.73% 51.51%
MMR [38] 95.37% 94.23% 23.50% 35.49% 37.71% 51.56%

UMONS [40] 77.40% 84.15% 26.69% 40.10% 39.69% 54.32%
VMIG [64] 90.81% 89.96% 23.83% 37.97% 37.75% 53.40%
CoLT (ours) 93.41% 94.39% 27.53% 39.30% 42.52% 55.49%

and CLIP [36], two post-processing-based diverse retrieval meth-
ods: MMR [38] and UMONS [40], and three learning-based diverse
retrieval approaches: DESA [35], GRAPH4DIV [43] and VMIG [64].
Since MMR, UMONS and VMIG require a feature encoder, for fair-
ness, we use the same feature encoder CLIP [36] to implement them
and our method CoLT. For MMR and UMONS, we use grid search
to obtain their best results. Generally, our results are higher than
those in the original papers thanks to the strong feature encoder.
For example, the P@20, CR@20, and F1@20 values of VMIG on the
DIV400 dataset are lifted from 78.27%, 59.01% and 67.29% to 83.01%,
59.46% and 69.28%. Experimental results on Div400 and Div150Cred
are given in Tab. 2 and Tab. 3, respectively. Here, the best values
are bolded while the second-best results are underlined.

From Tab. 2 and Tab. 3, we can see that 1) typical cross-modal
image retrieval methods including large-scale pre-trained encoder
CLIP perform well in relevance-based retrieval but cannot do di-
verse retrieval well. For example, although CLIP achieves the best
relevance performance, it is inferior to the others in diversity score.
2) Post-processing-based approaches can only moderately trade-off
accuracy and diversity. For example, as can be seen in Tab. 2, the
diversity improvement achieved by MMR is very limited (CR@10
increases from 35.68% to 36.96% on Div400). As for UMONS, its
accuracy score is greatly degraded (P@10 decreases from 90.17%
to 79.28% on Div400) though it obtains a relatively large diversity
improvement. As a result, their 𝐹1 scores are not satisfactory. 3)
Recently proposed learning-based methods achieve balanced rele-
vance and diversity scores. For instance, VMIG outperforms most
existing methods in CR@10 and CR@20, and performs better than
UMONS in relevance score. However, its relevance and diversity are
both limited due to the weaknesses of the multi-vector projection.
4) Our method CoLT obtains the best diversity score, high preci-
sion, and obviously the highest overall 𝐹1 score on both Div400
and Div150Cred. In particular, CoLT outperforms CLIP and VMIG
by significant margins, i.e., 7.70% and 4.02% of F1@20 on Div400,
respectively. This indicates that CoLT is able to get retrieval results
of both high relevance and rich semantic diversity. Besides, we
present a variant of CoLT that outperforms CLIP on both relevance
and diversity, we will discuss the details in Sec. 4.6.

4.5 Visualization (RQ2)
To better demonstrate the advantages of the proposed techniques
and study how they lift the performance, we visualize some cases
in the test set of the DIV400 dataset via UMAP [32]. The visualiza-
tion comparison between our semantics-aware representation and
existing methods’ representations are illustrated in Fig. 4.

http://multimediaeval.org/mediaeval2014/diverseimages2014
http://campus.pub.ro/lab7/bionescu/Div150Cred.html
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Case: 1 Query: “Pantheon” 

Case: 2 Query: “Hospicio Cabanas Jalisco Mexico”

(a) One-to-one projection
representations

(b) Multi-vector projection 
representations

(c) Semantics-aware one-to-one 
projection representations

(d) Retrieval results

Results by method (a)

Results by method (b)

Results by method (c)

Results by method (a)

Results by method (b)

Results by method (c)

Figure 4: Visualization comparison of different representations. (a) One-to-one projection (OOP) representations generated by
the cross-modal encoder 𝑓 . (b) Multi-vector projection (MVP) representations. (c) Semantics-aware one-to-one projection (SA-
OOP) representations re-encoded by 𝑔. Retrieved images are marked by black square. (d) The final retrieval results generated
by different methods.

Case: 1 Query: “Chartres Cathedral” 

Case: 2 Query: “Doge’s Palace”

(a) Preliminary one-to-one
projection representations

(b) Re-encoded semantics-aware 
one-to-one representations

(c) Classification results (d) Retrieval results

Figure 5: The visualization of CoLT results. (a) One-to-one projection (OOP) representations generated by a cross-modal en-
coder 𝑓 . (b) Semantics-aware one-to-one projection (SA-OOP) representations generated by the re-encoder 𝑔. (c) Classification
results of TTC 𝜙 . To make the figures clear, irrelevant images are not marked. The numbers around the boxes are the category
ID predicted by TTC. (d) The final retrieval results obtained by our post-processing algorithm.

From Fig. 4(a), we can see that the preliminary OOP represen-
tations extracted by CLIP can distinguish some irrelevant images.
However, its weaknesses are also evident: (1) The query is closer
to some image features of common semantics (the blue and brown

points in the 1st case); (2) Images of various semantics are mixed.
As a result, such representations are not suitable for mining diver-
sity. Then, let us pay attention to multi-vector projection (MVP).
As can be seen from Fig. 4(b), each image and query are projected
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Table 4: Ablation study of CoLT on Div400.

ID Variant P@20 CR@20 F1@20
1 without SCL&TTC 87.92% 52.97% 65.60%
2 SCL + TTC 85.48% 64.16% 73.30%
3 without SCL 84.26% 62.94% 72.06%
4 UMONS 73.37% 63.24% 67.93%
5 SCL + DBSCAN 75.94% 63.90% 69.40%
6 SCL + top-𝑘 89.06% 89.93% 67.79%
7 without DA 86.34% 62.19% 72.30%
8 unfixed 𝑓 76.52% 51.25% 61.38%

Table 5: Effect of pair construction in SCL.

Variant P@20 CR@20 F1@20
All 4 pairs 85.48% 64.16% 73.30%

Without pair (2) 85.04% 63.78% 72.89%
Without pair (4) 85.72% 62.17% 72.07%

into multiple points to enrich diversity. However, on the one hand,
some outliers are mistakenly projected into the neighborhood of
the query feature to represent diversity (a grey point in the 1st case
while two in the 2nd case). On the other hand, some image features
of rare semantics are projected into remote regions (the green points
in the 1st case) where the top-𝑘 algorithm cannot reach. Thus, as
shown in Fig. 4(d), some irrelevant images are selected while some
images of rare semantics are not retrieved. Finally, we check the
representations of our SCL and the images retrieved by TTC. From
Fig. 4(c) we can see that (1) the representations of images of the
same semantics are clustered and much more distinguishable com-
pared with the typical OOP representations in Fig. 4(a); (2) Some
irrelevant images are also pushed away. For instance, in the 2nd
case, some grey points are pushed to the left-bottom corner. This
demonstrates the advantages and effectiveness of our SCL. Then,
TTC and a post-processing are employed to classify and select im-
ages from each category, including rare semantic categories like
green points in the 1st case, to form the final results.

We also visualize the classification results of TTC to further
demonstrate its effect. The visualization is shown in Fig. 5, from
which we can see that (1) TTC is able to distinguish different se-
mantics and irrelevant images. Taking the 1st case for example, the
yellow points are classified into the 1st category, the majority of the
green points are subsumed into the 4th category, and blue points
to the 2nd category. Irrelevant images are also correctly classified.
This demonstrates the effectiveness of the proposed TTC. (2) The
classification performance of TTC can be further improved. For
example, as can be seen in the 2nd case, TTC mistakenly classifies
one of the green points into the 1st category. In summary, the power
of TTC is demonstrated well via visualization.

4.6 Ablation Study (RQ3)
Here we conduct ablation study on Div400 to demonstrate the con-
tributions of different modules and the effect of some parameters
in our method. The metrics P@20, CR@20 and F1@20 are used.
Results are presented in from Tab. 4 to Tab. 10.
Overall performance improvement. As shown in the 1st row
and 2nd row in Tab. 4, our method significantly boosts the diversity
score and 𝐹1 score from 52.97% to 64.16% and 65.60% and 73.30%,

Table 6: Performancewhen using different feature encoders.

Variant P@20 CR@20 F1@20
ViT+BERT 87.75% 52.39% 65.60%
+CoLT 85.48% 64.16% 73.30%

R50+BERT 87.01% 52.10% 65.17%
+CoLT 85.62% 60.83% 72.94%

GroupViT 83.68% 52.02% 64.21%
+CoLT 82.62% 70.91% 70.91%

respectively, with only a slight decrease in relevance score. This
supports the superiority of our method.
Effect of SCL.Herewe check the effect of the proposed SCL. Specif-
ically, we first design a variant that removes SCL and directly applies
TTC. Obviously, as can be seen in the 2nd row and the 3rd row
of Tab. 4, all metrics including relevance, diversity, and 𝐹1 score
are degraded. Besides, we also design a variant that combines SCL
with the idea of UMONS to generate the final retrieval results via
DBSCAN. Comparing the results of the 4th row and the 5th row, the
performance with SCL is better than that of the original UMONS.
The reason lies in that SCL is able to make the image features
more distinguishable, and such representations are more suitable
for existing post-processing schemes.

Then, we check the effect of the constructed pairs in SCL. As
mentioned in Sec. 3.2, SCL uses 4 kinds of pairs. Among these pairs,
(1) and (3) are common in contrastive learning [36] to align images
and queries while (2) and (4) play important roles in distinguishing
images of various semantics. Ergo, we remove (2) and (4) separately
to examine their influence. As can be seen in Tab. 5, without pair
(2) and pair (4), diversity score and F1 score are degraded. On the
contrary, their influence on relevance score is minor. This justifies
the effectiveness of SCL — making the representations much more
distinguishable for promoting diversity.
Effect of TTC. To check the effect of the proposed transformer-
based token classifier, we design two variants that replace TTC by
DSCAN (the 5th row of Tab. 4) or top-𝑘 (the 6th row of Tab. 4) to
generate the retrieval results. Obviously, such variants are inferior
to our method (the 2nd row of Tab. 4). This demonstrates the ad-
vantage of TTC.
Effect of token-wise data augmentation. Here we implement
a variant that removes the token-wise data augmentation module.
Results of this variant are given in the 7th row of Tab. 4. Evidently,
the resulting performance is inferior to ours (the 2nd row of Tab. 4).
Why fix the cross-modal feature encoder? In CoLT, we fix the
cross-modal feature encoder 𝑓 to better maintain the pre-trained
knowledge. To support this design, we implement a variant that
finetunes the feature encoder 𝑓 . Experimental results are given in
the 8th row of Tab. 4. Obviously, all metrics including relevance,
diversity and 𝐹1 are significantly degraded, comparing with ours
(the 2nd row of Tab. 4). Possibly, finetuning too many parameters
is prone to over-fitting.
Can CoLT support various feature encoders? As mentioned
above, CoLT is general, i.e., it can work with various cross-modal
encoders to do diverse image retrieval. To verify this point, we
try three different encoder configurations, including ViT [8] and
BERT [7] developed by [36], R50 [14] and BERT [7] implemented
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Table 7: Performance vs. the number of images selected from
each category.

𝑋 P@20 CR@20 F1@20
1 85.48% 64.16% 73.30%
2 88.09% 58.54% 70.34%
3 88.45% 57.28% 69.54%

Table 8: Time cost comparison. We report the result of one-
time retrieval on a 3090 GPU.

CLIP MMR UMONS VMIG CoLT (Ours)
Time (ms) 18.06 24.10 22.65 86.77 30.23

Table 9: Time cost comparison among major components.
We report the result of one time retrieval on a 3090 GPU.
𝑓 and 𝑔 are tested in a parallel manner.

𝑓 𝑔 𝜙

Time (ms) 18.06 0.37 11.80

by [36], and the encoders proposed in GroupViT [53]. The experi-
mental results are given in Tab. 6, from which we can see that (1) all
these pre-trained cross-modal encoders are good at relevance-based
retrieval but perform poorly in terms of CR@20; (2) After applying
our method CoLT, the diversity score is significantly boosted, with
only slight decrease in precision. As a result, superior F1 score
is achieved. This validates that CoLT can work well with various
feature encoders to boost performance.
Can CoLT flexibly balance accuracy and diversity? As men-
tioned above, we can flexibly trade-off the relevance and diversity
of the retrieval results without modifying network parameters. This
is achieved by controlling the hyper-parameter 𝑋 . As described in
Sec. 3.3, the post-processing algorithm will select 𝑋 images from
each semantic category to form a retrieval list R of length 𝑘 . Thus,
a smaller 𝑋 will select fewer images from each category but can
include more different categories (estimated by ⌊𝑘/𝑋 ⌋), which will
benefit the diversity of the retrieval list R but may hurt the rele-
vance since classification accuracy on rare semantic categories is
poor. On the contrary, a larger 𝑋 , i.e., selecting more images from
each category of common semantics will benefit the accuracy but
limit the semantic diversity since fewer categories are exploited.
We present the experimental results of how𝑋 impacts performance
in Tab. 7. We can see that the best diversity is achieved when 𝑋 = 1
while the best accuracy is obtained when 𝑋=3. This indicates that
CoLT can meet various retrieval settings, which demonstrates the
flexibility of our approach. In this paper, we set 𝑋=1 by default to
obtain the best diversity and 𝐹1 score.
Time cost. We first compare the time cost of our method with
that of various SOTA methods. The experimental results are given
in Tab. 8. On the one hand, our method CoLT is 2.87× faster than
the state-of-the-art learning-based method VMIG. On the other
hand, our method consumes moderately more time than the post-
processing-based methods. For example, CoLT takes 6.23ms more
than MMR. This justifies the efficiency of our method.

Then, we further check the time cost of each major module in
CoLT: the fixed feature encoder 𝑓 , the visual feature re-encoder 𝑔,

Table 10: The effect of parameter 𝐿 in TTC.

𝐿 P@20 CR@20 F1@20 Time (ms)
6 85.82% 61.34% 71.54% 8.93
8 85.48% 64.16% 73.30% 11.80
10 85.29% 61.67% 71.58% 18.56

and TTC 𝜙 . The experimental results are given in Tab. 9. We can
see that 𝑔 and 𝜙 incur much less time than the feature encoder 𝑓 .
The reason lies in that 𝑔 is a simple multi-layer perceptron while 𝜙
consists of multiple transformer encoder layers that can run in par-
allel. It is worthy of mentioning that the image features generated
by 𝑓 and 𝑔 can be cached offline in application. Hence, the main
cost is from TTC 𝜙 , which is very limited (11.80ms according to
Tab. 9). This also verifies the efficiency of our method.
Effect of the parameter 𝐿. Here we study the effect of the num-
ber of transformer layers 𝐿. On the one hand, a larger 𝐿 may result
in over-fitting at a higher probability due to the limited training
data. On the other hand, a smaller 𝐿 cannot fully exploit the po-
tential of TTC. Therefore, we conduct a grid search to determine
the value of 𝐿. As can be seen in Tab. 10, the best performance is
achieved when 𝐿=8.
Effect of the parameter 𝑁 . Here we check how the number of
images 𝑁 fed to the transformer-based token classifier 𝜙 impacts
the performance. Intuitively, a large 𝑁 will include images with
more semantics. On the other hand, a large 𝑁 will introduce more
irrelevant images that may make token classification more diffi-
cult. On the contrary, a small 𝑁 includes less irrelevant images but
also fewer semantics. Therefore, both small 𝑁 and large 𝑁 are not
appropriate for TTC. We conduct grid search to determine 𝑁 on
two datasets. Based on our results, we set 𝑁 to 200 for the DIV400
dataset because the F1@20 scores of 𝑁 = 150 and 𝑁 = 250 are
72.10% and 72.13%, which is inferior to that of 𝑁 = 200 where
F1@20 is 73.30%. While on the DIV150Cred dataset, the best per-
formance is achieved when 𝑁 = 200 (an 𝐹1 of 55.49%) and 250 (an
𝐹1 of 55.32%). Ergo, we set this hyper-parameter to 200.

5 CONCLUSION
In this paper, we address keyword-based diverse image retrieval
and propose a new method called Semantics-aware Classification
Transformer (CoLT) to do this task. Different from existing works,
CoLT first extracts highly representative images and query features
via semantics-aware contrastive learning, then a transformer-based
token classifier is employed to fuse these features and subsume
them into their appropriate categories. Finally, a post-processing
algorithm is applied to flexibly selecting images from each category
to form the retrieval results. The advantages of CoLT are four-fold:
high semantic relevance, high semantic diversity, general and easy-
to-use, and easy-to-control. Extensive experiments on two datasets
Div400 and Div150Cred demonstrate the superiority of our method.
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