
Generating Examples From CLI Usage: Can Transformers Help?
Roshanak Zilouchian∗
rozilouc@microsoft.com

Microsoft
Redmond, Washington, USA

Spandan Garg∗
spgarg@microsoft.com

Microsoft
Redmond, Washington, USA

Colin B. Clement∗
coclemen@microsoft.com

Microsoft
Redmond, Washington, USA

Yevhen Mohylevskyy
yemohyle@microsoft.com

Microsoft
Redmond, Washington, USA

Neel Sundaresan
neels@microsoft.com

Microsoft
Redmond, Washington, USA

ABSTRACT
Continuous evolution in modern software often causes documen-
tation, tutorials, and examples to be out of sync with changing
interfaces and frameworks. Relying on outdated documentation
and examples can lead programs to fail or be less efficient or even
less secure. In response, programmers need to regularly turn to
other resources on the web such as StackOverflow for examples
to guide them in writing software. We recognize that this incon-
venient, error-prone, and expensive process can be improved by
usingmachine learning applied to software usage data. In this paper,
we present our practical system which uses machine learning on
large-scale telemetry data and documentation corpora, generating
appropriate and complex examples that can be used to improve doc-
umentation. We discuss both feature-based and transformer-based
machine learning approaches and demonstrate that our system
achieves 100% coverage for the used functionalities in the product,
providing up-to-date examples upon every release and reduces the
numbers of PRs submitted by software owners writing and edit-
ing documentation by >68%. We also share valuable lessons learnt
during the 3 years that our production quality system has been
deployed for Azure Cloud Command Line Interface (Azure CLI).

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability;

KEYWORDS
Example Generation, Transformers, Software Documentation

1 INTRODUCTION
Modern software development involves continuous integration,
deployment, and rapid releases. New frameworks, libraries, and
APIs are created and the existing ones keep improving and changing.
This rapid and constant change often presents a steep learning
curve to developers. In many cases, spending time and effort to
become proficient in using a library or API is not even productive
as it may only be used a few times. Instead the most efficient way
to guide developers is by providing code examples demonstrating
how to use new APIs or interact with new frameworks [3, 9]. An
extensive survey of software developers has identified use of up-
to-date examples as one of the most important factors in useful

∗Equal Contribution

documentation [9]. However, documentation and code examples are
usually added only as an afterthought to comply with regulations,
often rendering them out of sync or incomplete [28, 30]. Even when
they exist, the documentation content and code examples are not
updated in a timely manner [12]. Therefore, insufficient quantity
and variation [30] in examples and incorrect examples [1, 2] remain
to be the major obstacles for developers learning to use an API.

Code examples shared in Blogs, Wikis and Q&A sites have
emerged as an alternative to supporting official documentation [18,
27]. However, such advice can go out of date in a matter of weeks.
Further, when mining an enormous number of blogs and online
articles, finding the most current or relevant examples can be diffi-
cult [30]. Additionally, blog articles or discussions on Q&A sites are
not officially maintained by the software owners and the examples
may be of poor quality [24].

Knowledge discovery tools can address these challenges to some
extent. Knowledge discovery tools provide recommendations in the
form of code samples or artifacts [22, 26]. However, they cannot
offer help for uncommon code frameworks or when samples are not
present, limiting their use as alternatives formissing documentation.
To tackle these challenges, another line of research has emerged
to augment documentation with synthesized examples [11, 21, 23].
Our work extends this line of prior work by generating up-to-date
examples from usage data and other external sources of information
and automatically inserting them into the official documentation.

Our example generation framework automatically creates and
updates examples in software documentation upon every release.
The examples generated by our platform have following qualities:

• Up-to-date examples Our platform utilizes usage teleme-
try to generate new examples at every release cycle of a
product, ensuring the examples are always up-to-date.

• Representative of actual usage Unlike bare-bones ex-
amples usually found in documentations that only cover
basic scenarios, our examples are based on usage teleme-
try and, therefore, represent how current users use the
software in practice.

• Covering all used functionalitiesOur automatically gen-
erated examples cover all used functionalities of the soft-
ware, in contrast to human written examples which are
usually provided for a few important functionalities.

Our example generation framework consists of two steps: (i)
Identifying successful scenarios to build example templates based
on prior user successes, and (ii) Translating the templates to human

ar
X

iv
:2

20
4.

12
64

8v
1 

 [
cs

.S
E

] 
 2

7 
A

pr
 2

02
2



readable examples. For the second step, we experimented with a
feature-based parameter type prediction model and a transformer-
based neural parameter value generation model. We discuss the
benefits and challenges of each model in a production environment.

Our example generation system has been deployed for Azure
Command Line Interface (Azure CLI), a large scale, open-source
cloud developer command line environment. Our comparative study
between our generated examples and the human written examples
by software owners showed that our examples can help develop-
ers by covering all active features with a higher quality than the
software owner’s examples. In addition, we found that our example
generation pipeline was able to reduce the number of PRs submitted
by software owners to write or edit documentation by >68%.

In this paper we make the following contributions:

(1) we present a production-quality example generation plat-
form which can generate up-to-date examples that cover
all used functionalities,

(2) discuss the benefits and challenges of a neural model and
a feature-based model in a production environment,

(3) share lessons learned from the deployment of our example
generation platform in production.

2 RELATEDWORK
Prior work has tackled the problems posed by rapidly changing
APIs and frameworks in software development [31] in different
ways: crowd-sourced documentation, augmenting documentation
with examples, and knowledge discovery tools.

2.1 Crowd-Sourced Documentation
As the leading way to learn about new features and APIs, web
search enables developers to discover socially-mediated sources of
information in addition to official documentation. Blogs, wikis and
Q&A sites are commonly used to complement the official documen-
tation. A study of Google search results on jQuery API showed that
at least one blog post and StackOverflow question appear on the
first page of the search results for 84% of methods in jQuery [29].

However, it is not clear whether some of these additional sources
will resolve staleness or the lack of examples in official documenta-
tions. For example, a study on blogging behaviors of developers has
revealed that only 1.8% of relevant blog posts contain source code
[27]. This means that developers use blogs mainly to communicate
and coordinate functional requirements as opposed to documenting
code. Similarly, studies of Q&A websites such as StackOverflow
have shown some software tools or APIs may not get enough cov-
erage on StackOverflow [34]. Even for popular software tools, the
coverage accumulates very slowly. For instance, for Android API
classes the coverage after one year was only 30% [34]. This coverage
is much worse in specialized software tools. Also, even questions
posted to StackOverflow for popular software systems are usually
answered by a small group of experts; such experts are hard to find
for systems with smaller communities. Failure to find experts has
been identified as one of the key reasons for unanswered questions
on StackOverflow [4]. Our work fills the coverage and staleness
gap in documentation by generating up-to-date examples based on
usage for all of used commands and APIs.

2.2 Augmenting Documentation with
Examples

Prior research has identified examples as a key learning resource
in software development [10, 22, 26]. Kim et al. [11] proposes a
technique to extract code examples and integrate the examples into
API documentation. Montandon et al. [23] describes APIMiner, a
platform which extracts code examples from software repositories
and instruments the standard Java API documentation with code
examples. PorpER-Doc is another tool which accepts queries from
API developers and suggests proper code examples for documenta-
tion purposes [21]. Buse and Weimer [5] presents a technique for
automatically synthesizing human-readable API usage examples.
Our work extends these works by generating examples from us-
age data and mining public resources, automatically inserting the
examples into official documentation.

2.3 Knowledge Discovery Tools
Knowledge discovery tools can come to the rescue when there are
stale examples in API and framework documentation. For instance,
eMoose highlights rules or caveats of API calls in the documenta-
tion [7]. XSnippet uses the code context such as types of methods
and variables to locate sample code for object instantiation [32].
Similarly, PARSEWeb [33] and Prospector [19] are also designed to
provide examples of object instantiation to help developers navi-
gate complex APIs. While clearly filling a niche, these tools have
been found to be limited in their scope: they cannot offer help when
code samples are not present or certain API calls have not been
widely used. Our work ameliorates this limitation by creating high
quality examples demonstrating how to use a tool or framework
from previously successful usages.

3 AZURE CLI
While our example generation platform can be leveraged for any
application where usage data is available, for the purpose of this
paper, we will specifically target a popular Command Line Inter-
face (CLI) that is used to interact with the Microsoft Azure cloud
platform, referred to as Azure CLI in this paper. Figure 1 shows
an example of an Azure CLI command which creates a virtual
machine. Each Azure CLI command consists of a command name

az vm create --image UbuntuLTS --admin-username azureuser
--name MyVM --ssh-key-value ~/.ssh/id_rsa.pub
--resource-group MyResourceGroup --location westeurope

Figure 1: An example of an Azure CLI command for cre-
ating an Ubuntu virtual machine on Azure. All Azure CLI
commands begin with ‘az’ followed by a command name. A
commandmay be followed by a set of parameters and corre-
sponding values, where parameters begin with ‘--’.

(e.g. az vm create) and a set of parameters names which usually
start with a -- flag (e.g. --image) and are followed by a parame-
ter value (e.g. UbuntuLTS). Overall, Azure CLI has more than 3600
commands. On a monthly basis, users run millions of commands to
create, delete, and manage resources on Azure. While many of these
commands run successfully, failures are quite common. A command

2



may fail for various reasons like incorrect parameter combinations,
errors in parameter names or parameter values, wrong assumptions
about the state of a resource, or even service problems. In Azure
CLI, user faults which includes wrong parameters combinations
and errors in parameter names or values can account for up to 22%
of command failures. These errors occur mainly due to lack of docu-
mentation and examples covering various parameter combinations.
For instance, each Azure CLI command has at most 76 parameters
and on average 10 parameters. The average number of parameters
specified by users is 4, while the average number of parameters in
the examples provided in the official documentation is 1. Therefore,
the examples provided in the documentation likely do not fully
capture the way Azure CLI is used in practice. This potential gap
between official documentation and the actual usage of Azure CLI
will only grow larger in time, and can cost both companies and
customers a significant amount in wasted time and resources.

4 EXAMPLE TEMPLATE GENERATION
Our example generation framework consists of two steps: (i) identi-
fying successful scenarios to build example templates based on prior
user successes, and (ii) translating templates into human readable
examples. Figure 2 shows an overview of our pipeline.

Figure 2: Overview of our example generation framework.
We use product usage telemetry to generate example tem-
plates. We then collect relevant examples from various web
sources and use them to train models that can find or gen-
erate the best parameter values for each parameter. Finally,
the parameter values are added to the template giving us the
resulting examples.

In order to identify successful scenarios, we analyze the usage
telemetry of Azure CLI. This telemetry data includes the CLI com-
mands, a list of parameters used with each command, and whether
the execution of the command was successful or not. Keeping cus-
tomer privacy in mind, the usage telemetry data does not include
the concrete parameter values, preventing potentially private in-
formation like user-name or email addresses from leaking into the
machine learning model and possibly into the examples.

For each upcoming release of Azure CLI, we collect around 3.20
billion successful commands which were executed for the last three
months prior to the release. We then remove the commands cor-
responding to the old version and all the help calls, which did not
result in an actual command execution from the data. This leaves us
with ∼3.19 billion successful command and parameter set pairs. We
then sort the unique command and parameter set pairs based on
frequency of unique users. Going through the list of all parameter
sets for all commands, we then take the top three most frequent

parameter sets for each command to build up to three example tem-
plates. Since we do not have the values of parameters in the usage
telemetry, we use a placeholder value based on the parameter name
in the generated templates (e.g. <image> for a parameter named
--image). Figure 3 shows an example of a template generated for
the virtual machine (VM) creation command with placeholders.

az vm create --image <image> --admin-username <admin-username>
--name <name> --ssh-key-value <ssh-key-value>
--resource-group <resource-group> --location <location>

Figure 3: An example of a template created from usage
record of az vm create command. The parameter values are
replaced with placeholders, which are parameter names sur-
rounded by angle brackets, e.g. <ParameterName>.

5 PARAMETER VALUE GENERATION
An example is more useful if its parameter values are concrete
and not placeholders as they give users more information about
acceptable values, value formats (e.g. for date/time), and share
common conventions. Here is an example of an Azure CLI command
which shows how to update an Azure application with placeholders:

az ad app update --id <id> --start-date <start-date>

Contrast this with an example containing actual values:
az ad app update --id e042ec-34cd-498f-9d9f-14567814

--start-date "2017-01-01"

where --id is, thus, understood to take an alphanumeric GUID and
--start-date an ISO-formatted date string.

In order to replace the placeholders with actual values, we de-
veloped two models: (i) a feature-based parameter type prediction
model, and (ii) a neural parameter value generation model.

Our feature-based parameter type prediction model predicts the
parameter’s type first. It then uses the identified type to choose a
correct value from a pre-computed lookup table of collected values
for a given parameter. On the other hand, our neural parameter
value generation model receives an example template as an input
and generates parameter values. We now explain the data we used
and the model training details.

5.1 Data Collection
While the usage telemetry data was enough to create example
templates, it lacked parameter values. Therefore, we needed Azure
CLI examples with parameter values to train our parameter value
generation models. To find these examples, we first collected the
following documents:

• All questions and answer posts from StackOverflow, which
were at most one year old and were tagged with ‘Azure’ or
‘Azure-CLI’ for a total of 1481 posts.

• All 9167 GitHub issues submitted to Azure CLI’s repository.
• All ∼14k pages of official Azure blogs and documentations.

We then developed a parser to identify Azure CLI commands from
the collected documents. The parser looks for code blocks start-
ing with az <command> or code blocks, which are tagged with an
azure-cli language tag, yielding >22K Azure CLI examples. We then
filtered out the examples that would only run on Azure CLI versions
released before January 2019. We also filtered out examples that had

3



invalid commands or parameter names, values featuring typos, or
values affected by breaking changes in new releases. After filtering,
we were left with ∼7K unique and syntactically correct examples.

5.2 Feature-based Parameter Type Prediction
Model

For our feature-based parameter type prediction model we hand-
labeled the parameters in the final dataset of 7K examples into 15
categories based on the types of acceptable values. These categories
were also verified with the software owners. Table 1 shows a list of
these categories. For each command and parameter in our dataset
we also retrieved the command and parameter descriptions from
Azure CLI’s documentation. We then cast our data into features
vectors and trained a classifier to predict the parameter types.

Table 1: Azure CLI parameter types and their respective fre-
quencies in collected data.

Category Frequency

String 5228
Enum 713
Integer 273
GUID 246
Folder/File Path 241
Command Specific/Unknown 201
IP-Address 196
URL/E-Mail 166
Build Info 131
Quoted Strings 125
Version 45
Time/Duration 23
Keys/Tokens 14
Int With Specific Format 6
Permission Formats 5

5.2.1 Feature Embeddings. Our raw features include the com-
mand name, the parameter name, the name of themodule containing
the command, the parameter description in the Azure documenta-
tion, and the command description from the Azure documentation.
We performed several pre-processing steps on the text of each fea-
ture. We first transformed the text to lower-case, removed all the
special non-ASCII characters and common stop words. We then
performed WordNet-based lemmatization over the words, which is
the removal of inflectional endings of words, replacing them with
their base, known as the lemma, reducing the necessary vocabulary
of the feature vectors. We convert each sequence of words in our
features to a vector representation using a bag-of-words represen-
tation [20]. For parameter name, command name, and module name
the traditional bag-of-words worked well because these features
have a small vocabulary (<100 words) and, therefore, we did not
have to limit the size of our feature vector. The other two features,
parameter description and command description, include several sen-
tences with a lot of variation in word usage and, as a result, a large
vocabulary. To limit the vocabulary size, we selected the top 75
words for each parameter type category based on its correlation
with the category.

5.2.2 Classifier. Using the features, we trained a Random Forest
classifier to predict the type of the parameters. Our data set had a
data imbalance issue as the majority of the parameters were of the

Figure 4: We used t-SNE to visually map each high-
dimensional point in our data set to two dimensional space.
Each point is color coded based on the type of the param-
eter it represents. String points (Red) tend to overlap with
minority class examples.

Figure 5: We used t-SNE to visually map each high-
dimensional point in our data set to two dimensional space.
Each point is color coded based on the type of the parame-
ter it represents. After removing all ‘string’ parameter types
from the data, the t-SNE graph shows a clear separation of
all other minority classes in the two dimensional space.

type ‘string’. We visualized our data using t-SNE [17], which maps
each high-dimensional data point to a location in a two-dimensional
map. In the t-SNE graph of our data set we observed that the points
in the graph representing the ‘string’ class overlap with points from
other minority classes at every value of perplexity we tried (Figure
4). Removing ‘string’ points entirely led to a clear separation of mi-
nority classes in the t-SNE graph (Figure 5). Therefore, we decided
to use two classifiers: (i) a ‘string’ vs ‘non-string’ classifier and (ii) a
type classifier for classifying ‘non-string’ examples into their finer
types. For both classifiers, Random Forest yielded the best results
when we experimented with various classification algorithms.

4



5.2.3 Results. Table 2 and 3 show the precision-recall values we
achieved for the ‘string’ classifier using bag-of-words features and
the ‘non-string’ finer type classifiers respectively. As shown in the
tables our classifier has high F-1 score for the majority of classes.

Table 2: Precision/recall of the string classifier with a 3-fold
cross validation.

Precision Recall F-1 Score Support

String 1.00 0.86 0.92 5228
Non-String 0.76 1.00 0.86 2385
Weighted Avg. 0.92 0.90 0.90 7613

Table 3: Precision/recall of a bag-of-words based parameter
type classifier with 3-fold cross validation.

Category Precision Recall F-1 Score Support

Enum 0.89 0.98 0.94 713
Integer 0.89 0.88 0.88 273
GUID 0.89 0.77 0.82 246
Folder/File Path 0.94 0.95 0.95 241
Command Specific 0.79 0.72 0.75 201
IP-Address 1.00 0.84 0.91 196
URL/E-Mail 0.98 1.00 0.99 166
Build Info 0.99 1.00 1.00 131
Quoted Strings 0.67 0.90 0.76 125
Version 0.87 0.29 0.43 45
Time/Duration 1.00 0.70 0.82 23
Int With Format 1.00 1.00 1.00 6
Permissions 1.00 1.00 1.00 5
Keys/Tokens 0.93 1.00 0.97 14
Weighted Avg. 0.90 0.89 0.89 2385

5.2.4 Parameter Value Lookup. We use the values from our col-
lected examples (explained in sec. 5.1) to build a lookup table of
possible values for each parameter. We then use regular expressions
to make sure the collected values in the lookup table have proper
syntax for the parameter’s predicted type (IP-Address, File Path,
etc.). For the ‘string’ category, we use the parameter description
in the documentation to create a valid name. For example, if the
description of the parameter was "Name of the web app.", we use
a regex to generate MyWebApp as the value for the name. If the
lookup table doesn’t include a type-correct value for a parameter,
we retain the placeholder value from the template.

5.3 Neural Parameter Value Generation Model
Transformers are a family of neural networks which currently ob-
tain state of the art results for applications in natural language
processing (NLP) such as machine translation, question answer-
ing, or document summarization [35]. Since the introduction of
transformers in 2017, several variations of transformer models have
been developed including BERT [8], RoBERTa [16], and BART [13]
among others. These models are usually trained on a large amount
of unlabeled data and then fine-tuned on a smaller task specific set
of labeled data for a particular downstream task.

We decided to experiment with a neural model because of several
practical advantages of suchmodels including (i) lowermaintenance
cost as these models need to be fine-tuned on more data over-time

as opposed to feature-based models that usually need major feature
engineering updates. (ii) a neural model pipeline enables us to
experiment with other down-stream tasks to provide ML based
solutions for other future scenarios such as command completion.
(iii) the majority of research and development in NLP is focused on
neural models, therefore using a neural model enables us to easily
adopt the state of the art models for our down stream tasks.

In this work, we leverage from BART’s architecture which com-
bines Bidirectional and Auto-Regressive Transformers [13]. For
pretraining, the input text is corrupted with an arbitrary noising
function and the model is trained to reconstruct the corrupted text.

5.3.1 Pretraining. Prior work in leveraging transformers for
code completion has shown that pretraining on code snippets can
significantly improve model performance on specific tasks such as
method and docstring prediction[6]. Inspired by the prior work,
we pretrained sequence-to-sequence transformers using a span-
masking objecting [13] on publicly available shell script data. The
span-masking objective essentially replaces random spans of input
tokens with a <MASK> token, and the model is trained to predict all
the tokens replaced by the mask, separated by mask tokens.

For pretraining, we collected 51K GitHub repositories with ≥5
stars that were composed primarily of shell scripts, resulting in
328K unique scripts with 54 million total lines of code. We then
pretrained our 139M and 406M parameter transformers (BART-base
and BART-large, respectively) on this corpus for 60 epochs on four
Nvidia Tesla V100 16GB GPUs, ∼48 GPU-hours total for the larger
model.

5.3.2 Fine-Tuning. For fine-tuning we used the 7k unique exam-
ples collected from the web (explained in 5.1). We fine-tuned our
shell-pretrained transformer models for predicting Azure CLI pa-
rameter values by replacing each sub-sequence of parameter value
tokens with a <MASK> token, and training the model to predict to-
kens for each parameter value, separated by mask tokens. In this
way, the model is taught to allocate any number of tokens to each
parameter value. We call the resulting parameter-prediction models
DeepDevAZ and DeepDevAZ-large.

5.3.3 Data Augmentation. Our fine-tuning data was not large by
modern deep learning standards, as we only had about 7000 unique
Azure CLI commands. In order to improve the model training we
augmented the data by adding copies of each command with all
permutations of masking and unmasking. For example, a given
command with two parameters yielded 3 examples for training, as
we masked both, and one parameter, and then the second parameter.
In general this yields 2𝑛−1 copies for a commandwith𝑛 parameters.
This also improves the range of tasks DeepDevAZ can complete,
allowing complete or partial parameter naming.

6 EXPERIMENTS
We perform two experiments to gauge the effectiveness of our
models. The first experiment focuses on comparing the neural
parameter generation model with other baselines and the second
experiment compares the feature-based and the neural generation
approach for replacing placeholder values in our example templates.

5



6.1 Experiment 1: Comparing neural
approaches

We compared our DeepDevAZ and DeepDevAZ-large models with
two baseline models: (i) a RoBERTa model pre-trained on english
and fine tuned on our examples data set (RoBERTa-ENG-AZ) with
token masking objective and (ii) a BART model pre-trained on
english and fine-tuned on our examples data set (BART-ENG-AZ)
with span masking objective. We use ROUGE-1, ROUGE-2 and
ROUGE-L [14] metrics for this evaluation. Table 4 shows the scores
achieved by our DeepDevAZ model compared to the baselines.

The substantial difference between our RoBERTa-ENG-AZ base-
line, which uses a BERT architecture and the other models that use
BART, indicates the advantage of task-specific training objectives.
RoBERTa-ENG-AZ is trained on the masked language modeling
task, and decoding parameter values, which are composed of multi-
ple tokens, requires an iterative process of infilling mask tokens,
which is not how the model was trained. The sequence-to-sequence
models enable an in-filling scheme, where arbitrary length spans
of text are replaced with a single mask token while BERT can only
predict one masked token. Therefore the BART-style sequence-to-
sequence model is more appropriate for parameter value generation
where parameter values usually consist of more than one token.

Comparing sequence-to-sequence models pre-trained on english
and shell script data, we observe that the publicly released (406M
parameter) BART-large checkpoint pre-trained on English performs
slightly better than our smaller (139M parameter) DeepDevAZ, but
our (406M parameter) DeepDevAz-large model is the best model
overall. Therefore, we conclude that large model size is advanta-
geous even in this small data regime, and pre-training on Shell
scripts is more valuable than pre-training on English alone.

Table 4: Performance of DeepDevAZ model and the other
two baselines.

Model Stat. R1 R2 RL
RoBERTa-ENG-AZ Prec. 15 1.4 18

Rec. 10 1 12
F1 12 1.1 14

BART-large Prec. 51.3 30.6 30.7
(english pretrained) Rec. 51.0 30.7 51.5

F1 51.1 30.6 51.1
DeepDevAZ Prec. 44.2 26.6 44.0

Rec. 47.7 28.6 49.4
F1 45.5 27.4 46.1

DeepDevAZ-large Prec. 55.1 35.1 55.0
Rec. 54.7 35.0 55.9
F1 54.8 35.0 55.2

6.2 Experiment 2: Comparing neural and
feature-based models

We leveraged ROUGE as a metric in our first experiment as it pro-
vides an efficient way to compare large numbers of predictions
produced by various neural models. However, prior research has
shown the shortcomings of ROUGE as a metric, which causes it
to correlate poorly with human judgment [15, 25]. To fill this gap,
we performed a human judgement evaluation comparing the ex-
amples our DeepDevAZ-large model has produced with examples
produced by our feature-based model for the 100 most frequently

used Azure CLI commands. This evaluation was performed by two
of the authors, who are knowledgeable in Azure CLI, with help from
domain experts. The examples were evaluated for their syntactical
correctness and how likely they were to be written by a human. For
verifying syntactic correctness, an automated execution of the pro-
duced examples was insufficient for two main reasons. First, some
of these examples rely on other resources to already exist in Azure
in order to execute correctly. Second, some generated examples
have placeholder values that may be syntactically correct, but will
not execute without replacing placeholders with real values. Aside
from syntactical correctness, we also verified human readability.
For instance, predicting a value such as "mymymy" for a virtual
machine name may be syntactically correct, but it is not a value
an actual developer will pick. To this end, the authors collaborated
with 3 domain experts to determine if examples satisfy human
readability. Table 5 shows the results of these comparisons.

Table 5: Human evaluation of 100 frequent Azure CLI com-
mands comparing the examples generated by our feature-
based and neural models. The evaluation was performed
both on syntactical correctness of the example as well as
how likely the example is to be written by human.

Model Judged correct Non-placeholder examples
Feature-based Parameter Prediction 99 87
DeepDevAZ-large 87 97

The evaluation showed that majority of the examples generated
by our feature-based model are syntactically correct. However,
they also include a lot more placeholders in comparison to the
neural model, which caused the examples with placeholders to not
appear likely to be written by human. Our feature-based model
uses placeholder values when type-correct values do not exist in
the lookup table. Although the resulting examples are not judged as
incorrect, they are not as useful as human-written examples, which
usually contain concrete parameter values. Another challenge with
our feature-based model is its inability to consider correlations
between parameter values when choosing a value for a specific
parameter. For instance, the following example generated by the
feature-based model for az resource show is incorrect:
az resource show --name MySubnet --resource-group MyResourceGroup
--resource-type "Microsoft.Compute/virtualMachines"

While the type of the resource is a virtual machine, the name that
has been chosen is clearly a subnetwork name. Therefore this ex-
ample is semantically incorrect and can confuse the users.

In contrast our neural model generates a correct example:
az resource show --name MyVM --resource-group MyResourceGroup
--resource-type "Microsoft.Compute/virtualMachines"

This is because unlike the feature-based model, our neural model
considers the command and all of the parameters into account when
generating values for a parameter.

DeepDevAZ makes a few more mistakes than the feature-based
model, majority of which are dominated by commands which have
no example parameters in our training corpus.Whereas, the feature-
based model chooses an anodyne placeholder for these missing
examples, DeepDevAZ attempts to be creative, producing some-
what spurious, unconstrained results. The parameters where the
DeepDevAZ model fails to generate a correct value for are usually

6



complex in nature. For instance, in one example it fails to generate a
correct value for a database partition key and in another it predicts
the role assignment value for a data warehouse incorrectly.

Examining the correct examples our neural model generates, we
observe that the neural model is learning and generating examples
similar to what humans write. For instance, our neural model was
able to generate the following example:

az storage share-rm delete --storage-account MyStorageAccount
--name MyShare

As we can see, the model is learning to correctly associate storage
shares with names like "MyShare", similarly with storage account.

Similar examples exist where our neural model is able to generate
correct values for a variety of parameter types such as IP-address,
file-path, data-time, etc. While the neural model fails to generate
values for some of the complex parameters that it hasn’t seen be-
fore, the fact that it correctly generates values for a wide range of
parameters invites for future investments in the neural approach.

Belowwe explain howwe deployed and experimented with these
models in production and how our automated examples affected
Azure CLI documentation in action.

Figure 6: Commit from a Pull Request (PR) that was auto-
matically generated and submitted to Azure CLI’s GitHub
repo showing how examples being added to various services.
Our example generation platform connects to an automatic
PR generationmodule that creates PRs to add our generated
the examples to Azure CLI on every release.

7 DEPLOYING IN PRODUCTION
To evaluate the effectiveness of our example generation platform
in a real practical setting, we connected our example generation
platform to an automatic Pull Request (PR) generation module.
This module submits Pull Requests to insert our examples into the
official Azure CLI documentation on each product release cycle. A
PR is a method of submitting code contributions to a code base. A
developer submits a PR when they want to incorporate their code
contributions/changes into a code base after a code review by one or
more developers. Figure 6 shows an example of a PR that adds our
example to the current Azure CLI documentation. Once integrated
in the code base, developers can access the examples both through
the command line help by typing the command name followed by
--help or -h in the command line (fig. 7). Alternatively, they can
view the examples on the online reference documentation (fig.8).
To evaluate the effectiveness of our example generation platform in
action, we examined the coverage and quality of the live examples.

Figure 7: Examples and help content are accessible through
the command line by using --help/-hwith the command. In
this figure, the user has called help on ‘az keyvault update’.

7.1 Coverage of Examples
We first examined the coverage and quality of our generated exam-
ples. We observed that the examples written by software owners
(human-written examples) cover only 55% of the commands in
Azure CLI. This means that software-owner-added examples ac-
count for a little over half of the Azure CLI commands, while our
generated examples (machine generated examples) cover 100% of
the commands. This means that we can achieve algorithmically
a scale of coverage that is difficult to achieve through manually
written of examples. Additionally, while human-written examples
on average cover only 20% of the parameters for a given command,
our machine-generated examples cover 32%. Therefore, machine-
generated examples not only cover more commands, they also cover
more service functionalities and scenarios in Azure. In summary,
we see an improvement of 82% in command coverage and 60% in
parameter coverage compared to human-written examples. Fig-
ure 8 shows a screenshot of two examples for the same command
in Azure CLI documentation. While the human written example
on top covers a simple use-case of the command with only the
required parameters, our machine generated one on the bottom
(tagged with an ‘autogenerated’ flag) supports a more complex
scenario, involving more parameters.

Figure 8: Screenshot of two examples from the Azure CLI
documentation. The first one is added by the software own-
ers and covers the basic case. While the second one is added
by our platform (tagged with ‘autogenerated’) and covers a
more complex scenario showcasing a broader parameter set.

7.2 Quality of Examples
Besides coverage, we study how the quality of ourmachine-generated
examples compares to human-written examples. As mentioned be-
fore, one of the primary ways of accessing examples in Azure CLI
is through a help call on a command (invoking a command with
--help or -h). These help calls are usually followed by an actual
usage of the command with the user’s desired set of parameters.

7



This usage call following help should be successful, if the documen-
tation and examples displayed in the help were useful to the user.
Therefore, we can associate help calls with consecutive command
usage calls immediately following it, within the same usage session.
We take the success rate of the usage calls following the help calls
as an approximate measure of quality. Since our machine-generated
examples were added to a certain version of Azure CLI (version
60), we have a clean experiment comparing help success before and
after the introduction of our generated examples.

Figure 9 shows a plot of the before-mentioned quality metric. We
first group commands into "command groups", which are groups
of commands targeting similar resources in Azure. Each command
group is represented by a bubble on the plot. For each command
group, we compute the success rates of usages following the help
call, where the command usage matches the parameter set shown
in a human-written or machine-generated example. These rates
correspond to abscissa and ordinate, respectively. The bubble size
represents the customer usage of such commands over a period of
30 days (including both types of examples).

Figure 9: Success rates of machine-generated vs human-
written examples after a help call.

If the bubbles are spread along the diagonal, the human written
examples and the machine generated examples, found in the output
of --help, are equally successful, while skewing of bubble density
towards either the lower right or upper left corner would suggest
the corresponding examples to be more effective. We compute 𝑝-
value of the observed deviations off the diagonal under the null
hypothesis that the examples are equally effective. The 𝑝-values
are encoded by the color on the plot, where darker colors are more
significant than lighter ones. We can observe that, for the majority
of command groups, our machine-generated examples are more
helpful than the human-written ones.

7.3 Software Owners’ Workflow
Finally, we analyze the impact of our example generation pipeline
on software owners’ workload. Our analysis reveals that our exam-
ple generation platform saves Azure CLI developers a significant

amount of time spent writing/editing reference docs. For example,
in 2018 (before deployment of our platform), 64 documentation
related PRs had to be submitted and reviewed by the developers.
These PRs typically involve manual editing of documentation and
hand-crafting of examples by developers, which can be time con-
suming as well as error-prone. With the deployment of our platform
in April 2019, only 20 manual PRs had to be submitted by the devel-
opers that year as our platform was able to submit 38 automatic PRs
containing machine generated examples, reducing the numbers of
PRs developers had to submit by >68% compared to the prior year.

8 LESSONS LEARNED AND ONGOINGWORK
Given the benefits and drawbacks of both our neural and feature-
based models, we decided to use them both in production. This
enabled us to improve both models based on the software owners’
feedback. In addition, we learned a few lessons that have guided
our ongoing and future work on our example generation platform.

First, we found that the inability of the feature-based model to
leverage correlations between the parameters can be problematic
in a production system. We faced a few cases, where such examples
slipped through the PR review process as they were syntactically
correct, but were later caught by end users. This problem did not oc-
cur with our neural model, which considers all the parameters when
generating values for each parameter. To address this challenge, we
are experimenting with ways of combining both models.

Second, we learned that software owners are more tolerant to-
wards examples that have placeholders than examples with incor-
rect values. Therefore, we are experimenting with a newer version
of neural model that can generate placeholders when the confi-
dence is low. For this, we leverage the likelihood that the neural
model produces with each prediction. When this likelihood is low,
the model falls back to use placeholders or the feature-based model.

Finally, being a black-box, we also faced challenges tuning our
neural model to owners’ feedback. For instance, when we generated
our first automatic PR with the neural model, the software owners
asked us to modify the format of all generated names. This meant
that we needed to either add a post-processing step or change
the formatting of all input parameters and re-train the model. Re-
training can be performed quickly, in our case, since our data set is
not very large. However, as we try to expand our data set over time,
we will look into training separate models, which can modify the
style without expensive re-training of the value prediction model.

While in this paper we only discuss the development and deploy-
ment of our example generation platform for Azure CLI, the design
of our system is generalizable to situations where usage telemetry
exists and can be utilized to generate meaningful examples. To
demonstrate this, we have also successfully deployed this system
to generate examples for Azure PowerShell, another command line
tool to manage resources in Azure. If training and usage data is
available, our system should also work for generating examples for
other command line tools. Similarly our methodology can be used
to generate examples for simple API calls targeting cloud services.
However, our platform in its current form cannot generalize to
situations where multiple steps are always required to accomplish
a single meaningful task (e.g. scripts). We leave this exploration to
future research.

8



9 CONCLUSION
Up-to-date documentation with many code examples is essential to
learning new or updated frameworks and APIs. Yet, official software
documentations are often stale and lack sufficient examples. Our
work closes this gap by presenting a novel example generation plat-
form that generates up-to-date examples based on usage telemetry.
Our evaluation results showed that our examples can help develop-
ers by covering all active features with a higher quality than the
software owner’s examples. In addition, our example generation
pipeline increases software owner’s productivity by >68%.

An immediate direction for future work is to expand our example
generation pipeline to create example scripts (i.e., chaining a series
of commands). Another direction is to measure the long-term effect
of our platform on the overall quality of Azure CLI documentation.
For example, measures can include the amount of time users spend
on the online documentation website, the number of documentation
related issues reported, or the number of user failures caused by
an incorrect combination of command, parameters, or parameter
values. Finally, a similar approach can be applied to other tools
where usage telemetry is available. We have already deployed the
same example generation platform for Azure PowerShell, another
command line interface for Azure, to a similar success.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C. Shepherd. 2020. Software Documentation:
The Practitioners’ Perspective. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 590–601. https://doi.org/10.
1145/3377811.3380405

[2] E. Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, G. Bavota, and M. Lanza. 2019. Software Documentation Issues
Unveiled. 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE) (2019), 1199–1210.

[3] Andrew J. Ko, B. A. Myers, and H. H. Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. 199–206. https://doi.org/10.1109/VLHCC.2004.47

[4] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K Roy, and Kevin A
Schneider. 2013. Answering questions about unanswered questions of stack
overflow. In 2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 97–100.

[5] Raymond P. L. Buse andWestleyWeimer. 2012. Synthesizing API usage examples.
2012 34th International Conference on Software Engineering (ICSE) (2012), 782–792.

[6] Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and
Neel Sundaresan. 2020. PyMT5: Multi-mode Translation of Natural Language
and Python Code with Transformers. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 9052–9065.

[7] Uri Dekel and James D Herbsleb. 2009. Improving API documentation usability
with knowledge pushing. In 2009 IEEE 31st International Conference on Software
Engineering. IEEE, 320–330.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[9] Andrew Forward and Timothy Lethbridge. 2002. The relevance of software
documentation, tools and technologies. 26–33. https://doi.org/10.1145/585058.
585065

[10] Reid Holmes, Rylan Cottrell, Robert J Walker, and Jorg Denzinger. 2009. The
end-to-end use of source code examples: An exploratory study. In 2009 IEEE
International Conference on Software Maintenance. IEEE, 555–558.

[11] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. 2009. Adding
examples into java documents. In 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 540–544.

[12] T. C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use
documentation: the state of the practice. IEEE Software 20, 6 (2003), 35–39.
https://doi.org/10.1109/MS.2003.1241364

[13] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 7871–7880.

[14] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of summaries.
Proceedings of the ACL Workshop: Text Summarization Braches Out 2004, 10.

[15] Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin,
and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical
study of unsupervised evaluation metrics for dialogue response generation. arXiv
preprint arXiv:1603.08023 (2016).

[16] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[17] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[18] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn
Hartmann. 2011. Design Lessons from the Fastest Q&a Site in the West. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Vancouver, BC, Canada) (CHI ’11). Association for Computing Machinery, New
York, NY, USA, 2857–2866. https://doi.org/10.1145/1978942.1979366

[19] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
mining: helping to navigate the API jungle. ACM Sigplan Notices 40, 6 (2005),
48–61.

[20] ChristopherManning andHinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

[21] Lee Wei Mar, Ye-Chi Wu, and Hewijin Christine Jiau. 2011. Recommending
proper API code examples for documentation purpose. In 2011 18th Asia-Pacific
Software Engineering Conference. IEEE, 331–338.

[22] Samuel G McLellan, Alvin W Roesler, Joseph T Tempest, and Clay I Spinuzzi.
1998. Building more usable APIs. IEEE software 15, 3 (1998), 78–86.

[23] João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente.
2013. Documenting apis with examples: Lessons learned with the apiminer
platform. In 2013 20th working conference on reverse engineering (WCRE). IEEE,
401–408.

[24] Seyed Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
25–34. https://doi.org/10.1109/ICSM.2012.6405249

[25] Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser.
2017. Why we need new evaluation metrics for NLG. arXiv preprint
arXiv:1707.06875 (2017).

[26] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L Norman, Matthew
Mace, and Manuel Gordon. 2002. What programmers really want: results of
a needs assessment for SDK documentation. In Proceedings of the 20th annual
international conference on Computer documentation. 133–141.

[27] Dennis Pagano and W. Maalej. 2011. How do developers blog?: an exploratory
study. In MSR ’11.

[28] D. L. Parnas and P. C. Clements. 1986. A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering SE-12, 2 (1986), 251–257.
https://doi.org/10.1109/TSE.1986.6312940

[29] Chris Parnin and Christoph Treude. 2011. Measuring API documentation on
the web. In Proceedings of the 2nd international workshop on Web 2.0 for software
engineering. 25–30.

[30] M. P. Robillard. 2009. WhatMakes APIs Hard to Learn? Answers fromDevelopers.
IEEE Software 26, 6 (2009), 27–34. https://doi.org/10.1109/MS.2009.193

[31] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[32] Naiyana Sahavechaphan and Kajal Claypool. 2006. XSnippet: mining for sample
code. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications. 413–430.

[33] Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant
for reusing open source code on the web. In ASE ’07.

[34] Christoph Treude and Lars Grammel. 2012. Crowd Documentation: Exploring
the Coverage and the Dynamics of API Discussions on Stack Overflow.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. 6000–6010.

9

https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1145/1978942.1979366
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1109/TSE.1986.6312940
https://doi.org/10.1109/MS.2009.193

	Abstract
	1 Introduction
	2 Related Work
	2.1 Crowd-Sourced Documentation
	2.2 Augmenting Documentation with Examples
	2.3 Knowledge Discovery Tools

	3 Azure CLI
	4 Example Template Generation
	5 Parameter value Generation
	5.1 Data Collection
	5.2 Feature-based Parameter Type Prediction Model
	5.3 Neural Parameter Value Generation Model

	6 Experiments
	6.1 Experiment 1: Comparing neural approaches
	6.2 Experiment 2: Comparing neural and feature-based models

	7 Deploying in Production
	7.1 Coverage of Examples
	7.2 Quality of Examples
	7.3 Software Owners’ Workflow

	8 Lessons Learned and Ongoing Work
	9 Conclusion
	References

