
HAL Id: hal-03597580
https://hal.science/hal-03597580v1

Submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zeph & Iris map the internet: A resilient reinforcement
learning approach to distributed IP route tracing

Matthieu Gouel, Kevin Vermeulen, Maxime Mouchet, Justin Rohrer, Olivier
Fourmaux, Timur Friedman

To cite this version:
Matthieu Gouel, Kevin Vermeulen, Maxime Mouchet, Justin Rohrer, Olivier Fourmaux, et al.. Zeph
& Iris map the internet: A resilient reinforcement learning approach to distributed IP route tracing.
Computer Communication Review, 2022, 52 (1), pp.2-9. �10.1145/3523230.3523232�. �hal-03597580�

https://hal.science/hal-03597580v1
https://hal.archives-ouvertes.fr

Zeph & Iris Map the Internet
A resilient reinforcement learning approach to distributed IP route tracing

Matthieu Gouel∗†
Sorbonne Université, France

matthieu.gouel@lip6.fr

Kevin Vermeulen‡
LAAS-CNRS, France

kevin.vermeulen@cnrs.fr

Maxime Mouchet∗†
Sorbonne Université, France
maxime.mouchet@lip6.fr

Justin P. Rohrer§
Naval Postgraduate School, USA

jprohrer@nps.edu

Olivier Fourmaux∗
Sorbonne Université, France
olivier.fourmaux@lip6.fr

Timur Friedman∗†
Sorbonne Université, France

timur.friedman@lip6.fr

ABSTRACT
We describe a new system for distributed tracing at the IP level of
the routes that packets take through the IPv4 internet. Our Zeph
algorithm coordinates route tracing efforts across agents at multiple
vantage points, assigning to each agent a number of /24 destination
prefixes in proportion to its probing budget and chosen according
to a reinforcement learning heuristic that aims to maximize the
number of multipath links discovered. Zeph runs on top of Iris, our
open-source system for orchestrating internet measurements across
distributed agents of heterogeneous probing capacities. We show
that carefully choosing which destination prefixes to probe from
which vantage point matters for optimizing topology discovery
and that a system can learn to improve its assignments based on
previous measurements. After 10 cycles of probing, Zeph is capable
of discovering 3.3M nodes and 19.8M links in a cycle of 15 hours,
when deployed on 5 Iris agents. This is 3 times more nodes and
10 times more links than the existing state-of-the-art production
system for the same number of prefixes probed.

CCS CONCEPTS
• Networks → Network measurement;

KEYWORDS
Active Internet Measurements; Internet Topology;

1 INTRODUCTION
Mapping the internet’s topology has been a challenge for more
than two decades. Topological knowledge underpins our under-
standing of issues such as security [39], connectivity [5, 33], and
performance [26]. It also leads to better models of the internet
that aid in the design of new protocols [38]. The IP-level internet
topology, in particular, is an essential input for building other in-
ternet datasets [4], such as AS-relationships [19, 23], MPLS tunnel
detection [15, 34], alias resolution [27, 29] and IP geolocation [24].

Systems that measure the topology at the IP level, i.e., the ad-
dresses and the traceroute [22] style links from one address to
the next, face a tension between completeness of discovery and
overhead in the number of probe packets sent. Recent high-speed

∗Lip6 CNRS laboratory, 75005 Paris, France
†Lincs laboratory, 75013 Paris, France
‡LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
§Tancad Lab, Monterey, CA 93943, USA

probing tools Yarrp [8], Diamond-Miner [36], and Flashroute [21]
are capable of tracing towards all routable IPv4 prefixes from a
single vantage point at rates exceeding 100,000 packets per sec-
ond (pps). Probing at these rates enables the creation of internet
topology maps in a reduced time, avoiding staleness of data due
to routing changes. However, very few probing agents with such
capacity are available to the community; agents deployed on Ripe
Atlas [32], PlanetLab Europe [1], or Archipelago (Ark) [10], for in-
stance, are constrained either by machine resources or by operator
policy. Nonetheless, probing frommultiple vantage points can bring
important marginal gains for topology discovery [7]. Therefore, so
as to maximize total discovery given a set of vantage points, we
are challenged to design an algorithm that intelligently allocates
probing directives, i.e., the instructions to an agent to conduct a
route trace towards a specific /24 prefix.

This paper presents Zeph, a reinforcement learning algorithm
for allocating probing directives to agents, and Iris, the generic
distributed measurement orchestration system that supports Zeph.

Our contributions are:

• The Zeph algorithm, that learns how to ameliorate the allo-
cation to agents at multiple vantage points of the destination
prefixes that each should probe (Sec. 4). We find that discov-
eries increase by 57% for the nodes and 90% for the links in 10
cycles of learning, showing the importance of selecting the
right prefixes to probe from each vantage point. Moreover,
our system discovers 3 times more nodes and 10 times more
links for the same number of prefixes in a shorter period of
time than the state-of-the-art system Ark [10] (Sec. 6).
• The Iris system, a robust and scalable measurement system,
built from free open-source software, that supports multi-
vantage-point measurement techniques, and that Zeph can
ask to perform single-path or multipath route traces (Sec. 5).
• Publicly available code and data,1 alongwith a production de-
ployment of Zeph and Iris to serve the research community
with data series and the ability to perform one’s own mea-
surements.2 The results in this paper are fully reproducible
on commercial cloud instances via the Jupyter notebooks
that we provide.3

1Free open-source liberally licensed code: https://github.com/dioptra-io
2Datasets and measurement service for the research community: https://iris.dioptra.io
3Instructions for reproducing this work: https://github.com/dioptra-io/zeph-evaluation

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

https://github.com/dioptra-io
https://iris.dioptra.io
https://github.com/dioptra-io/zeph-evaluation

2 RELATEDWORK
Measurement systems that have been deployed to map and char-
acterize the internet’s IPv4 IP-level topology based on traceroute-
like [22] measurements from distributed vantage points around
the globe historically include Rocketfuel [31], Dimes [30], and
iPlane [28]. Today’s production systems include Ripe Atlas [32],
which performs single-path Paris Traceroutes from its over 10,000
low-power hardware agents and software agents running at end
user’s homes and work premises; and M-Lab [17], which issues a
multipath Paris Traceroute [35, 37] towards each client that per-
forms an NDT test. Today’s longest-running and most used produc-
tion topology mapping system is Caida’s Ark [10], which utilizes
agents at over 110 vantage points to perform single-path Paris
Traceroutes [6] to one random destination per routed /24 prefix.

Two longstanding challenges face any system that aims to maxi-
mize coverage of the internet’s paths, i.e., to run at the scale of the
entire IPv4 internet: how to trace more efficiently and more rapidly.

More efficient tracing. Doubletree [16] exploited path commonal-
ity to terminate measurements when they converged on a previ-
ously probed path. iPlane [28] used BGP data to aggregate desti-
nations by common AS path, and Beverly et al. proposed a series
of primitives for more efficient mapping (e.g., subnetting infer-
ences) [9]. Our Zeph algorithm aims for a more efficient assignment
of probe destinations to probing agents.

High speed topology discovery techniques. Yarrp [8] introduced
high speed topology mapping: it encodes sufficient state in each
probe packet for the returning ICMP replies, which contain the
first bytes of the probe packets, to be self-identifying, thereby elim-
inating the need to probe slowly in order to associate replies with
probes. Whereas Yarrp traces single paths from source to destina-
tion, Diamond-Miner [36] added multipath probing. Flashroute [21]
reduces the overhead of Yarrp by first estimating the TTL, i.e., the
hop count, to the destination. Our production system uses Diamond-
Miner high speed probing.

More recent work has focused on the dynamics of internet
routes and the challenge this presents to obtaining up-to-date data.
Cunha et al. [14] designed DTrack to predict the stability of network
paths, helping to determine when to initiate new path measure-
ments and thereby optimize the probing budget. Giotsas et al. [18]
designed techniques to detect traceroute staleness, reducing the
number of traceroutes to reissue. By tracing quickly, our system
aims to keep stale data to a minimum.

3 OVERVIEW
Iris is our new measurement platform (Sec. 5) that exposes a Rest
API allowing a client to request that measurements such as Ping,
Yarrp [8], or Diamond-Miner [36] be performed from distributed
agents, and to obtain the measurement results. We have imple-
mented the Zeph algorithm (Sec. 4) as a Python-based client that
pilots Iris so as to survey the IPv4 IP-level topology of the internet,
learning to improve the probing directives that it issues over the
course of successive cycles of measurements.

4 ZEPH SCHEDULING ALGORITHM
In designing Zeph, we reasoned that the relatively static nature of
much routing in the internet [18] would allow a topology discovery
system to learn to achieve good node and link coverage on the
basis of its experience with the results of its own probing directives
(Sec. 4.1). But experience would not be a completely reliable guide
due to the existence of routing changes and their unpredictable
nature [13, 14, 18], meaning that continuous exploration of new
directives would also be required. In considering learning systems
that combine experience with exploration so as to select among
many choices that offer uncertain rewards, we turned to reinforce-
ment learning [25]. Zeph proceeds across a series of cycles, with
the directives for each cycle being based in large part upon the
success of the directives that were used in the previous cycle. New
directives are also tried out each cycle, with the overall aim being
to improve the completeness of coverage over successive cycles. In
reinforcement learning terms, the reuse of directives is exploitation
and the trying out of new directives is exploration.

Zeph’s challenge is to best use the probing budgets of its agents,
i.e., choose which directives to issue to each agent so as to obtain
the overall most complete route trace picture possible within a
cycle. There are many ways of conceiving of “completeness”, and
the one adopted here is to maximize coverage of the traceroute-
style directed links that are available to be discovered, a directed
link consisting in an ordered pair of IP addresses.

Alg. 1 describes the high-level loop of the Zeph algorithm. The
parameter 𝜖 specifies the minimum portion of each agent’s prob-
ing budget that is set aside for exploration. Each cycle 𝑖 of Zeph

Algorithm 1: Zeph
Input: 𝜖 : Fraction of budget per agent reserved for

exploration
1 for 𝑖 = 1 to∞ do
2 𝑅𝑖−1 ← ResultsFromPreviousCycle(Iris)
3 𝐴𝑖 ← AgentsWithBudgets(Iris)

/* Assign exploitation directives to agents 𝐴𝑖 */

4 if 𝑖 > 1 then
5 𝐷𝑖 ← Exploitation(𝐴𝑖 , 𝑅𝑖−1)
6 D𝑖 ← PossibleExplorationDirectives(Iris)
7 for 𝑎 in 𝐴𝑖 do

/* Assign exploration directives to agent 𝑎 */

8 𝐷𝑖,𝑎 ← Exploration(𝐷𝑖 ,D𝑖,𝑎, 𝜖)
9 Probe(Iris, 𝐷𝑖)

involves a series of interactions with the Iris API, culminating
(line 9) with Zeph sending Iris a collection of probing directives
𝐷𝑖 . These directives are prepared on the basis of the results 𝑅𝑖−1
of the preceding cycle of probing (line 2). Following the first cycle,
which consists in random directives, there are previous results to
build upon, and Zeph starts assembling the collection of probing
directives on the basis of exploiting those results (line 5). Once the
exploitation directives have been assigned, Zeph proceeds agent
by agent to round out the assignments with exploration directives
(line 8). The remainder of this section describes these steps in detail.

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

https://measurementlab.net/tests/ndt

4.1 Agents, directives and results
In each of its cycles 𝑖 , Zeph instructs Iris’s available agents 𝐴𝑖

to follow a collection of probing directives 𝐷𝑖 the size of which
depends on the agent’s probing budget. It receives from Iris in
return a collection of results, which appears in the subsequent
cycle, after 𝑖 has been incremented, as 𝑅𝑖−1.

As Zeph operates over days and weeks, we can expect that the
set of Iris agents that are available to it will vary over time; some
agents will go down, and others will arrive. As it begins each cycle 𝑖 ,
Zeph queries Iris for the currently available set of agents, 𝐴𝑖 , along
with their associated probing budgets (line 3).

The universe D𝑖 of possible exploration directives that Zeph
obtains from Iris for each cycle 𝑖 (line 6) potentially includes all /24
prefixes extracted from all public unicast IPv4 address blocks. So as
to avoid sending unnecessary probes towards non-routed prefixes,
we restrict Zeph to blocks obtained from Oregon Route Views [2].

Zeph only considers ICMP Time Exceeded replies as relevant
to its results, as our survey focuses on routing infrastructure, not
end-systems. Individual probe replies are assembled into traceroute-
style directed links, which are pairs (𝑣1, 𝑣2) of IPv4 addresses. In
the event that one of the two probes did not receive a reply (in
common traceroute parlance, a star), (𝑣1, null) and (null, 𝑣2) are
also considered to be valid links. These links are matched with their
initial directives, so that the results that Zeph receives consist of
sets of links, each set associated with the agent and the directive
that resulted in its being discovered.

4.2 Exploitation
If routing and routers’ readiness to reply to probes were to remain
unchanged from one cycle to the next, having an agent repeating
its directives from the previous cycle would cause it to discover
precisely the same set of links as before. Even under these ideal
conditions, any given link might be discovered by multiple agents
and it might be discovered multiple times by the same agent, and
this redundancy potentially leaves room for improvement, as is
well known from earlier route tracing work [16, 20]. If the same
results can be obtained by executing fewer directives, a portion
of some agents’ probing budgets can be redirected towards trying
out new directives. Zeph therefore sorts each agent’s directives,
giving highest priority to the directives that, in the prior round, are
judged by a heuristic to have made the greatest contribution to link
discovery. The aim of this sorting is to discard directives that the
heuristic judges to make little or no marginal contribution.

From the results of the previous cycle 𝑅𝑖−1, Zeph considers only
the agents that are available for the current cycle 𝑖 . For each such
agent, it sorts the directives, and the set of sorted directives for
all agents in 𝐴𝑖 constitutes the collection 𝐷𝑖 (line 5). It uses the
Cormode et al. Disk-Friendly Greedy algorithm (DFG) [11] as the
heuristic means of sorting the directives, which is an approximation
of the greedy algorithm to solve the set cover problem for large
datasets. At each iteration, instead of selecting the directive that
covers the most uncovered results (classic greedy algorithm), DFG
groups the directives into buckets of similar size. Starting from
the bucket with the directives that provide the biggest number of
results, if the number of results of a directive added to the cover set
of results is greater than a parametrized threshold, the results are

added to 𝐶 and the directive is added to 𝐷𝑖 . DFG terminates when
all prior results have been covered, i.e., 𝐶 = 𝑅𝑖−1.

4.3 Exploration
When the time comes for Zeph to designate the exploration direc-
tives, the agents that were present in the previous cycle will each
have an ordered set of exploitation directives that were assigned by
the heuristic described above. To round out these directives, and to
assign a complete set of directives to agents that were not present in
the previous round, Zeph calls upon the universe of possible explo-
ration directives D𝑖 (line 6). As previously described, this consists
in all of the routable /24 IPv4 prefixes. As opposed to the heuristic
employed for choosing exploitation directives, where knowledge
about previous results allows a directive chosen for one agent to
preclude the choice of a directive for another agent, the exploration
choices are made in relative ignorance of their consequences, and
are therefore conducted agent by agent, considering each agent
𝑎 ∈ 𝐴𝑖 separately (line 7).

The parameter 𝜖 enters into play here, to ensure that this portion
of each agent’s directives are reserved for exploration. If, perchance,
the portion of directives assigned for exploitation exceeds 1 − 𝜖 ,
a sufficient number of lowest priority exploitation directives are
removed to make room for exploration.

Having rounded out the probing budget of each agent with
exploration directives (line 8), the cycle’s collection of directives
𝐷𝑖 =

⋃
𝑎∈𝐴𝑖

𝐷𝑖,𝑎 is ready to be sent to Iris (line 9).

5 IRIS MEASUREMENT PLATFORM
The Iris system, shown in Fig. 1, allows us to run Zeph, but it has
been designed to run any sort of internet measurement algorithm
that requires access to geographically distributed probing agents. At
the moment, three tools are available in Iris: Diamond-Miner [36],
Yarrp [8], and Ping. More tools can easily be added in the future.
Moreover, Iris works the same with IPv4 and IPv6 addresses.

Workflow. A client such as Zeph submits an HTTPS request
to run a measurement via Iris’s Rest API. The API informs the
message broker Redis of the measurement request. The message
broker chooses an inactive worker from an available pool. This
worker maintains the state of the measurement throughout its life
in the system. The worker registers the measurement parameters
in the ClickHouse database and asks the agents to perform the
measurement. When the measurement is completed by an agent,
it sends the results to an object storage MinIO, an open-source
alternative to Amazon S3. Then the worker pulls the results from
the object storage and inserts the results into the database.When the
measurement is finished, the worker updates the measurement state
to mark it as ready to be pulled by the client. All of the components
described above generate logs that are stored with a monitoring
stack built from the combination of Prometheus for storing the
system’s metrics, Loki for storing the system’s logs, and Grafana to
allow visualizations of these metrics and logs.

Fig. 1 shows this workflow visually. Arrows symbolize the con-
nections between the components (e.g., the worker connects to the
database). Purple shows dataplane flow (e.g., compressed CSV files)

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

https://redis.io/
https://clickhouse.tech/docs/en/
https://min.io
https://aws.amazon.com/fr/s3/
https://prometheus.io/
https://grafana.com/oss/loki/
https://grafana.com/

while green shows control plane flow (e.g., measurement parame-
ters to execute a measurement tool on an agent). Yellow shows log
and metric collection.

Database
(ClickHouse)

REST
API

Worker

Agent

Client
Requests

Message Broker
(Redis)

Object Storage
(MinIO)

Grafana

Worker
Worker

Prometheus

Loki

Controller

Monitoring

Agent
Agent

Internet

Figure 1: Iris architecture with arrows indicating which com-
ponent initiates each connection; each box is a self-contained
Docker container. Colors indicate the type of data flows: pur-
ple for dataplane, green for control plane, and yellow for
logs.

5.1 Design considerations
The Iris was designed to meet the following demands:

(1) As Zeph measurements can last for days, Iris needs to be
robust to agents crashing, or being unreachable, and provide
the ability to restart an agent’s measurements if and when it
returns (resilience).

(2) Zeph will work from as many vantage points as it can access,
so Iris should scale well with the number of agents (agent
scalability).

(3) Zeph supports internet scale high speed topology measure-
ment techniques, generating billions of ICMP replies. Iris
should scale well with this amount of data (data scalability)

(4) We continue to improve Zeph, so Iris should support easy
deployment of new control algorithms and probing software
(continuous delivery).

(5) To improve affordability and maintainability, Iris should be
built as much as possible from free open-source software
(maintainability).

We chose Docker, and Redis to improve the resilience of the
system: each of Iris’s components runs in its own Docker container.
Moreover, a failed container is automatically reintegrated without
external intervention and retrieves the measurements states from
Redis. Two aspects of Redis improve the message broker’s resilience.
First, its persistence feature regularly saves its own current state
to disk, preserving context in case of failures and restarts. Second,
it maintains connection state, which Iris uses to alert workers to

the departure of any agent. Any worker with an ongoing mea-
surement stops waiting for that agent to send data, and no further
measurements can be requested of the agent until it reconnects to
the broker. A new worker is automatically created from the worker
pool to carry on the measurement algorithm from the point where
the failed worker had left it.

We chose Redis and MinIO for agent scalability: Redis can handle
millions of simultaneous connections; MinIO has proven capable,
with Zeph, of supporting transfer of data files in the hundreds of
gigabytes;

We chose the ClickHouse database for data scalability: it is a
database optimized for insert and read operations, which are the
only operations Iris perform on the result data. ClickHouse has
supported tables containing up to 5 billion rows, and the in-base cal-
culation language provided by ClickHouse’s arrays feature reduces
computation times.

Redis, MinIO and ClickHouse scale “horizontally”, meaning that
it is possible to deploy multiple message brokers, multiple object
storage containers, and multiple replicas of the database to support
a larger number of agents. Scaling beyond one instance each was
not necessary in order for Iris to support Zeph, but the potential is
there.

We chose Docker for continuous delivery: As we move forward,
this will ease large-scale deployment by lifting many constraints on
the machines and VMs that can host an Iris agent. Also, Iris takes
advantage of such containers’ ability to run unchanged over a wide
variety of operating systems.

Finally, all the components of the system are free and open
source, improving maintainability.

6 EVALUATION
There are three main results: (1) Zeph, requesting Diamond-Miner
multipath route traces from Iris, provides the most comprehensive
view to date of the IPv4 internet in terms of nodes and links dis-
covered in a short period of time. Once it has been trained, a single
cycle of Zeph discovers more than 3 times as many nodes and 10
times as many links as does a single cycle of the state-of-the-art Ark
platform (Sec. 6.3.2); (2)When compared on single-path route traces,
as performed by Ark, Zeph’s reinforcement learning approach out-
performs Ark’s random exploration strategy (Sec. 6.2.1); (3) Zeph
saves 50% of the probing budget, dividing the probing time by 2,
compared to an exhaustive strategy of tracing multipath routes
towards every prefix from every agent (Sec. 6.3), while maintaining
nearly the same number of discoveries.

6.1 Vantage points and setup
All of the measurements are run on the EdgeNet [12] platform
with nodes hosted in 5 different Google Compute Engine (GCE)
zones: asia-east2-a (Hong Kong), asia-northeast1-a (Tokyo),
asia-southeast1-a (Singapore), europe-west6-a (Zurich) and
southamerica-east1-a (São Paulo). The measurements can be
fully reproduced on nodes in the same locations by applying our
open-source evaluation code. The instances use the standard net-
work tier which allows the packets to exit to the internet as soon
as possible, instead of the default premium tier which privileges
Google’s internal network to the public internet.

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

https://www.docker.com/
https://redis.io/topics/persistence
https://clickhouse.tech/docs/en/sql-reference/functions/array-functions/
https://cloud.google.com/

6.2 Topology discovery
We perform two experiments to evaluate Zeph’s performance: (1)
a comparison of Zeph’s prefix allocation strategy with other ap-
proaches, performed from the same agents, with common parameter
settings; (2) a comparison of the maximum raw discoveries by Zeph
on Iris against Ark system for the same number of prefixes probed
and the same number of probes sent.

6.2.1 Zeph’s reinforcement learning approach outperforms ran-
dom allocation. We compare Zeph’s prefix allocation strategy with
that used by the state-of-the-art topology discovery systemArk [10].
Ark applies what we call constrained random allocation, which con-
sists in allocating the /24 prefixes of the IPv4 space uniformly at
random over the different agents, each prefix being probed by
exactly one agent (the constraint). Zeph’s reinforcement learning
approach splits the probing directives of each agent into two subsets
for exploitation (Sec. 4.2) and exploration (Sec. 4.3). Zeph explo-
ration differs from the Ark’s random allocation by allowing a same
prefix to be probed by multiple agents. We call Zeph’s exploration
strategy unconstrained random allocation.

Experiment. We run 10 cycles of different combinations of prob-
ing techniques simultaneously: exploitation and unconstrained ran-
dom allocation (Zeph with 𝜖 = 0.1), constrained random allocation
(Ark’s approach), unconstrained random allocation, and exploita-
tion and constrained random allocation (𝜖 = 0.1). Unconstrained
random allocation allows us to evaluate Zeph’s exploration alone,
while exploitation and constrained random allocation allow us to
evaluate Zeph’s exploration in combination with exploitation.

On August 4th, 2021, we extracted 11.9M /24 prefixes from the
routed prefixes provided by Route Views. Dividing these among
the 5 agents, at each cycle, and for all four approaches, each agent
probes 2.4M prefixes. We run the approaches simultaneously and
the agent for each approach probes at 100,000 packets per second
using single path tracing [8] with ICMP probes up to TTL 32. Each
cycle takes around 15 minutes to complete, running from August
5th to 6th, 2021.

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f d
ist

in
ct

 n
od

es

1e6

Zeph
Constrained Zeph
Constrained exploration
Exploration

(a) Nodes discovered

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f d
ist

in
ct

 li
nk

s

1e6

Zeph
Constrained Zeph
Constrained exploration
Exploration

(b) Links discovered

Figure 2: Zeph outperforms random exploration strategies.

Results. Fig. 2 shows the results of the different strategies. The
main result is that exploitation together with exploration using
unconstrained random allocation (Zeph’s approach) outperforms
all of the other approaches once Zeph has had ten cycles during
which to learn. In particular, it discovers 18% more nodes and 42%
more links than constrained random allocation (Ark’s approach).
The other result is that constrained random allocation outperforms

unconstrained random allocation by 12% more nodes and 6% more
links over each cycle. This highlights that it is the combination
of the exploitation and the unconstrained allocation together that
allows Zeph’s strategy to perform well.

6.2.2 Zeph/Iris conducting multipath traceroutes perform com-
petitively with respect to the current state-of-the-art internet scale
topology discovery system. In the previous section, we have shown
that Zeph’s prefix allocation strategies outperforms others when
limited to the same single-path probing budget. But Zeph and Iris
are capable of discovering more than what is shown in Fig. 2. To
use their full capacity, we perform 10 cycles of measurement with
multipath route traces (i.e., capturing the load-balanced paths) ob-
tained by Diamond-Miner [36] with ICMP probes at 100,000 pps.
We retrieved routed prefixes from Route Views on January 21st,
2022 and broke them down into 12M /24 prefixes, each of the five
agents receiving a per-cycle budget of 2.4M /24 prefixes. The mea-
surements were gathered from January 22th to 28th, 2022. Each
cycle took between 10 hours, 12 minutes (cycle 1) and 15 hours, 14
minutes (cycle 10) to complete.

1 2 3 4 5 6 7 8 9 10
Cycles

0

1

2

3

4

5

Nu
m

be
r o

f d
ist

in
ct

 n
od

es

1e6

(a) Nodes discovered

1 2 3 4 5 6 7 8 9 10
Cycles

0

5

10

15

20

25

Nu
m

be
r o

f d
ist

in
ct

 li
nk

s

1e6

(b) Links discovered

Figure 3: Node and link discoveries in multipath probing

Fig. 3 shows that Zeph also works with multipath traceroutes:
the number of nodes improves by 57% (+1,2M) the number of links
improves by 90% (+9.4M) between cycle 1 and cycle 10. Note that an
agent crashed at cycle 4, reducing the number of links found in that
cycle, but Zeph adapted and the discoveries resumed increasing in
cycle 5.

Table 1: Comparison of node and link discoveries between
the tenth cycle of Zeph + Iris, and a cycle of the Ark platform
for the same number of prefixes probed (12 million, second
row) and the same number of probes sent (12 billion, third
row).

Time Nodes Links
Zeph + Iris 15h15 3,288,325 19,890,422
Ark (prefixes) 19h12 1,009,738 2,087,903
Ark (probes) 45 days 3,597,042 9,241,146

Finally, we compare raw discoveries of Zeph + Iris and Ark
platform. Tab. 1 shows the number of nodes and links discovered
during the last Zeph cycle and the number and nodes and links
discovered by Caida’s Ark [3] platform (1) when the same number
of prefixes is probed, and (2) when the same number of probes
is sent. Zeph with Iris takes 20% less time to probe all routed /24

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

prefixes but discovers more than 3 times more nodes and 10 times
more links. Moreover, Ark discovers 10% more nodes and around
two times fewer links with the same number of probes sent, but
takes 45 days instead of less than 15 hours to do so.

6.3 Zeph probe savings
This section describes the tradeoff between reducing the number of
prefixes probed by each agent (and therefore reducing the duration
of a cycle and the number of probes sent) and discovery.

6.3.1 Experiment. We collect 10 cycles of 4 Zeph runs where
each agent probes 10%, 25%, 50% or 75% of the routed /24 prefixes.
In addition, we run an exhaustive measurement, with all the agents
probing 100% of the routed /24 prefixes. The measurements for
each budget were performed from August 2nd to 4th, 2021. We use
the same Route Views data as in Sec. 6.2. Each agent runs Yarrp
at 100,000 pps with ICMP probes. Depending on the budget, each
cycle lasts between 10 minutes and 1 hour and 30 minutes. In this
experiment, we reduce the number of prefixes that are probed by
each agent to simulate a more constrained budget but keep a high
probing rate. We could also reduce the probing rate, but this would
have significantly increased the time of the experiment.

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f d
ist

in
ct

 n
od

es

1e6

Zeph 10%
Zeph 25%
Zeph 50%
Zeph 75%
Zeph 100%

(a) Nodes discovered

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f d
ist

in
ct

 li
nk

s

1e6

Zeph 10%
Zeph 25%
Zeph 50%
Zeph 75%
Zeph 100%

(b) Links discovered

Figure 4: Number of nodes and links discovered over Zeph
cycles for different budgets: Zeph with 50% finds almost the
same number of nodes and links as with 100% of the budget.

6.3.2 Results. Fig. 4 shows the number of nodes and links dis-
covered by all the agents together for the different budgets. The
main result is that Zeph discovers 98% of the nodes and 95% of the
links that the exhaustive approach discovers when just 50% of the
prefixes are probed by the agents. The 25% (10%) curves show that
even with a significantly reduced probing budget, Zeph is able to
discover 94% (87%) of the nodes and 86% (71%) of the links. Addi-
tionally, reducing the number of probes also reduces the time of a
cycle. With 50% (25%, 10%) of the prefixes, 10 cycles took 7.4 hours
(3.6, 1.5), compared to the 12.5 hours of the exhaustive approach.

6.4 Reinforcement learning analysis
Finally, we dive into one measurement of Sec. 6.3 where the bud-
get is 25% of the routed prefixes, to understand more about the
contributions of exploitation and exploration.

6.4.1 Exploitation and exploration budgets. In choosing a rein-
forcement learning approach for Zeph, we anticipated that many
of each agent’s directives could be repeated (exploitation) from one
cycle to the next, and that complementing these directives with new

ones (exploration) would aid in improving overall discovery. We
find that the exploitation directives were indeed capable of discov-
ering most of the links previously discovered, and that exploration
did indeed lead over time to better overall discovery.

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f d
ist

in
ct

 n
od

es

1e6
total
exploitation

(a) Nodes discovered

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f d
ist

in
ct

 li
nk

s

1e6
total
exploitation

(b) Links discovered

1 2 3 4 5 6 7 8 9 10
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

oi
ta

tio
n

bu
dg

et
 ra

tio

(c) Fraction of the budget allo-
cated to exploitation

Figure 5: Exploitation counts for 95% of the nodes and 90%
of the links discoveries.

Fig. 5 shows the number of nodes (Fig. 5a) and links (Fig. 5b)
that are discovered by exploitation and in total. The main result
is that reinforcement learning works: exploitation improves over
time, going from 739k nodes at cycle 2 to 921k nodes at cycle 10
(+25%) and 1.2M links at cycle 2 to 1.9M links at cycle 10 (+48%). In
Fig. 5c, exploitation is responsible for most of the discoveries, i.e.,
95% of the nodes and 90% of the links. Interestingly, although we
allocated 90% of the budget to exploitation, Zeph actually used only
10% for it. We interpret this result as a consequence of the high
redundancy of internet paths, and leave the study of the optimal
value of 𝜖 for future work.

7 CONCLUSION AND FUTUREWORK
Zeph is a new algorithm for distributed tracing at the IP level of
the routes that packets take through the IPv4 internet. It learns
the probing directives to allocate to the vantage points in order
to maximize topology discovery. Zeph is platform agnostic, and
independent of the probing tool used and the agent’s capacities.

Iris is a distributed internet measurement system based on a
modern resilient architecture that exposes an API that allows var-
ious algorithms, including Zeph, to be run. Together, Zeph and
Iris discover 3 times more nodes and 10 times more links than
the state-of-the-art Ark platform for the same number of prefixes
probed.

All of the code of Iris and Zeph and data of the evaluation are
publicly accessible and we now offer regular Zeph internet topology
data series to the community and the ability to perform one’s own
measurements.

In future work, we will extend Zeph to IPv6 and analyze in depth
the dynamics of the internet topology.

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and the CCR editor, Steve Uh-
lig. Ethan Katz-Bassett and Robert Beverly were very helpful with
their suggestions. Jack Brassil helped through his support for Edge-
Net. Kevin Vermeulen completed some of this work at Columbia
University. Support for Matthieu Gouel, Maxime Mouchet, Olivier
Fourmaux, and Timur Friedman came in part from a French Min-
istry of Defense university research grant; for Kevin Vermeulen
from U.S. National Science Foundation (NSF) grant No 1836872; and
for Justin P. Rohrer from NSF grant No CNS-1855614. The views
and conclusions are those of the authors and should not be inter-
preted as representing the official policies or position of either the
French government or the U.S. government; or the French Ministry
of Defense or the U.S. National Science Foundation.

REFERENCES
[1] [n. d.]. PlanetLab Europe. https://planet-lab.eu/. ([n. d.]). Accessed February 2,

2022.
[2] 2004. Oregon Route Views. http://routeviews.org/. (2004). June 8, 2004; accessed

February 2, 2022.
[3] 2008. The CAIDA UCSD IPv4 Routed /24 Topology Dataset. https://www.caida.

org/catalog/datasets/ipv4_routed_24_topology_dataset/. (2008). February 1, 2008;
version of July 8, 2020.

[4] 2014. The Impact of the Archipelago Measurement Platform. https://www.caida.
org/projects/ark/impact/. (2014). July 3, 2014; version of November 15, 2019.

[5] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve Uhlig, and
Walter Willinger. 2012. Anatomy of a Large European IXP. In Proc. ACM SIG-
COMM Conf. (SIGCOMM ’12). https://doi.org/10.1145/2342356.2342393

[6] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Fried-
man, Matthieu Latapy, Clémence Magnien, and Renata Teixeira. 2006. Avoiding
Traceroute Anomalies with Paris Traceroute. In Proc. ACM SIGCOMM Internet
Measurement Conf. (IMC ’06). https://doi.org/10.1145/1177080.1177100

[7] Paul Barford, Azer Bestavros, John Byers, and Mark Crovella. 2001. On the
Marginal Utility of Network Topology Measurements. In Proc. ACM SIGCOMM
Internet MeasurementWorkshop (IMW ’01). https://doi.org/10.1145/505202.505204

[8] Robert Beverly. 2016. Yarrp’ing the Internet: Randomized High-Speed Active
Topology Discovery. In Proc. ACM SIGCOMM Internet Measurement Conf. (IMC
’16). https://doi.org/10.1145/2987443.2987479

[9] Robert Beverly, Arthur Berger, and Geoffrey G. Xie. 2010. Primitives for Active
Internet Topology Mapping: Toward High-Frequency Characterization. In Proc.
ACM SIGCOMM Internet Measurement Conf. (IMC ’10). https://doi.org/10.1145/
1879141.1879162

[10] Kimberly Claffy, Young Hyun, Ken Keys, Marina Fomenkov, and Dmitri Kri-
oukov. 2009. Internet Mapping: From Art to Science. In Proc. 2009 Cyber-
security Applications Technology Conf. for Homeland Security (CATCH). https:
//doi.org/10.1109/CATCH.2009.38

[11] Graham Cormode, Howard Karloff, and Anthony Wirth. 2010. Set Cover Al-
gorithms for Very Large Datasets. In Proc. ACM Intl. Conf. on Information and
Knowledge Management (CIKM ’10). https://doi.org/10.1145/1871437.1871501

[12] Berat Can Şenel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux, Timur
Friedman, and Rick McGeer. 2021. EdgeNet: A Multi-Tenant and Multi-Provider
Edge Cloud. In In Proc. ACM Intl. Workshop on Edge Systems, Analytics and
Networking (EdgeSys ’21). https://doi.org/10.1145/3434770.3459737

[13] Italo Cunha, Pietro Marchetta, Matt Calder, Yi-Ching Chiu, Bruno V. A. Machado,
Antonio Pescapè, Vasileios Giotsas, Harsha V. Madhyastha, and Ethan Katz-
Bassett. 2016. Sibyl: A Practical Internet Route Oracle. In Proc. USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’16).

[14] Ítalo Cunha, Renata Teixeira, Darryl Veitch, and Christophe Diot. 2014. DTRACK:
A System to Predict and Track Internet Path Changes. IEEE/ACM Trans. on
Networking 22, 4 (2014), 1025–1038. https://doi.org/10.1109/TNET.2013.2269837

[15] Benoit Donnet, Matthew Luckie, Pascal Mérindol, and Jean-Jacques Pansiot. 2012.
Revealing MPLS Tunnels Obscured from Traceroute. ACM SIGCOMM Computer
Communications Rev. 42, 2 (Mar. 2012), 87–93. https://doi.org/10.1145/2185376.
2185388

[16] Benoit Donnet, Philippe Raoult, Timur Friedman, and Mark Crovella. 2005. Effi-
cient Algorithms for Large-Scale Topology Discovery. In Proc. ACM SIGMETRICS
Conf. (SIGMETRICS ’05). https://doi.org/10.1145/1064212.1064256

[17] Constantine Dovrolis, Krishna Gummadi, Aleksandar Kuzmanovic, and Sascha D.
Meinrath. 2010. Measurement Lab: Overview and an Invitation to the Research
Community. ACM SIGCOMM Computer Communications Rev. 40, 3 (Jun. 2010),
53–56. https://doi.org/10.1145/1823844.1823853

[18] Vasileios Giotsas, Thomas Koch, Elverton Fazzion, Ítalo Cunha, Matt Calder,
Harsha V. Madhyastha, and Ethan Katz-Bassett. 2020. Reduce, Reuse, Recycle:
Repurposing Existing Measurements to Identify Stale Traceroutes. In Proc. ACM
SIGCOMM Internet Measurement Conf. (IMC ’20). https://doi.org/10.1145/3419394.
3423654

[19] Vasileios Giotsas, Matthew Luckie, Bradley Huffaker, and kc claffy. 2014. Inferring
Complex AS Relationships. In Proc. ACM SIGCOMM Internet Measurement Conf.
(IMC ’14). https://doi.org/10.1145/2663716.2663743

[20] R. Govindan and H. Tangmunarunkit. 2000. Heuristics for Internet map discovery.
In Proc. IEEE INFOCOM ’00. https://doi.org/10.1109/INFCOM.2000.832534

[21] Yuchen Huang, Michael Rabinovich, and Rami Al-Dalky. 2020. FlashRoute:
Efficient Traceroute on a Massive Scale. In Proc. ACM SIGCOMM Internet Mea-
surement Conf. (IMC ’20). https://doi.org/10.1145/3419394.3423619

[22] Van Jacobson. 1988. 4BSD routing diagnostic tool available for ftp. Email
8812201313.AA03127@helios.ee.lbl.gov to the IETF and end2end-interest e-mail
lists. (1988).

[23] Yuchen Jin, Colin Scott, Amogh Dhamdhere, Vasileios Giotsas, Arvind Krishna-
murthy, and Scott Shenker. 2019. Stable and Practical AS Relationship Inference
with ProbLink. In Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’19).

[24] Ethan Katz-Bassett, John P. John, Arvind Krishnamurthy, David Wetherall,
Thomas Anderson, and Yatin Chawathe. 2006. Towards IP Geolocation Using De-
lay and Topology Measurements. In Proc. ACM SIGCOMM Internet Measurement
Conf. (IMC ’06). https://doi.org/10.1145/1177080.1177090

[25] Volodymyr Kuleshov and Doina Precup. 2014. Algorithms for multi-armed bandit
problems. (2014). arXiv:1402.6028

[26] Matthew Luckie and Robert Beverly. 2017. The Impact of Router Outages on
the AS-Level Internet. In Proc. ACM SIGCOMM Conf. (SIGCOMM ’17). https:
//doi.org/10.1145/3098822.3098858

[27] Matthew Luckie, Robert Beverly, William Brinkmeyer, and kc claffy. 2013. Speed-
trap: Internet-Scale IPv6 Alias Resolution. In Proc. ACM SIGCOMM Internet Mea-
surement Conf. (IMC ’13). https://doi.org/10.1145/2504730.2504759

[28] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas An-
derson, Arvind Krishnamurthy, and Arun Venkataramani. 2006. IPlane: An
Information Plane for Distributed Services. In Proc. USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’06).

[29] Pascal Mérindol, Benoit Donnet, Jean-Jacques Pansiot, Matthew Luckie, and
Young Hyun. 2011. MERLIN: MEasure the router level of the INternet. In Proc.
Conference on Next Generation Internet Networks (EURO-NGI ’11). https://doi.
org/10.1109/NGI.2011.5985865

[30] Yuval Shavitt and Eran Shir. 2005. DIMES: Let the Internet Measure Itself. ACM
SIGCOMM Computer Communications Rev. 35, 5 (Oct. 2005), 71–74. https://doi.
org/10.1145/1096536.1096546

[31] Neil Spring, Ratul Mahajan, and DavidWetherall. 2002. Measuring ISP Topologies
with Rocketfuel. In Proc. ACM Sigcomm Conf. (SIGCOMM ’02). https://doi.org/
10.1145/633025.633039

[32] RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network. The
Internet Protocol Journal 18, 3 (Sept. 2015), 2–26. http://ipj.dreamhosters.com/
wp-content/uploads/2015/10/ipj18.3.pdf

[33] James P.G. Sterbenz, Egemen K. Çetinkaya, Mahmood A. Hameed, Abdul Jabbar,
Shi Qian, and Justin P. Rohrer. 2011. Evaluation of network resilience, sur-
vivability, and disruption tolerance: Analysis, topology generation, simulation,
and experimentation. Telecommunication Systems 52, 2 (Dec. 2011), 705–736.
https://doi.org/10.1007/s11235-011-9573-6

[34] Yves Vanaubel, Jean-Romain Luttringer, Pascal Mérindol, Jean-Jacques Pansiot,
and Benoit Donnet. 2019. TNT, Watch me Explode: A Light in the Dark for
Revealing MPLS Tunnels. In Proc. Network Traffic Measurement and Analysis
Conference (TMA ’19). https://doi.org/10.23919/TMA.2019.8784525

[35] Darryl Veitch, Brice Augustin, Renata Teixeira, and Timur Friedman. 2009. Failure
control in multipath route tracing. In Proc. IEEE INFOCOM ’09. https://doi.org/
10.1109/INFCOM.2009.5062055

[36] Kevin Vermeulen, Justin P. Rohrer, Robert Beverly, Olivier Fourmaux, and Timur
Friedman. 2020. Diamond-Miner: Comprehensive Discovery of the Internet’s
Topology Diamonds. In Proc. USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’20). https://www.usenix.org/conference/nsdi20/
presentation/vermeulen

[37] Kevin Vermeulen, Stephen D. Strowes, Olivier Fourmaux, and Timur Friedman.
2018. Multilevel MDA-Lite Paris Traceroute. In Proc. ACM SIGCOMM Internet
Measurement Conf. (IMC ’18). https://doi.org/10.1145/3278532.3278536

[38] Walter Willinger, David Alderson, and John C Doyle. 2009. Mathematics and
the internet: A source of enormous confusion and great potential. Notices of
the American Mathematical Society 56, 5 (2009), 586–599. https://www.ams.org/
notices/200905/rtx090500586p.pdf

[39] Zheng Zhang, Ying Zhang, Y. Charlie Hu, Z. Morley Mao, and Randy Bush. 2008.
Ispy: Detecting Ip Prefix Hijacking on My Own. ACM SIGCOMM Computer
Communications Rev. 38, 4 (Aug. 2008), 327–338. https://doi.org/10.1145/1402946.
1402996

ACM SIGCOMM Computer Communication Review Volume 52 Number 1, January 2022

https://planet-lab.eu/
http://routeviews.org/
https://www.caida.org/catalog/datasets/ipv4_routed_24_topology_dataset/
https://www.caida.org/catalog/datasets/ipv4_routed_24_topology_dataset/
https://www.caida.org/projects/ark/impact/
https://www.caida.org/projects/ark/impact/
https://doi.org/10.1145/2342356.2342393
https://doi.org/10.1145/1177080.1177100
https://doi.org/10.1145/505202.505204
https://doi.org/10.1145/2987443.2987479
https://doi.org/10.1145/1879141.1879162
https://doi.org/10.1145/1879141.1879162
https://doi.org/10.1109/CATCH.2009.38
https://doi.org/10.1109/CATCH.2009.38
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1145/3434770.3459737
https://doi.org/10.1109/TNET.2013.2269837
https://doi.org/10.1145/2185376.2185388
https://doi.org/10.1145/2185376.2185388
https://doi.org/10.1145/1064212.1064256
https://doi.org/10.1145/1823844.1823853
https://doi.org/10.1145/3419394.3423654
https://doi.org/10.1145/3419394.3423654
https://doi.org/10.1145/2663716.2663743
https://doi.org/10.1109/INFCOM.2000.832534
https://doi.org/10.1145/3419394.3423619
https://doi.org/10.1145/1177080.1177090
http://arxiv.org/abs/1402.6028
https://doi.org/10.1145/3098822.3098858
https://doi.org/10.1145/3098822.3098858
https://doi.org/10.1145/2504730.2504759
https://doi.org/10.1109/NGI.2011.5985865
https://doi.org/10.1109/NGI.2011.5985865
https://doi.org/10.1145/1096536.1096546
https://doi.org/10.1145/1096536.1096546
https://doi.org/10.1145/633025.633039
https://doi.org/10.1145/633025.633039
http://ipj.dreamhosters.com/wp-content/uploads/2015/10/ipj18.3.pdf
http://ipj.dreamhosters.com/wp-content/uploads/2015/10/ipj18.3.pdf
https://doi.org/10.1007/s11235-011-9573-6
https://doi.org/10.23919/TMA.2019.8784525
https://doi.org/10.1109/INFCOM.2009.5062055
https://doi.org/10.1109/INFCOM.2009.5062055
https://www.usenix.org/conference/nsdi20/presentation/vermeulen
https://www.usenix.org/conference/nsdi20/presentation/vermeulen
https://doi.org/10.1145/3278532.3278536
https://www.ams.org/notices/200905/rtx090500586p.pdf
https://www.ams.org/notices/200905/rtx090500586p.pdf
https://doi.org/10.1145/1402946.1402996
https://doi.org/10.1145/1402946.1402996

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Zeph scheduling algorithm
	4.1 Agents, directives and results
	4.2 Exploitation
	4.3 Exploration

	5 Iris measurement platform
	5.1 Design considerations

	6 Evaluation
	6.1 Vantage points and setup
	6.2 Topology discovery
	6.3 Zeph probe savings
	6.4 Reinforcement learning analysis

	7 Conclusion and future work
	References

