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While sequential recommender systems achieve significant improvements on capturing user dynamics, we argue that sequential
recommenders are vulnerable against substitution-based profile pollution attacks. To demonstrate our hypothesis, we propose a
substitution-based adversarial attack algorithm, which modifies the input sequence by selecting certain vulnerable elements and
substituting them with adversarial items. In both untargeted and targeted attack scenarios, we observe significant performance
deterioration using the proposed profile pollution algorithm. Motivated by such observations, we design an efficient adversarial
defense method called Dirichlet neighborhood sampling. Specifically, we sample item embeddings from a convex hull constructed by
multi-hop neighbors to replace the original items in input sequences. During sampling, a Dirichlet distribution is used to approximate
the probability distribution in the neighborhood such that the recommender learns to combat local perturbations. Additionally, we
design an adversarial training method tailored for sequential recommender systems. In particular, we represent selected items with
one-hot encodings and perform gradient ascent on the encodings to search for the worst case linear combination of item embeddings
in training. As such, the embedding function learns robust item representations and the trained recommender is resistant to test-time
adversarial examples. Extensive experiments show the effectiveness of both our attack and defense methods, which consistently
outperform baselines by a significant margin across model architectures and datasets.

CCS Concepts: • Information systems→ Recommender systems; • Security and privacy→ Software and application secu-
rity.
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1 INTRODUCTION

Sequential recommenders are a common approach for making personalized recommendations, such recommenders
take user interaction history as input and generate potential items that may be of interest to the user [15, 18, 40].
Different from traditional recommenders, sequential recommendation can capture users’ evolving dynamics by treating
item transition patterns as temporal sequences. As such, various recent sequential recommenders (e.g., Locker[13])
consistently outperform previous state-of-the-art models.
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Nevertheless, the reliability of recommenders is known to deteriorate under adversarial perturbations [9, 36, 41].
While gradient-based methods can not be directly applied on recommenders for searching perturbations in the item
space, certain heuristics can be used to perform adversarial attacks [25, 34]. Based on such methods, profile pollution 1

is adopted to perform user-specific adversarial attacks [34, 36]. To perform such attacks, malware can be used to access
user profiles and interactions (e.g., cross-site request forgeries (CSRF) or backdoor attacks) [16, 26, 37].

We argue that sequential recommenders have unique vulnerabilities against substitution-based profile pollution
attacks. Substitution-based adversarial attacks manipulate vulnerable items in previous or ongoing interactions to
sabotage the recommendation (i.e., untargeted attacks) or manipulate the recommended items (i.e., targeted attacks) [16,
20, 26, 37]. Previous works on profile pollution study attack algorithms and have the following limitations: (1) Existing
methods designed for traditional recommenders can not be applied, or are not tailored for sequential recommenders [32,
34, 43]; (2) Previous methods do not explore substitution-based attacks, instead, they focus on the injection of adversarial
items [36, 43]; and (3) Adversarial defense methods are not discussed [24, 32, 34, 36, 43].

A similar sequential setting can be found in natural language processing (NLP) [5]. NLP adversarial attacks primarily
study word-level substitutions, where a small percentage of input words are substituted [1, 17, 27]. To find adversarial
examples in NLP, one possible method is to search among synonyms iteratively [1]. Another common approach is to
select vulnerable words and replace them with adversarial ones [17, 27]. Despite similarity between NLP and sequential
recommendation, it is difficult to build adversarial examples for recommenders using similar techniques. The reasons
are two-fold: (1) the item space is too large to enumerate without synonym information in recommender systems; (2)
existing NLP attack algorithms do not exploit gradient-based methods to maximize the attack performance.

In this paper, we design a gradient-guided algorithm for substitution-based profile pollution attacks. Our attack
algorithm modifies the input sequences by selecting a limited number of vulnerable elements and replacing them with
carefully chosen adversarial items. By design, the substitution-based attack can perform either substitution attacks in a
sequence, or inject malicious items to user interactions (by inserting and attacking an item, as in [36]). To prevent from
being identified as malicious input, we impose two constraints: (1) we restrict the maximum number of substitutions in
each sequence; (2) for substitute items, we additionally require similarity to the original items. Our experiment results
demonstrate a significant performance deterioration in both untargeted and targeted scenarios, suggesting that the
proposed substitution-based attacks pose critical threats to sequential recommenders.

Motivated by the research gap in defense methods, we additionally propose two defense methods that are tailored for
sequential recommendation. Dirichlet neighborhood sampling is proposed for efficient training of robust recommenders.
Specifically, we construct multi-hop neighborhoods with the embedding matrix and sample augmented item embeddings
via Dirichlet distributions to perform random substitutions. Additionally, we design an adversarial training method for
sequential recommenders. In particular, we represent items with one-hot encodings and update the encodings to search
for the worst case augmentation. By training the recommender on such virtual input, we extend the robustness of the
recommender to a larger neighborhood. Our evaluation results show that the proposed defense methods significantly
reduce performance variations under profile pollution attacks by over 50% on multiple real-world datasets.

1In the following, we use adversarial attack and profile pollution attack interchangeably.
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2 RELATEDWORK

2.1 Adversarial Attacks in Recommender Systems

Adversarial attacks on recommender systems can be categorized into two different classes: (1) data poisoning and
(2) profile pollution. Data poisoning attacks craft fake user profiles and inject such profiles into the training data, causing
biased recommendation results upon deployment [4, 6, 14, 29, 32, 42]. Unlike poisoning attacks, profile pollution attacks
alter existing user profiles (i.e., user interactions) to manipulate recommended items [22, 33, 34, 36, 43]. Profile pollution
can be performed via security breaches like web injection, CSRF attacks or malware [16, 26, 37, 43].

In this work, we focus on profile pollution and perform user-specific attacks to manipulate the recommendation
results [36]. CSRF attacks manipulate user history on websites like YouTube under a black-box setting [33]. Malicious
requests are exploited to bias web advertisements towards higher-paying advertisers [22]. With knowledge to the
recommender, finding adversarial examples can be formulated as an optimization problem [34]. Web injections are used
in unprotected websites to promote target items [43]. Yue et al. [36] propose to extract black-box recommenders and
compute adversarial examples using the extracted model. Our proposed profile pollution algorithm differs from the
previous methods in two aspects: (1) we extend the attack scope to substitutions in the full sequence; and (2) constraints
are imposed on adversarial examples to enforce similarity between the clean and adversarial sequences.

2.2 Adversarial Attacks in Language

Given the setting of profile pollution by item substitution, a similar scenario can be found on various NLP classification
tasks, where adversarial attacks are studied on word-level substitutions. NLP substitution attacks replace a small
percentage of the input words with adversarial words to achieve the attack objective [1, 17]. NLP adversarial examples
can be generated using a genetic algorithm, where synonyms are iterated and evaluated [1]. The vulnerability of
input words can be evaluated via importance scores, followed by substituting the most vulnerable words to construct
adversarial examples until the model is fooled [7, 17, 19, 27]. Despite similarity between language and sequential
recommendation, it is difficult to transfer existing NLP methods to recommenders due to: (1) the lack of synonyms (i.e.,
neighbor items) in recommendation data; and (2) the inefficiency of existing NLP methods for large-scale or real-time
attacks. Unlike previous methods, the proposed profile pollution algorithm constructs multi-hop neighborhoods and
efficiently computes adversarial substitutes by exploiting gradient information from the recommender model.

2.3 Adversarial Defense Methods

Various defense methods are proposed to enhance the robustness of neural networks [9, 10]. Adversarial training and
smoothing methods incorporate augmented examples in training to enhance robustness against perturbations [9, 38, 39].
Interval bound propagation regularizes tractable upper and lower bounds to guarantee robustness [10]. Adversarial
training introduced norm-bounded local perturbations to word embeddings to learn robust features [28, 45]. Recently,
Dirichlet neighborhood ensemble leverages synonym embeddings to build robust word representations [44]. For
recommender systems, adversarial training introduces perturbations to improve model performance and generaliza-
tion [3, 12, 35]. Multimedia recommender learns to defend perturbations on product images via adversarial training [31].
To the best of our knowledge, no previous methods attempt to enhance the robustness of recommender systems against
profile pollution attacks. As such, we propose two novel defense methods tailored for sequential recommenders and
show that model robustness can be significantly improved using the proposed defense methods.
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3 PRELIMINARIES

3.1 Setting

3.1.1 Data. Our framework is based on sequential input, which takes user interaction history 𝒙 (sorted by timestamps)
as input. 𝒙 represents input [𝑥1, 𝑥2, ..., 𝑥𝑙 ] of length 𝑙 , with each element represented in the item scope I (i.e., 𝑥𝑖 ∈ I).
The next item interaction 𝑥𝑙+1 ∈ I after input 𝒙 is used as ground truth 𝑦 (i.e., 𝑦 = 𝑥𝑙+1).

3.1.2 Model. We denote the sequential recommender with function 𝒇 . Given input sequence 𝒙 , 𝒇 predicts a probability
distribution over the item scope I. 𝒇 comprises of an embedding function 𝒇𝑒 and a sequential model 𝒇𝑚 , with 𝒇 (𝒙) =
𝒇𝑚 (𝒇𝑒 (𝒙)). For data pair (𝒙, 𝑦), ideally, 𝒇 predicts 𝑦 with the highest probability (i.e., 𝑦 = argmax𝒇 (𝒙)).

3.1.3 Optimization. The learning of a sequential recommender 𝒇 is to maximize the probability of output item 𝑦 upon
input 𝒙 . In other words, we minimize the expectation of loss L w.r.t. 𝒇 over data distribution X:

min
𝒇

E(𝒙,𝑦)∼XL(𝒇 (𝒙), 𝑦), (1)

where L represents the training loss function (i.e., ranking loss or cross entropy loss).

3.2 Adversarial Attacks and Defense

3.2.1 Assumptions. We first introduce the assumptions of our framework in the attack scenario, we formalize the
problem setting with the following assumptions to define our research scope:

• Data Access: Evaluation data X and item scope I are accessible to the attacker to perform the attacks.
• White-box Attacks: We assume weights of 𝒇 can be accessed by the attacker to compute adversarial examples.
• Limited Substitutions: In each input sequence, we impose a maximum number of substitutions 𝑧 to enforce the
similarity between the original and adversarial examples on the sequence level.
• Constraints on Item Similarity: To avoid being identified as outlier, we impose a similarity constraint with a
minimum cosine similarity 𝜏 between the original items and the adversarial items in the embedding space.

The above assumptions are made for a direct and undisturbed evaluation of the proposed profile pollution attack
algorithm (i.e., without considering external influences like model extraction). The constructed adversarial attacks are
also more challenging and thus, evaluate the effectiveness of the proposed defense methods under harsh conditions. For
the defense propose, we assume full access to the data and recommender models.

3.2.2 Threat Model. As described, we adopt profile pollution attacks to construct adversarial examples. We investigate
untargeted attacks (i.e., demotion) and targeted attacks (i.e., promotion). We formulate both attacks below.

• Untargeted Attack: Untargeted adversarial examples are constructed to minimize the probability w.r.t. ground
truth 𝑦. From the assumptions we require: (1) The number of substitutions is constrained by Hamming distance
(i.e., at most 𝑧 substitutions); (2) Minimum cosine similarity 𝜏 is required between original and adversarial items.
We denote the adversarial example with 𝒙 ′ and formulate the attack as an optimization problem w.r.t. 𝒙 :

𝒙 ′ = argmax
𝒙
L(𝒇 (𝒙), 𝑦) 𝑠 .𝑡 . Hamming(𝒙, 𝒙 ′) ≤ 𝑧, CosSim(𝑥𝑖 , 𝑥 ′𝑖 ) ≥ 𝜏, 𝑖 = 1, 2, . . . (2)

4
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Fig. 1. The proposed profile pollution attack. We first forward clean input sequences and compute gradients w.r.t. the input with the
adversarial loss. Then, we compute importance scores to select vulnerable items in input sequences. In the last step, we project the
continuous perturbations of the selected items to the discrete item space based on cosine similarity.

• Targeted Attack: Targeted adversarial examples aim to maximize the probability w.r.t. target item 𝑡 . Specifically,
we minimize the loss w.r.t. input 𝒙 . Similar constraints are imposed for targeted attacks:

𝒙 ′ = argmin
𝒙
L(𝒇 (𝒙), 𝑡) 𝑠 .𝑡 . Hamming(𝒙, 𝒙 ′) ≤ 𝑧, CosSim(𝑥𝑖 , 𝑥 ′𝑖 ) ≥ 𝜏, 𝑖 = 1, 2, . . . (3)

3.2.3 Adversarial Training. Given the profile pollution attack framework, a robust recommender can be built by
minimizing the expected loss upon perturbed input data (i.e., adversarial training). That is, we alternate between
optimizing model parameters in 𝒇 and updating adversarial data based on 𝒙 to search for an equilibrium. The adversarial
examples are generated on the fly during training and being used to minimize the training loss L, such that the model
𝒇 is forced to adjust parameters to resist adversarial perturbations. Formally, we define the adversarial training as a
minimax optimization problem w.r.t. model 𝒇 :

min
𝒇

E(𝒙,𝑦)∼X
[
max
𝒙
L(𝒇 (𝒙), 𝑦)

]
. (4)

4 METHODOLOGY

4.1 Profile Pollution Attack

The proposed algorithm can either attack history items or insert adversarial items to ‘fool’ recommenders. Ideally, the
polluted sequences result in either performance degrade (i.e., untargeted attack) or increased exposure of the target
item (i.e., targeted attack). We illustrate the proposed profile pollution attack algorithm in Figure 1, the detailed steps
for both untargeted and targeted attacks are described as in Algorithm 1.

Step 1: Forward and Compute Gradients w.r.t. Input. Given input 𝒙 , we construct the polluted sequence 𝒙 ′ by
substituting selected items in 𝒙 . First, we initialize 𝒙 ′ unchanged to 𝒙 , followed by computing the embedded sequence
�̃� ′ using the embedding function 𝒇𝑒 . We then calculate the gradients of �̃� ′ to construct adversarial perturbations in the
embedding space. In the case of targeted attack, �̃� ′ is fed through the recommender function 𝒇𝑚 to compute the cross
entropy loss L𝑐𝑒 w.r.t. target item 𝑡 . Then, backward propagation is performed to retrieve the gradients ∇�̃�′ of �̃� ′ (i.e.
∇�̃�′ = ∇�̃�′Lce (𝒇𝑚 (�̃� ′), 𝑡)). For untargeted attacks, we compute the cross entropy loss w.r.t. the predicted item in the
output distribution. The gradients are negated in untargeted attacks to perform gradient ascent.
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Algorithm 1: Profile Pollution Attack Algorithm
1 Input Sequence 𝒙 , target 𝑡 , recommender 𝒇 (i.e., 𝒇𝑒 , 𝒇𝑚), max substitutions 𝑧, similarity threshold 𝜏 ;
2 Input Target 𝑡 if targeted attack;
3 Output Polluted sequence 𝒙 ′;
// Step 1: Forward and Compute Gradients

4 Initialize polluted sequence: 𝒙 ′ ← 𝒙 ;
5 Compute sequence embeddings: �̃� ′ ← 𝒇𝑒 (𝒙 ′);
6 if targeted then
7 Compute gradients w.r.t. �̃� ′: ∇�̃�′ ← ∇�̃�′Lce (𝒇𝑚 (�̃� ′), 𝑡);
8 else
9 Compute gradients w.r.t. �̃� ′: ∇�̃�′ ← −∇�̃�′Lce (𝒇𝑚 (�̃� ′), argmax(𝒇𝑚 (�̃� ′)));

10 end
// Step 2: Select Vulnerable Items

11 Compute importance ranking: 𝒓 ← argsort(∥∇�̃�′ ∥, descending);
12 Select 𝑧 most vulnerable items in 𝒙 ′: 𝒓 ← 𝒓 [: 𝑧];

// Step 3: Project Attacks to Item Space

13 for 𝑖 ∈ 𝒓 do
14 Compute cosine similarity 𝒔: 𝒔 ← CosSim(�̃� ′

𝑖
− sign(∇�̃�′

𝑖
),𝒇𝑒 (𝑐)))∀𝑐 ∈ I;

15 Impose similarity constraint 𝒔𝑐 : 𝒔𝑐 ← 1(CosSim(�̃� ′
𝑖
,𝒇𝑒 (𝑐)) ≥ 𝜏)∀𝑐 ∈ I;

16 Update cosine similarity 𝒔: 𝒔 ← 𝒔 ⊙ 𝒔𝑐 ;
17 Replace 𝑥 ′

𝑖
in 𝒙 ′: 𝑥 ′

𝑖
← argmax(𝒔);

18 end

Step 2: Select Vulnerable Items to Attack. In input sequence, items are of different vulnerability. We select 𝑧
vulnerable items and perform substitution on such items to achieve the best attack performance. In particular, we
calculate importance scores using ∇�̃�′ from the previous step. Unlike existing works, we take 𝑙2 norm of the last
dimension in ∇�̃�′ as our importance scores (i.e., ∥∇�̃�′ ∥), such that the vulnerability of input items can be efficiently
estimated with the steepness of the gradients. We select at most 𝑧 items by choosing the first 𝑧 items from importance
ranking 𝒓 . Based on the fast gradient sign method [9], the perturbed embeddings �̃� ′ can be computed as follows:

• Untargeted:
�̃� ′ = �̃� ′ − sign(−∇�̃�′L𝑐𝑒 (𝒇𝑚 (�̃� ′), argmax(𝒇𝑚 (�̃� ′)))) (5)

• Targeted:
�̃� ′ = �̃� ′ − sign(∇�̃�′L𝑐𝑒 (𝒇𝑚 (�̃� ′), 𝑡)), (6)

Step 3: Project Attacks to Item Space. In the last step, we project the perturbed embeddings �̃� ′ back to the item
space. Similar to [36], we compute cosine similarity between �̃� ′ and candidate items from I, items with higher similarity
values are favored as adversarial substitutes. The idea behind it is to find closest items in the direction of the constructed
adversarial embeddings using cosine similarity. We denote 𝒔 as the cosine similarity scores. Here, we impose another
constraint to enforce item similarity, where adversarial items are required to have a minimum cosine similarity (above
𝜏) with the original items. We use the indicator function (i.e., 1) to select items fulfilling the similarity constraint. 𝒔𝑐
denotes the similarity constraint results and 𝒔𝑐 is element-wise multiplied (i.e., ⊙) with 𝒔. The final adversarial can
be selected from 𝒔 by taking the highest similarity score. To improve the efficiency of the adversarial attack and item
projection, the computation of all previous steps is performed batch-wise with matrix multiplication.

6
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Fig. 2. The proposed defense methods: Dirichlet neighborhood sampling and adversarial training. Blue dots represent the target item,
green dots represent 1-hop neighbors and yellow dots represent 2-hop neighbors.

4.2 Dirichlet Neighborhood Sampling

To efficiently train a robust sequential recommender, we first propose Dirichlet neighborhood sampling, a randomized
training approach to enhance model robustness. For neighborhood sampling, a connected graph is necessary to identify
item neighbors. In NLP, synonym information can be used to compute multi-hop neighbors. However, there exists
no natural neighbors or synonyms in recommender systems. Therefore, we propose to construct a neighborhood for
each item in item scope I by computing the cosine similarity between all item pairs. We define item pair (𝑖, 𝑗) to be
neighbors if item 𝑖 and item 𝑗 have a cosine similarity greater or equal to 𝜏 (i.e., CosSim(𝑖, 𝑗) ≥ 𝜏 ). In case there exist no
neighbors, items with the highest similarity values are used as 1-hop neighbors. Based on the existing 1-hop neighbors,
we extend the graph to include 2-hop neighbors and construct a neighborhood dictionary to sample augmented item
embeddings in training. The neighborhood dictionary is updated every 𝑘 epochs (we use 𝑘=10 in our experiments).

For each item 𝑖 , we can compute a convex hull in the embedding space spanned by the item’s multi-hop neighbors
(i.e., vertices). The convex hull is used as the sampling space for the augmented item embedding. This allow us to
sample from a Dirichlet distribution defined by the vertices in the convex hull to construct randomized embeddings.
By sampling multiple times in the neighborhood, the recommender is less sensitive to local perturbations and learns
to reject adversarial items, as illustrated in Figure 2a. Formally, for item 𝑖 and the set of its multi-hop neighbors C𝑖
(C𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, . . . , 𝑐𝑖, |C𝑖 |}), we represent the augmented item with 𝜼𝑖 sampled from a Dirichlet distribution:

𝜼𝑖 = [𝜂𝑖,1, 𝜂𝑖,2, . . . , 𝜂𝑖, |C𝑖 |] ∼ Dirichlet(𝛼1, 𝛼2, . . . , 𝛼 |C𝑖 |), (7)

where 𝛼 values are hyperparameters for the Dirichlet distribution and can be empirically selected for multi-hop
neighbors. Using the sampled 𝜼𝑖 , we can compute the augmented item embeddings as follows:

𝒇𝑒 (𝜼𝑖 ) =
|C𝑖 |∑︁
𝑗=1

𝜂𝑖, 𝑗𝒇𝑒 (𝑐𝑖, 𝑗 ). (8)

Since Dirichlet distributions are multivariate probability distributions with
∑
𝜼𝑖 = 1 and 𝜂𝑖, 𝑗 ≥ 0, 𝑗 = 1, 2, . . ., the

sampled item is represented as a linear combination of neighbors in the convex hull, see Figure 2a. We denote item 𝑖

with the blue dot, 1-hop neighbors with green dots and 2-hop neighbors with yellow dots. By adjusting 𝛼 values, we
can change the probability distribution in the sampling space and how far the augmented embedding can travel from

7
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item 𝑖 . For example, when all 𝛼 values are 0, the Dirichlet distribution only samples from nodes (i.e., neighbor items).
With increasing 𝛼 values, we can expect the sampled points approaching the center point of the convex hull.

During training, we randomly select and replace items in input sequence 𝒙 . Specifically, we select 𝑝 proportion
of the items and sample 𝜼 from a Dirichlet distribution to compute augmented embeddings using the constructed
neighborhoods. The virtual sequence is then used to optimize the recommender. Given the increased number of 2-hop
neighbors, we select 1.0 as 𝛼 for 1-hop neighbors and 0.5 for 2-hop neighbors in our experiments [44].

4.3 Adversarial Training with Mixed Representations

While Dirichlet neighborhood sampling is efficient for training sequential recommender, it does not exploit training
examples by computing the worst case augmentation. To further improve model robustness, we design an additional
defense method called adversarial training with mixed representations. Different from existing adversarial training
methods [31, 45] and Dirichlet neighborhood sampling, the proposed method searches for the worst case linear
combination of items 𝜼 in I instead of sampling from the local neighborhood alone. The idea behind searching for
item combinations is to introduce mixed representations of the original items and potential adversarial items. Then, we
can compute the worst case linear combinations by updating 𝜼 using gradient ascent, such that both the original and
adversarial item embeddings are jointly optimized for robust item representations.

For item 𝑥𝑖 in input 𝒙 , we first initialize 𝑥𝑖 with one-hot vector 𝜼𝑖 = Onehot(𝑥𝑖 ) ∈ R |I | . Similar to Dirichlet
neighborhood sampling, 𝒇𝑒 (𝜼𝑖 ) is computed as the weighted sum of the embedding matrix (i.e., 𝒇𝑒 (𝜼𝑖 ) =

∑ |I |
𝑗=1 𝜼𝑖, 𝑗𝒇𝑒 ( 𝑗)).

Next, we perform gradient ascent and compute the gradients w.r.t. 𝜼𝑖 . Specifically, the embedded sequence �̃� for input
𝒙 is first computed using the embedding function 𝒇𝑒 . Similar to Section 4.1, we then forward �̃� using the sequential
model 𝒇𝑚 and compute the gradients based on the optimization loss to update 𝜼𝑖 :

𝜼𝑖 = 𝜼𝑖 + 𝜖
∇𝜼𝑖L(𝒇𝑚 (�̃�), 𝑦)
∥∇𝜼𝑖L(𝒇𝑚 (�̃�), 𝑦)∥

, (9)

where 𝜖 is the step size. In each update, we normalize the gradients by dividing the gradients by their 𝑙2 norm. Then,
step size 𝜖 is multiplied with the gradients before performing gradient ascent. As such, 𝜼𝑖 is perturbed towards the
misclassification area of the sequential recommender, see Figure 2b. As 𝜼𝑖 is a linear combination of all items in I, we
require

∑ |I |
𝑗

𝜼𝑖, 𝑗 = 1 and 𝜼𝑖, 𝑗 ≥ 0, 𝑗 = 1, 2, . . . and ensure that the updated 𝜼𝑖 follows the same requirements within the
embedding space. Therefore, we clip negative elements and rescale 𝜼𝑖 after each update2:

𝜼𝑖 =
Clip[0,∞] (𝜼𝑖 , 0, 1)

Sum(Clip[0,∞] (𝜼𝑖 , 0, 1))
. (10)

We illustrate the proposed adversarial training with mixed representations in Figure 2b. We denote item 𝑖 with the
blue dot, the paths of the blue dot represent the update iterations of adversarial training, in which the adversarial
example moves towards the misclassification area, and thereby forcing the recommender to resist against worst case
perturbations. Unlike Dirichlet sampling, where the augmentation directions are sampled from a distribution within a
local convex hull, adversarial training finds the worst case embeddings using a linear combination of items to propagate
gradients to the item representations. Such worst case augmentation extends the model robustness to a larger area
outside the local neighborhood, and therefore effectively reduces the area of misclassification. Compared to Dirichlet
neighborhood sampling, adversarial training with mixed representations requires increased computational costs, since
adversarial examples are updated multiple times in each iteration. To reduce the training costs, we select 𝑝 proportion of
2We considered using softmax function but eventually discarded the idea as softmax only produces non-zero 𝜂 values.
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Datasets Users Items Avg. len Sparsity

Beauty 22,363 12,101 9 99.9%
ML-1M 6,040 3,416 165 95.2%
ML-20M 138,493 18,345 144 99.2%
LastFM 988 57,638 9739 83.1%
Steam 334,289 12,012 13 99.9%

Table 1. Dataset details.

Model Basic Block Training

NARM [18] RNN Autoregressive
SASRec [15] Transformer Autoregressive

BERT4Rec [30] Transformer Masked Training
Locker [13] Transformer Masked Training

Table 2. Model Architectures.

items in each sequence and update 𝜼 of the selected items three times in our experiments, we optimize the recommender
with both clean input and perturbed examples to enhance the model robustness.

5 EXPERIMENTS

5.1 Setup

5.1.1 Dataset. In our experiments, we adopt five datasets to validate the proposed attack and defense methods (Details
presented in Table 1). We use Amazon Beauty [23], Movielens (both Movielens 1M and Movielens 20M) [11], LastFM [2]
and Steam [21]. We adopt 5-core version of all datasets and preprocess the data following [30, 36].

5.1.2 Model. We select four different recommender architectures to evaluate the proposed methods, see Table 2. In
particular, we adopt NARM [18], SASRec [15], BERT4Rec [30] and Locker [13] in our experiments:

• Neural Attentive Recommendation Machine (NARM) is a RNN-based sequential recommender comprising of a
global encoder and a local encoder. NARM utilizes an attention module to compute item representations and
outputs the predictions using a similarity layer [18].
• Self-Attentive Sequential Recommendation (SASRec) leverages transformer blocks to forward items autoregressively.
Transformer blocks compute attentive representations with one-directional self-attention. SASRec consists of an
embedding function, transformer blocks and an output layer [15].
• Bidirectional Encoder Representations from Transformers for Sequential Recommendation (BERT4Rec) has an similar
architecture to SASRec. BERT4Rec utilizes bidirectional self-attention and adopts masked training (i.e., masked
language modeling) to optimize the model [30].
• Locally Constrained Self-attentive Recommender (Locker) is similar to BERT4Rec, but proposes additional local
constraints to improve self-attention. In our implementation, we use the convolution layers to model local
dynamics. Locker is also optimized via masked training [13].

5.1.3 Evaluation. We follow [15, 30, 36] to perform evaluation. We adopt leave-one-out method and use the last
two items in each sequence for validation and testing. We adopt normalized discounted cumulative gain NDCG@10

and Recall@10 as evaluation metrics. In the attack experiments, 15 items are selected as target items across different
popularity groups for targeted attacks, we evaluate on the polluted profiles and compute the average results.

5.1.4 Implementation. We follow the original papers to implement sequential recommenders [13, 15, 18, 30]. Unless
explicitly mentioned, hyperparameters are from the original works. All models are trained without warmup using
Adam optimizer with learning rate of 0.001, weight decay 0.01 and batch size of 64. Similar to [15, 30, 36], we set the
maximum sequence lengths of ML-1M to be 200 and 50 for other datasets. For profile pollution, we use 𝑧 = 2 as the
maximum substitution for ML-1M and and 𝑧 = 1 for other datasets. The minimum cosine similarity of 𝜏 = 0.5 is imposed
for both attack and defense methods. In our defense experiments, we set substitution probability 𝑝 to be 0.5 and adopt
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Model (U/T) Dataset Beauty ML-1M ML-20M LastFM Steam

Method N@10 / R@10 N@10 / R@10 N@10 / R@10 N@10 / R@10 N@10 / R@10

NARM (U)
Before 0.334 / 0.493 0.624 / 0.815 0.770 / 0.940 0.659 / 0.804 0.617 / 0.836
SimAlter 0.326 / 0.483 0.622 / 0.813 0.769 / 0.939 0.654 / 0.795 0.611 / 0.831
Ours 0.209 / 0.332 0.154 / 0.326 0.630 / 0.892 0.565 / 0.727 0.437 / 0.714

NARM (T)
Before 0.064 / 0.125 0.074 / 0.150 0.093 / 0.157 0.099 / 0.147 0.088 / 0.141
SimAlter 0.094 / 0.170 0.084 / 0.169 0.098 / 0.165 0.100 / 0.148 0.101 / 0.158
Ours 0.239 / 0.420 0.285 / 0.436 0.140 / 0.223 0.262 / 0.407 0.181 / 0.293

SASRec (U)
Before 0.325 / 0.498 0.546 / 0.790 0.762 / 0.953 0.679 / 0.823 0.599 / 0.820
SimAlter 0.320 / 0.491 0.545 / 0.788 0.760 / 0.952 0.680 / 0.824 0.591 / 0.813
Ours 0.185 / 0.309 0.144 / 0.299 0.640 / 0.900 0.589 / 0.771 0.407 / 0.641

SASRec (T)
Before 0.072 / 0.139 0.092 / 0.165 0.104 / 0.173 0.103 / 0.152 0.093 / 0.149
SimAlter 0.184 / 0.312 0.109 / 0.192 0.124 / 0.211 0.145 / 0.231 0.161 / 0.281
Ours 0.187 / 0.335 0.236 / 0.360 0.139 / 0.226 0.191 / 0.296 0.179 / 0.297

BERT4Rec (U)
Before 0.353 / 0.530 0.542 / 0.744 0.760 / 0.941 0.663 / 0.796 0.574 / 0.795
SimAlter 0.340 / 0.516 0.540 / 0.742 0.759 / 0.940 0.660 / 0.796 0.563 / 0.788
Ours 0.215 / 0.349 0.155 / 0.316 0.636 / 0.892 0.637 / 0.778 0.305 / 0.566

BERT4Rec (T)
Before 0.072 / 0.147 0.064 / 0.133 0.086 / 0.155 0.106 / 0.157 0.087 / 0.139
SimAlter 0.084 / 0.170 0.072 / 0.149 0.088 / 0.156 0.106 / 0.158 0.093 / 0.150
Ours 0.155 / 0.298 0.245 / 0.395 0.114 / 0.184 0.119 / 0.181 0.144 / 0.247

Locker (U)
Before 0.357 / 0.526 0.602 / 0.796 0.760 / 0.941 0.662 / 0.799 0.631 / 0.852
SimAlter 0.353 / 0.520 0.601 / 0.796 0.759 / 0.941 0.660 / 0.804 0.627 / 0.852
Ours 0.248 / 0.389 0.164 / 0.346 0.653 / 0.902 0.617 / 0.768 0.507 / 0.780

Locker (T)
Before 0.065 / 0.130 0.073 / 0.147 0.084 / 0.150 0.104 / 0.157 0.097 / 0.159
SimAlter 0.133 / 0.242 0.084 / 0.167 0.090 / 0.159 0.109 / 0.166 0.135 / 0.230
Ours 0.134 / 0.250 0.234 / 0.356 0.107 / 0.180 0.126 / 0.200 0.131 / 0.225

Table 3. Evaluation results of the clean performance and performance under profile pollution attacks. Untargeted attack results are
denoted with U (lower the better), targeted attacks are denoted with T (higher the better). Before denotes clean performance, while
SimAlter and Ours represent the model performance under attack.

2-hop neighborhood for Dirichlet sampling. To update perturbations in adversarial training, an update step size 𝜖 from
[0.01, 0.1, 1.0] and three adversarial update iterations are used in our implementation3.

5.2 RQ1: Can We Attack Recommenders using Substitution-based Profile Pollution?

We first evaluate the attack performance of the proposed profile pollution algorithm on all model architectures and
datasets, the results are presented in Table 3. Since we restrain from substituting more than two items, we adopt
SimAlter as the baseline method, which utilizes neighbor items as adversarial items to perform attacks [36]. The table
includes several parts: (1) Each row denotes a model name and the setting (i.e., U for untargeted and T for targeted
attacks, Before denotes the clean performance); (2) Each column represents the results from one dataset; (3) For targeted
attacks, we select a total of 15 items across different popularity groups and report the average results; (4) Lower results
indicate better untargeted attack performance while higher results indicate better targeted attack performance; and (5) The
presented results are in NDCG@10 and Recall@10 (i.e., N@10/R@10). Best results are marked in bold.

3The implementation of our framework is publicly available at https://github.com/Yueeeeeeee/RecSys-Substitution-Defense.
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Model (U/T) Dataset Beauty ML-1M ML-20M LastFM Steam

Method Δ N@10/R@10 Δ N@10/R@10 Δ N@10/R@10 Δ N@10/R@10 Δ N@10/R@10

NARM (U)
Before -0.125 / -0.161 -0.470 / -0.489 -0.140 / -0.048 -0.094 / -0.077 -0.180 / -0.122
Dirichlet -0.100 / -0.120 -0.366 / -0.335 -0.136 / -0.060 -0.031 / -0.018 -0.160 / -0.098
AdvTrain -0.093 / -0.120 -0.331 / -0.314 -0.100 / -0.035 -0.053 / -0.043 -0.159 / -0.102

NARM (T)
Before 0.175 / 0.295 0.211 / 0.286 0.047 / 0.066 0.163 / 0.260 0.093 / 0.152
Dirichlet 0.127 / 0.215 0.203 / 0.270 0.059 / 0.079 0.040 / 0.078 0.071 / 0.114
AdvTrain 0.092 / 0.156 0.153 / 0.201 0.020 / 0.024 0.050 / 0.080 0.062 / 0.093

SASRec (U)
Before -0.140 / -0.189 -0.402 / -0.491 -0.122 / -0.053 -0.090 / -0.052 -0.192 / -0.179
Dirichlet -0.127 / -0.180 -0.299 / -0.307 -0.091 / -0.031 -0.038 / -0.030 -0.122 / -0.096
AdvTrain -0.093 / -0.121 -0.228 / -0.215 -0.067 / -0.021 -0.031 / -0.017 -0.120 / -0.085

SASRec (T)
Before 0.115 / 0.196 0.144 / 0.195 0.035 / 0.053 0.088 / 0.144 0.086 / 0.148
Dirichlet 0.089 / 0.148 0.097 / 0.122 0.023 / 0.032 0.027 / 0.051 0.044 / 0.087
AdvTrain 0.061 / 0.096 0.080 / 0.109 0.021 / 0.035 0.041 / 0.082 0.050 / 0.093

BERT4Rec (U)
Before -0.138 / -0.181 -0.387 / -0.428 -0.124 / -0.049 -0.026 / -0.018 -0.269 / -0.229
Dirichlet -0.071 / -0.095 -0.258 / -0.228 -0.081 / -0.031 -0.011 / -0.009 -0.148 / -0.094
AdvTrain -0.119 / -0.152 -0.249 / -0.234 -0.074 / -0.029 -0.006 / -0.008 -0.151 / -0.106

BERT4Rec (T)
Before 0.083 / 0.151 0.181 / 0.262 0.028 / 0.029 0.013 / 0.024 0.057 / 0.108
Dirichlet 0.041 / 0.069 0.129 / 0.162 0.021 / 0.027 0.005 / 0.010 0.026 / 0.049
AdvTrain 0.056 / 0.096 0.132 / 0.172 0.020 / 0.019 0.001 / 0.009 0.035 / 0.068

Locker (U)
Before -0.109 / -0.137 -0.438 / -0.450 -0.107 / -0.039 -0.045 / -0.031 -0.124 / -0.072
Dirichlet -0.087 / -0.106 -0.301 / -0.262 -0.093 / -0.034 -0.040 / -0.027 -0.125 / -0.072
AdvTrain -0.086 / -0.106 -0.314 / -0.279 -0.084 / -0.031 -0.028 / -0.019 -0.117 / -0.066

Locker (T)
Before 0.069 / 0.120 0.161 / 0.209 0.023 / 0.030 0.022 / 0.043 0.034 / 0.066
Dirichlet 0.066 / 0.100 0.121 / 0.157 0.021 / 0.026 0.019 / 0.037 0.021 / 0.043
AdvTrain 0.044 / 0.071 0.131 / 0.166 0.024 / 0.027 0.012 / 0.023 0.015 / 0.022

Table 4. Evaluation results of the defense methods under profile pollution attacks. Untargeted attack results are denoted with U
(higher the better), targeted attacks are denoted with T (lower the better). Before denotes evaluation results on the clean model, while
Dirichlet and AdvTrain represent the adopted defense methods.

From the results we observe the following: (1) By comparing clean performance (i.e., Before) and metric numbers
under attack (i.e., SimAlter and Ours), recommender models demonstrate vulnerability against profile pollution attacks.
For example, recommenders suffer from over 50% performance deterioration in untargeted attacks on ML-1M. (2) The
proposed method performs the best for both untargeted and targeted attacks, successfully biases the recommender
models towards the targets and outperforms the baseline method in all cases with the only exception of Locker on
Steam. (3) We observe different vulnerabilities across model architectures and training datasets. For example, we observe
RNN-based model (i.e., NARM) to be more vulnerable against targeted attacks with an average increase of over 175%
on NDCG@10. On the contrary, Locker only suffers from 82.1% increase in targeted attacks. Additionally, we observe
that dense datasets are generally more robust against profile pollution attacks. For instance, we only observe 9.5%
performance drop for untargeted attacks on LastFM dataset, while the same setting yields 37.5% deterioration on Beauty.
Overall, the results suggest that the proposed algorithm can effectively perform profile pollution attacks.
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5.3 RQ2: How the Proposed Defense Methods Perform under Profile Pollution Attacks?

We study the effectiveness of defense methods by evaluating profile pollution attacks on recommenders trained with the
defense methods. In particular, we adopt identical training conditions and apply the proposed methods (i.e., Dirichlet
neighborhood sampling and adversarial training). Then, we evaluate the recommender performance on clean test
data and polluted test data. As each defense method results in a new model, we only compute the performance
changes (Δ) between clean and polluted evaluation data on the model. Ideally, a robust recommender demonstrates
little performance variations, therefore lower absolute values of Δ indicate better defense performance. In other words,
higher values indicate better results for untargeted attacks, as model degrades after attack (i.e., Δ is negative). Lower
values indicate better results for targeted attacks, as metric values w.r.t. target items increase after attack (i.e., Δ is
positive), see Table 4. Similar to Table 3, we separate different settings by model, dataset and attack type. We adopt Δ of
NDCG@10 and Recall@10 as metrics and mark best results in bold.

The defense results indicate the following: (1) Although the recommenders are vulnerable against profile pollution
attacks, we find both defense methods to be helpful against polluted test data. For example, the proposed adversarial
training reduces NDCG@10 deterioration in untargeted attacks by 34.2% on ML-1M. (2) The results indicate that the
proposed adversarial training performs the best, achieving the best performance in 30 out of 40 scenarios. Overall,
adversarial training reduces NDCG@10 variations by 34.4% in untargeted attacks, compared to 28.5% of the proposed
Dirichlet neighborhood sampling method. The results suggest adversarial training considerably improves model
robustness and can outperform randomized method (i.e., Dirichlet sampling) in most cases. This may be attributed to the
generated adversarial examples, which forces the model to reduce reliance on vulnerable features. (3) Defense methods
perform differently depending on the recommender and datasets. For example, the proposed adversarial training
demonstrate better performance on NARM and SASRec, consistently outperforming Dirichlet neighborhood sampling
on four of the five datasets. A potential reason may be the autoregressive training approach, which increases model
vulnerability by learning shortcuts and local features [8]. (4) Based on the defense results, LastFM demonstrates the
highest robustness on all datasets against both types of attacks, while Locker performs the best across all recommender
architectures. This suggest that increasing data density and capturing user dynamics contribute to robustness, possibly
by providing more informative item representations and transition patterns. Moreover, learning via autoencoding (i.e.,
masked training) might improve recommender robustness against adversarial attacks.

Popularity Popular Middle Bottom

Dataset Δ N@10 / R@10 Δ N@10 / R@10 Δ N@10 / R@10

Beauty Before 0.178 / 0.252 0.087 / 0.177 0.067 / 0.143
Beauty AdvTrain 0.126 / 0.177 0.041 / 0.075 0.021 / 0.049

ML-1M Before 0.409 / 0.478 0.057 / 0.118 0.057 / 0.119
ML-1M AdvTrain 0.318 / 0.368 0.037 / 0.081 0.022 / 0.051

ML-20M Before 0.081 / 0.089 0.015 / 0.036 0.004 / 0.009
ML-20M AdvTrain 0.066 / 0.078 0.007 / 0.017 0.001 / 0.003

LastFM Before 0.105 / 0.152 0.058 / 0.107 0.053 / 0.094
LastFM AdvTrain 0.058 / 0.086 0.015 / 0.034 0.010 / 0.025

Steam Before 0.138 / 0.226 0.041 / 0.084 0.023 / 0.047
Steam AdvTrain 0.110 / 0.186 0.010 / 0.029 0.004 / 0.009

Table 5. Averaged results of different popularity groups in targeted attacks.

Fig. 3. Distribution of Item Popularity.
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Popularity Performance Untargeted Popular Middle Bottom

Model N@10 / R@10 Δ N@10 / R@10 Δ N@10 / R@10 Δ N@10 / R@10 Δ N@10 / R@10

NARM Before 0.601/0.778 -0.202 / -0.179 0.241 / 0.303 0.099 / 0.188 0.073 / 0.144
NARM AdvTrain 0.576/0.766 -0.148 / -0.124 0.187 / 0.238 0.032 / 0.076 0.011 / 0.027

SASRec Before 0.582/0.777 -0.189 / -0.193 0.182 / 0.239 0.063 / 0.127 0.037 / 0.095
SASRec AdvTrain 0.585/0.779 -0.108 / -0.092 0.110 / 0.157 0.027 / 0.055 0.018 / 0.040

BERT4Rec Before 0.578/0.761 -0.189 / -0.181 0.157 / 0.218 0.025 / 0.054 0.036 / 0.072
BERT4Rec AdvTrain 0.579/0.771 -0.121 / -0.105 0.127 / 0.172 0.015 / 0.023 0.010 / 0.022

Locker Before 0.602/0.783 -0.165 / -0.146 0.149 / 0.196 0.020 / 0.048 0.016 / 0.037
Locker AdvTrain 0.593/0.778 -0.129 / -0.102 0.117 / 0.148 0.015 / 0.035 0.007 / 0.018

Table 6. Influence of recommender architecture on profile pollution attacks.

We additionally study the performance variation w.r.t. item popularity. Specifically, we study targeted attacks on
sequential recommenders and select target items of different popularity. Target items are divided into three subgroups
upon their popularity (i.e., number of total occurrences) in the dataset. Popular items denote the 1

3 most popular items
within the item scope. Middle and Bottom items refer to the next 1

3 and the last 1
3 of the items in I. We present the item

distribution of all datasets in Figure 3, we present profile pollution results of the three popularity subgroups averaged
across all recommender models. Similarly, performance variations are report with Δ of NDCG@10 and Recall@10 in
Table 5. We observe the following: (1) Popular items are of the highest vulnerability with Δ N@10 of 0.182 before attack,
showing the largest performance variations in all cases; (2) Middle and bottom items are generally ‘harder’ to attack.
For example, middle items has a much lower Δ N@10 of 0.051 before attack. (3) Popular items are also ‘harder’ to
defend, with 27.0% reduced Δ N@10 after defense, compared to 58.2% and 73.8% of middle and bottom items. The results
suggest that popular items exhibit the highest vulnerability against profile pollution attacks, a potential reason for such
vulnerability is the higher number of neighbors, which increases the number of possible adversarial substitutes.

5.4 RQ3: How Recommender Performance and Robustness Change with Different Model Architectures?

We study the vulnerability of different recommender models and performance of the proposed defense methods.
In particular, we study the attacks on all datasets and compare the original performance and performance changes
of different recommender architectures under profile pollution attacks. We present the averaged results of each
recommender architecture in Table 6 for a direct comparison. The visualized results are presented in Figure 4a and
Figure 4b. Each sub-graph represents a recommender model, where the results on all datasets with different defense
methods are compared and visualized with bars. As NDCG@10 and Recall@10 provide similar trends, we visualize the
recall results in the graphs. B, M-1, M-20, L, S represent Beauty, ML-1M, ML-20M, LastFM and Steam datasets.

Here are our observations: (1) We observe that adversarial training has limited influence on recommendation
performance. For example, our results on transformer-based models demonstrate slight performance changes, possibly
due to the improved item representations. (2) By comparing performance variations before and after profile pollution
attacks in Table 6, we observe that NARM is more vulnerable and demonstrates higher performance variations both
before and after applying the defense methods. (3) Locker demonstrates the highest robustness on average. Without
adopting defense methods, we observe 27.4% NDCG@10 variation on Locker in untargeted attacks, compared to 32.7%,
32.4% and 33.6% of BERT4Rec, SASRec and NARM. (4) Although SASRec and BERT4Rec have similar transformer
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(a) Average results of untargeted attacks with different defense methods.

(b) Average results of targeted attacks with different defense methods.

Fig. 4. Visualization of profile pollution performance on different recommenders / datasets. B, M-1, M-20, L, S represent Beauty,
ML-1M, ML-20M, LastFM and Steam respectively.

blocks to Locker, SASRec and BERT4Rec are more vulnerable and suffer higher performance deterioration even when
adversarially trained. For instance, targeted attacks on popular items increase NDCG@10 variation by 31.3% on SASRec
and 27.2% on BERT4Rec, compared to only 24.8% of Locker. Overall, transformer-based sequential recommenders (i.e.,
SASRec, BERT4Rec and Locker) demonstrate improved robustness of similar magnitude compared to RNN-based model
(i.e., NARM). Comparable trends can be observed when we apply adversarial training on sequential recommenders.
The reason for such robustness may be traced back to the introduction of global attention in transformer models.
Additionally, BERT4Rec and Locker utilize masked training to improve the capture of global context. In contrast, NARM
relies on local temporal patterns and can be more sensitive to substitution-based perturbations.

6 CONCLUSION AND FUTUREWORK

In this work, we study the effectiveness of substitution-based profile pollution attacks on sequential recommenders.
We design a profile pollution attack algorithm and evaluate on multiple datasets and state-of-the-art recommenders,
where the proposed method successfully poses threats to sequential recommenders for both the untargeted and targeted
attack scenarios. Then, we explore the defense methods by sampling augmented item representations from a Dirichlet
distribution within multi-hop neighborhoods. We additionally design an adversarial training method to search for
the worst-case augmentation and enhance model robustness. To the best of our knowledge, this is the first work on
defending substitution-based profile pollution attacks for sequential recommenders. Our experimental results suggest
that by applying the proposed defense methods, sequential recommender systems can learn robust item representations
and demonstrate significantly reduced performance variations under profile pollution attacks.
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The proposed methods have certain limitations. For example, our attack and defense methods are designed for
sequential recommenders and might not be applicable for other recommender systems. Additionally, the profile pollution
experiments are performed under a white-box assumption, rendering the proposed method less accessible in real-world
scenarios. Despite having introduced Dirichlet neighborhood sampling, we have not discussed different choices of
𝛼 values for multi-hop neighbors to exploit the potential benefits of the Dirichlet distribution. For future work, we
plan to relax our assumptions and explore certified defense methods for sequential recommenders. For example, it
would be interesting to explore interval bound propagation to provide guaranteed defense. Additionally, we can design
model-agnostic adversarial attack and defense algorithms to extend our framework to other architectures.
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