
A Survey on Data-driven Software Vulnerability Assessment
and Prioritization

TRIET H. M. LE and HUAMING CHEN, CREST - The Centre for Research on Engineering Software
Technologies, The University of Adelaide, Australia
M. ALI BABAR, CREST - The Centre for Research on Engineering Software Technologies, The University
of Adelaide, Australia and Cyber Security Cooperative Research Centre, Australia

Software Vulnerabilities (SVs) are increasing in complexity and scale, posing great security risks to many
software systems. Given the limited resources in practice, SV assessment and prioritization help practitioners
devise optimal SV mitigation plans based on various SV characteristics. The surges in SV data sources and data-
driven techniques such as Machine Learning and Deep Learning have taken SV assessment and prioritization
to the next level. Our survey provides a taxonomy of the past research efforts and highlights the best practices
for data-driven SV assessment and prioritization. We also discuss the current limitations and propose potential
solutions to address such issues.

CCS Concepts: •General and reference → Surveys and overviews; • Security and privacy → Software
security engineering; • Computing methodologies → Machine learning; Neural networks;

Additional Key Words and Phrases: Software vulnerability, Vulnerability assessment and prioritization

1 INTRODUCTION
Software Vulnerabilities (SVs) can negatively affect the confidentiality, integrity and availability of
software systems [66]. The exploitation of these SVs such as the Heartbleed attack1 can damage
the operations and reputation of millions of systems and organizations globally, resulting in huge
financial losses as well. Therefore, it is important to remediate critical SVs as promptly as possible.
Vulnerability assessment is required to prioritize the remediation of critical SVs among a large

and increasing number of SVs each year [176] (e.g., more than 20,000 SVs were reported on National
Vulnerability Database (NVD) [140] in 2021). SV assessment includes tasks that determine various
characteristics such as the types, exploitability, impact and severity levels of SVs [47, 113, 177]. Such
characteristics help understand and select high-priority SVs to resolve early given the limited effort
and resources. For example, an identified cross-site scripting (XSS) or SQL injection vulnerability
in a web application will likely require an urgent remediation plan. These two types of SVs are
well-known and can be easily exploited by attackers to gain unauthorized access and compromise
sensitive data/information. On the other hand, an SV that requires admin access or happens only in
a local network will probably have a lower priority since only a few people can initiate an attack.
There has been an active research area to assess and prioritize SVs using increasingly large

data from multiple sources. Many studies in this area have proposed different Natural Language
Processing (NLP), Machine Learning (ML) and Deep Learning (DL) techniques to leverage such data
to automate various tasks such as predicting the Common Vulnerability Scoring System (CVSS) [57]
metrics (e.g., [75, 113, 177]) or public exploits (e.g., [20, 23, 165]). These prediction models can learn
the patterns automatically from vast SV data, which would be otherwise impossible to do manually.
Such patterns are utilized to speed up the assessment and prioritization processes of ever-increasing
and more complex SVs, significantly reducing practitioners’ effort. Despite the rising research
interest in data-driven SV assessment and prioritization, to the best of our knowledge, there has
been no comprehensive survey on the state-of-the-art methods and existing challenges in this area.
1https://heartbleed.com

Authors’ addresses: Triet H. M. Le, triet.h.le@adelaide.edu.au; Huaming Chen, huaming.chen@adelaide.edu.au; M. Ali
Babar, ali.babar@adelaide.edu.au, The University of Adelaide, Adelaide, Australia.

ar
X

iv
:2

10
7.

08
36

4v
4 

 [
cs

.S
E

] 
 4

 A
pr

 2
02

2

https://heartbleed.com


2 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Table 1. Comparison of contributions between our survey and the existing related surveys/reviews.

Study
Contribution Focus on SV

assessment &
prioritization

Analysis of SV
data sources

Analysis of data-
driven approaches

(NLP/ML/DL)

Ghaffarian et al. 2017 [66] – – ✓(Mostly ML)
Lin et al. 2020 [115]
Semasaba et al. 2020 [170]
Singh et al. 2020 [175]
Zeng et al. 2020 [211]

– – ✓(Mostly DL)

Pastor et al. 2020 [152] – ✓(OSINT) –
Sun et al. 2018 [184]
Evangelista et al. 2020 [54] – ✓(OSINT) ✓

Khan et al. 2018 [94] ✓(Rule-based methods) – –
Kritikos et al. 2019 [100] ✓(Static analysis) ✓ –
Dissanayake et al. 2020 [44] ✓(Socio-technical aspects) – –
Our survey ✓ ✓ ✓

Our Contributions. 1 We are the first to review in-depth the research studies that automate
data-driven SV assessment and prioritization tasks leveraging SV data and NLP/ML/DL techniques.
2 We categorize and describe the key tasks performed in relevant primary studies. 3 We
synthesize and discuss the pros and cons of data, features, models, evaluation methods and metrics
commonly used in the reviewed studies. 4 We highlight the challenges with the current practices
and propose potential solutions moving forward. Our findings can provide useful guidelines for
researchers and practitioners to effectively utilize data to perform SV assessment and prioritization.
An online and up-to-date (by accepting external contributions) version of the survey can be found
at https://github.com/lhmtriet/awesome-vulnerability-assessment.
RelatedWork. There have been several existing surveys/reviews on SV analysis and prediction, but
they are fundamentally different from ours (see Table 1). Ghaffarian et al. [66] conducted a seminal
survey on ML-based SV analysis and discovery. Subsequently, several studies [115, 170, 175, 211]
reviewed DL techniques for detecting vulnerable code. However, these prior reviews did not describe
how ML/DL techniques can be used to assess and prioritize the detected SVs. There have been
other relevant reviews on using Open Source Intelligence (OSINT) (e.g., phishing or malicious
emails/URLs/IPs) to make informed security decisions [54, 152, 184]. However, these OSINT reviews
did not explicitly discuss the use of SV data and how such data can be leveraged to automate the
assessment and prioritization processes. Moreover, most of the reviews on SV assessment and
prioritization have focused on either static analysis tools [100] or rule-based approaches (e.g.,
expert systems or ontologies) [94]. These methods rely on pre-defined patterns and struggle to
work with new types and different data sources of SVs compared to contemporary ML or DL
approaches presented in our survey [69, 72]. Recently, Dissanayake et al. [44] reviewed the socio-
technical challenges and solutions for security patch management that involves SV assessment and
prioritization after SV patches are identified. Unlike [44], we focus on the challenges, solutions and
practices of automating various SV assessment and prioritization tasks with data-driven techniques.
We also consider all types of SV assessment/prioritization regardless of the patch availability.
Paper Outline. The rest of the paper is organized as follows. Section 2 presents the scope, method-
ology and taxonomy covered in this survey. Sections 3, 4, 5, 6 and 7 review the studies in each
theme of the taxonomy. Section 8 identifies and discusses the common practices and respective im-
plications for data-driven SV assessment and prioritization. Section 9 discusses the open challenges
and proposes some future directions of this research area. Finally, section 10 concludes the survey.

https://github.com/lhmtriet/awesome-vulnerability-assessment


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 3

So
ft

w
ar

e 
V

u
ln

er
ab

il
it

y 
A

ss
es

sm
en

t 
an

d 
P

ri
or

it
iz

at
io

n

1. Exploitation

2. Impact

3. Severity

4. Type

5. Miscellaneous Tasks

Exploit Likelihood
Exploit Time
Exploit Characteristics

Confidentiality

Integrity

Availability

Scope

Custom Vulnerability Consequences

Severe vs. Non-severe

Score

Levels

Common Weakness Enumeration (CWE)

Custom Vulnerability Types

Vulnerability Information Retrieval

Cross-source Vulnerability Patterns

Vulnerability Fixing Effort

Themes Sub-themes

Fig. 1. Taxonomy of studies on data-driven SV assessment and prioritization.

2 SURVEY OVERVIEW
2.1 Background and Scope of the Survey
Our survey’s focus is on data-driven SV assessment and prioritization. The assessment and prioritiza-
tion phases are between the SV discovery/detection and SV remediation/mitigation/fixing/patching
phases in an SV management lifecycle [61]. The assessment phase unveils the characteristics of the
SVs found in the discovery phase to locate “hot spots” that contain many highly critical/severe SVs
and require higher attention in a system. In the prioritization phase, practitioners use the assessment
outputs to devise an optimal remediation plan, i.e., the order/priority of fixing each SV, based on
available human and technological resources. SVs would then be mitigated/fixed accordingly to the
prioritized plan in the remediation phase. Unlike the existing surveys on rule-based or experience-
based SV assessment and prioritization [44, 94, 100] that hardly utilize the potential of SV data in
the wild, this survey aims to review research papers that have leveraged such data to automate
tasks in this area using data-driven models. To keep our focus, we do not consider papers that
only perform manual analyses or descriptive statistics (e.g., taking mean/median/variation of data)
without using any data-driven models as these techniques cannot automatically assess or prioritize
new SVs. We also do not directly compare the absolute performance of all the related studies as
they did not use exactly the same experimental setup (e.g., data sources and model configurations).
While it is theoretically possible to perform a comparative evaluation of the identified techniques
by establishing and using a common setup, this type of evaluation is out of the scope of this survey.
However, we still cover the key directions/techniques of the studies in sections 3, 4, 5, 6 and 7.
We also provide in-depth discussion on the common practices and challenges of these studies and
suggest some potential directions to advance the field in sections 8 and 9.

2.2 Methodology
Study selection. Our study selection was inspired by the Systematic Literature Review guide-
lines [92]. Due to the space limit, we only included the key steps of our selection here. The full



4 Triet H. M. Le, Huaming Chen, and M. Ali Babar

details can be found at [108]. We first designed the search string: “‘software’ AND vulner* AND
(learn* OR data* OR predict*) AND (priority* OR assess* OR impact* OR exploit* OR severity*) AND
NOT (fuzz* OR dynamic* OR intrusion OR adversari* OR malware* OR ‘vulnerability detection’ OR
‘vulnerability discovery’ OR ‘vulnerability identification’ OR ‘vulnerability prediction’)”. This search
string covered the key papers (i.e., with more than 50 citations) in the area and excluded many
papers on general security and SV detection. We then adapted this string2 to retrieve an initial list
of 1,765 papers up to April 2021 from various commonly used databases such as IEEE Xplore, ACM
Digital Library, Scopus, SpringerLink and Wiley. We also defined the inclusion/exclusion criteria
(see [108] for more details) to filter out irrelevant/low-quality studies with respect to our scope in
section 2.1. Based on these criteria and the titles and abstracts and keywords of 1,765 initial papers,
we removed 1,550 papers. After reading the full-text and applying the criteria on the remaining
215 papers, we obtained 70 papers directly related to data-driven SV assessment and prioritization.
To further increase the coverage of studies, we performed backward and forward snowballing on
these 70 papers (using the above sources and Google Scholar) and identified 14 more papers that
satisfied the inclusion/exclusion criteria. In total, we included 84 studies for our survey. We do not
claim that we have collected all the papers in this area, but we believe that our selection covered
most of the key studies to unveil the practices of data-driven SV assessment and prioritization.
Data extraction and synthesis of the selected studies. We followed the steps of thematic
analysis [39] to identify the taxonomy of data-driven SV assessment and prioritization tasks in
sections 3, 4, 5, 6 and 7 as well as the key practices of data-driven model building for automating
these tasks in section 8. We first conducted a pilot study of 20 papers to familiarize ourselves with
data to be extracted from the primary studies. After that, we generated initial codes and then
merged them iteratively in several rounds to create themes. Two of the authors performed the
analysis independently, in which each author analyzed half of the selected papers and then reviewed
the analysis output of the other author. Any disagreements were resolved through discussions.

2.3 Taxonomy of Data-driven Software Vulnerability Assessment and Prioritization
Based on the scope in section 2.1 and the methodology in section 2.2, we identified five main themes
of the relevant studies in the area of data-driven SV assessment and prioritization (see Figure 1).
Specifically, we extracted the themes by grouping related SV assessment or prioritization tasks
that the surveyed studies aim to automate/predict using data-driven models. Note that a paper is
categorized into more than one theme if that paper develops models for multiple cross-theme tasks.

We acknowledge that there can be other ways to categorize the studies. However, we assert the
reliability of our taxonomy as all of our themes (except theme 5) align with the security standards
used in practice. For example, Common Vulnerability Scoring System (CVSS) [57] provides a
framework to characterize exploitability, impact and severity of SVs (themes 1-3), while Common
Weakness Enumeration (CWE) [133] includes many vulnerability types (theme 4). Hence, we believe
our taxonomy can help identify and bridge the knowledge gap between the academic literature
and industrial practices, making it relevant and potentially beneficial for both researchers and
practitioners. Details of each theme in our taxonomy are covered in subsequent sections.

3 EXPLOITATION PREDICTION
This section covers the Exploitation theme that automates the detection and understanding of
both Proof-of-Concept (PoC) and real-world exploits3 targeting identified SVs. This theme outputs

2This search string was customized for each database and the database-wise search strings can be found at [108].
3An exploit is a piece of code used to compromise vulnerable software [165]. Real-world exploits are harmful & used in real
host/network-based attacks. PoC exploits are unharmful & used to show the potential threats of SVs in penetration tests.



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 5

Table 2. List of the surveyed papers in the Exploit Likelihood sub-theme of the Exploitation theme. Note: The
nature of task of this sub-theme is binary classification of existence/possibility of proof-of-concept and/or
real-world exploits.

Study Data source Data-driven technique
Bozorgi et al.
2010 [20]

CVE, Open Source Vulnerability Database (OSVDB) Linear Support Vector Machine (SVM)

Sabottke et al.
2015 [165]

NVD, Twitter, OSVDB, ExploitDB, Symantec security
advisories, private Microsoft security advisories

Linear SVM

Edkrantz
et al.
2015 [50, 51]

NVD, Recorded Future security advisories, ExploitDB Naïve Bayes, Linear SVM, Random forest

Bullough et
al. 2017 [23]

NVD, Twitter, ExploitDB Linear SVM

Almukaynizi
et al. [5, 6]

NVD, ExploitDB, Zero Day Initiative security advisories
& Darkweb forums/markets

SVM, Random forest, Naïve Bayes, Bayesian
network, Decision tree, Logistic regression

Xiao et al.
2018 [204]

NVD, SecurityFocus security advisories, Symantec
Spam/malicious activities based on daily blacklists
from abuseat.org, spamhaus.org, spamcop.net, ucepro-
tect.net, wpbl.info & list of unpatched SVs in hosts

Identification of malicious activity groups
with community detection algorithms + Ran-
dom forest for exploit prediction

Tavabi et al.
2018 [185]

NVD, 200 sites on Darkweb, ExploitDB, Symantec,
Metasploit

Paragraph embedding + Radial basis function
kernel SVM

de Sousa et al.
2020 [42]

NVD, Twitter, ExploitDB, Symantec
Avast, ESET, Trend Micro security advisories

Linear SVM, Logistic regression, XGBoost,
Light Gradient Boosting Machine (LGBM)

Fang et al.
2020 [55]

NVD, ExploitDB, SecurityFocus, Symantec fastText + LGBM

Huang et al.
2020 [82]

NVD, CVE Details, Twitter, ExploitDB, Symantec secu-
rity advisories

Random forest

Jacobs et al.
2020 [86]

NVD, Kenna Security
Exploit sources: Exploit DB, Metasploit, FortiGuard
Labs, SANS Internet Storm Center, Securewords CTU,
Alienvault OSSIM, Canvas/D2 Security’s Elliot Exploita-
tion Frameworks, Contagio, Reversing Labs

XGBoost

Yin et al.
2020 [208]

NVD, ExploitDB, General text: Book Corpus &
Wikipedia for pretraining BERT models

Fine-tuning BERT models pretrained on gen-
eral text

Bhatt et al.
2021 [13]

NVD, ExploitDB Features augmented by SV types + Decision
tree, Random forest, Naïve Bayes, Logistic
regression, SVM

Suciu et al.
2021 [182]

NVD, Vulners database, Twitter, Symantec, SecurityFo-
cus, IBM X-Force Threat Intelligence
Exploit sources: ExploitDB, Metasploit, Canvas, D2 Se-
curity’s Elliot, Tenable, Skybox, AlienVault, Contagio

Multi-layer perceptron

Younis et al.
2014 [210]

Vulnerable functions from NVD (Apache HTTP Server
project), ExploitDB, OSVDB

SVM

Yan et al.
2017 [207]

Executables (binary code) of 100 Linux applications Combining ML (Decision tree) output &
fuzzing with a Bayesian network

Tripathi et al.
2017 [187]

Program crashes from VDiscovery [27, 70] & LAVA [45]
datasets

Static/Dynamic analysis features + Lin-
ear/Radial basis function kernel SVM

Zhang et al.
2018 [213]

Program crashes from VDiscovery [27, 70] dataset 𝑛-grams of system calls from execution
traces + Online passive-aggressive classifier

the origin of SVs and how/when attackers would take advantage of such SVs to compromise a
system of interest, assisting practitioners to quickly react to the more easily exploitable or already
exploited SVs. The papers in this theme can be categorized into three groups/sub-themes: (i) Exploit
likelihood, (ii) Exploit time, (iii) Exploit characteristics, as given in Tables 2, 3 and 4, respectively.

3.1 Summary of Primary Studies
3.1.1 Exploit Likelihood. The first sub-theme is exploit likelihood that predicts whether SVs would
be exploited in the wild or PoC exploits would be released publicly (see Table 2). In 2010, Bozorgi et



6 Triet H. M. Le, Huaming Chen, and M. Ali Babar

al. [20] were the first to use SV descriptions on Common Vulnerabilities and Exposures (CVE) [132]
and Open Source Vulnerability Database (OSVDB)4 to predict exploit existence based on the labels
on OSVDB. In 2015, Sabottke et al. [165] conducted a seminal study that used Linear SVM and SV
information on Twitter to predict PoC exploits on ExploitDB [168] as well as real-world exploits
on OSVDB, Symantec’s attack signatures [21] and private Microsoft’s security advisories [128].
These authors urged to explicitly consider real-world exploits as not all PoC exploits would result
in exploitation in practice. They also showed SV-related information on Twitter5 can enable earlier
detection of exploits than using expert-verified SV sources (e.g., NVD).

Built upon these two foundational studies [20, 165], the literature has mainly aimed to improve
the performance and applicability of exploit prediction models by leveraging more exploit sources
and/or better data-driven techniques/practices. Many researchers [5, 6, 50, 51, 86, 185] increased
the amount of ground-truth exploits using extensive sources other than ExploitDB and Symantec
in [20, 165]. The sources were security advisories such as Zero Day Initiative [127], Metasploit [156],
SecurityFocus [84], Recorded Future [63], Kenna Security [93], Avast6, ESET [53], TrendMicro [126],
malicious activities in hosts based on traffic of spam/malicious IP addresses [204] and Darkweb
sites/forums/markets [143]. In addition to enriching exploit sources, better data-driven models and
practices for exploit prediction were also studied. Ensemble models (e.g., Random forest, eXtreme
Gradient Boosting (XGBoost) [34], Light Gradient Boosting Machine (LGBM) [91]) were shown to
outperform single-model baselines (e.g., Naïve Bayes, SVM, Logistic regression and Decision tree)
for exploit prediction [42, 55, 82, 86]. Additionally, Bullough et al. [23] identified and addressed
several issues with exploit prediction models, e.g., time sensitivity of SV data, already-exploited
SVs before disclosure and training data imbalance, helping to improve the practical application of
such models. Recently, Yin et al. [208] demonstrated that transfer learning is an alternative solution
for improving the performance of exploit prediction with scarcely labeled exploits. Specifically,
these authors pre-trained a DL model, BERT [43], on massive non-SV sources (e.g., text on Book
Corpus [218] and Wikipedia [62]) and then fine-tuned this pre-trained model on SV data using
additional pooling and dense layers. Bhatt et al. [13] also suggested that incorporating the types of
SVs (e.g., SQL injection) into ML models can further enhance the predictive effectiveness. Suciu
et al. [182] empirically showed that unifying SV-related sources used in prior work (e.g., SV
databases [20], social media [165], SV-related discussions [185] and PoC code in ExploitDB [86])
supports more effective and timely prediction of functional exploits [60].
Besides using SV descriptions as input for exploit prediction, several studies in this sub-theme

have also predicted exploits on the code level. Younis et al. [210] predicted the exploitability of
vulnerable functions in the Apache HTTP Server project. Specifically, these authors used an SVM
model with features extracted from the dangerous system calls [12] in entry points/functions [121]
and the reachability from any of these entry points to vulnerable functions [80]. Moving from high-
level to binary code, Yan et al. [207] first used a Decision tree to obtain prior beliefs about SV types in
100 Linux applications using static features (e.g., hexdump) extracted from executables. Subsequently,
they applied various fuzzing tools (i.e., Basic Fuzzing Framework [25] and OFuzz [26]) to detect
SVs with the ML-predicted types. They finally updated the posterior beliefs about the exploitability
based on the outputs of the ML model and fuzzers using a Bayesian network. The proposed method
outperformed !exploitable,7 a static crash analyzer provided by Microsoft. Tripathi et al. [187] also
predicted SV exploitability from crashes (i.e., VDiscovery [27, 70] and LAVA [45] datasets) using
an SVM model and static features from core dumps and dynamic features generated by the Last
4http://osvdb.org. Note that this database has been discontinued since 2016.
5https://twitter.com
6https://avast.com/exploit-protection.php. This link was provided by de Sousa et al. [42], but it is no longer available.
7https://microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6

http://osvdb.org
https://twitter.com
https://avast.com/exploit-protection.php
https://microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 7

Table 3. List of the surveyed papers in the Exploit Time sub-theme of the Exploitation theme.

Study Nature of task Data source Data-driven technique
Bozorgi et al.
2010 [20]

Binary classification: Likelihood
that SVs would be exploited within
2 to 30 days after disclosure

CVE, OSVDB Linear SVM

Edkrantz
2015 [50]

Binary classification: Likelihood of
SV exploits within 12 months after
disclosure

NVD, ExploitDB, Recorded Fu-
ture security advisories

SVM, K-Nearest Neighbors
(KNN), Naïve Bayes, Ran-
dom forest

Jacobs et al.
2019 [87]

NVD, Kenna Security
Exploit sources: Exploit DB,
Metasploit, D2 Security’s El-
liot & Canvas Exploitation
Frameworks, Fortinet, Proof-
point, AlienVault & GreyNoise

Logistic regression

Chen et al.
2019 [30, 31]

Binary classification: Likelihood
that SVs would be exploited within
1/3/6/9/12 months after disclosure
Regression: number of days until SV
exploits after disclosure

CVE, Twitter, ExploitDB,
Symantec security advisories

Graph neural network em-
bedding + Linear regres-
sion, Bayes, Random for-
est, XGBoost, Lasso/Ridge
regression

Branch Record hardware debugging utility. Zhang et al. [213] proposed two improvements to
Tripathi et al. [187]’s approach. These authors first replaced the hardware utility in [187] that
may not be available for resource-constrained devices (e.g., IoT) with sequence/𝑛-grams of system
calls extracted from execution traces. They also used an online passive-aggressive classifier [38] to
enable online/incremental learning of exploitability for new crash batches on-the-fly.

3.1.2 Exploit Time. After predicting the likelihood of SV exploits in the previous sub-theme,
this sub-theme provides more fine-grained information about exploit time (see Table 3). Besides
performing binary classification of exploits, Bozorgi et al. [20] and Edkrantz [50] also predicted
the time frame (2-30 days in [20] and 12 months in [50]) within which exploits would happen
after the disclosure of SVs. Jacobs et al. [87] then leveraged multiple sources containing both PoC
and real-world exploits, as given in Table 3, to improve the number of labeled exploits, enhancing
the prediction of exploit appearance within 12 months. Chen et al. [31] predicted whether SVs
would be exploited within 1-12 months and the exploit time (number of days) after SV disclosure
using Twitter data. The authors proposed a novel regression model whose feature embedding was
a multi-layer graph neural network [98] capturing the content and relationships among tweets,
respective tweets’ authors and SVs. The proposed model outperformed many baselines and was
integrated into the VEST system [30] to provide timely SV assessment information for practitioners.
To the best of our knowledge, at the time of writing, Chen et al. [30, 31] have been the only ones
pinpointing the exact exploit time of SVs rather than large/uncertain time-frames (e.g., months) in
other studies, helping practitioners to devise much more fine-grained remediation plans.

3.1.3 Exploit Characteristics. Exploit characteristics is the final sub-theme that reveals various
requirements/means of exploits (see Table 4), informing the potential scale of SVs; e.g., remote
exploits likely affect more systems than local ones. The commonly used outputs are the Exploitability
metrics provided by versions 2 [58] and 3 [59, 60] of Common Vulnerability Scoring System (CVSS).

Many studies have focused on predicting and analyzing version 2 of CVSS exploitability metrics
(i.e., Access Vector, Access Complexity and Authentication). Yamamoto et al. [206] were the first one
to leverage descriptions of SVs on NVD together with a supervised Latent Dirichlet Allocation topic
model [16] to predict these CVSS metrics. Subsequently, Wen et al. [199] used Radial Basis Function
(RBF)-kernel SVM and various SV databases/advisories other than NVD (e.g., SecurityFocus, OSVDB
and IBM X-Force [171]) to predict the metrics. Le et al. [113] later showed that the prediction of



8 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Table 4. List of the surveyed papers in the Exploit Characteristics sub-theme of the Exploitation theme.

Study Nature of task Data source Data-driven technique
Yamamoto et
al. 2015 [206]

Multi-class classification: CVSS v2
(Access Vector & Access Complexity
metrics)

Binary classification: CVSS v2
(Authentication metric)

NVD Supervised Latent Dirich-
let Allocation (LDA)

Wen et al.
2015 [199]

NVD, OSVDB, SecurityFo-
cus, IBM X-Force

Radial basis function ker-
nel SVM

Le et al.
2019 [113]

NVD Concept-drift-aware mod-
els with Naïve Bayes, KNN,
Linear SVM, Random for-
est, XGBoost, LGBM

Toloudis et al.
2016 [186]

Correlation analysis: CVSS v2 NVD Principal component anal-
ysis & Spearman correla-
tion coefficient

Ognawala et
al. 2018 [144]

Multi-class classification: CVSS v3
(Attack Vector, Attack Complexity &
Privileges Required metrics)

Binary classification: CVSS v3 (User
Interaction metric)

NVD (buffer overflow SVs)
& Source code of vulnerable
software/components

Combining static analysis
tool (Macke [145]) & ML
classifiers (Naïve Bayes &
Random forest)

Chen et al.
2019 [30]

CVE, NVD, Twitter Graph convolutional net-
work

Elbaz et al.
2020 [52]

Multi-class/Binary classification: CVSS
v2/v3

NVD Mapping outputs of Linear
regression to CVSSmetrics
with closest values

Jiang et al.
2020 [88]

NVD, ICS Cert, Vendor web-
sites (Resolve inconsisten-
cies with a majority vote)

Logistic regression

Gawron et al.
2017 [64]

Multi-target classification: CVSS v2 NVD Naïve Bayes, Multi-layer
Perceptron (MLP)

Spanos et al.
2018 [177]

NVD Random forest, boosting
model, Decision tree

Gong et al.
2019 [67]

Multi-task classification: CVSS v2 NVD Bi-LSTM with attention
mechanism

Chen et al.
2010 [36]

Multi-class classification: Platform-
specific vulnerability locations (Local,
Remote, Local area network) & vulnera-
bility causes (e.g., Access/Input/Origin
validation error)

NVD, Secunia vulnerabil-
ity database, SecurityFocus,
IBM X-Force

Linear SVM

Ruohonen et
al. 2017 [160]

Binary classification: Web-related ex-
ploits or not

ExploitDB LDA + Random forest

Aksu et al.
2018 [3]

Multi-class classification: author-defined
pre-/post-condition privileges (None, OS
(Admin/User), App (Admin/User))

NVD RBF network, Linear SVM,
NEAT [181], MLP

Liu et al.
2019 [117]

NVD Information gain + Convo-
lutional neural network

Kanakogi et
al. 2021 [90]

Multi-class classification: Common At-
tack Pattern Enumeration and Classifi-
cation (CAPEC)

NVD, CAPEC Doc2vec/tf-idf with cosine
similarity

CVSS metrics suffered from the concept drift issue; i.e., descriptions of new SVs may contain Out-
of-Vocabulary terms for prediction models. They proposed to combine sub-word features with
traditional Bag-of-Word (BoW) features to infer the semantics of novel terms/words from existing
ones, helping assessment models be more robust against concept drift. Besides prediction, Toloudis
et al. [186] used principal component analysis [202] and Spearman’s 𝜌 correlation coefficient to
reveal the predictive contribution of each word in SV descriptions to each CVSS metric. However,
this technique does not directly produce the value of each metric.

Recently, several studies have started to predict CVSS version 3 exploitability metrics including
the new Privileges and User Interactions. Ognawala et al. [144] fed the features generated by a
static analysis tool, Macke [145], to a Random forest model to predict these CVSS version 3 metrics
for vulnerable software/components. Later, Chen et al. [30] found that many SVs were disclosed



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 9

on Twitter before on NVD. Therefore, these authors developed a system built on top of a Graph
Convolutional Network [97] capturing the content and relationships of related Twitter posts about
SVs to enable more timely prediction of the CVSS version 3 metrics. Elbaz et al. [52] developed
a linear regression model to predict the numerical output of each metric and then obtained the
respective categorical value with the numerical value closest to the predicted value. For example, a
predicted value of 0.8 for Attack Vector CVSS v3 is mapped to Network (0.85) [59]. To prepare a
clean dataset to predict these CVSS metrics, Jiang et al. [88] replaced inconsistent CVSS values in
various SV sources (i.e., NVD, ICS CERT and vendor websites) with the most frequent value.

Instead of building a separate model for each CVSS metric, there has been another family of
approaches predicting these metrics using a single model to increase efficiency. Gawron et al. [64]
and Spanos et al. [177] predicted multiple CVSS metrics as a unique string instead of individual
values. The output of each metric is then extracted from the concatenated string. Later, Gong
et al. [67] adopted the idea of a unified model from the DL perspective by using the multi-task
learning paradigm [217] to predict CVSS metrics simultaneously. The model has a feature extraction
module (based on a Bi-LSTM model with attention mechanism [9]) shared among all the CVSS
metrics/tasks, yet specific prediction head/layer for each metric/task. This model outperformed
single-task counterparts while requiring much less time to (re-)train.
Although CVSS exploitability metrics were most commonly used, several studies used other

schemes for characterizing exploitation. Chen et al. [36] used Linear SVM and SV descriptions to
predict multiple SV characteristics, including three SV locations (i.e., Local, LAN and Remote) on
SecurityFocus [84] and Secunia [85] databases as well as 11 SV causes8 on SecurityFocus. Regarding
the exploit types, Rouhonen et al. [160] used LDA [17] and Random forest to classify whether an
exploit would affect a web application. This study can help find relevant exploits in components/sub-
systems of a large system. For privileges, Aksu et al. [3] extended the Privileges Required metric of
CVSS by incorporating the context (i.e., Operating system or Application) to which privileges are
applied (see Table 4). They found MLP [76] to be the best-performing model for obtaining these
privileges from SV descriptions. They also utilized the predicted privileges to generate attack graphs
(sequence of attacks from source to sink nodes). Liu et al. [117] advanced this task by combining
information gain for feature selection and Convolutional Neural Network (CNN) [96] for feature
extraction. Regarding attack patterns, Kanakogi et al. [90] found Doc2vec [106] to be more effective
than term-frequency inverse document frequency (tf-idf) when combined with cosine similarity
to find the most relevant Common Attack Pattern Enumeration and Classification (CAPEC) [130]
for a given SV on NVD. Such attack patterns can manifest how identified SVs can be exploited by
adversaries, assisting the selection of suitable countermeasures.

3.2 Theme Discussion
In the Exploitation theme, the primary tasks are binary classification of whether Proof-of-Concept
(PoC)/real-world exploits of SVs would appear and multi-classification of exploit characteristics
based on CVSS. PoC exploits mostly come from ExploitDB [168]; whereas, real-world exploits,
despite coming from multiple sources, are still much scarcer than PoC counterparts. Consequently,
the models predicting real-world exploits have generally performed worse than those for PoC
exploits. Similarly, the performance of the models determining CVSS v3 exploitability metrics has
been mostly lower than that of the CVSS v2 based models. However, real exploits and CVSS v3 are
usually of more interest to the community. The former can lead to real cyber-attacks and the latter
is the current standard in practice. To improve the performance of these practical tasks, future work

8Access/Input/Origin validation error, Atomicity/Configuration/Design/Environment/Serialization error, Boundary condi-
tion error, Failure on exceptions, Race condition error



10 Triet H. M. Le, Huaming Chen, and M. Ali Babar

can collect more exploit-related data from the relevant yet under-explored sources (see section 9.1),
as well as adapt the patterns learned from PoC exploits and old CVSS versions to real exploits and
newer CVSS versions, respectively, e.g., using transfer learning [151].

There are other under-explored tasks targeting fine-grained prediction of exploits. Mitigation of
exploits in practice usually requires more information besides simply determining whether an SV
would be exploited. Information gathered from predicting when and how the exploits would happen
is also needed to devise better SV fixing prioritization and mitigation plans. VEST [30] is one of
the first and few systems aiming to provide such all-in-one information about SV exploitation.
However, this system currently only uses data from NVD/CVE and Twitter, which can be extended
to incorporate more (exploit) sources and more sophisticated data-driven techniques in the future.

Most of the current studies have used SV descriptions on NVD and other security advisories to
predict the exploitation-related metrics. This is surprising as SV descriptions do not contain root
causes of SVs. Instead, SVs are rooted in source code, yet there is little work on code-based exploit
prediction. So far, Younis et al. [210] have been among the few ones using source code for exploit
prediction, but their approach still requires manual identification of dangerous function calls in
C/C++. More work is required to employ data-driven approaches to alleviate the need for manually
defined rules to improve the effectiveness and generalizability of code-based exploit prediction.

4 IMPACT PREDICTION
This section describes the Impact theme that determines the (negative) effects that SVs have on a
system of interest if such SVs are exploited. There are five key tasks that the papers in this theme
have automated/predicted: (i) Confidentiality impact, (ii) Integrity impact, (iii) Availability impact,
(iv) Scope and (v) Custom vulnerability consequences (see Table 5).

4.1 Summary of Primary Studies
4.1.1 Confidentiality, Integrity, Availability, and Scope. A majority of the papers have focused on
the impact metrics provided by CVSS, including versions 2 [58] and 3 [59, 60]. Versions 2 and 3
share three impact metrics Confidentiality, Integrity and Availability. Version 3 also has a new
metric, Scope, that specifies whether an exploited SV would affect only the system that contains the
SV. For example, Scope changes when an SV occurring in a virtual machine affects the whole host
machine, in turn increasing individual impacts.

The studies that predicted the CVSS impact metrics are mostly the same as the ones predicting
the CVSS exploitability metrics in section 3. Given the overlap, we hereby only describe the main
directions and techniques of the Impact-related tasks rather than iterating the details of each
study. Overall, a majority of the work has focused on classifying CVSS impact metrics (versions
2 and 3) using three main learning paradigms: single-task [30, 52, 88, 113, 144, 199, 206], multi-
target [64, 177] and multi-task [67] learning. Instead of developing a separate prediction model for
each metric like the single-task approach, multi-target and multi-task approaches only need a single
model for all tasks. Multi-target learning predicts concatenated output; whereas, multi-task learning
uses shared feature extraction for all tasks and task-specific softmax layers to determine the output
of each task. These three learning paradigms were powered by applying and/or customizing a wide
range of data-driven methods. The first method was to use single ML classifiers like supervised
Latent Dirichlet Allocation [206], Principal component analysis [186], Naïve Bayes [64, 113, 144],
Logistic regression [88], Kernel-based SVM [199], Linear SVM [113], KNN [113] and Decision
tree [177]. Other studies employed ensemble models combining the strength of multiple single
models such as Random forest [113, 144], boosting model [177] and XGBoost/LGBM [113]. Recently,
more studies moved towards more sophisticated DL architectures such as MLP [64], attention-based



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 11

Table 5. List of the surveyed papers in the Impact theme. Note: We grouped the first four sub-themes as they
were mostly predicted together.

Study Nature of task Data source Data-driven technique

Sub-themes: 1. Confidentiality, 2. Integrity, 3. Availability & 4. Scope (only in CVSS v3)

Yamamoto et
al. 2015 [206]

Multi-class classification: CVSS v2 NVD Supervised Latent Dirichlet Allo-
cation

Wen et al.
2015 [199]

NVD, OSVDB, SecurityFo-
cus, IBM X-Force

Radial basis function kernel SVM

Le et al.
2019 [113]

NVD Concept-drift-aware models with
Naïve Bayes, KNN, Linear SVM,
Random forest, XGBoost, LGBM

Toloudis et al.
2016 [186]

Correlation analysis: CVSS v2 NVD Principal component analysis &
Spearman correlation coefficient

Ognawala et
al. 2018 [144]

Multi-class classification: CVSS v3

Binary classification: Scope in
CVSS v3

NVD (buffer overflow SVs)
& Source code of vulnerable
software/components

Combining static analysis tool
(Macke [145]) & ML classifiers
(Naïve Bayes & Random forest)

Chen et al.
2019 [30]

CVE, NVD, Twitter Graph convolutional network

Elbaz et al.
2020 [52]

Multi-class classification: CVSS
v2/v3

Binary classification: Scope in
CVSS v3

NVD Mapping outputs of Linear regres-
sion outputs to CVSS metrics with
closest values

Jiang et al.
2020 [88]

NVD, ICS Cert, Vendor web-
sites (Resolve inconsisten-
cies with a majority vote)

Logistic regression

Gawron et al.
2017 [64]

Multi-target classification: CVSS
v2

NVD Naïve Bayes, MLP

Spanos et al.
2018 [177]

NVD Random forest, boosting model,
Decision tree

Gong et al.
2019 [67]

Multi-task classification: CVSS v2 NVD Bi-LSTM with attention mecha-
nism

Sub-theme: 5. Custom Vulnerability Consequences

Chen et al.
2010 [36]

Multi-label classification:
Platform-specific impacts
(e.g., Gain system access)

NVD, Secunia vulnerabil-
ity database, SecurityFocus,
IBM X-Force

Linear SVM

(Bi-)LSTM [67] and graph neural network [30]. Ensemble and DL models usually beat the single
ones, but there is a lack of direct comparisons between these two emerging model types.

4.1.2 Custom Vulnerability Consequences. To devise effective remediation strategies for a system
of interest in practice, practitioners may want to know custom vulnerability consequences which are
more interpretable than the levels of impact provided by CVSS. Chen et al. [36] curated a list of 11
vulnerability consequences9 from X-Force [171] and Secunia [85] vulnerability databases. They
then used a Linear SVM model to perform multi-label classification of these consequences for SVs,
meaning that an SV can lead to more than one consequence. To the best of our knowledge, this is
the only study that has pursued this research direction so far.

4.2 Theme Discussion
In the Impact theme, the common task is to predict the impact base metrics provided by CVSS
versions 2 and 3. Similar to the Exploitation theme, the models for CVSS v3 still require more
attention and effort from the community to reach the same performance level as the models for
CVSS v2. These impact metrics are also usually predicted together with the exploitability metrics
given their similar nature (multi-class classification) using either task-wise models or a unified
9Gain system access, Bypass security, Configuration manipulation, Data/file manipulation, Denial of Service, Privilege
escalation, Information leakage, Session hijacking, Cross-site scripting (XSS), Source spoofing, Brute-force proneness.



12 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Table 6. List of the surveyed papers in the Severe vs. Non-Severe sub-theme of the Severity theme. Note: The
nature of task here is binary classification of severe SVs with High/Critical CVSS v2/v3 severity levels.

Study Data source (software project) Data-driven technique
Kudjo et al.
2019 [102]

NVD (Mozilla Firefox, Google Chrome, Internet Ex-
plorer, Microsoft Edge, Sea Monkey, Linux Kernel,
Windows 7, Windows 10, Mac OS, Chrome OS)

Term frequency & inverse gravity moment
weighting + KNN, Decision tree, Random forest

Chen et al.
2020 [32]

NVD (Adobe Flash Player, Enterprise Linux, Linux
Kernel, Foxit Reader, Safari, Windows 10, Microsoft
Office, Oracle Business Suites, Chrome, QuickTime)

Term frequency & inverse gravity moment
weighting + KNN, Decision tree, Naïve Bayes,
SVM, Random forest

Kudjo et al.
2020 [101]

NVD (Google Chrome, Mozilla Firefox, Internet Ex-
plorer and Linux Kernel)

Find the best smallest training dataset using
KNN, Logistic regression, MLP, Random forest

Malhotra et
al. 2021 [120]

NVD (Apache Tomcat) Chi-square/Information gain + bagging tech-
nique, Random forest, Naïve Bayes, SVM

(multi-target or multi-task) model. Multi-target and multi-task learning are promising as they can
reduce the time for continuous (re)training and maintenance when deployed in production.

Besides CVSS impact metrics, other fine-grained SV consequences have also been explored [36],
but there is still no widely accepted taxonomy for such consequences. Thus, these consequences
have seen less adoption in practice than CVSS metrics, despite being potentially useful by providing
more concrete information about what assets/components in a system that an SV can compromise. In
section 9.2.1, we suggest potential ways to create a systematic taxonomy of custom SV consequences
to pave the way for more data-driven research in this direction.

5 SEVERITY PREDICTION
This section discusses the work in the Severity theme. Severity is often a function/combination
of Exploitation (section 3) and Impact (section 4). SVs with higher severity usually require more
urgent remediation. There are three main prediction tasks in this theme: (i) Severe vs. Non-severe,
(ii) Severity levels and (iii) Severity score, shown in Tables 6, 7 and 8, respectively.

Similar to the Exploitation and Impact themes, many studies in the Severity theme have used
CVSS versions 2 and 3. According to both CVSS versions, the severity score shares the same range
from 0 to 10, with an increment of 0.1. Based on the score, the existing studies have either defined
a threshold to decide whether an SV is severe (requiring high attention), or predicted levels/groups
of severity score that require a similar amount of attention or determined the raw score value.

5.1 Summary of Primary Studies
5.1.1 Severe vs. Non-Severe. The first group of studies have classified whether an SV is severe or non-
severe, making it a binary classification problem (see Table 6). These studies have typically selected
severe SVs as the ones with at least High severity level (i.e., CVSS severity score ≥ 7.0). Kudjo et
al. [102] showed that using term frequency (BoW) with inverse gravity moment weighting [33]
to extract features from SV descriptions can enhance the performance of ML models (i.e., KNN,
Decision tree and Random forest) in predicting the severity of SVs. Later, Chen et al. [32] confirmed
that this feature extraction method was also effective for more projects and classifiers (e.g., Naïve
Bayes and SVM). Besides investigating feature extraction, Kudjo et al. [101] also highlighted the
possibility of finding Bellwether, i.e., the smallest set of data that can be used to train an optimal
prediction model, for classifying severity. Recently, Malhotra et al. [120] revisited this task by
showing that Chi-square and information gain can be effective dimensionality reduction techniques
for multiple classifiers, i.e., bagging technique, Random forest, Naïve Bayes and SVM.

5.1.2 Severity Levels. Rather than just performing binary classification of whether an SV is severe,
several studies have identified one among multiple severity levels that an SV belongs to (see



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 13

Table 7. List of the surveyed papers in the Severity Levels sub-theme of the Severity theme.

Study Nature of task Data source Data-driven technique
Spanos et al.
2017 [178]

Multi-class classification: NVD
severity levels based on CVSS v2 &
WIVSS (High, Medium, Low)

NVD Decision tree, SVM, MLP

Wang et al.
2019 [194]

Multi-class classification: NVD
severity levels based on CVSS v2
(High, Medium, Low)

NVD (XSS attacks) XGBoost, Logistic regression,
SVM, Random forest

Le et al.
2019 [113]

NVD Concept-drift-aware models with
Naïve Bayes, KNN, Linear SVM,
Random forest, XGBoost, LGBM

Liu et al.
2019 [119]

NVD, China National Vul-
nerability Database (XSS
attacks)

Recurrent Convolutional Neural
Network (RCNN), Convolutional
Neural Network (CNN), Long-
Short Term Memory (LSTM)

Sharma et al.
2020 [172]

CVE Details CNN

Han et al.
2017 [75]

Multi-class classification: Atlassian
categories of CVSS severity score
(Critical, High, Medium, Low)

CVE Details 1-layer CNN, 2-layer CNN, CNN-
LSTM, Linear SVM

Sahin et al.
2019 [166]

NVD 1-layer CNN, LSTM, XGBoost,
Linear SVM

Nakagawa et
al. 2019 [138]

CVE Details Character-level CNN vs. Word-
based CNN + Linear SVM

Gong et al.
2019 [67]

Multi-task classification: Atlassian
categories of CVSS severity score
(Critical, High, Medium, Low)

CVE Details Bi-LSTM with attention mecha-
nism

Chen et al.
2010 [36]

Multi-class classification: severity
levels of Secunia (Extremely/highly/
moderately/less/non- critical)

CVE, Secunia vulnerabil-
ity database, SecurityFo-
cus, IBM X-Force

Linear SVM

Zhang et al.
2020 [214]

Multi-class classification: Platform-
specific levels (High/Medium/Low)

China National Vulnerabil-
ity Database

Logistic regression, Linear dis-
criminant analysis, KNN, CART,
SVM, bagging/boosting models

Khazaei et al.
2016 [95]

Multi-class classification: 10 severity
score bins (one unit/bin)

CVE & OSVDB Linear SVM, Random forest, Fuzzy
system

Table 7). This setting can be considered as multi-class classification. Spanos et al. [178] were
to first one to show the applicability of ML to classify SVs into one of the three severity levels
using SV descriptions. These three levels are provided by NVD and based on the severity score
of CVSS version 2 [58] and WIVSS [179], i.e., Low (0.0 – 3.9), Medium (4.0 – 6.9), High (7.0 –
10.0). Note that WIVSS assigns different weights for the Confidentiality, Integrity and Availability
impact metrics of CVSS, enhancing the ability to capture varied contributions of these impacts
to the final severity score. Later, Wang et al. [194] showed that XGBoost [34] performed the best
among the investigated ML classifiers for predicting these three NVD-based severity levels. Le
et al. [113] also confirmed that ensemble methods (e.g., XGBoost [34], LGBM [91] and Random
forest) outperformed single models (e.g., Naïve Bayes, KNN and SVM) for this task. Predicting
severity levels has also been tackled with DL techniques [119, 172] such as Recurrent Convolutional
Neural Network (RCNN) [105], Convolutional Neural Network (CNN) [96], Long-Short Term
Memory (LSTM) [77]. These studies showed potential performance gain of DL models compared
to traditional ML counterparts. Han et al. [75] showed that DL techniques (i.e., 1-layer CNN) also
achieved promising results for predicting a different severity categorization, namely Atlassian’s
levels.10 Such findings were successfully replicated by Sahin et al. [166]. Nakagawa et al. [138]
further enhanced the DL model performance for the same task by incorporating the character-level
features into a CNN model [215]. Complementary to performance enhancement, Gong et al. [67]
proposed to predict these severity levels concurrently with other CVSS metrics in a single model

10https://www.atlassian.com/trust/security/security-severity-levels

https://www.atlassian.com/trust/security/security-severity-levels


14 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Table 8. List of the surveyed papers in the Severity Score sub-theme of the Severity theme. Notes: †denotes
that the severity score is computed from ML-predicted base metrics using the formula provided by an
assessment framework (CVSS and/or WIVSS).

Study Nature of task Data source Data-driven technique
Sahin et al.
2019 [166]

Regression: CVSS v2 (0-10) NVD 1-layer CNN, LSTM, XGBoost regressor,
Linear regression

Wen et al.
2015 [199]

OSVDB, SecurityFocus, IBM
X-Force

Radial basis function kernel SVM†

Ognawala et
al. 2018 [144]

Regression: CVSS v3 (0-10) NVD (buffer overflow SVs) Combining a static analysis tool
(Macke [145]) & ML classifiers (Naïve
Bayes & Random forest)†

Chen et al.
2019 [29, 30]

CVE, NVD, Twitter Graph convolutional network

Anwar et al.
2020 [7]

NVD Linear regression, Support vector regres-
sion, CNN, MLP

Elbaz et al.
2020 [52]

Regression: CVSS v2/v3 (0-
10)

NVD Mapping outputs of Linear regression to
CVSS metrics with closest values†

Jiang et al.
2020 [88]

NVD, ICS Cert, Vendor web-
sites (Resolve inconsisten-
cies with a majority vote)

Logistic regression†

Spanos et al.
2018 [177]

Regression: CVSS v2 &
WIVSS (0-10)

NVD Random forest, boosting model, Deci-
sion tree†

Toloudis et al.
2016 [186]

Correlation analysis: CVSS
v2 & WIVSS (0-10)

NVD Principal component analysis & Spear-
man correlation coefficient

using multi-task learning [217] powered by an attention-based Bi-LSTM shared feature extraction
model. The unified model was demonstrated to increase both the prediction effectiveness and
efficiency. Besides Atlassian’s categories, several studies applied ML models to predict severity
levels on other platforms such as Secunia [36] and China National Vulnerability Database11 [214].
Instead of using textual categories, Khazaei et al. [95] divided the CVSS severity score into 10 bins
with 10 increments each (e.g., values of 0 – 0.9 are in one bin) and obtained decent results (86-88%
Accuracy) using Linear SVM, Random forest and Fuzzy system.

5.1.3 Severity Score. To provide even more fine-grained severity value than the categories, the
last sub-theme has predicted the severity score (see Table 8). Using SV descriptions on NVD, Sahin
et al. [166] compared the performance of ML-based regressors (e.g., XGBoost [34] and Linear
regression) and DL-based ones (e.g., CNN [96] and LSTM [77]) for predicting the severity score of
CVSS version 2 [58]. These authors showed that DL-based approaches generally outperformed the
ML-based counterparts. For CVSS version 3 [59, 60], Chen et al. [29, 30] and Anwar et al. [7] also
reported the strong performance of DL-based models (e.g., CNN and graph convolutional neural
network [97]). Some other studies did not directly predict severity score from SV descriptions,
instead they aggregated the predicted values of the CVSS Exploitability (see section 3) and Impact
metrics (see section 4) using the formulas of CVSS version 2 [52, 88, 177, 199], version 3 [52, 88, 144]
and WIVSS [177]. We noticed the papers predicting both versions (e.g., CVSS versions 2 vs. 3 or
CVSS version 2 vs. WIVSS) usually obtained better performance for version 3 and WIVSS than
version 2 [52, 88]. These findings may suggest that the improvements made by experts in version 3
and WIVSS compared to version 2 help make the patterns in severity score clearer and easier for
ML models to capture. In addition to predicting severity score, Toloudis et al. [186] examined the
correlation between words in descriptions of SVs and the severity values of such SVs, aiming to
shed light on words that increase or decrease the severity score of SVs.

11https://www.cnvd.org.cn

https://www.cnvd.org.cn


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 15

5.2 Theme Discussion
In the Severity theme, predicting the severity levels is the most prevalent task, followed by severity
score prediction and then binary classification of the severity. In practice, severity score gives
more fine-grained information (fewer SVs per value) for practitioners to rank/prioritize SVs than
categorical/binary levels. However, predicting continuous score values is usually challenging and
requires more robust models as this task involves higher uncertainty to learn inherent patterns
from data than classifying fixed/discrete levels. We observed that DL models such as graph neural
networks [29, 30], LSTM [166] and CNN [7] have been shown to be better than traditional ML
models for predicting severity score. However, most of these studies did not evaluate their models
in a continuous deployment setting to investigate how the models will cope with changing patterns
of new SVs over time. We distill recommendations for future work on real-world application and
evaluation of these models in section 9.2.

6 TYPE PREDICTION
This section reports the work done in the Type theme. Type groups SVs with similar characteristics,
e.g., causes, attack patterns and impacts, and thus facilitating the reuse of known prioritization and
remediation strategies employed for prior SVs of the same types. Two key prediction outputs are:
(i) Common Weakness Enumeration (CWE) and (ii) Custom vulnerability types (see Table 9).

6.1 Summary of Primary Studies
6.1.1 Common Weakness Enumeration (CWE). The first sub-theme determines and analyzes the
patterns of the SV types provided by CWE [133]. CWE is currently the standard for SV types
with more than 900 entries. The first group of studies has focused on multi-class classification
of these CWEs. Wang et al. [193] were the first to tackle this problem with a Naïve Bayes model
using the CVSS metrics (version 2) [58] and product names. Later, Shuai et al. [174] used LDA [17]
with a location-aware weighting to extract important features from SV descriptions for building
an effective SVM-based CWE classifier. Na et al. [136] also showed that features extracted from
SV descriptions can improve the Naïve Bayes model in [193]. Ruohonen et al. [161] studied an
information retrieval method, i.e., term-frequency inverse document frequency (tf-idf) and cosine
similarity, to detect the CWE-ID with a description most similar to that of a given SV collected
from NVD and Snyk.12 This method performed well for CWEs without clear patterns/keywords in
SV descriptions. Aota et al. [8] utilized the Boruta feature selection algorithm [104] and Random
forest to improve the performance of base CWE classification. Base CWEs give more fine-grained
information for SV remediation than categorical CWEs used in [136].
There has been a recent rise in using neural network/DL based models for CWE classification.

Huang et al. [81] implemented a deep neural network with tf-idf and information gain for the task
and obtained better performance than SVM, Naïve Bayes and KNN. Aghaei et al. [1] improved
upon [8] for both categorical (coarse-grained) and base (fine-grained) CWE classification with
an adaptive hierarchical neural network to determine sequences of less to more fine-grained
CWEs. To capture the hierarchical structure and rare classes of CWEs, Das et al. [40] matched
SV and CWE descriptions instead of predicting CWEs directly. They presented a deep Siamese
network with a BERT-based [43] shared feature extractor that outperformed many baselines even
for rare/unseen CWE classes. Recently, Zou et al. [220] pioneered the multi-class classification of
CWE in vulnerable functions curated from Software Assurance Reference Dataset (SARD) [141]
and NVD. They achieved high performance (∼95% F1-score) with DL (Bi-LSTM) models. The
strength of their model came from combining global (semantically related statements) and local

12https://snyk.io/vuln

https://snyk.io/vuln


16 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Table 9. List of the surveyed papers in the Type theme.

Study Nature of task Data source Data-driven technique

Sub-theme: 1. CommonWeakness Enumeration (CWE)

Wang et al.
2010 [193]

Multi-class classification: CWE
classes

NVD, CVSS Naïve Bayes

Shuai et al.
2013 [174]

NVD SVM

Na et al.
2016 [136]

NVD Naïve Bayes

Ruohonen et
al. 2018 [161]

NVD, CWE, Snyk tf-idf with 1/2/3-grams and cosine simi-
larity

Huang et al.
2019 [81]

NVD, CWE MLP, Linear SVM, Naïve Bayes, KNN

Aota et al.
2020 [8]

NVD Random forest, Linear SVM, Logistic re-
gression, Decision tree, Extremely ran-
domized trees, LGBM

Aghaei et al.
2020 [1]

NVD, CVE Adaptive fully-connected neural net-
work with one hidden layer

Das et al.
2021 [40]

NVD, CWE BERT, Deep Siamese network

Zou et al.
2019 [220]

NVD & Software As-
surance Reference
Dataset (SARD)

Three Bi-LSTM models for extracting
and combining global and local features
from code functions

Murtaza et al.
2016 [135]

Unsupervised learning: sequence
mining of SV types (over time)

NVD (CWE & CPE) 2/3/4/5-grams of CWEs

Lin et al.
2017 [116]

Unsupervised learning: association
rule mining of CWE-related as-
pects (prog. language, time of in-
troduction & consequence scope)

CWE FP-growth association rule mining algo-
rithm

Han et al.
2018 [74]

Binary/Multi-class classification:
CWE relationships (CWE links,
link types & CWE consequences)

CWE Deep knowledge graph embedding of
CWE entities

Sub-theme: 2. Custom Vulnerability Types

Venter et al.
2008 [190]

Unsupervised learning: clustering CVE Self-organizing map

Neuhaus et
al. 2010 [139]

Unsupervised learning: topic mod-
eling

CVE Latent Dirichlet Allocation (LDA)

Mounika et
al. [134, 189]

CVE, Open Web
Application Security
Project (OWASP)

LDA

Aljedaani et
al. 2020 [4]

SV reports
(Chromium project)

LDA

Williams et
al. [200, 201]

Multi-class classification: manually
coded SV types

NVD Supervised Topical Evolution Model &
Diffusion-based storytelling technique

Russo et al.
2019 [163]

NVD Bayesian network, J48 tree, Logistic re-
gression, Naïve Bayes, Random forest

Yan et al.
2017 [207]

Executables of 100
Linux applications

Decision tree

Zhang et al.
2020 [214]

Multi-class classification: platform-
specific vulnerability types

China National Vul-
nerability Database

Logistic regression, Linear discriminant
analysis, KNN, CART, SVM, bagging/-
boosting models

(variables/statements affecting function calls) features. Note that this model currently only works
for functions in C/C++ and 40 selected classes of CWE.
Another group of studies has considered unsupervised learning methods to extract CWE se-

quences, patterns and relationships. Sequences of SV types over time were identified by Murtaza et
al. [135] using an 𝑛-gram model. This model sheds light on both co-occurring and upcoming CWEs



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 17

(grams), raising awareness of potential cascading attacks. Lin et al. [116] applied an association rule
mining algorithm, FP-growth [73], to extract the rules/patterns of various CWEs aspects including
types, programming language, time of introduction and consequence scope. For example, buffer
overflow (CWE type) usually appears during the implementation phase (time of introduction) in
C/C++ (programming language) and affects the availability (consequence scope). Lately, Han et
al. [74] developed a deep knowledge graph embedding technique to mine the relationships among
CWE types, assisting in finding relevant SV types with similar properties.

6.1.2 Custom Vulnerability Types. The second sub-theme is about custom vulnerability types other
than CWE. Venter et al. [190] used Self-organizing map [99], an unsupervised clustering algorithm,
to group SVswith similar descriptions on CVE. This was one of the earliest studies that automated SV
type classification. Topic modeling is another popular unsupervised learning model [4, 134, 139, 189]
to categorize SVs without an existing taxonomy. Neuhaus et al. [139] applied LDA [17] on SV
descriptions to identify 28 prevalent SV types and then analyzed the trends of such types over
time. The identified SV topics/types had considerable overlaps (up to 98% precision and 95% recall)
with CWEs. Mounika et al. [134, 189] extended [139] to map the LDA topics with the top-10
OWASP [149]. However, the LDA topics/keywords did not agree well (< 40%) with the OWASP
descriptions, probably because 10 topics did not cover all the underlying patterns of SV descriptions.
Aljedaani et al. [4] again used LDA to identify 10 types of SVs reported in the bug tracking system
of Chromium13 and found memory-related issues were the most prevalent topics.
Another group of studies has classified manually defined/selected SV types rather than CWE

as some SV types are encountered more often in practice and require more attention. Williams
et al. [200, 201] applied a supervised topical evolution model [137] to identify the features that
best described the 10 pre-defined SV types14 prevalent in the wild. These authors then used a
diffusion-based storytelling technique [10] to show the evolution of a particular topic of SVs over
time; e.g., increasing API-related SVs requires hardening the APIs used in a product. To support
user-friendly SV assessment using ever-increasing unstructured SV data, Russo et al. [163] used
Bayesian network to predict 10 pre-defined SV types.15 Besides predicting manually defined SV
types using SV natural language descriptions, Yan et al. [207] used a decision tree to predict 22 SV
types prevalent in the executables of Linux applications. The predicted type was then combined
with fuzzers’ outputs to predict SV exploitability (see section 3.1.1). Besides author-defined types,
custom SV types also come from specific SV platforms. Zhang et al. [214] designed an ML-based
framework to predict the SV types collected from China National Vulnerability Database. Ensemble
models (bagging and boosting models) achieved, on average, the highest performance for this task.

6.2 Theme Discussion
In the Type theme, detecting and characterizing coarse-grained and fine-grained CWE-based SV
types are the frequent tasks. The large number and hierarchical structure of classes are the main
challenges with CWE classification/analysis. In terms of solutions, deep Siamese networks [40] are
more robust to the class imbalance issue (due to many CWE classes), while graph-based neural net-
works [74] can effectively capture the hierarchical structure of CWEs. Future work can investigate
the combination of these two types of DL architectures to solve both issues simultaneously. We

13https://bugs.chromium.org/p/chromium/issues/list
141. Buffer errors, 2. Cross-site scripting, 3. Path traversal, 4. Permissions and Privileges, 5. Input validation, 6. SQL injection,
7. Information disclosure, 8. Resources Error, 9. Cryptographic issues, 10. Code injection.
151. Authentication bypass or Improper Authorization, 2. Cross-site scripting or HTML injection, 3. Denial of service, 4.
Directory Traversal, 5. Local/Remote file include and Arbitrary file upload, 6. Information disclosure and/or Arbitrary file
read, 7. Buffer/stack/heap/integer overflow, 8. Remote code execution, 9. SQL injection, 10. Unspecified vulnerability

https://bugs.chromium.org/p/chromium/issues/list


18 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Table 10. List of the surveyed papers in theMiscellaneous Tasks theme.

Study Nature of task Data source Data-driven technique

Sub-theme: 1. Vulnerability Information Retrieval

Weeraward-
hana et al.
2014 [198]

Multi-class classification: Extraction of en-
tities (software name/version, impact, at-
tacker/user actions) from SV descriptions

NVD (210 randomly se-
lected and manually la-
beled SVs)

Stanford Named Entity
Recognizer implementing
a CRF classifier

Dong et al.
2019 [46]

Multi-class classification: Vulnerable soft-
ware names/versions

CVE Details, NVD, Ex-
ploitDB, SecurityFocus, Se-
curityFocus Forum, Securi-
tyTracker, Openwall

Word-level and character-
level Bi-LSTM with atten-
tion mechanism

Gonzalez et
al. 2019 [68]

Multi-class classification: Extraction of 19
Vulnerability Description Ontology [142]
classes from SV descriptions

NVD Naïve Bayes, Decision tree,
SVM, Random forest, Ma-
jority voting model

Binyamini et
al. 2020 [15]

Multi-class classification: Extraction of
entities (attack vector/means/technique,
privilege, impact, vulnerable platform/ver-
sion/OS, network protocol/port) from SV
descriptions to generate MulVal [148] in-
teraction rules

NVD Bi-LSTM with various fea-
ture extractors: word2vec,
ELMo, BERT (pre-trained
or trained from scratch)

Guo et al.
2020 [71]

Multi-class classification: Extraction of en-
tities (SV type, root cause, attack type, at-
tack vector) from SV descriptions

NVD, SecurityFocus CNN, Bi-LSTM (with or
without attention mecha-
nism)

Waareus et al.
2020 [196]

Multi-class classification: Common Prod-
uct Enumeration (CPE)

NVD Word-level and character-
level Bi-LSTM

Yitagesu et al.
2021 [209]

Multi-class classification: Part-of-speech
tagging of SV descriptions

NVD, CVE, CWE, CAPEC,
CPE, Twitter, PTB cor-
pus [122]

Bi-LSTM

Sun et al.
2021 [183]

Multi-class classification: Extraction of en-
tities (vulnerable product/version/compo-
nent, type, attack type, root cause, attack
vector, impact) from ExploitDB to gener-
ate SV descriptions

NVD, ExploitDB BERT models

Sub-theme: 2. Cross-source Vulnerability Patterns

Horawalavith-
ana et al.
2019 [79]

Regression: Number of software develop-
ment activities on GitHub after disclosure
of SVs

Twitter, Reddit, GitHub MLP, LSTM

Xiao et al.
2019 [205]

Knowledge-graph reasoning: modeling the
relationships among SVs, its types and at-
tack patterns

CVE, CWE, CAPEC (Linux
project)

Translation-based
knowledge-graph em-
bedding

Sub-theme: 3. Vulnerability Fixing Effort

Othmane et
al. 2017 [147]

Regression: time (days) to fix SVs Proprietary SV data col-
lected at the SAP company

Linear/Tree-based/Neural
network regression

also recommend more solutions for addressing the data imbalance issue in section 9.1.3. Besides
model-level solutions, author-selected or platform-specific SV types have been considered to reduce
the complexity of CWE. However, similar to custom SV consequences in section 4.1.2, there is
not yet a universally accepted taxonomy for these custom SV types. To reduce the subjectivity in
selecting SV types for prediction, we suggest that future work should focus on the types that are
commonly encountered and discussed by developers in the wild (see section 9.1.1 for more details).

7 MISCELLANEOUS TASKS
The last theme is Miscellaneous Tasks covering the studies that are representative yet do not fit into
the four previous themes. This theme has three main sub-themes/tasks: (i) Vulnerability information
retrieval, (ii) Cross-source vulnerability patterns and (iii) Vulnerability fixing effort (see Table 10).



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 19

7.1 Summary of Primary Studies
7.1.1 Vulnerability Information Retrieval. The first andmajor sub-theme is vulnerability information
retrieval that studies data-driven methods to extract different SV-related entities (e.g., affected
products/versions) and their relationships from SV data. The current sub-theme extracts assessment
information appearing explicitly in SV data (e.g., SV descriptions on NVD) rather than predicting
implicit properties as done in prior sub-themes. For instance, CWE-119, i.e., “Improper Restriction
of Write Operations within the Bounds of a Memory Buffer”, can be retrieved directly from CVE-
2020-28022, but not from CVE-2021-2122.16 The latter case requires techniques from section 6.1.1.
Most of the retrieval methods in this sub-theme have been formulated under the multi-class

classification setting. One of the earliest works was conducted by Weerawardhana et al. [198]. This
study extracted software names/versions, impacts and attacker’s/user’s action from SV descriptions
on NVD using Stanford Named Entity Recognition (NER) technique, a.k.a. CRF classifier [56]. Later,
Dong et al. [46] proposed to use a word/character-level Bi-LSTM to improve the performance
of extracting vulnerable software names and versions from SV descriptions available on NVD
and other SV databases/advisories (e.g., CVE Details [222], ExploitDB [168], SecurityFocus [84],
SecurityTracker [169] and Openwall [155]). Based on the extracted entities, these authors also
highlighted the inconsistencies in vulnerable software names and versions across different SV
sources. Besides version products/names of SVs, Gonzalez et al. [68] used a majority vote of different
ML models (e.g., SVM and Random forest) to extract the 19 entities of Vulnerability Description
Ontology (VDO) [142] from SV descriptions to check the consistency of these descriptions based
on the guidelines of VDO. Since 2020, there has been a trend in using DL models (e.g., Bi-LSTM,
CNNs or BERT [43]/ELMo [154]) to extract different information from SV descriptions including
required elements for generating MulVal [148] attack rules [15] or SV types/root cause, attack
type/vector [71], Common Product Enumeration (CPE) [131] for standardizing names of vulnerable
vendors/products/versions [196], part-of-speech [209] and relevant entities (e.g., vulnerable prod-
ucts, attack type, root cause) from ExploitDB to generate SV descriptions [183]. BERT models [43],
pre-trained on general text (e.g., Wikipedia pages [62] or PTB corpus [122]) and fine-tuned on SV
text, have also been increasingly used to address the data scarcity/imbalance for the retrieval tasks.

7.1.2 Cross-source Vulnerability Patterns. The second sub-theme, cross-source vulnerability patterns,
finds commonality and/or discovers latent relationships among SV sources to enrich information
for SV assessment and prioritization. Horawalavithana et al. [79] found a positive correlation
between development activities (e.g., push/pull requests and issues) on GitHub and SV mentions on
Reddit17 and Twitter. These authors then used DL models (MLP [76] and LSTM [77]) to predict the
appearance and sequence of development activities when SVs were mentioned on the two social
media platforms. Xiao et al. [205] applied a translation-based graph embedding method to encode
and predict the relationships among different SVs and the respective attack patterns and types. This
work [205] was based on DeepWeak of Han et al. [74], but it still belongs to this sub-theme as they
provided a multi-dimensional view of SVs using three different sources (NVD [140], CWE [133]
and CAPEC [130]). Xiao et al. [205] envisioned that their knowledge graph can be extended to
incorporate the source code introducing/fixing SVs.

7.1.3 Vulnerability Fixing Effort. The last sub-theme is vulnerability fixing effort that focuses on
estimating SV fixing effort through proxies such as the SV fixing time, usually in days. Othmane
and the co-authors were among the first to approach this problem. These authors first conducted a

16https://nvd.nist.gov/vuln/detail/CVE-2020-28022 & https://nvd.nist.gov/vuln/detail/CVE-2021-21220
17https://reddit.com

https://nvd.nist.gov/vuln/detail/CVE-2020-28022
https://nvd.nist.gov/vuln/detail/CVE-2021-21220
https://reddit.com


20 Triet H. M. Le, Huaming Chen, and M. Ali Babar

large-scale qualitative study at the SAP company and identified 65 important code-based, process-
based and developer-based factors contributing to the SV fixing effort [11]. Later, the same group
of authors [147] leveraged the identified factors in their prior qualitative study to develop various
regression models such as linear regression, tree-based regression and neural network regression
models, to predict time-to-fix SVs using the data collected at SAP. These authors found that code
components containing detected SVs are more important for the prediction than SV types.

7.2 Theme Discussion
In theMiscellaneous Tasks theme, the key focus is on retrieving SV-related entities and characteristics
from SV descriptions. The retrieval tasks are usually formulated as Named Entity Recognition
from SV descriptions. However, we observed that NVD descriptions do not follow a consistent
template [7], posing significant challenges in labeling the entities for retrieval. The affected versions
and vendor/product names of SVs also contain inconsistencies [7, 46], making the retrieval tasks
difficult. We recommend that data normalization and cleaning should be performed before labeling
entities and building respective retrieval models to ensure the reliability of results.

Besides information retrieval, other tasks such as linking multi-sources, extracting cross-source
patterns or estimating fixing effort are also useful to obtain richer SV information for assessment
and prioritization, yet these tasks are still in early stages. Linking multiple sources and their patterns
is the first step towards building an SV knowledge graph to answer different queries regarding
a particular SV (e.g., what systems are affected, exploitation status, how to fix, or what SVs are
similar). In the future, such a knowledge graph can be extended to capture artifacts of SVs in
emerging software types like AI-based systems (see section 9.3). Moreover, to advance SV fixing
effort prediction, future work can consider adapting/customizing the existing practices/techniques
used to predict fixing effort for general bugs [2, 212].

8 ANALYSIS OF DATA-DRIVEN APPROACHES FOR SOFTWARE VULNERABILITY
ASSESSMENT AND PRIORITIZATION

We extract and analyze the five key elements for data-driven SV assessment and prioritization:
(i) Data sources, (ii) Model features, (iii) Prediction models, (iv) Evaluation techniques and (v)
Evaluationmetrics. These elements correspond to the fourmain steps in building data-drivenmodels:
data collection (data sources), feature engineering (model features), model training (prediction
models) and model evaluation (evaluation techniques/metrics) [72, 164]. We present the most
common practices for each element in Table 11.

8.1 Data sources
Identifying and collecting rich and reliable SV-related data are the first tasks to build data-driven
models for automating SV assessment and prioritization tasks. As shown in Table 11, a wide variety
of data sources have been considered to accomplish the five identified themes.
Across the five themes, NVD [140] and CVE [132] have been the most prevalently used data

sources. The popularity of NVD/CVE is mainly because they publish expert-verified SV information
that can be used to develop prediction models. Firstly, many studies have considered SV descriptions
on NVD/CVE as model inputs. Secondly, the SV characteristics on NVD have been heavily used
as assessment outputs in all the themes, e.g., CVSS Exploitability metrics for Exploitation, CVSS
Impact/Scope metrics for Impact, CVSS severity score/levels for Severity, CWE for Type, CWE/CPE
forMiscellaneous tasks. Thirdly, external sources on NVD/CVE have enabled many studies to obtain
richer SV information (e.g., exploitation availability/time [30] or vulnerable code/crashes [187, 207])
and extract relationships among multiple SV sources to develop a knowledge graph of SVs (e.g., [74,
205]). However, NVD/CVE still suffer from information inconsistencies [7, 46] and missing relevant



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 21

Table 11. The frequent data sources, features, models, evaluation techniques and evaluation metrics used
for the five identified SV assessment and prioritization themes. Notes: The values are organized based on
their overall frequency across the five themes. For the Prediction Model and Evaluation Metric elements, the
values are first organized by categories (ML then DL for Prediction Model and classification then regression
for Evaluation Metric) and then by frequencies. k-CV stands for k-fold cross-validation. The full list of values
and their appearance frequencies for the five elements in the five themes can be found at [108].

Source/Technique/Metric Strengths Weaknesses

Element: Data Source

NVD/CVE/CVE Details (deprecated
OSVDB)

• Report expert-verified information (with CVE-ID)
• Contain CWE and CVSS entries for each SV
• Link to external sources (official fixes or vendors’ info)

•Missing/incomplete links to vulnerable code/fixes
• Inconsistencies due to human errors
• Delayed SV reporting and assignment of CVSS metrics

ExploitDB • Report PoC exploits of SVs (with links to CVE-ID) •May not lead to real exploits in the wild
Other security advisories (e.g.,
SecurityFocus, Symantec or X-Force)

• Report real-world exploits of SVs
• Cover a wide range of SVs (including ones w/o CVE-ID)

• Some exploits may not have links to CVE entries for
mapping with other assessment metrics

Informal sources (e.g., Twitter
and darkweb)

• Early reporting of SVs (maybe even earlier than NVD)
• Contain non-technical SV information (e.g., financial
damage or socio-technical challenges in addressing SVs)

• Contain non-verified and even misleading information
•May cause adversarial attacks to assessment models

Element: Model Feature

BoW/tf-idf/n-grams
• Simple to implement
• Strong baseline for text-based inputs (e.g., SV descrip-
tions in security databases/advisories)

•May suffer from vocabulary explosion (e.g., many new descrip-
tion words for new SVs)
• No consideration of word context/order (maybe needed for
code-based SV analysis)
• Cannot handle Out-of-Vocabulary (OoV) words (can be resolved
with subwords [113])

Word2vec • Capture nearby context of each word
• Can reuse existing pre-trained model(s)

• Cannot handle OoV words (can be resolved with fastText [18])
• No consideration of word order

DL model end-to-end trainable
features • Produce SV task-specific features •May not produce high-quality representation for tasks

with limited data (e.g., real-world exploit prediction)

Bidirectional Encoder Representations
from Transformers (BERT)

• Capture contextual representation of text (i.e., the
feature vector of a word is specific to each input)
• Capture word order in an input
• Can handle OoV words

•May require GPU to speed up feature inference
•May be too computationally expensive and require too
much data to train a strong model from scratch
•May require fine-tuning to work well for a source task

Source/expert-defined metadata
features

• Lightweight
• Human interpretable for a task of interest

• Require SV expertise to define relevant features
• Hard to generalize to new tasks

Element: Prediction Model

Single ML models (e.g., Linear SVM,
Logistic regression, Naïve Bayes)

• Simple to implement
• Efficient to (re-)train on large data (e.g., using the entire
NVD database)

•May be prone to overfitting
• Usually do not perform as well as ensemble/DL models

Ensemble ML models (e.g., Ran-
dom forest, XGBoost, LGBM)

• Strong baseline (usually stronger than single models)
• Less prone to overfitting • Take longer to train than single models

Latent Dirichlet Allocation (LDA –
topic modeling)

• Require no labeled data for training
• Can provide features for supervised learning models

• Require SV expertise to manually label generated topics
•May generate human non-interpretable topics

Deep Multi-Layer Perceptron
(MLP)

•Work readily with tabular data (e.g., manually defined
features or BoW/tf-idf/n-grams)

• Perform comparably yet are more costly compared to ensemble
ML models
• Less effective for unstructured data (e.g., SV descriptions)

Deep Convolutional Neural
Networks (CNN)

• Capture local and hierarchical patterns of inputs
• Usually perform better than MLP for text-based data

• Cannot effectively capture sequential order of inputs (maybe
needed for code-based SV analysis)

Deep recurrent neural networks
(e.g., LSTM or Bi-LSTM)

• Capture short-/long-term dependencies from inputs
• Usually perform better than MLP for text-based data

•May suffer from the information bottleneck issue (can be
resolved with attention mechanism [9])
• Usually take longer to train than CNNs

Deep graph neural networks
(e.g., Graph convolutional network)

• Capture directed relationships among multiple SV
entities and sources

• Require graph-based inputs to work
•More computationally expensive than other DL models

Deep transfer learning with
fine-tuning (e.g., BERT with task-
specific classification layer(s))

• Can improve the performance for tasks with small data
(e.g., real-world exploit prediction) • Require target task to have similar nature as source task

Deep constrastive learning
(e.g., Siamese neural networks)

• Can improve performance for tasks with small data
• Robust to class imbalance (e.g., CWE classes)

• Computationally expensive (two inputs instead of one)
• Do not directly produce class-wise probabilities

Deep multi-task learning
• Can share features for predicting multiple tasks (e.g.,
CVSS metrics) simultaneously
• Reduce training/maintenance cost

• Require predicted tasks to be related
• Hard to tune the prediction/performance of individual tasks

Element: Evaluation Technique

Single k-CV without test • Easy to implement
• Reduce the randomness of results with multiple folds

• Do not have a separate test set for validating optimized models
(can be resolved with separate test set(s))
•Maybe infeasible for expensive DL models
• Use future data/SVs for training, maybe leading to biased results

Single/multiple random train/test
with/without val (using val to tune
hyperparameters)

• Easy to implement
• Reduce the randomness of results (the multiple version)

•May produce unstable results (the single version)
•Maybe infeasible for expensive DL models (the multiple version)
• Use future data/SVs for training, maybe leading to biased results

Single/multiple time-based train/test
with/without val (using val to tune
hyperparameters)

• Consider the temporal properties of SVs, simulating the
realistic evaluation of ever-increasing SVs in practice
• Reduce the randomness of results (the multiple version)

• Similar drawbacks for the single & multiple versions as the
random counterparts
•May result in uneven/small splits (e.g., many SVs in a year)

Element: Evaluation Metric

F1-score/Precision/Recall
(classification)

• Suitable for imbalanced data (common in SV assessment
and prioritization tasks)

• Do not consider True Negatives in a confusion matrix (can be
resolved with Matthews Correlation Coefficient (MCC))

Accuracy (classification) • Consider all the cells in a confusion matrix • Unsuitable for imbalanced data (can be resolved with MCC)

Area Under the Curve (AUC)
(classification) • Independent of prediction thresholds

•May not represent real-world settings (i.e., as models in practice
mostly use fixed classification thresholds)
• ROC-AUC may not be suitable for imbalanced data (can be
resolved with Precision-Recall-AUC)

Mean absolute (percentage) error/
Root mean squared error (regression) • Show absolute performance of models •Maybe hard to interpret a value on its own without domain

knowledge (i.e., whether an error of 𝑥 is sufficiently effective)
Correlation coefficient (𝑟 )/ Coef.
of determination (𝑅2 ) (regression)

• Show relative performance of models (0 – 1), where 0 is
worst & 1 is best

• 𝑅2 always increases when adding any new feature (can be
resolved with adjusted 𝑅2 )



22 Triet H. M. Le, Huaming Chen, and M. Ali Babar

external sources (e.g., SV fixing code) [78]. Such issues motivate future work to validate/clean NVD
data and utilize more sources for code-based SV assessment and prioritization (see section 9.1.1).
To enrich the SV information on NVD/CVE, many other security advisories and SV databases

have been commonly leveraged by the reviewed studies, notably ExploitDB [168], Symantec [21, 22],
SecurityFocus [84], CVE Details [222] and OSVDB. Most of these sources disclose PoC (ExploitDB
andOSVDB) and/or real-world (Symantec and Security Focus) exploits. However, real-world exploits
are much rarer and different compared to PoC ones [86, 165]. It is recommended that future work
should explore more data sources (other than the ones in Table 2) and better methods to retrieve
real-world exploits (see section 9.1). Additionally, CVE Details and OSVDB are SV databases like
NVD yet with a few key differences. CVE Details explicitly monitors Exploit-DB entries that may
be missed on NVD and provides a more user-friendly interface to view/search SVs. OSVDB also
reports SVs that do not appear on NVD (without CVE-ID), but this site was discontinued in 2016.
Besides official/expert-verified data sources, we have seen an increasing interest in mining SV

information from informal sources that also contain non-expert generated content such as social
media (e.g., Twitter) and darkweb. Especially, Twitter has been widely used for predicting exploits
as this platform has been shown to contain many SV disclosures even before official databases like
NVD [29, 165]. Recently, darkweb forums/sites/markets have also gained traction as SV mentions
on these sites have a strong correlation with their exploits in the wild [5, 6]. However, SV-related
data on these informal sources are much noisier because they neither follow any pre-defined
structure nor have any verification and they are even prone to fake news [165]. Thus, the data
integrity of these sources should be checked, potentially by checking the reputation of posters, to
avoid inputting unreliable data to prediction models and potentially producing misleading findings.

8.2 Model features
Collected raw data need to be represented by suitable features for training prediction models. There
are three key types of feature representation methods in this area: term frequency (e.g., BoW, tf-idf
and n-grams), DL learned features (e.g., BERT and word2vec) and source/expert-defined metadata
(e.g., CVSS metrics and CPE on NVD or tweet properties on Twitter), as summarized in Table 11.

Regarding the term-frequency based methods, BoW has been the most popular one. Its popularity
is probably because it is one of the simplest ways to extract features from natural language
descriptions of SVs and directly compatible with popular ML models (e.g., Linear SVM, Logistic
regression and Random forest) in section 8.3. Besides plain term count/frequency, other studies have
also considered different weighting mechanisms such as inverse document frequency weighting
(tf-idf) or tf-igm [33] inverse gravity moment weighting (tf-igm). Tf-igm has been shown to work
better than BoW and tf-idf at classifying severity [32, 102]. Future work is still needed to evaluate
the applicability and generalizability of tf-igm for other SV assessment and prioritization tasks.

Recently, Neural Network (NN) or DL based features such as word2vec [129] and BERT [43] have
been increasingly used to improve the performance of predicting CVSS exploitation/impact/severity
metrics [67, 75], CWE types [40] and SV information retrieval [71, 196]. Compared to BoW and its
variants, NN and DL can extract more efficient and context-aware features from vast SV data [109].
NN/DL techniques rely on distributed representation to encode SV-related words using fixed-length
vectors much smaller than a vocabulary size. Moreover, these techniques capture the sequential
order and context (nearby words) to enable better SV-related text comprehension (e.g., SV vs.
general exploit). Importantly, these NN/DL learned features can be first trained in a non-SV domain
with abundant data (e.g., Wikipedia pages [62]) and then transferred/fine-tuned in the SV domain
to address limited/imbalanced SV data [208]. The main concern with these sophisticated NN/DL
features is their limited interpretability, which is an exciting research area (see section 9.2.2).



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 23

The metadata about SVs can also complement the missing information in descriptions or code
for SV assessment and prioritization. For example, prediction of exploits and their characteristics
have been enhanced using CVSS metrics [6], CPE [3] and SV types [13] on NVD. Additionally,
Twitter-related statistics (e.g., number of followers, likes and retweets) have been shown to increase
the performance of predicting SV exploitation, impact and severity [30, 165]. Recently, alongside
features extracted from vulnerable code, the information about a software development process and
involved developers have also been extracted to predict SV fixing effort [147]. Currently, metadata-
based and text-based features have been mainly integrated by concatenating their respective feature
vectors (e.g., [5, 6, 29, 31]). An alternative yet unexplored way is to build separate models for each
feature type and then combine these models using meta-learning (e.g., model stacking [49]).

8.3 Prediction models
The extracted features enter a wide variety of ML/DL-based prediction models shown in Table 11 to
automate various SV assessment and prioritization tasks. Classification techniques have the largest
proportion, while regression and unsupervised techniques are less common.
Linear SVM [37] has been the most frequently used classifier, especially in the Exploitation,

Impact and Severity themes. This popularity is expected as Linear SVM works well with the
commonly used features, i.e., BoW and tf-idf. Besides Linear SVM, Random forest, Naïve Bayes and
Logistic regression have also been common classification models. In recent years, advanced boosting
models (e.g., XGBoost [34] and LGBM [91]), and more lately, DL techniques (e.g., CNN [96] and (Bi-
)LSTM with attention [9]) have been increasingly utilized and shown better results than simple ML
models like Linear SVM or Logistic regression. In this area, some DL models are essential for certain
tasks, e.g., building SV knowledge graph from multiple sources with graph neural networks [97].
DL models also offer solutions to data-related issues such as addressing class imbalance (e.g.,
deep Siamese network [158]) or improving data efficiency (e.g., deep multi-task learning [217]).
Whenever applicable, it is recommended that future work should still consider simple baselines
alongside sophisticated ones as simple methods can perform on par with advanced ones [123].
Besides classification, various prediction models have also been investigated for regression

(e.g., predicting exploit time, severity score and fixing time). Linear SVM has again been the most
commonly used regressor as SV descriptions have usually been the regression input. Notably, many
studies in the Severity theme did not build regression models to directly obtain the severity score
(e.g., [52, 88, 144, 177, 199]). Instead, they used the formulas defined by assessment frameworks (e.g.,
CVSS versions 2/3 [58, 59] or WIVSS [179]) to compute the severity score from the base metrics
predicted by respective classification models. We argue that more effort should be invested in deter-
mining the severity score directly from SV data as these severity formulas can be subjective [180].
We also observe that there is still limited use of DL models for regression compared to classification.

In addition to supervised (classification/regression) techniques, unsupervised learning has also
been considered for extracting underlying patterns of SV data, especially in the Type theme. Latent
Dirichlet Allocation (LDA) [17] has been the most commonly used topic model to identify latent
topics/types of SVs without relying on a labeled taxonomy. The identified topics were mapped to
the existing SV taxonomies such as CWE [139] and OWASP [134, 189]. The topics generated by
topic models like LDA can also be used as features for classification/regression models [160] or
building topic-wise models to capture local SV patterns [125]. However, definite interpretations for
unsupervised outputs are challenging to obtain as they usually rely on human judgement [150].

8.4 Evaluation techniques
It is important to evaluate a trained model to ensure the model meets certain requirements (e.g.,
advancing the state-of-the-art). The evaluation generally needs to be conducted on a different set



24 Triet H. M. Le, Huaming Chen, and M. Ali Babar

of data other than the training set to avoid overfitting and objectively estimate model generalizabil-
ity [76]. The commonly used evaluation techniques are summarized in Table 11.

The reviewed studies have mostly used one or multiple validation and/or test sets18 to evaluate
their models, in which each validation/test set has been either randomly or time-based selected.
Specifically, k-fold cross-validation has been one of the most commonly used techniques. The
number of folds has usually been 5 or 10, but less standard values like 4 [207] have also been used.
However, k-fold cross-validation uses all parts of data at least once for training; thus, there is no
hidden test set to evaluate the optimal model with the highest (cross-)validation performance.
To address the lack of hidden test set(s), a common practice in the studied papers has been

to split a dataset into single training and test sets, sometimes with an additional validation set
for tuning hyperparameters to obtain an optimal model. Recently, data has been increasingly
split based on the published time of SVs to better reflect the changing nature of ever-increasing
SVs [23, 113]. There have been various ratios for random (e.g., 80:20, 75:25 or 67:33) and time-based
(e.g., week/month/year-wise) splits. However, the results reported using single validation/test sets
may be unstable (i.e., unreproducible results using different set(s)) [157].

To ensure both the time order and reduce the result randomness, we recommend using multiple
splits of training and test sets in combination with time-based validation in each training set.
Statistical analyses (e.g., hypothesis testing and effect size) should also be conducted to confirm the
reliability of findings with respect to the randomization of models/data in multiple runs [41].

8.5 Evaluation metrics
Evaluating different aspects of a model requires respective proper metrics. The popular metrics for
evaluating the tasks in each theme are given in Table 11.
Across the five themes, Accuracy, Precision, Recall and F1-score [89] have been the most com-

monly used metrics because of a large number of classification tasks in the five themes. However,
Accuracy is not a suitable measure for SV assessment and prioritization tasks with imbalanced
data (e.g., SVs with real-world exploits vs. non-exploited SVs). The sample size of one class is much
smaller than the others, and thus the overall Accuracy would be dominated by the majority classes.
Besides these four commonly used metrics, AUC based on the ROC curve (ROC-AUC) [89] has
also been considered as it is threshold-independent. However, we suggest that ROC-AUC should
be used with caution in practice as most deployed models would have a fixed decision threshold
(e.g., 0.5). Instead of ROC-AUC, we suggest Matthews Correlation Coefficient [89] (MCC) as a more
meaningful evaluation metric to be considered as it explicitly captures all values in a confusion
matrix, and thus has less bias in results.

For regression tasks, various metrics have been used such as Mean absolute error, Mean absolute
percentage error, Root mean squared error [177] as well as Correlation coefficient (𝑟 ) and Coefficient
of determination (𝑅2) [147]. Note that adjusted 𝑅2 should be preferred over 𝑅2 as 𝑅2 would always
increase when adding a new (even irrelevant) feature.
A model can have a higher value of one metric yet lower values of others.19 Therefore, we

suggest using a combination of suitable metrics for a task of interest to avoid result bias towards a
specific metric. Currently, most studies have focused on evaluating model effectiveness, i.e., how
well the predicted outputs match the ground-truth values. Besides effectiveness, other aspects
(e.g., efficiency in training/deployment and robustness to input changes) of models should also be
evaluated to provide a complete picture of model applicability in practice (see section 9.2.3).

18Validation set(s) helps optimize/tune a model (finding the best task/data-specific hyperparameters), and test set(s) evaluates
the optimized/tuned model. Using only validation set(s) means evaluating a model with default/pre-defined hyperparameters.
19https://stackoverflow.com/questions/34698161

https://stackoverflow.com/questions/34698161


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 25
O

p
en

 R
es

ea
rc

h
 C

h
al

le
n

ge
s 

an
d

Fu
tu

re
 D

ir
ec

ti
on

s

1. SV Data Availability

2. Real-world Application & 
Evaluation

3. Data-driven SV 
Assessment & Prioritization 
of Data-driven Systems

Utilization of developer Q&A platforms & version control systems
Integration of SV data on issue tracking systems
Relaxation of fully-supervised learning

More timely & fine-grained prediction

Enhancing model interpretability

Realistic evaluation settings

Designing a compatible SV assessment framework

Collection of SVs in data-driven systems

Representation of SVs in data-driven systems

Open Research Challenges Future Directions

Fig. 2. List of challenges and future directions for data-driven SV assessment and prioritization.

9 OPEN RESEARCH CHALLENGES AND FUTURE DIRECTIONS OF DATA-DRIVEN
SOFTWARE VULNERABILITY ASSESSMENT AND PRIORITIZATION

We discuss three main open challenges with the reviewed studies of data-driven SV assessment and
prioritization and then present nine potential directions to address such challenges (see Figure 2).

9.1 SV Data Availability
This section focuses on three key issues with the currently used data sources and potential solutions.
First, the current data hardly contain specific developer’s concerns and practices when addressing
real-world SVs (section 9.1.1). Second, the data sources still miss many SV-related bugs reported in
issue tracking systems, limiting the amount of data for training prediction models (section 9.1.2).
Third, some tasks/outputs (e.g., real-world exploit prediction) suffer from limited and/or imbalanced
labeled data, potentially leading to unreliable performance of fully-supervised models (section 9.1.3).

9.1.1 Utilization of developer Q&A platforms and version control systems. Developer Question &
Answer (Q&A) platforms like Stack Overflow and Security StackExchange20 contain tens of thou-
sands of posts about challenges and solutions shared by millions of developers when tackling
known SVs in real-world scenarios [110]. One of the key insights of Le et al. [110]’s study is that
the top SV types that developers usually struggle with are not always the same as those reported
on SV databases (CWE [133] or OWASP [149]). Thus, future work should also consider real-world
development-related issues discussed on developer Q&A platforms for automatically assessing and
prioritizing SVs. For example, the fixing effort of SVs may depend on the technical difficulty of
implementing the respective mitigation strategies in a language or system of interest.

Version control systems like GitHub21 provide details about how developers addressed past SVs in
real-world projects. Shrestha et al. [173] found developers sometimes discuss/disclose SV-related
information on GitHub discussions even before the studied social media such as Twitter or Reddit.
These findings show the potential of using GitHub discussions to complement the current sources for
earlier SV assessment and prioritization. GitHub can also provide vulnerable code for performing
assessment and prioritization for SVs rooted in source code [107], which is important yet has
received limited attention from the community so far. Moreover, Walden [191] demonstrated the
impact of amajor SV (i.e., Heartbleed) on the characteristics (e.g., code complexity/style, contributors

20Stack Overflow: https://stackoverflow.com & Security StackExchange: https://security.stackexchange.com
21https://github.com

https://stackoverflow.com
https://security.stackexchange.com
https://github.com


26 Triet H. M. Le, Huaming Chen, and M. Ali Babar

and development practices) of a single project (i.e., OpenSSL). Based on Walden’s findings, future
work can study whether the impact of an SV would be similar or different in multiple affected
projects. Such investigation would give insights into the possibility of leveraging data from large
projects to perform SV assessment and prioritization in smaller projects with the same/similar SVs.

9.1.2 Integration of SV data on issue tracking systems. Issue/bug tracking systems like JIRA, Bugzilla
or GitHub issues22 have been reporting numerous security-related bugs, many of which are SVs, but
they have been underexplored for data-driven SV assessment and prioritization. Besides providing
SV descriptions like CVE/NVD, these bug reports also contain other artifacts such as steps to
reproduce, stack traces and test cases that give extra information about SVs [219]. However, it is
not trivial to obtain and integrate these SV-related bug reports with the ones on SV databases.
One way to retrieve SVs on issue tracking systems is to use security bug reports [14]. Much

research work has been put into developing effective models to automatically retrieve security bug
reports (e.g., [65, 153, 203]). Among these studies, Wu et al. [203] manually verified and cleaned
the security bug reports to provide a clean dataset for automated security bug report identification.
However, more of such manual effort is still required to obtain up-to-date data because the original
security bug reports in [203] were actually a part of the dataset collected back in 2014 [146].

It is worth noting that not all security bug reports are related to SVs such as issues/improvements
in implementing security features.23 Thus, future studies need to filter out these cases before using
security bug reports for SV assessment and prioritization. We also emphasize that some SV-related
bug reports are overlapping with the ones on NVD (e.g., the SV report AMBARI-1478024 on JIRA
refers to CVE-2016-0731 on CVE/NVD). Such overlaps would require data cleaning during the
integration of reports on issue tracking systems and SV databases to avoid data duplication (e.g.,
similar SV descriptions) when developing SV assessment and prioritization models.

9.1.3 Relaxation of fully-supervised learning. Supervised learning models of many tasks in the five
themes (see section 8.3) require fully labeled data, but the data of some tasks are quite limited. To
address the data-hungriness of these fully-supervised learning models, future studies can approach
the SV assessment and prioritization tasks with low-shot learning and/or semi-supervised learning.

Low-shot learning a.k.a. few-shot learning is designed to perform supervised learning using only
a few examples per class, significantly reducing the labeling effort [195]. So far, only one study
utilized low-shot learning with a deep Siamese network [40] (i.e., a shared feature model with
similarity learning) to effectively predict SV types (CWE) and even generalize to unseen classes
(i.e., zero-shot learning). There are still many opportunities for investigating different few-shot
learning techniques for other SV assessment and prioritization tasks. Note that the shared features
in few-shot learning can also be enhanced with pretrained models (e.g., BERT [43]) on another
domain/task/project with more labeled data than the current task/project in the SV domain.

Semi-supervised learning enables training models with limited labeled data yet a large amount of
unlabeled data [188], potentially leveraging hidden/unlabeled SVs in the wild. Recently, we have
seen an increasing interest in using different techniques of this learning paradigm in the SV domain
such as collecting SV patches using multi-view co-training [167] or retrieving SV discussions on
developer Q&A sites using positive-unlabeled learning [111]. However, it is still little known about
the effectiveness of semi-supervised learning for SV assessment and prioritization.

22JIRA: https://www.atlassian.com/software/jira, Bugzilla: https://www.bugzilla.org/, GitHub issues: https://docs.github.
com/en/issues
23The security bug report AMBARI-1373 on JIRA (https://issues.apache.org/jira/browse/AMBARI-1373) was about improving
the front-end of AMBARI Web by displaying the current logged in user.
24https://issues.apache.org/jira/browse/AMBARI-14780

https://www.atlassian.com/software/jira
https://www.bugzilla.org/
https://docs.github.com/en/issues
https://docs.github.com/en/issues
https://issues.apache.org/jira/browse/AMBARI-1373
https://issues.apache.org/jira/browse/AMBARI-14780


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 27

9.2 Real-world Application and Evaluation
The experimental performance of some SV assessment and prioritization models is promising, but
the real-world applicability of such models is still questionable. First, these models may not be useful
in practice due to delayed inputs and coarse-grained outputs (section 9.2.1). Second, many models
are black-box, limiting the understanding of the model predictions (section 9.2.2). Third, some
models are evaluated in over-optimistic conditions far from real-world scenarios (section 9.2.3).

9.2.1 More timely and fine-grained prediction. Although SV descriptions have been commonly
used as model inputs (see section 8.1), these descriptions are usually published long after SVs intro-
duced/discovered in codebases [124]. One potential solution to this issue is to perform assessment
and prioritization of SVs in code commits. Code commits contain changes made by developers to
fix a bug/SV, implement a new feature or refactor code, and new SVs may be introduced in such
changes [19]. Commit-level prediction would allow just-in-time SV assessment and prioritization
as soon as SVs are introduced, reducing the waiting time for SV information to be verified and
published on security advisories/databases [112]. It should be noted that report-level prediction
is still important for assessing and prioritizing third-party libraries/software, especially the ones
without available code (commits), and/or SVs missed by commit-level prediction.

CVSS [57] has been most frequently used for assessing the exploitability, impact and severity
levels/score of SVs (see sections 3, 4 and 5), but there are increasing concerns that CVSS outputs
are still generic. Specifically, Spring et al. [180] argued that CVSS tends to provide one-size-fits-all
assessment metrics regardless of the context of SVs; i.e., the same SVs in different domains/envi-
ronments are assigned the same metric values. For instance, banking systems may consider the
confidentiality and integrity of databases more important than the availability of web/app interfaces.
In the future, alongside CVSS, prediction models should also incorporate the domain/business
knowledge to customize the assessment of SVs to a system of interest (e.g., the impact of SVs on
critical component(s) and/or the readiness of developers/solutions for mitigating such SVs in the
current system). Future case studies with practitioners are also desired to correlate the quantitative
performance of models and their usability/usefulness in real-world systems (e.g., reducing more
critical SVs yet using fewer resources).

9.2.2 Enhancing model interpretability. Model interpretability is important to increase the trans-
parency of the predictions made by a model, allowing practitioners to adjust the model/data to
meet certain requirements [216]. Unfortunately, very few reviewed papers (e.g., [75, 186]) explicitly
discussed important features and/or explained why/when their models worked/failed for a task.

SV assessment and prioritization can draw inspiration from the related SV detection area where
the interpretability of (DL-based) prediction models has been actively explored mainly by using (i)
specific model architectures/parameters or (ii) external interpretation models/techniques [216]. In
the first approach, prior studies successfully used the feature activation maps in a CNN model [162]
or leveraged attention-based neural network [48] to highlight and visualize the important code
tokens that contribute to SVs. The second approach uses separate interpretation models on top of
trained SV detectors. The interpretation models are either domain/model-agnostic [197], domain-
agnostic yet specific to a model type (graph neural network [114]) or SV-specific [221]. The
aforementioned approaches produce local/sample-wise interpretation, which can be aggregated to
obtain global/task-wise interpretation. The global interpretation is similar to the feature importance
of traditional ML models [28] such as the weights of linear models (e.g., Logistic regression) or the
(im)purity of nodes split by each feature in tree-based models (e.g., Random forest). However, it is
still unclear about the applicability/effectiveness of these approaches for interpreting ML/DL-based
SV assessment and prioritization models, requiring further investigations.



28 Triet H. M. Le, Huaming Chen, and M. Ali Babar

9.2.3 Realistic evaluation settings. Most of the reviewed studies have evaluated their prediction
models without capturing many factors encountered during the deployment of such models to
production. Specifically, the models used in practice would require to handle new data and be
robust against adversarial data from informal sources such as social media or darkweb.

There are concerns with both predicting and integrating new SV data. Regarding the prediction,
Out-of-Vocabulary words in new data need to be properly accommodated to avoid performance
degradation of prediction models [113]. Regarding the new data integration, online/incremental
training on new data can be considered instead of batch training on the whole dataset to reduce com-
putational cost [24]. The time-based splits should be used rather than random splits for evaluating
online training to avoid leaking unseen (future) patterns to the model training (see section 8.4).
Regarding the model robustness, only three reviewed studies considered adversarial attacks as

part of their evaluation [6, 165, 204]. However, a recent survey shows the prevalence of adversarial
attacks targeted models in cybersecurity [159]. Thus, there is certainly a need for more evaluation
of adversarial robustness for SV assessment and prioritization models, especially DL-based ones.

9.3 Data-driven SV Assessment and Prioritization of Data-driven Systems
Compared to other systems, reporting/analyzing SVs of data-driven/Artificial Intelligence (AI)-
based systems is still in its infancy [103]. Data-driven systems (e.g., smart recommender systems,
chatbots, robots, and autonomous cars) are an emerging breed of systems whose cores are powered
by AI technologies, e.g., ML and DL models built on data, rather than human-defined instructions
as in traditional systems. We discuss three key challenges of SV assessment and prioritization
of data-driven systems compared to traditional systems and suggest potential solutions. Firstly,
the current SV assessment frameworks need customizations to better reflect the nature of SVs in
data-driven systems (section 9.3.1). Secondly, there is a lack of SVs collected from real-world data-
driven systems, limiting the potential of data-driven SV assessment and prioritization (section 9.3.2).
Thirdly, the current models require redesign, especially in the SV representation, to capture unique
characteristics and artifacts of data-driven systems (section 9.3.3).

9.3.1 Designing a compatible SV assessment framework. CVSS [57] is currently the most popular
SV assessment framework for traditional systems, but its compatibility with data-driven systems
still requires more investigation. The current CVSS documentation lacks instructions on how to
assign metrics/score for SVs in data-driven systems. For example, it is unclear how to assign static
CVSS metrics to systems with automatically updated data-driven models [35] because adversarial
examples for exploitation would likely change after the models are updated. Such ambiguities
should be clarified/resolved in future CVSS versions as data-driven systems become more prevalent.
The types of SVs in ML/DL models in data-driven systems are also mostly different from the

ones provided by CWE [133]. The difference is mainly because these new SVs do not only emerge
from configurations/code as in traditional systems, but also from training data and/or trained
models [159]. Thus, we recommend that a new category of these SVs should be studied and
potentially incorporated into CWE, similar to the newly added category for architectural SVs.25

9.3.2 Collection of SVs in data-driven systems. To the best of our knowledge, there has been no
existing large-scale dataset of SVs in ML/DL models deployed in real-world data-driven systems.
Very few of such SVs have been reported in the wild, one of which is CVE-2019-20634.26 More of
these SVs are required to help develop sufficiently effective SV assessment and prioritization models.
One potential way to build such a dataset is to first match the (pre-trained) ML/DL models proposed

25https://cwe.mitre.org/data/definitions/1008.html
26https://nvd.nist.gov/vuln/detail/CVE-2019-20634

https://cwe.mitre.org/data/definitions/1008.html
https://nvd.nist.gov/vuln/detail/CVE-2019-20634


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 29

in the literature or released on model repositories (e.g., Tensorflow Hub27) with the ones used in
real-world systems either on version control systems or in mobile apps [83]. The matched models
would then be tested against known adversarial attacks to identify corresponding SVs. Notably,
significant effort is still required to define/label assessment outputs of these SVs (see section 9.3.1).

9.3.3 Representation of SVs in data-driven systems. Existing SV assessment and prioritization mod-
els for traditional systems have not considered unique data/model-related characteristics/features
of data-driven systems [192]. Specifically, data-driven systems also encompass information about
data (e.g., format, type, size and distribution) and ML/DL model(s) (e.g., configurations, parameters
and performance). It is worth noting that SVs of ML/DL models in data-driven systems can also
come from the frameworks used to develop such models (e.g., Tensorflow or Keras)28. However,
developers of data-driven systems may not be aware of the (security) issues in the used ML/DL
frameworks [118]. Thus, besides currently used features, future work should also consider the
information about underlying data/models and used ML/DL development frameworks to improve
the SV representation for building models to assess and prioritize SVs in data-driven systems.

10 CONCLUSIONS
Assessment and prioritization are crucial phases to optimize resource utilization in addressing
SVs at scale. The two phases have witnessed radical transformations following the increasing
availability of SV data from multiple sources and advances in data-driven techniques. We presented
a taxonomy to summarize the five main directions of the research work so far in this area. We
identified and analyzed the key practices to develop data-driven models in the reviewed studies.
We also highlighted the open challenges and suggested respective solutions to advance the field.

We envision the field will largely continue to improve the effectiveness of the presented tasks
by leveraging more enriched data sources and sophisticated data-driven models, especially DL-
based ones. Besides the improved performance, we also see many open opportunities/concerns
in under-explored aspects of developing such advanced models. Overall, a deeper understanding
of practitioners’ concerns and real-world usage scenarios is the key to bridging the current gap
between model development in academia and model deployment in production.

ACKNOWLEDGMENT
The work has been supported by the Cyber Security Research Centre Limited whose activities are
partially funded by the Australian Government’s Cooperative Research Centres Programme.

REFERENCES
[1] Ehsan Aghaei, Waseem Shadid, and Ehab Al-Shaer. 2020. ThreatZoom: CVE2CWE using hierarchical neural network.

arXiv preprint arXiv:2009.11501 (2020).
[2] Shirin Akbarinasaji, Bora Caglayan, and Ayse Bener. 2018. Predicting bug-fixing time: A replication study using an

open source software project. journal of Systems and Software 136 (2018), 173–186.
[3] M Ugur Aksu, Kemal Bicakci, M Hadi Dilek, A Murat Ozbayoglu, and E ıslam Tatli. 2018. Automated generation of

attack graphs using nvd. In Proceedings of the 8th Conference on Data and Application Security and Privacy. 135–142.
[4] Wajdi Aljedaani, Yasir Javed, and Mamdouh Alenezi. 2020. LDA categorization of security bug reports in Chromium

projects. In Proceedings of the 2020 European Symposium on Software Engineering. 154–161.
[5] Mohammed Almukaynizi, Eric Nunes, Krishna Dharaiya, Manoj Senguttuvan, Jana Shakarian, and Paulo Shakarian.

2017. Proactive identification of exploits in the wild through vulnerability mentions online. In 2017 International
Conference on Cyber Conflict (CyCon US). IEEE, 82–88.

[6] Mohammed Almukaynizi, Eric Nunes, Krishna Dharaiya, Manoj Senguttuvan, Jana Shakarian, and Paulo Shakarian.
2019. Patch before exploited: An approach to identify targeted software vulnerabilities. In AI in Cybersecurity.
Springer, 81–113.

27https://www.tensorflow.org/hub
28Tensorflow: https://github.com/tensorflow/tensorflow & Keras: https://github.com/keras-team/keras

https://www.tensorflow.org/hub
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras


30 Triet H. M. Le, Huaming Chen, and M. Ali Babar

[7] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen. 2020. Cleaning the NVD: Compre-
hensive quality assessment, improvements, and analyses. arXiv preprint arXiv:2006.15074 (2020).

[8] Masaki Aota, Hideaki Kanehara, Masaki Kubo, Noboru Murata, Bo Sun, and Takeshi Takahashi. 2020. Automation of
Vulnerability Classification from its Description using Machine Learning. In 2020 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 1–7.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473 (2014).

[10] Roberto Camacho Barranco, Arnold P Boedihardjo, and M Shahriar Hossain. 2019. Analyzing evolving stories in
news articles. International Journal of Data Science and Analytics 8, 3 (2019), 241–256.

[11] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D Brucker, and Philip Miseldine. 2015.
Factors impacting the effort required to fix security vulnerabilities. In International Conference on Information Security.
Springer, 102–119.

[12] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V Mancini. 2002. REMUS: A security-enhanced operating system.
ACM Transactions on Information and System Security (TISSEC) 5, 1 (2002), 36–61.

[13] Navneet Bhatt, Adarsh Anand, and VSS Yadavalli. 2021. Exploitability prediction of software vulnerabilities. Quality
and Reliability Engineering International 37, 2 (2021), 648–663.

[14] Farzana Ahamed Bhuiyan, Md Bulbul Sharif, and Akond Rahman. 2021. Security Bug Report Usage for Software
Vulnerability Research: A Systematic Mapping Study. IEEE Access 9 (2021), 28471–28495.

[15] Hodaya Binyamini, Ron Bitton, Masaki Inokuchi, Tomohiko Yagyu, Yuval Elovici, and Asaf Shabtai. 2021. A Framework
for Modeling Cyber Attack Techniques from Security Vulnerability Descriptions. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 2574–2583.

[16] David M. Blei and Jon D. McAuliffe. 2007. Supervised topic models. In Proceedings of the 20th International Conference
on Neural Information Processing Systems. 121–128.

[17] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine learning
research 3, Jan (2003), 993–1022.

[18] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword
information. Transactions of the Association for Computational Linguistics 5 (2017), 135–146.

[19] Amiangshu Bosu, Jeffrey CCarver,MunawarHafiz, PatrickHilley, andDerek Janni. 2014. Identifying the characteristics
of vulnerable code changes: An empirical study. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 257–268.

[20] Mehran Bozorgi, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2010. Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. 105–114.

[21] Broadcom. [n. d.]. Symantec attack signatures. Retrieved April, 2022 from https://bit.ly/symantec_att_sign
[22] Broadcom. [n. d.]. Symantec threat explorer. Retrieved April, 2022 from https://bit.ly/symantec_threats
[23] Benjamin L Bullough, Anna K Yanchenko, Christopher L Smith, and Joseph R Zipkin. 2017. Predicting exploitation of

disclosed software vulnerabilities using open-source data. In Proceedings of the 3rd ACM on International Workshop on
Security And Privacy Analytics. 45–53.

[24] George G Cabral, Leandro L Minku, Emad Shihab, and Suhaib Mujahid. 2019. Class imbalance evolution and
verification latency in just-in-time software defect prediction. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 666–676.

[25] CERT. [n. d.]. Basic fuzzing framework. Retrieved April, 2022 from https://bit.ly/basic_fuzzing_framework
[26] Sang Kil Cha. [n. d.]. OFuzz. Retrieved April, 2022 from https://github.com/sangkilc/ofuzz
[27] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012. Unleashing mayhem on binary code.

In 2012 IEEE Symposium on Security and Privacy. IEEE, 380–394.
[28] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection methods. Computers & Electrical

Engineering 40, 1 (2014), 16–28.
[29] Haipeng Chen, Jing Liu, Rui Liu, Noseong Park, and VS Subrahmanian. 2019. VASE: A Twitter-based vulnerability

analysis and score engine. In 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 976–981.
[30] Haipeng Chen, Jing Liu, Rui Liu, Noseong Park, and VS Subrahmanian. 2019. VEST: A system for vulnerability exploit

scoring & timing. In IJCAI. 6503–6505.
[31] Haipeng Chen, Rui Liu, Noseong Park, and VS Subrahmanian. 2019. Using twitter to predict when vulnerabilities will

be exploited. In Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining. 3143–3152.
[32] Jinfu Chen, Patrick Kwaku Kudjo, SolomonMensah, Selasie Aformaley Brown, and George Akorfu. 2020. An automatic

software vulnerability classification framework using term frequency-inverse gravity moment and feature selection.
Journal of Systems and Software 167 (2020), 110616.

https://bit.ly/symantec_att_sign
https://bit.ly/symantec_threats
https://bit.ly/basic_fuzzing_framework
https://github.com/sangkilc/ofuzz


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 31

[33] Kewen Chen, Zuping Zhang, Jun Long, and Hao Zhang. 2016. Turning from TF-IDF to TF-IGM for term weighting in
text classification. Expert Systems with Applications 66 (2016), 245–260.

[34] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
International Conference on Knowledge Discovery and Data Mining. 785–794.

[35] Yang Chen, Andrew E Santosa, Ang Ming Yi, Abhishek Sharma, Asankhaya Sharma, and David Lo. 2020. A machine
learning approach for vulnerability curation. In Proceedings of the 17th International Conference on Mining Software
Repositories. 32–42.

[36] Zhongqiang Chen, Yuan Zhang, and Zhongrong Chen. 2010. A categorization framework for common computer
vulnerabilities and exposures. Comput. J. 53, 5 (2010), 551–580.

[37] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273–297.
[38] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. 2006. Online passive aggressive

algorithms. (2006).
[39] Daniela S Cruzes and Tore Dybå. 2011. Research synthesis in software engineering: A tertiary study. Information and

Software Technology 53, 5 (2011), 440–455.
[40] Siddhartha Shankar Das, Edoardo Serra, Mahantesh Halappanavar, Alex Pothen, and Ehab Al-Shaer. 2021. V2W-

BERT: A framework for effective hierarchical multiclass classification of software vulnerabilities. arXiv preprint
arXiv:2102.11498 (2021).

[41] Francisco Gomes de Oliveira Neto, Richard Torkar, Robert Feldt, Lucas Gren, Carlo A Furia, and Ziwei Huang. 2019.
Evolution of statistical analysis in empirical software engineering research: Current state and steps forward. Journal
of Systems and Software 156 (2019), 246–267.

[42] Daniel Alves de Sousa, Elaine Ribeiro de Faria, and Rodrigo Sanches Miani. 2020. Evaluating the performance of
Twitter-based exploit detectors. arXiv preprint arXiv:2011.03113 (2020).

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[44] Nesara Dissanayake, Asangi Jayatilaka, Mansooreh Zahedi, and M Ali Babar. 2020. Software security patch
management–A systematic literature review of challenges, approaches, tools and practices. arXiv preprint
arXiv:2012.00544 (2020).

[45] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson, Frederick Ulrich,
and Ryan Whelan. 2016. Lava: Large-scale automated vulnerability addition. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 110–121.

[46] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang Wang. 2019. Towards the detection of
inconsistencies in public security vulnerability reports. In 28th {USENIX} Security Symposium. 869–885.

[47] Xuanyu Duan, Mengmeng Ge, Triet Huynh Minh Le, Faheem Ullah, Shang Gao, Xuequan Lu, and M Ali Babar. 2021.
Automated Security Assessment for the Internet of Things. In 2021 IEEE 26th Pacific Rim International Symposium on
Dependable Computing (PRDC). IEEE, 47–56.

[48] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun Wu. 2019. VulSniper: Focus
your attention to shoot fine-grained vulnerabilities. In IJCAI. 4665–4671.

[49] Saso Dzeroski and Bernard Zenko. 2002. Is combining classifiers better than selecting the best one?. In ICML, Vol. 2002.
Citeseer, 123e30.

[50] MICHEL Edkrantz. 2015. Predicting exploit likelihood for cyber vulnerabilities with machine learning. Master’s thesis.
[51] Michel Edkrantz, Staffan Truvé, and Alan Said. 2015. Predicting vulnerability exploits in the wild. In 2015 IEEE 2nd

International Conference on Cyber Security and Cloud Computing. IEEE, 513–514.
[52] Clément Elbaz, Louis Rilling, and Christine Morin. 2020. Fighting N-day vulnerabilities with automated CVSS vector

prediction at disclosure. In the 15th International Conference on Availability, Reliability and Security. 1–10.
[53] ESET. [n. d.]. ESET security advisories. Retrieved April, 2022 from https://bit.ly/eset_virus
[54] João Rafael Gonçalves Evangelista, Renato José Sassi, Márcio Romero, and Domingos Napolitano. 2020. Systematic

literature review to investigate the application of open source intelligence (OSINT) with artificial intelligence. Journal
of Applied Security Research (2020), 1–25.

[55] Yong Fang, Yongcheng Liu, Cheng Huang, and Liang Liu. 2020. FastEmbed: Predicting vulnerability exploitation
possibility based on ensemble machine learning algorithm. Plos one 15, 2 (2020), e0228439.

[56] Jenny Rose Finkel, Trond Grenager, and Christopher D Manning. 2005. Incorporating non-local information into
information extraction systems by gibbs sampling. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05). 363–370.

[57] FIRST. [n. d.]. Common Vulnerability Scoring System. Retrieved April, 2022 from https://www.first.org/cvss
[58] FIRST. [n. d.]. CVSS version 2. Retrieved April, 2022 from https://www.first.org/cvss/v2/guide
[59] FIRST. [n. d.]. CVSS version 3. Retrieved April, 2022 from https://www.first.org/cvss/v3.0/specification-document
[60] FIRST. [n. d.]. CVSS version 3.1. Retrieved April, 2022 from https://www.first.org/cvss/v3.1/specification-document

https://bit.ly/eset_virus
https://www.first.org/cvss
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.1/specification-document


32 Triet H. M. Le, Huaming Chen, and M. Ali Babar

[61] Park Foreman. 2019. Vulnerability management. CRC Press.
[62] Wikimedia Foundation. [n. d.]. Wikipedia pages. Retrieved April, 2022 from https://www.wikipedia.org
[63] Recorded Future. [n. d.]. Recorded Future security advisories. Retrieved April, 2022 from https://bit.ly/rf_sec
[64] Marian Gawron, Feng Cheng, and Christoph Meinel. 2017. Automatic vulnerability classification using machine

learning. In International Conference on Risks and Security of Internet and Systems. Springer, 3–17.
[65] Michael Gegick, Pete Rotella, and Tao Xie. 2010. Identifying security bug reports via text mining: An industrial case

study. In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010). IEEE, 11–20.
[66] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. 2017. Software vulnerability analysis and discovery using

machine-learning and data-mining techniques: A survey. ACM Computing Surveys (CSUR) 50, 4 (2017), 1–36.
[67] Xi Gong, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Zhuobing Han. 2019. Joint prediction of multiple

vulnerability characteristics through multi-task learning. In 2019 24th International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, 31–40.

[68] Danielle Gonzalez, Holly Hastings, andMehdiMirakhorli. 2019. Automated characterization of software vulnerabilities.
In 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 135–139.

[69] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
[70] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin Feist, and Laurent Mounier. 2016. Toward

large-scale vulnerability discovery using machine learning. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy. 85–96.

[71] Hao Guo, Zhenchang Xing, and Xiaohong Li. 2020. Predicting Missing Information of Key Aspects in Vulnerability
Reports. arXiv preprint arXiv:2008.02456 (2020).

[72] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data mining concepts and techniques third edition. The Morgan
Kaufmann Series in Data Management Systems 5, 4 (2011), 83–124.

[73] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. ACM sigmod
record 29, 2 (2000), 1–12.

[74] Zhuobing Han, Xiaohong Li, Hongtao Liu, Zhenchang Xing, and Zhiyong Feng. 2018. Deepweak: Reasoning common
software weaknesses via knowledge graph embedding. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 456–466.

[75] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng. 2017. Learning to predict severity
of software vulnerability using only vulnerability description. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 125–136.

[76] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of statistical learning: data mining, inference,
and prediction. Springer Science & Business Media.

[77] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[78] Daan Hommersom, Antonino Sabetta, Bonaventura Coppola, and Damian A Tamburri. 2021. Automated mapping of

vulnerability advisories onto their fix commits in open source repositories. arXiv preprint arXiv:2103.13375 (2021).
[79] Sameera Horawalavithana, Abhishek Bhattacharjee, Renhao Liu, Nazim Choudhury, Lawrence O. Hall, and Adriana

Iamnitchi. 2019. Mentions of security vulnerabilities on reddit, twitter and github. In IEEE/WIC/ACM International
Conference on Web Intelligence. 200–207.

[80] Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems (TOPLAS) 12, 1 (1990), 26–60.

[81] Guoyan Huang, Yazhou Li, Qian Wang, Jiadong Ren, Yongqiang Cheng, and Xiaolin Zhao. 2019. Automatic classifica-
tion method for software vulnerability based on deep neural network. IEEE Access 7 (2019), 28291–28298.

[82] Shin-Ying Huang and Yiju Wu. 2020. Dynamic software vulnerabilities threat prediction through social media
contextual analysis. In Proceedings of the 15th Asia Conference on Computer and Communications Security. 892–894.

[83] Yujin Huang, Han Hu, and Chunyang Chen. 2021. Robustness of on-device models: Adversarial attack to deep
learning models on android apps. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 101–110.

[84] SecurityFocus Inc. [n. d.]. BugTraq vulnerability database. Retrieved April, 2022 from http://www.securityfocus.com
[85] Secunia Inc. [n. d.]. Secunia vulnerability advisories. Retrieved April, 2022 from http://secunia.com
[86] Jay Jacobs, Sasha Romanosky, Idris Adjerid, and Wade Baker. 2020. Improving vulnerability remediation through

better exploit prediction. Journal of Cybersecurity 6, 1 (2020), tyaa015.
[87] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Michael Roytman, and Idris Adjerid. 2019. Exploit prediction

scoring system (EPSS). arXiv preprint arXiv:1908.04856 (2019).
[88] Yuning Jiang and Yacine Atif. 2020. An approach to discover and assess vulnerability severity automatically in

cyber-physical systems. In 13th International Conference on Security of Information and Networks. 1–8.
[89] Yasen Jiao and Pufeng Du. 2016. Performancemeasures in evaluatingmachine learning based bioinformatics predictors

for classifications. Quantitative Biology 4, 4 (2016), 320–330.

https://www.wikipedia.org
https://bit.ly/rf_sec
http://www.securityfocus.com
http://secunia.com


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 33

[90] Kenta Kanakogi, Hironori Washizaki, Yoshiaki Fukazawa, Shinpei Ogata, Takao Okubo, Takehisa Kato, Hideyuki
Kanuka, Atsuo Hazeyama, and Nobukazu Yoshioka. 2021. Tracing CAPEC attack patterns from CVE vulnerability
information using natural language processing technique. In Proceedings of the 54th Hawaii International Conference
on System Sciences. 6996.

[91] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems 30
(2017), 3146–3154.

[92] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical
Report. Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

[93] Inc. Kenna Security. [n. d.]. Kenna Security. Retrieved April, 2022 from http://www.kennasecurity.com
[94] Saad Khan and Simon Parkinson. 2018. Review into state of the art of vulnerability assessment using artificial

intelligence. In Guide to Vulnerability Analysis for Computer Networks and Systems. Springer, 3–32.
[95] Atefeh Khazaei, Mohammad Ghasemzadeh, and Vali Derhami. 2016. An automatic method for CVSS score prediction

using vulnerabilities description. Journal of Intelligent & Fuzzy Systems 30, 1 (2016), 89–96.
[96] Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 1746–1751.
[97] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907 (2016).
[98] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A Porter. 2014. Multilayer

networks. Journal of complex networks 2, 3 (2014), 203–271.
[99] Teuvo Kohonen. 1990. The self-organizing map. Proc. IEEE 78, 9 (1990), 1464–1480.
[100] Kyriakos Kritikos, Kostas Magoutis, Manos Papoutsakis, and Sotiris Ioannidis. 2019. A survey on vulnerability

assessment tools and databases for cloud-based web applications. Array 3 (2019), 100011.
[101] Patrick Kwaku Kudjo, Jinfu Chen, Solomon Mensah, Richard Amankwah, and Christopher Kudjo. 2020. The effect of

Bellwether analysis on software vulnerability severity prediction models. Software Quality Journal (2020), 1–34.
[102] Patrick Kwaku Kudjo, Jinfu Chen, Minmin Zhou, Solomon Mensah, and Rubing Huang. 2019. Improving the accuracy

of vulnerability report classification using term frequency-inverse gravity moment. In 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security (QRS). IEEE, 248–259.

[103] Ram Shankar Siva Kumar, Jonathon Penney, Bruce Schneier, and Kendra Albert. 2020. Legal risks of adversarial
machine learning research. arXiv preprint arXiv:2006.16179 (2020).

[104] Miron BKursa, Aleksander Jankowski, andWitold R Rudnicki. 2010. Boruta–a system for feature selection. Fundamenta
Informaticae 101, 4 (2010), 271–285.

[105] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29.

[106] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In International conference
on machine learning. PMLR, 1188–1196.

[107] Triet HM Le and M Ali Babar. 2022. On the Use of Fine-grained Vulnerable Code Statements for Software Vulnerability
Assessment Models. arXiv preprint arXiv:2203.08417 (2022).

[108] Triet HM Le, Huaming Chen, and M Ali Babar. [n. d.]. Supplementary materials. Retrieved April, 2022 from
https://figshare.com/s/da4d238ecdf9123dc0b8

[109] Triet HM Le, Hao Chen, and M Ali Babar. 2020. Deep learning for source code modeling and generation: Models,
applications, and challenges. ACM Computing Surveys (CSUR) 53, 3 (2020), 1–38.

[110] Triet HM Le, Roland Croft, David Hin, and M Ali Babar. 2021. A large-scale study of security vulnerability support
on developer Q&A websites. In Evaluation and Assessment in Software Engineering. 109–118.

[111] Triet HM Le, David Hin, Roland Croft, and M Ali Babar. 2020. PUMiner: Mining security posts from developer
question and answer websites with PU learning. In Proceedings of the 17th International Conference on Mining Software
Repositories. 350–361.

[112] Triet HM Le, David Hin, Roland Croft, and M Ali Babar. 2021. Deepcva: Automated commit-level vulnerability
assessment with deep multi-task learning. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 717–729.

[113] Triet HM Le, Bushra Sabir, and Muhammad Ali Babar. 2019. Automated software vulnerability assessment with
concept drift. In Proceedings of the 16th International Conference on Mining Software Repositories (MSR). IEEE, 371–382.

[114] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Vulnerability detection with fine-grained interpretations. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.

[115] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. 2020. Software vulnerability detection using
deep neural networks: a survey. Proc. IEEE 108, 10 (2020), 1825–1848.

http://www.kennasecurity.com
https://figshare.com/s/da4d238ecdf9123dc0b8


34 Triet H. M. Le, Huaming Chen, and M. Ali Babar

[116] Zhechao Lin, Xiang Li, and Xiaohui Kuang. 2017. Machine learning in vulnerability databases. In 2017 10th International
Symposium on Computational Intelligence and Design (ISCID), Vol. 1. IEEE, 108–113.

[117] Hailong Liu and Bo Li. 2019. Automated classification of attacker privileges based on deep neural network. In
International Conference on Smart Computing and Communication. Springer, 180–189.

[118] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2020. Is using deep learning frameworks
free? characterizing technical debt in deep learning frameworks. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Society. 1–10.

[119] Kai Liu, Yun Zhou, Qingyong Wang, and Xianqiang Zhu. 2019. Vulnerability severity prediction with deep neural
network. In 2019 5th International Conference on Big Data and Information Analytics (BigDIA). IEEE, 114–119.

[120] Ruchika Malhotra et al. 2021. Severity Prediction of Software Vulnerabilities Using Textual Data. In Proceedings of
International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications. Springer, 453–464.

[121] Pratyusa K Manadhata and Jeannette M Wing. 2010. An attack surface metric. IEEE Transactions on Software
Engineering 37, 3 (2010), 371–386.

[122] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English:
The Penn Treebank. (1993).

[123] A. Mazuera-Rozo, A. Mojica-Hanke, M. Linares-Vasquez, and G. Bavota. 2021. Shallow or deep? An empirical study
on detecting vulnerabilities using deep learning. In Proceedings of the 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC). 276–287.

[124] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez Tejeda, Matthew Mokary, and Brian
Spates. 2013. When a patch goes bad: Exploring the properties of vulnerability-contributing commits. In 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. IEEE, 65–74.

[125] TimMenzies, Suvodeep Majumder, Nikhila Balaji, Katie Brey, andWei Fu. 2018. 500+ times faster than deep learning:(a
case study exploring faster methods for text mining stackoverflow). In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR). IEEE, 554–563.

[126] Trend Micro. [n. d.]. Trend Micro security advisories. Retrieved April, 2022 from https://bit.ly/trend_micro_sec
[127] Trend Micro. [n. d.]. ZeroDay Initiative security advisories. Retrieved April, 2022 from https://bit.ly/zeroday_sec
[128] Microsoft. [n. d.]. Microsoft security advisories. Retrieved April, 2022 from https://bit.ly/ms_sec_advisories
[129] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words

and phrases and their compositionality. arXiv preprint arXiv:1310.4546 (2013).
[130] MITRE. [n. d.]. Common Attack Pattern Enumeration and Classification. Retrieved April, 2022 from https:

//capec.mitre.org
[131] MITRE. [n. d.]. Common Platform Enumeration. Retrieved April, 2022 from https://cpe.mitre.org
[132] MITRE. [n. d.]. Common Vulnerabilities and Exposures. Retrieved April, 2022 from https://cve.mitre.org/
[133] MITRE. [n. d.]. Common Weakness Enumeration. Retrieved April, 2022 from https://cwe.mitre.org
[134] Vanamala Mounika, Xiaohong Yuan, and Kanishka Bandaru. 2019. Analyzing CVE database using unsupervised topic

modelling. In 2019 International Conference on Computational Science and Computational Intelligence. 72–77.
[135] Syed Shariyar Murtaza, Wael Khreich, Abdelwahab Hamou-Lhadj, and Ayse Basar Bener. 2016. Mining trends and

patterns of software vulnerabilities. Journal of Systems and Software 117 (2016), 218–228.
[136] Sarang Na, Taeeun Kim, and Hwankuk Kim. 2016. A study on the classification of common vulnerabilities and

exposures using naïve bayes. In International Conference on Broadband and Wireless Computing, Communication and
Applications. Springer, 657–662.

[137] Sheikh Motahar Naim, Arnold P Boedihardjo, and M Shahriar Hossain. 2017. A scalable model for tracking topical
evolution in large document collections. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 726–735.

[138] Shunta Nakagawa, Tatsuya Nagai, Hideaki Kanehara, Keisuke Furumoto, Makoto Takita, Yoshiaki Shiraishi, Takeshi
Takahashi, Masami Mohri, Yasuhiro Takano, and Masakatu Morii. 2019. Character-level convolutional neural network
for predicting severity of software vulnerability from vulnerability description. IEICE Transactions on Information
and Systems 102, 9 (2019), 1679–1682.

[139] Stephan Neuhaus and Thomas Zimmermann. 2010. Security trend analysis with cve topic models. In 2010 IEEE 21st
International Symposium on Software Reliability Engineering. IEEE, 111–120.

[140] NIST. [n. d.]. National Vulnerability Database. Retrieved April, 2022 from https://nvd.nist.gov
[141] NIST. [n. d.]. Software Assurance Reference Dataset (SARD). Retrieved April, 2022 from https://samate.nist.gov/SRD
[142] NIST. [n. d.]. Vulnerability description ontology. Retrieved April, 2022 from https://bit.ly/nist_vdo
[143] Eric Nunes, Ahmad Diab, Andrew Gunn, EricssonMarin, Vineet Mishra, Vivin Paliath, John Robertson, Jana Shakarian,

Amanda Thart, and Paulo Shakarian. 2016. Darknet and deepnet mining for proactive cybersecurity threat intelligence.
In 2016 IEEE Conference on Intelligence and Security Informatics (ISI). IEEE, 7–12.

[144] Saahil Ognawala, Ricardo Nales Amato, Alexander Pretschner, and Pooja Kulkarni. 2018. Automatically assessing
vulnerabilities discovered by compositional analysis. In Proceedings of the 1st International Workshop on Machine

https://bit.ly/trend_micro_sec
https://bit.ly/zeroday_sec
https://bit.ly/ms_sec_advisories
https://capec.mitre.org
https://capec.mitre.org
https://cpe.mitre.org
https://cve.mitre.org/
https://cwe.mitre.org
https://nvd.nist.gov
https://samate.nist.gov/SRD
https://bit.ly/nist_vdo


A Survey on Data-driven Software Vulnerability Assessment and Prioritization 35

Learning and Software Engineering in Symbiosis. 16–25.
[145] Saahil Ognawala, Martín Ochoa, Alexander Pretschner, and Tobias Limmer. 2016. MACKE: Compositional analysis of

low-level vulnerabilities with symbolic execution. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 780–785.

[146] Masao Ohira, Yutaro Kashiwa, Yosuke Yamatani, Hayato Yoshiyuki, Yoshiya Maeda, Nachai Limsettho, Keisuke Fujino,
Hideaki Hata, Akinori Ihara, and Kenichi Matsumoto. 2015. A dataset of high impact bugs: Manually-classified issue
reports. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE, 518–521.

[147] Lotfi Ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D Brucker. 2017. Time for addressing
software security issues: Prediction models and impacting factors. Data Science and Engineering 2, 2 (2017), 107–124.

[148] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. 2005. MulVAL: A logic-based network security
analyzer. In USENIX security symposium, Vol. 8. Baltimore, MD, 113–128.

[149] OWASP. [n. d.]. Open Web Application Security Project. Retrieved April, 2022 from https://bit.ly/owasp_main
[150] Julio-Omar Palacio-Niño and Fernando Berzal. 2019. Evaluation metrics for unsupervised learning algorithms. arXiv

preprint arXiv:1905.05667 (2019).
[151] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data

engineering 22, 10 (2009), 1345–1359.
[152] Javier Pastor-Galindo, Pantaleone Nespoli, Félix Gómez Mármol, and Gregorio Martínez Pérez. 2020. The not yet

exploited goldmine of OSINT: Opportunities, open challenges and future trends. IEEE Access 8 (2020), 10282–10304.
[153] Fayola Peters, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh. 2017. Text filtering and ranking for security bug

report prediction. IEEE Transactions on Software Engineering 45, 6 (2017), 615–631.
[154] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.

2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018).
[155] Openwall Project. [n. d.]. Openwall security advisories. Retrieved April, 2022 from https://bit.ly/sec_openwall
[156] Rapid7. [n. d.]. Metasploit security advisories. Retrieved April, 2022 from https://www.rapid7.com/db/modules
[157] Sebastian Raschka. 2018. Model evaluation, model selection, and algorithm selection in machine learning. arXiv

preprint arXiv:1811.12808 (2018).
[158] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv

preprint arXiv:1908.10084 (2019).
[159] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2021. Adversarial machine learning attacks and defense

methods in the cyber security domain. ACM Computing Surveys (CSUR) 54, 5 (2021), 1–36.
[160] Jukka Ruohonen. 2017. Classifying web exploits with topic modeling. In 2017 28th International Workshop on Database

and Expert Systems Applications (DEXA). IEEE, 93–97.
[161] Jukka Ruohonen and Ville Leppänen. 2018. Toward validation of textual information retrieval techniques for software

weaknesses. In International Conference on Database and Expert Systems Applications. Springer, 265–277.
[162] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood, and Marc

McConley. 2018. Automated vulnerability detection in source code using deep representation learning. In 2018 17th
IEEE international conference on machine learning and applications (ICMLA). IEEE, 757–762.

[163] Ernesto R Russo, Andrea D Sorbo, Corrado A Visaggio, and Gerardo Canfora. 2019. Summarizing vulnerabilities’
descriptions to support experts during vulnerability assessment activities. Journal of Systems and Software 156 (2019),
84–99.

[164] Bushra Sabir, Faheem Ullah, M Ali Babar, and Raj Gaire. 2021. Machine Learning for Detecting Data Exfiltration: A
Review. ACM Computing Surveys (CSUR) 54, 3 (2021), 1–47.

[165] Carl Sabottke, Octavian Suciu, and Tudor Dumitras, . 2015. Vulnerability disclosure in the age of social media:
Exploiting twitter for predicting real-world exploits. In 24th {USENIX} Security Symposium. 1041–1056.

[166] Sefa Eren Sahin and Ayse Tosun. 2019. A conceptual replication on predicting the severity of software vulnerabilities.
In Proceedings of the Evaluation and Assessment on Software Engineering. 244–250.

[167] Arthur D Sawadogo, Tegawendé F Bissyandé, Naouel Moha, Kevin Allix, Jacques Klein, Li Li, and Yves Le Traon.
2020. Learning to Catch Security Patches. arXiv preprint arXiv:2001.09148 (2020).

[168] Offensive Security. [n. d.]. Exploit Database. Retrieved April, 2022 from https://www.exploit-db.com
[169] SecurityTracker. [n. d.]. SecurityTracker vulnerability database. Retrieved April, 2022 from https://securitytracker.com
[170] Abubakar Omari Abdallah Semasaba, Wei Zheng, Xiaoxue Wu, and Samuel Akwasi Agyemang. 2020. Literature

survey of deep learning-based vulnerability analysis on source code. IET Software (2020).
[171] Internet Security Services. [n. d.]. Online database X-Force. Retrieved April, 2022 from http://www.iss.net/xforce
[172] Ruchi Sharma, Ritu Sibal, and Sangeeta Sabharwal. 2021. Software vulnerability prioritization using vulnerability

description. International Journal of System Assurance Engineering and Management 12, 1 (2021), 58–64.
[173] Prasha Shrestha, Arun Sathanur, Suraj Maharjan, Emily Saldanha, Dustin Arendt, and Svitlana Volkova. 2020. Multiple

social platforms reveal actionable signals for software vulnerability awareness: A study of GitHub, Twitter and Reddit.

https://bit.ly/owasp_main
https://bit.ly/sec_openwall
https://www.rapid7.com/db/modules
https://www.exploit-db.com
https://securitytracker.com
http://www.iss.net/xforce


36 Triet H. M. Le, Huaming Chen, and M. Ali Babar

Plos one 15, 3 (2020), e0230250.
[174] Bo Shuai, Haifeng Li, Mengjun Li, Quan Zhang, and Chaojing Tang. 2013. Automatic classification for vulnerability

based onmachine learning. In 2013 IEEE International Conference on Information and Automation (ICIA). IEEE, 312–318.
[175] Shashank Kumar Singh and Amrita Chaturvedi. 2020. Applying deep learning for discovery and analysis of software

vulnerabilities: A brief survey. Soft Computing: Theories and Applications (2020), 649–658.
[176] Vincent Smyth. 2017. Software vulnerability management: how intelligence helps reduce the risk. Network Security

2017, 3 (2017), 10–12.
[177] Georgios Spanos and Lefteris Angelis. 2018. A multi-target approach to estimate software vulnerability characteristics

and severity scores. Journal of Systems and Software 146 (2018), 152–166.
[178] Georgios Spanos, Lefteris Angelis, and Dimitrios Toloudis. 2017. Assessment of vulnerability severity using text

mining. In Proceedings of the 21st Pan-Hellenic Conference on Informatics. 1–6.
[179] Georgios Spanos, Angeliki Sioziou, and Lefteris Angelis. 2013. WIVSS: a new methodology for scoring information

systems vulnerabilities. In Proceedings of the 17th panhellenic conference on informatics. 83–90.
[180] Jonathan Spring, Eric Hatleback, Allen Householder, Art Manion, and Deana Shick. 2021. Time to change the CVSS?

IEEE Security & Privacy 19, 2 (2021), 74–78.
[181] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks through augmenting topologies. Evolu-

tionary computation 10, 2 (2002), 99–127.
[182] Octavian Suciu, Connor Nelson, Zhuoer Lyu, Tiffany Bao, and Tudor Dumitras. 2021. Expected exploitability:

Predicting the development of functional vulnerability exploits. arXiv preprint arXiv:2102.07869 (2021).
[183] Jiamou Sun, Zhenchang Xing, Hao Guo, Deheng Ye, Xiaohong Li, Xiwei Xu, and Liming Zhu. 2021. Generating

informative CVE description from ExploitDB posts by extractive summarization. arXiv preprint arXiv:2101.01431
(2021).

[184] Nan Sun, Jun Zhang, Paul Rimba, Shang Gao, Leo Yu Zhang, and Yang Xiang. 2018. Data-driven cybersecurity
incident prediction: A survey. IEEE Communications Surveys & Tutorials 21, 2 (2018), 1744–1772.

[185] Nazgol Tavabi, Palash Goyal, Mohammed Almukaynizi, Paulo Shakarian, and Kristina Lerman. 2018. Darkembed:
Exploit prediction with neural language models. In the AAAI Conference on Artificial Intelligence, Vol. 32.

[186] Dimitrios Toloudis, Georgios Spanos, and Lefteris Angelis. 2016. Associating the Severity of Vulnerabilities with
their Description. In International Conference on Advanced Information Systems Engineering. Springer, 231–242.

[187] Shubham Tripathi, Gustavo Grieco, and Sanjay Rawat. 2017. Exniffer: Learning to prioritize crashes by assessing the
exploitability from memory dump. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 239–248.

[188] Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised learning. Machine Learning 109, 2
(2020), 373–440.

[189] Mounika Vanamala, Xiaohong Yuan, and Kaushik Roy. 2020. Topic modeling and classification of Common Vulnera-
bilities And Exposures database. In 2020 International Conference on Artificial Intelligence, Big Data, Computing and
Data Communication Systems (icABCD). IEEE, 1–5.

[190] Hein S Venter, Jan HP Eloff, and YL Li. 2008. Standardising vulnerability categories. Computers & Security 27, 3-4
(2008), 71–83.

[191] James Walden. 2020. The impact of a major security event on an open source project: The case of OpenSSL. In
Proceedings of the 17th International Conference on Mining Software Repositories. 409–419.

[192] ZhiyuanWan, Xin Xia, David Lo, and Gail C Murphy. 2019. How does machine learning change software development
practices? IEEE Transactions on Software Engineering (2019).

[193] Ju An Wang and Minzhe Guo. 2010. Vulnerability categorization using Bayesian networks. In Proceedings of the sixth
annual workshop on cyber security and information intelligence research. 1–4.

[194] Peichao Wang, Yun Zhou, Baodan Sun, and Weiming Zhang. 2019. Intelligent prediction of vulnerability severity
level based on text mining and XGBboost. In 2019 Eleventh International Conference on Advanced Computational
Intelligence (ICACI). IEEE, 72–77.

[195] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing from a few examples: A survey on
few-shot learning. ACM Computing Surveys (CSUR) 53, 3 (2020), 1–34.

[196] EmilWåreus andMartin Hell. 2020. Automated CPE labeling of CVE summaries withmachine learning. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 3–22.

[197] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. 2020. Evaluating explanation methods
for deep learning in security. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 158–174.

[198] Sachini Weerawardhana, Subhojeet Mukherjee, Indrajit Ray, and Adele Howe. 2014. Automated extraction of
vulnerability information for home computer security. In International Symposium on Foundations and Practice of
Security. Springer, 356–366.

[199] Tao Wen, Yuqing Zhang, Ying Dong, and Gang Yang. 2015. A novel automatic severity vulnerability assessment
framework. Journal of Communications 10, 5 (2015), 320–329.



A Survey on Data-driven Software Vulnerability Assessment and Prioritization 37

[200] Mark A Williams, Roberto Camacho Barranco, Sheikh Motahar Naim, Sumi Dey, M Shahriar Hossain, and Monika
Akbar. 2020. A vulnerability analysis and prediction framework. Computers & Security 92 (2020), 101751.

[201] Mark A Williams, Sumi Dey, Roberto Camacho Barranco, Sheikh Motahar Naim, M Shahriar Hossain, and Monika
Akbar. 2018. Analyzing evolving trends of vulnerabilities in national vulnerability database. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 3011–3020.

[202] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemometrics and intelligent
laboratory systems 2, 1-3 (1987), 37–52.

[203] Xiaoxue Wu, Wei Zheng, Xin Xia, and David Lo. 2021. Data quality matters: A case study on data label correctness
for security bug report prediction. IEEE Transactions on Software Engineering (2021).

[204] Chaowei Xiao, Armin Sarabi, Yang Liu, Bo Li, Mingyan Liu, and Tudor Dumitras. 2018. From patching delays
to infection symptoms: Using risk profiles for an early discovery of vulnerabilities exploited in the wild. In 27th
{USENIX} Security Symposium ({USENIX} Security 18). 903–918.

[205] Hongbo Xiao, Zhenchang Xing, Xiaohong Li, and Hao Guo. 2019. Embedding and predicting software security
entity relationships: A knowledge graph based approach. In International Conference on Neural Information Processing.
Springer, 50–63.

[206] Yasuhiro Yamamoto, Daisuke Miyamoto, and Masaya Nakayama. 2015. Text-mining approach for estimating vulnera-
bility score. In 2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS). IEEE, 67–73.

[207] Guanhua Yan, Junchen Lu, Zhan Shu, and Yunus Kucuk. 2017. Exploitmeter: Combining fuzzing with machine
learning for automated evaluation of software exploitability. In 2017 IEEE Symposium on Privacy-Aware Computing
(PAC). IEEE, 164–175.

[208] Jiao Yin, MingJian Tang, Jinli Cao, and Hua Wang. 2020. Apply transfer learning to cybersecurity: Predicting
exploitability of vulnerabilities by description. Knowledge-Based Systems 210 (2020), 106529.

[209] Sofonias Yitagesu, Xiaowang Zhang, Zhiyong Feng, Xiaohong Li, and Zhenchang Xing. 2021. Automatic part-of-
speech tagging for security vulnerability descriptions. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 29–40.

[210] Awad A Younis and Yashwant K Malaiya. 2014. Using software structure to predict vulnerability exploitation potential.
In 2014 IEEE Eighth International Conference on Software Security and Reliability-Companion. IEEE, 13–18.

[211] Peng Zeng, Guanjun Lin, Lei Pan, Yonghang Tai, and Jun Zhang. 2020. Software vulnerability analysis and discovery
using deep learning techniques: A survey. IEEE Access (2020).

[212] Hongyu Zhang, Liang Gong, and Steve Versteeg. 2013. Predicting bug-fixing time: an empirical study of commercial
software projects. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 1042–1051.

[213] Li Zhang and Vrizlynn LL Thing. 2018. Assisting vulnerability detection by prioritizing crashes with incremental
learning. In TENCON 2018-2018 IEEE Region 10 Conference. IEEE, 2080–2085.

[214] Xiong Zhang, Haoran Xie, Hao Yang, Hongkai Shao, and Minghao Zhu. 2020. A general framework to understand
vulnerabilities in information systems. IEEE Access 8 (2020), 121858–121873.

[215] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification.
arXiv preprint arXiv:1509.01626 (2015).

[216] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. 2020. A survey on neural network interpretability. arXiv preprint
arXiv:2012.14261 (2020).

[217] Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transactions on Knowledge and Data
Engineering (2021).

[218] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.
2015. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In
Proceedings of the IEEE international conference on computer vision. 19–27.

[219] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian Schroter, and Cathrin Weiss. 2010.
What makes a good bug report? IEEE Transactions on Software Engineering 36, 5 (2010), 618–643.

[220] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2019. 𝜇VulDeePecker: A deep learning-based system
for multiclass vulnerability detection. IEEE Transactions on Dependable and Secure Computing (2019).

[221] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021. Interpreting deep learning-based
vulnerability detector predictions based on heuristic searching. ACM Transactions on Software Engineering and
Methodology (TOSEM) 30, 2 (2021), 1–31.

[222] Serkan Özkan. [n. d.]. CVE Details. Retrieved April, 2022 from https://www.cvedetails.com

https://www.cvedetails.com

	Abstract
	1 Introduction
	2 Survey Overview
	2.1 Background and Scope of the Survey
	2.2 Methodology
	2.3 Taxonomy of Data-driven Software Vulnerability Assessment and Prioritization

	3 Exploitation Prediction
	3.1 Summary of Primary Studies
	3.2 Theme Discussion

	4 Impact Prediction
	4.1 Summary of Primary Studies
	4.2 Theme Discussion

	5 Severity Prediction
	5.1 Summary of Primary Studies
	5.2 Theme Discussion

	6 Type Prediction
	6.1 Summary of Primary Studies
	6.2 Theme Discussion

	7 Miscellaneous Tasks
	7.1 Summary of Primary Studies
	7.2 Theme Discussion

	8 Analysis of Data-driven Approaches for Software Vulnerability Assessment and Prioritization
	8.1 Data sources
	8.2 Model features
	8.3 Prediction models
	8.4 Evaluation techniques
	8.5 Evaluation metrics

	9 Open Research Challenges and Future Directions of Data-driven Software Vulnerability Assessment and Prioritization
	9.1 SV Data Availability
	9.2 Real-world Application and Evaluation
	9.3 Data-driven SV Assessment and Prioritization of Data-driven Systems

	10 Conclusions
	References

