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ABSTRACT
Graphs are powerful representations for relations among objects,

which have attracted plenty of attention in both academia and in-

dustry. A fundamental challenge for graph learning is how to train

an effective Graph Neural Network (GNN) encoder without labels,

which are expensive and time consuming to obtain. Contrastive

Learning (CL) is one of the most popular paradigms to address this

challenge, which trains GNNs by discriminating positive and neg-

ative node pairs. Despite the success of recent CL methods, there

are still two under-explored problems. Firstly, how to reduce the

semantic error introduced by random topology based data augmen-

tations. Traditional CL defines positive and negative node pairs via

the node-level topological proximity, which is solely based on the

graph topology regardless of the semantic information of node at-

tributes, and thus some semantically similar nodes could be wrongly

treated as negative pairs. Secondly, how to effectively model the

multiplexity of the real-world graphs, where nodes are connected

by various relations and each relation could form a homogeneous

graph layer. To solve these problems, we propose a novel multiplex

heterogeneous graph prototypical contrastive leaning (X-GOAL)

framework to extract node embeddings. X-GOAL is comprised of

two components: the GOAL framework, which learns node em-

beddings for each homogeneous graph layer, and an alignment

regularization, which jointly models different layers by aligning

layer-specific node embeddings. Specifically, the GOAL framework

captures the node-level information by a succinct graph transfor-

mation technique, and captures the cluster-level information by

pulling nodes within the same semantic cluster closer in the embed-

ding space. The alignment regularization aligns embeddings across

layers at both node level and cluster level. We evaluate the proposed

X-GOAL on a variety of real-world datasets and downstream tasks

to demonstrate the effectiveness of the X-GOAL framework.
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1 INTRODUCTION
Graphs are powerful representations of formalisms and have been

widely used to model relations among various objects [13, 23, 50, 65,

66, 74, 75], such as the citation relation and the same-author relation

among papers. One of the primary challenges for graph representa-

tion learning is how to effectively encode nodes into informative

embeddings such that they can be easily used in downstream tasks

for extracting useful knowledge [13]. Traditional methods, such as

Graph Convolutional Network (GCN) [23], leverage human labels

to train the graph encoders. However, human labeling is usually

time-consuming and expensive, and the labels might be unavail-

able in practice [6, 29, 60, 72, 73]. Self-supervised learning [29, 60],

which aims to train graph encoders without external labels, has

thus attracted plenty of attention in both academia and industry.

One of the predominant self-supervised learning paradigms in

recent years is Contrastive Learning (CL), which aims to learn an

effective Graph Neural Network (GNN) encoder such that positive

node pairs will be pulled together and negative node pairs will be

pushed apart in the embedding space [60]. Early methods, such as

DeepWalk [42] and node2vec [12], sample positive node pairs based

on their local proximity in graphs. Recent methods rely on graph

transformation or augmentation [60] to generate positive pairs and

negative pairs, such as random permutation [16, 18, 53], structure

based augmentation [14, 67], sampling based augmentation [17, 45]

as well as adaptive augmentation [76].

Albeit the success of these methods, they define positive and

negative node pairs based upon the node-level information (or local
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topological proximity) but have not fully explored the cluster-level

(or semantic cluster/prototype) information. For example, in an

academic graph, two papers about different sub-areas in graph

learning (e.g., social network analysis and drug discovery) might

not topologically close to each other since they do not have a direct

citation relation or same-author relation. Without considering their

semantic information such as the keywords and topics, these two

papers could be treated as a negative pair by most of the existing

methods. Such a practice will inevitably induce semantic errors to

node embeddings, which will have a negative impact on the per-

formance of machine learning models on downstream tasks such

as classification and clustering. To address this problem, inspired

by [27], we introduce a graph prototypical contrastive learning

(GOAL) framework to simultaneously capture both node-level and

cluster-level information. At the node level, GOAL trains an en-

coder by distinguishing positive and negative node pairs, which

are sampled by a succinct graph transformation technique. At the

cluster level, GOAL employs a clustering algorithm to obtain the

semantic clusters/prototypes and it pulls nodes within the same

cluster closer to each other in the embedding space.

Furthermore, most of the aforementioned methods ignore the

multiplexity [18, 39] of the real-world graphs, where nodes are

connected by multiple types of relations and each relation formu-

lates a layer of the multiplex heterogeneous graph. For example, in

an academic graph, papers are connected via the same authors or

the citation relation; in an entertainment graph, movies are linked

through the shared directors or actors/actresses; in a product graph,

items have relations such as also-bought and also-view. Different

layers could convey different and complementary information. Thus

jointly considering them could produce more informative embed-

dings than separately treating different layers and then applying

average pooling over them to obtain the final embeddings [18, 39].

Most of the prior deep learning methods use attention mechanism

[4, 18, 30, 31, 38, 58] to combine embeddings from different layers.

However, attention modules usually require extra tasks or loss func-

tions to train, such as node classification [58] and concensus loss

[38]. Besides, some attention modules are complex which require

significant amount of extra efforts to design and tune, such as the hi-

erarchical structures [58] and complex within-layer and cross-layer

interactions [31]. Different from the prior methods, we propose an

alternative nimble alignment regularization to jointly model and

propagate information across different layers by aligning the layer-

specific embeddings without extra neural network modules, and

the final node embeddings are obtained by simply average pooling

over these layer-specific embeddings. The key assumption of the

alignment regularization is that layer-specific embeddings of the

same node should be close to each other in the embedding space

and they should also be semantically similar. We also theoretically

prove that the proposed alignment regularization could effectively

maximize the mutual information across layers.

We comprehensively evaluate X-GOAL on a variety of real-world

attributed multiplex heterogeneous graphs. The experimental re-

sults show that the embeddings learned by GOAL and X-GOAL

could outperform state-of-the-art methods of homogeneous graphs

and multiplex heterogeneous graphs on various downstream tasks.

The main contributions are summarized as follows:

Figure 1: Illustration of the multiplex heterogeneous graph
GM , which can be decomposed into homogeneous graph lay-
ers G1 and G2 according to the types of relations. Different
colors represent different relations.

• Method.We propose a novel X-GOAL framework to learn

node embeddings formultiplex heterogeneous graphs, which

is comprised of a GOAL framework for each single layer and

an alignment regularization to propagate information across

different layers. GOAL reduces semantic errors, and the align-

ment regularization is nimbler than attention modules for

combining layer-specific node embeddings.

• Theoretical Analysis.We theoretically prove that the pro-

posed alignment regularization can effectively maximize the

mutual information across layers.

• Empirical Evaluation.We comprehensively evaluate the

proposed methods on various real-world datasets and down-

stream tasks. The experimental results show that GOAL and

X-GOAL outperform the state-of-the-art methods for homo-

geneous and multiplex heterogeneous graphs respectively.

2 PRELIMINARY
Definition 2.1 (Attributed Multiplex Heterogeneous Graph). An

attributed multiplex heterogeneous graph with 𝑉 layers and 𝑁

nodes is denoted as GM = {G𝑣}𝑉
𝑣=1

, where G𝑣 (A𝑣,X) is the 𝑣-th
homogeneous graph layer, A𝑣 ∈ R𝑁×𝑁

and X ∈ R𝑁×𝑑𝑥
is the

adjacency matrix and the attribute matrix, and 𝑑𝑥 is the dimension

of attributes. An illustration is shown in Figure 1.

Problem Statement. The task is to learn an encoder E for GM
,

which maps the node attribute matrix X ∈ R𝑁×𝑑𝑥
to node embed-

ding matrix HM ∈ R𝑁×𝑑
without external labels, where 𝑁 is the

number of nodes, 𝑑𝑥 and 𝑑 are the dimension sizes.

3 METHODOLOGY
We present the X-GOAL framework for multiplex heterogeneous

graphs GM
, which is comprised of a GOAL framework and an

alignment regularization. In Section 3.1, we present the GOAL

framework, which simultaneously captures the node-level and the

cluster-level information for each layer G = (A,X) of GM
. In Sec-

tion 3.2, we introduce a novel alignment regularization to align node

embeddings across layers at both node and cluster level. In section

3.3, we provide theoretical analysis of the alignment regularization.
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3.1 The GOAL Framework
The node-level graph topology based transformation techniques

might contain semantic errors since they ignore the hidden seman-

tics and will inevitably pair two semantically similar but topologi-

cally far nodes as a negative pair. To solve this issue, we introduce a

GOAL framework for each homogeneous graph layer
1 G = (A,X)

to capture both node-level and cluster-level information. An illus-

tration of GOAL is shown in Figure 2. Given a homogeneous graph

G and an encoder E, GOAL alternatively performs semantic clus-

tering and parameter updating. In the semantic clustering step, a

clustering algorithm C is applied over the embeddings H to obtain

the hidden semantic clusters. In the parameter updating step, GOAL

updates the parameters of E by the loss L given in Equation (4),

which pulls topologically similar nodes closer and nodes within

the same semantic cluster closer by the node-level loss and the

cluster-level loss respectively.

A - Node-Level Loss. To capture the node-level information, we

propose a graph transformation technique T = {T +,T−}, where
T +

and T−
denote positive and negative transformations, along

with a contrastive loss similar to InfoNCE [36].

Given an original homogeneous graph G = (A,X), the positive
transformation T +

applies the dropout operation [48] over A and

X with a pre-defined probability 𝑝𝑑𝑟𝑜𝑝 ∈ (0, 1). We choose the

dropout operation rather than the masking operation since the

dropout re-scales the outputs by
1

1−𝑝𝑑𝑟𝑜𝑝 during training, which

improves the training results. The negative transformation T−

is the random shuffle of the rows for X [53]. The transformed

positive and negative graphs are denoted by G+ = T + (G) and
G− = T− (G), respectively. The node embedding matrices of G,
G+

and G−
are thus H = E(G), H+ = E(G+) and H− = E(G−).

We define the node-level contrastive loss as:

LN = − 1

𝑁

𝑁∑︁
𝑛=1

log

e𝑐𝑜𝑠 (h𝑛,h
+
𝑛)

e𝑐𝑜𝑠 (h𝑛,h+
𝑛) + e𝑐𝑜𝑠 (h𝑛,h−

𝑛)
(1)

where 𝑐𝑜𝑠 (, ) denotes the cosine similarity, h𝑛 , h+𝑛 and h−𝑛 are the

𝑛-th rows of H, H+
and H−

.

B - Cluster-Level Loss.We use a clustering algorithm C to obtain

the semantic clusters of nodes {c𝑘 }𝐾𝑘=1, where c𝑘 ∈ R𝑑 is the clus-

ter center, 𝐾 and 𝑑 are the number of clusters and the dimension

of embedding space. We capture the cluster-level semantic infor-

mation to reduce the semantic errors by pulling nodes within the

same cluster closer to their assigned cluster center. For clarity, the

derivations of the cluster-level loss are provided in Appendix.

We define the probability of h𝑛 belongs to the cluster 𝑘 by:

𝑝 (𝑘 |h𝑛) =
e(c

𝑇
𝑘
·h𝑛/𝜏)∑𝐾

𝑘′=1 e(c
𝑇
𝑘′ ·h𝑛/𝜏)

(2)

where 𝜏 > 0 is the temperature parameter to re-scale the values.

The cluster-level loss is defined as the negative log-likelihood of

the assigned cluster 𝑘𝑛 for h𝑛 :

LC = − 1

𝑁

𝑁∑︁
𝑛=1

log

e(c
𝑇
𝑘𝑛

·h𝑛/𝜏)∑𝐾
𝑘=1

e(c
𝑇
𝑘
·h𝑛/𝜏)

(3)

where 𝑘𝑛 ∈ [1, . . . , 𝐾] is the cluster index assigned to the 𝑛-th node.

1
For clarity, we drop the script 𝑣 of G𝑣

, A𝑣
and H𝑣

for this subsection.

Figure 2: Illustration of GOAL. E and C are the encoder
and clustering algorithm. G is a homogeneous graph layer
and H is the embedding matrix. L is given in Equation (4).
The circles and diamonds denote nodes and cluster centers.
Blue and orange denote different hidden semantics. The
green line is the cluster boundary. “Back Prop.” means back
propagation. The node-level topology based negative sam-
pling treats the semantic similar node 0 and 2 as a negative
pair. The cluster-level loss reduces semantic error by pulling
node 0 and 2 closer to their cluster center.

C - Overall Loss. Combing the node-level loss in Equation (1) and

the cluster-level loss in Equation (3), we have:

L = 𝜆NLN + 𝜆CLC (4)

where 𝜆N and 𝜆C are tunable hyper-parameters.

3.2 Alignment Regularization
Real-world graphs are often multiplex in nature, which can be de-

composed intomultiple homogeneous graph layersGM = {G𝑣}𝑉
𝑣=1

.

The simplest way to extract the embedding of a node x𝑛 in GM
is

separately extracting the embedding {h𝑣𝑛}𝑉𝑣=1 from different layers

and then combing them via average pooling. However, it has been

empirically proven that jointly modeling different layers could usu-

ally produce better embeddings for downstream tasks [18]. Most

prior studies use attention modules to jointly learn embeddings

from different layers, which are clumsy as they usually require

extra efforts to design and train [18, 30, 39, 58]. Alternatively, we

propose a nimble alignment regularization to jointly learn embed-

dings by aligning the layer-specific {h𝑣𝑛}𝑉𝑣=1 without introducing
extra neural network modules, and the final node embedding of

x𝑛 is obtained by simply averaging the layer-specific embeddings

hM
𝑛 = 1

𝑉

∑𝑉
𝑣=1 h𝑣𝑛 . The underlying assumption of the alignment is

that h𝑣𝑛 should be close to and reflect the semantics of {h𝑣′𝑛 }𝑉𝑣′≠𝑣 . The
proposed alignment regularization is comprised of both node-level

and cluster-level alignments.

Given GM = {G𝑣}𝑉
𝑣=1

with encoders {E𝑣}𝑉
𝑣=1

, we first apply

GOAL to each layer G𝑣 and obtain the original and negative node

embeddings {H𝑣}𝑉
𝑣=1

and {H𝑣−}𝑉
𝑣=1

, as well as the cluster centers

{C𝑣}𝑉
𝑣=1

, where C𝑣 ∈ R𝐾𝑣×𝑑
is the concatenation of the cluster cen-

ters for the 𝑣-th layer,𝐾𝑣 is the number of clusters for the 𝑣-the layer.

The node-level alignment is applied over {H𝑣}𝑉
𝑣=1

and {H𝑣−}𝑉
𝑣=1

.

The cluster-level alignment is used on {C𝑣}𝑉
𝑣=1

and {H𝑣}𝑉
𝑣=1

.
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Figure 3: Cluster-level alignment. x𝑛 is the node attribute. h𝑣𝑛
and h𝑣

′
𝑛 are the layer-specific embeddings. C𝑣 is the anchor

cluster center matrix. p𝑣𝑛 and q𝑣
′
𝑛 are the anchor and recov-

ered semantic distributions. R𝑣C is given in Equation (6).

A - Node-Level Alignment. For a node x𝑛 , its embedding h𝑣𝑛
should be close to embeddings {h𝑣′𝑛 }𝑉𝑣′≠𝑣 and far away from the

negative embedding h𝑣−𝑛 . Analogous to Equation (1), we define the

node-level alignment regularization as:

RN = − 1

𝑍

𝑁∑︁
𝑛=1

𝑉∑︁
𝑣=1

𝑉∑︁
𝑣′≠𝑣

log

e𝑐𝑜𝑠 (h
𝑣
𝑛,h𝑣′

𝑛 )

e𝑐𝑜𝑠 (h𝑣
𝑛,h𝑣′

𝑛 ) + e𝑐𝑜𝑠 (h𝑣
𝑛,h𝑣−

𝑛 )
(5)

where 𝑍 = 𝑁𝑉 (𝑉 − 1) is the normalization factor.

B - Cluster-Level Alignment. Similar to the node-level loss in

Equation (1), the node-level alignment in Equation (5) could also

introduce semantic errors since h𝑣−𝑛 might be topologically far from

but semantically similar to h𝑣𝑛 . To reduce the semantic error, we also

align the layer-specific embeddings {h𝑣𝑛}𝑉𝑣=1 at the cluster level.
Let the 𝑣-th layer be the anchor layer and its semantic cluster

centers C𝑣 ∈ R𝐾𝑣×𝑑
as the anchor cluster centers. For a node x𝑛 ,

we call its layer-specific embedding h𝑣𝑛 as the anchor embedding,

and its semantic distribution p𝑣𝑛 ∈ R𝐾𝑣
as the anchor semantics,

which is obtained via Equation (2) based on h𝑣𝑛 and C𝑣 . Our key idea
of the cluster-level alignment is to recover the anchor semantics

p𝑣𝑛 from embeddings {h𝑣′𝑛 }𝑉𝑣′≠𝑣 of other layers based on C𝑣 .
Our idea can be justified from two perspectives. Firstly, {h𝑣𝑛}𝑉𝑣=1

reflect information of x𝑛 from different aspects, if we can recover

the anchor semantics p𝑣𝑛 from the embedding h𝑣
′
𝑛 of another layer

𝑣 ′ ≠ 𝑣 , then it indicates that h𝑣𝑛 and h𝑣
′
𝑛 share hidden semantics to

a certain degree. Secondly, it is impractical to directly align p𝑣𝑛 and

p𝑣
′
𝑛 , since their dimensions might be different 𝐾𝑣 ≠ 𝐾𝑣

′
, and even

if 𝐾𝑣 = 𝐾𝑣
′
, the cluster center vectors C𝑣 and C𝑣

′
are distributed at

different positions in the embedding space.

An illustration of the cluster-level alignment is presented in

Figure 3. Given a node x𝑛 , on the anchor layer 𝑣 , we have the

anchor cluster centersC𝑣 , the anchor embedding h𝑣𝑛 , and the anchor
semantic distribution p𝑣𝑛 . Next, we use the embedding h𝑣

′
𝑛 from the

layer 𝑣 ′ ≠ 𝑣 to obtain the recovered semantic distribution q𝑣
′
𝑛 based

on C𝑣 via Equation (2). Then we align the semantics of h𝑣𝑛 and h𝑣
′
𝑛

by minimizing the KL-divergence of p𝑣𝑛 and q𝑣
′
𝑛 :

R𝑣𝐶 =
1

𝑁 (𝑉 − 1)

𝑁∑︁
𝑛=1

𝑉∑︁
𝑣′≠𝑣

𝐾𝐿(p𝑣𝑛 | |q𝑣
′
𝑛 ) (6)

where p𝑣𝑛 is treated as the ground-truth and the gradients are not

allowed to pass through p𝑣𝑛 during training.

Finally, we alternatively use all𝑉 layers as anchor layers and use

the averaged KL-divergence as the final semantic regularization:

R𝐶 =
1

𝑉

𝑉∑︁
𝑣=1

R𝑣𝐶 (7)

C - Overall Loss. By combining the node-level and cluster-level

regularization losses, we have:

R = 𝜇NRN + 𝜇CRC (8)

where 𝜇N and 𝜇C are tunable hyper-parameters.

The final training objective of the X-GOAL framework is the com-

bination of the contrastive loss L in Equation (4) and the alignment

regularization R in Equation (8):

L𝑋 =

𝑉∑︁
𝑣=1

L𝑣 + R (9)

where L𝑣 is the loss of layer 𝑣

3.3 Theoretical Analysis
We provide theoretical analysis for the proposed regularization

alignments. In Theorem 3.1, we prove that the node-level alignment

maximizes the mutual information of embeddings 𝐻 𝑣 ∈ {h𝑣𝑛}𝑁𝑛=1
of the anchor layer 𝑣 and embeddings 𝐻 𝑣

′ ∈ {h𝑣′𝑛 }𝑁𝑛=1 of another
layer 𝑣 ′. In Theorem 3.2, we prove that the cluster-level alignment

maximizes the mutual information of semantic cluster assignments

𝐶𝑣 ∈ [1, · · · , 𝐾𝑣] for embeddings {h𝑣𝑛}𝑁𝑛=1 of the anchor layer 𝑣

and embeddings 𝐻 𝑣
′ ∈ {h𝑣′𝑛 }𝑁𝑛=1 of the layer 𝑣

′
.

Theorem 3.1 (Maximization of MI of Embeddings from Dif-

ferent Layers). Let 𝐻 𝑣 ∈ {h𝑣𝑛}𝑁𝑛=1 and 𝐻 𝑣
′ ∈ {h𝑣′𝑛 }𝑁𝑛=1 be the

random variables for node embeddings of the 𝑣-th and 𝑣 ′-th layers,
then the node-level alignment maximizes 𝐼 (𝐻 𝑣 ;𝐻 𝑣′).

Proof. According to [36, 43], the following inequality holds:

𝐼 (𝑋 ;𝑌 ) ≥ E[ 1

𝐾1

𝐾1∑︁
𝑖=1

log

e𝑓 (𝑥𝑖 ,𝑦𝑖 )

1

𝐾2

∑𝐾2

𝑗=1
e𝑓 (𝑥𝑖 ,𝑦 𝑗 )

] (10)

Let 𝐾1 = 1, 𝐾2 = 2, 𝑓 () = 𝑐𝑜𝑠 (), 𝑥1 = h𝑣𝑛 , 𝑦1 = h𝑣
′
𝑛 , 𝑦2 = h−𝑣𝑛 , then:

𝐼 (𝐻 𝑣 ;𝐻 𝑣
′
) ≥ E[log e𝑐𝑜𝑠 (h

𝑣
𝑛,h𝑣′

𝑛 )

e𝑐𝑜𝑠 (h𝑣
𝑛,h𝑣′

𝑛 ) + e𝑐𝑜𝑠 (h𝑣
𝑛,h𝑣−

𝑛 )
] (11)

The expectation E is taken over all the 𝑁 nodes, and all the pairs

of 𝑉 layers, and thus we have:

𝐼 (𝐻 𝑣 ;𝐻 𝑣
′
) ≥ 1

𝑍

𝑁∑︁
𝑛=1

𝑉∑︁
𝑣=1

𝑉∑︁
𝑣′≠𝑣

log

e𝑐𝑜𝑠 (h
𝑣
𝑛,h𝑣′

𝑛 )

e𝑐𝑜𝑠 (h𝑣
𝑛,h𝑣′

𝑛 ) + e𝑐𝑜𝑠 (h𝑣
𝑛,h𝑣−

𝑛 )
(12)

where 𝑍 = 𝑁𝑉 (𝑉 − 1) is the normalization factor, and the right

side is RN in Equation (7). □

Theorem 3.2 (Maximization of MI between Embeddings and

Semantic Cluster Assignments). Let 𝐶𝑣 ∈ [1, · · · , 𝐾𝑣] be the
random variable for cluster assignments for {h𝑣𝑛}𝑁𝑛=1 of the anchor
layer 𝑣 , and 𝐻 𝑣

′ ∈ {h𝑣′𝑛 }𝑁𝑛=1 be the random variable for node embed-
dings of the 𝑣 ′-th layer, then the cluster-level alignment maximizes
the mutual information of 𝐶𝑣 and 𝐻 𝑣

′
: 𝐼 (𝐶𝑣 ;𝐻 𝑣′).
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Table 1: Statistics of the datasets

Graphs # Nodes Layers # Edges # Attributes # Labeled Data # Classes

ACM 3,025

Paper-Subject-Paper (PSP) 2,210,761 1,830

600 3

Paper-Author-Paper (PAP) 29,281 (Paper Abstract)

IMDB 3,550

Movie-Actor-Movie (MAM) 66,428 1,007

300 3

Movie-Director-Movie (MDM) 13,788 (Movie plot)

DBLP 7,907

Paper-Author-Paper (PAP) 144,783
2,000

(Paper Abstract)
80 4Paper-Paper-Paper (PPP) 90,145

Paper-Author-Term-Author-Paper (PATAP) 57,137,515

Amazon 7,621

Item-AlsoView-Item (IVI) 266,237
2,000

(Item description)
80 4Item-AlsoBought-Item (IBI) 1,104,257

Item-BoughtTogether-Item (IOI) 16,305

Proof. In the cluster-level alignment, the anchor distribution p𝑣𝑛
is regarded as the ground-truth for the 𝑛-th node, and q𝑣

′
𝑛 = 𝑓 (h𝑣′𝑛 )

is the recovered distribution from the 𝑣 ′-th layer, where 𝑓 () is a 𝐾𝑣
dimensional function defined by Equation (2). Specifically,

𝑓 (h𝑣
′
𝑛 ) [𝑘] = 𝑝 (𝑘 |h𝑣

′
𝑛 ) =

e(c
𝑇
𝑘
·h𝑣′

𝑛 /𝜏)∑𝐾𝑣

𝑘′=1 e(c
𝑇
𝑘′ ·h

𝑣′
𝑛 /𝜏)

(13)

where {c𝑘 }𝐾
𝑣

𝑘=1
is the set of cluster centers for the 𝑣-th layer.

Since p𝑣𝑛 is the ground-truth, and thus its entropy 𝐻 (p𝑣𝑛) is a
constant. As a result, the KL divergence in Equation (6) is equiva-

lent to cross-entropy 𝐻 (p𝑣𝑛, q𝑣
′
𝑛 ) = 𝐾𝐿(p𝑣𝑛 | |q𝑣

′
𝑛 ) +𝐻 (p𝑣𝑛). Therefore,

minimizing the KL-divergence will minimize 𝐻 (p𝑣𝑛, q𝑣
′
𝑛 ).

On the other hand, according to [33, 44], we have the following

variational lower bound for 𝐼 (𝐶𝑣 ;𝐻 𝑣′):

𝐼 (𝐶𝑣 ;𝐻 𝑣
′
) ≥ E[log e𝑔 (h

𝑣′
𝑛 ,𝑘)∑𝐾𝑣

𝑘′=1 e𝑔 (h𝑣′
𝑛 ,𝑘

′)
] (14)

where 𝑔() is any function of h𝑣
′
𝑛 and 𝑘 .

In our case, we let

𝑔(h𝑣
′
𝑛 , 𝑘) =

1

𝜏
c𝑇
𝑘
· h𝑣

′
𝑛 (15)

where c𝑘 is the 𝑘-th semantic cluster center of the 𝑣-th layer, and 𝜏

is the temperature parameter.

As a result, we have

e𝑔 (h
𝑣′
𝑛 ,𝑘)∑𝐾𝑣

𝑘′=1 e𝑔 (h𝑣′
𝑛 ,𝑘

′)
= 𝑓 [h𝑣

′
𝑛 ] [𝑘] = q𝑣

′
𝑛 [𝑘] (16)

The expectation E is taken over the ground-truth distribution of

the cluster assignments for the anchor layer 𝑣 :

𝑝𝑔𝑡 (h𝑣
′
𝑛 , 𝑘) = 𝑝𝑔𝑡 (h𝑣

′
𝑛 )𝑝𝑔𝑡 (𝑘 |h𝑣

′
𝑛 ) =

1

𝑁
p𝑣𝑛 [𝑘] (17)

where 𝑝𝑔𝑡 (𝑘 |h𝑣
′
𝑛 ) = p𝑣𝑛 [𝑘] is the ground-truth semantic distribution

for h𝑣
′
𝑛 on the anchor layer 𝑣 , which is different from the recovered

distribution 𝑝 (𝑘 |h𝑣′𝑛 ) = q𝑣
′
𝑛 [𝑘] shown in Equation (13).

Therefore, we have

𝐼 (𝐶𝑣 ;𝐻 𝑣
′
) ≥ 1

𝑍

𝑁∑︁
𝑛=1

𝐾𝑣∑︁
𝑘=1

p𝑣𝑛 [𝑘] log q𝑣
′
𝑛 [𝑘] = − 1

𝑍

𝑁∑︁
𝑛=1

𝐻 (p𝑣𝑛, q𝑣
′
𝑛 )

(18)

where 𝑍 = 𝑁𝐾𝑣 is the normalization factor.

Thus, minimizing 𝐻 (p𝑣𝑛, q𝑣
′
𝑛 ) will maximize 𝐼 (𝐶𝑣 ;𝐻 𝑣′). □

4 EXPERIMENTS
4.1 Experimental Setups
Datasets.We use publicly available multiplex heterogeneous graph

datasets [18, 39]: ACM, IMDB, DBLP and Amazon to evaluate the

proposed methods. The statistics is summarized in Table 1.

Comparison Methods.We compare with methods for (1) attrib-
uted graphs, including methods disregarding node attributes: Deep-

Walk [42] and node2vec [12], and methods considering attributes:

GCN [23], GAT [52], DGI [53], ANRL [71], CAN [34], DGCN [77],

HDI[18], GCA [76] and GraphCL [67]; (2) attributed multiplex het-
erogeneous graphs, including methods disregarding node attributes:

CMNA [5], MNE [68], and methods considering attributes: mGCN

[31], HAN [58], MvAGC [28], DMGI, DMGIattn [39] and HDMI [18].

Evaluation Metrics. Following [18], we first extract embeddings

from the trained encoder. Then we train downstream models with

the extracted embeddings, and evaluate models’ performance on

the following tasks: (1) a supervised task: node classification; (2) un-
supervised tasks: node clustering and similarity search. For the node

classification task, we train a logistic regression model and evaluate

its performance with Macro-F1 (MaF1) and Micro-F1 (MiF1). For the

node clustering task, we train the K-means algorithm and evaluate

it with Normalized Mutual Information (NMI). For the similarity

search task, we first calculate the cosine similarity for each pair of

nodes, and for each node, we compute the rate of the nodes to have

the same label within its 5 most similar nodes (Sim@5).

Implementation Details. We use the one layer 1st-order GCN

[23] with tangent activation as the encoder E𝑣 = tanh(A𝑣XW +
XW′ + b). We set dimension 𝑑 = 128 and 𝑝𝑑𝑟𝑜𝑝 = 0.5. The models

are implemented by PyTorch [40] and trained on NVIDIA Tesla

V-100 GPU. During training, we first warm up the encoders by

training them with the node-level losses LN and RN . Then we

apply the overall loss LX with the learning rate of 0.005 for IMDB

and 0.001 for other datasets. We use K-means as the clustering

algorithm, and the semantic clustering step is performed every 5

epochs of parameter updating. We adopt early stopping with the

patience of 100 to prevent overfitting.

4.2 Overall Performance
X-GOAL onMultiplexHeterogeneousGraphs. The overall per-
formance for all of the methods is presented in Tables 2-3, where

the upper and middle parts are the methods for homogeneous

graphs and multiplex heterogeneous graphs respectively. “OOM”
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Table 2: Overall performance of X-GOAL on the supervised task: node classification.

Dataset ACM IMDB DBLP Amazon

Metric Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 0.739 0.748 0.532 0.550 0.533 0.537 0.663 0.671

node2vec 0.741 0.749 0.533 0.550 0.543 0.547 0.662 0.669

GCN/GAT 0.869 0.870 0.603 0.611 0.734 0.717 0.646 0.649

DGI 0.881 0.881 0.598 0.606 0.723 0.720 0.403 0.418

ANRL 0.819 0.820 0.573 0.576 0.770 0.699 0.692 0.690

CAN 0.590 0.636 0.577 0.588 0.702 0.694 0.498 0.499

DGCN 0.888 0.888 0.582 0.592 0.707 0.698 0.478 0.509

GraphCL 0.884 0.883 0.619 0.623 0.814 0.806 0.461 0.472

GCA 0.798 0.797 0.523 0.533 OOM OOM 0.408 0.398

HDI 0.901 0.900 0.634 0.638 0.814 0.800 0.804 0.806

CMNA 0.782 0.788 0.549 0.566 0.566 0.561 0.657 0.665

MNE 0.792 0.797 0.552 0.574 0.566 0.562 0.556 0.567

mGCN 0.858 0.860 0.623 0.630 0.725 0.713 0.660 0.661

HAN 0.878 0.879 0.599 0.607 0.716 0.708 0.501 0.509

DMGI 0.898 0.898 0.648 0.648 0.771 0.766 0.746 0.748

DMGIattn 0.887 0.887 0.602 0.606 0.778 0.770 0.758 0.758

MvAGC 0.778 0.791 0.598 0.615 0.509 0.542 0.395 0.414

HDMI 0.901 0.901 0.650 0.658 0.820 0.811 0.808 0.812

X-GOAL 0.922 0.921 0.661 0.663 0.830 0.819 0.858 0.857

Table 3: Overall performance of X-GOAL on the unsupervised tasks: node clustering and similarity search.

Dataset ACM IMDB DBLP Amazon

Metric NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5

DeepWalk 0.310 0.710 0.117 0.490 0.348 0.629 0.083 0.726

node2vec 0.309 0.710 0.123 0.487 0.382 0.629 0.074 0.738

GCN/GAT 0.671 0.867 0.176 0.565 0.465 0.724 0.287 0.624

DGI 0.640 0.889 0.182 0.578 0.551 0.786 0.007 0.558

ANRL 0.515 0.814 0.163 0.527 0.332 0.720 0.166 0.763

CAN 0.504 0.836 0.074 0.544 0.323 0.792 0.001 0.537

DGCN 0.691 0.690 0.143 0.179 0.462 0.491 0.143 0.194

GraphCL 0.673 0.890 0.149 0.565 0.545 0.803 0.002 0.360

GCA 0.443 0.791 0.007 0.496 OOM OOM 0.002 0.478

HDI 0.650 0.900 0.194 0.605 0.570 0.799 0.487 0.856

CMNA 0.498 0.363 0.152 0.069 0.420 0.511 0.070 0.435

MNE 0.545 0.791 0.013 0.482 0.136 0.711 0.001 0.395

mGCN 0.668 0.873 0.183 0.550 0.468 0.726 0.301 0.630

HAN 0.658 0.872 0.164 0.561 0.472 0.779 0.029 0.495

DMGI 0.687 0.898 0.196 0.605 0.409 0.766 0.425 0.816

DMGIattn 0.702 0.901 0.185 0.586 0.554 0.798 0.412 0.825

MvAGC 0.665 0.824 0.219 0.525 0.281 0.437 0.082 0.237

HDMI 0.695 0.898 0.198 0.607 0.582 0.809 0.500 0.857

X-GOAL 0.773 0.924 0.221 0.613 0.615 0.809 0.556 0.907

means out-of-memory. Among all the baselines, HDMI has the best

overall performance. The proposed X-GOAL further outperforms

HDMI. The proposed X-GOAL has 0.023/0.019/0.041/0.021 average

improvements over the second best scores on Macro-F1/Micro-

F1/NMI/Sim@5. For Macro-F1 and Micro-F1 in Table 2, X-GOAL

improves the most on the Amazon dataset (0.050/0.044). For NMI

and Sim@5 in Table 3, X-GOAL improves the most on the ACM

(0.071) and Amazon (0.050) dataset respectively. The superior over-

all performance of X-GOAL demonstrate that the proposed ap-

proach can effectively extract informative node embeddings for

multiplex heterogeneous graph.

GOAL on Homogeneous Graph Layers. We compare the pro-

posed GOAL framework with recent infomax-based methods (DGI

and HDI) and graph augmentation based methods (GraphCL and

GCA). The experimental results for each single homogeneous graph

layer are presented in Tables 4-5. It is evident that GOAL signif-

icantly outperforms the baseline methods on all single homoge-

neous graph layers. On average, GOAL has 0.137/0.129/0.151/0.119

improvements on Macro-F1/Micro-F1/NMI/Sim@5. For node clas-

sification in Table 4, GOAL improves the most on the PATAP layer

of DBLP: 0.514/0.459 on Macro-F1/Micro-F1. For node clustering

and similarity search in Table 5, GOAL improves the most on the
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Table 4: Overall performance of GOAL on each layer: node classification.

Dataset ACM IMDB DBLP Amazon

View PSP PAP MDM MAM PAP PPP PATAP IVI IBI IOI

Metric MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

DGI 0.663 0.668 0.855 0.853 0.573 0.586 0.558 0.564 0.804 0.796 0.728 0.717 0.240 0.272 0.380 0.388 0.386 0.410 0.569 0.574

GraphCL 0.649 0.658 0.833 0.824 0.551 0.566 0.554 0.562 0.806 0.779 0.678 0.675 0.236 0.286 0.290 0.305 0.335 0.348 0.506 0.516

GCA 0.645 0.656 0.748 0.749 0.534 0.537 0.489 0.500 0.716 0.710 0.679 0.665 OOM OOM 0.300 0.312 0.289 0.304 0.532 0.526

HDI 0.742 0.744 0.889 0.888 0.626 0.631 0.600 0.606 0.812 0.803 0.751 0.745 0.241 0.284 0.581 0.583 0.524 0.529 0.796 0.799

GOAL 0.833 0.836 0.908 0.908 0.649 0.653 0.653 0.652 0.817 0.804 0.765 0.755 0.755 0.745 0.849 0.848 0.850 0.848 0.851 0.851

Table 5: Overall performance of GOAL on each layer: node clustering and similarity search.

Dataset ACM IMDB DBLP Amazon

View PSP PAP MDM MAM PAP PPP PATAP IVI IBI IOI

Metric NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5

DGI 0.526 0.698 0.651 0.872 0.145 0.549 0.089 0.495 0.547 0.800 0.404 0.741 0.054 0.583 0.002 0.395 0.003 0.414 0.038 0.701

GraphCL 0.524 0.735 0.675 0.874 0.128 0.554 0.060 0.485 0.539 0.794 0.347 0.702 0.052 0.595 0.001 0.334 0.002 0.360 0.036 0.630

GCA 0.389 0.662 0.062 0.764 0.008 0.491 0.008 0.463 0.076 0.775 0.223 0.683 OOM OOM 0.002 0.315 0.007 0.329 0.008 0.588

HDI 0.528 0.716 0.662 0.886 0.194 0.592 0.143 0.527 0.562 0.805 0.408 0.742 0.054 0.591 0.169 0.544 0.153 0.525 0.407 0.826

GOAL 0.600 0.851 0.735 0.917 0.210 0.602 0.180 0.585 0.589 0.809 0.447 0.757 0.412 0.733 0.551 0.901 0.544 0.903 0.536 0.905

Table 6: Ablation study of X-GOAL at the multiplex heterogeneous graph level.

Dataset ACM IMDB DBLP Amazon

Metric MaF1 MiF1 NMI Sim@5 MaF1 MiF1 NMI Sim@5 MaF1 MiF1 NMI Sim@5 MaF1 MaF1 MiF1 Sim@5

X-GOAL 0.922 0.921 0.773 0.924 0.661 0.663 0.221 0.613 0.830 0.819 0.615 0.809 0.858 0.857 0.556 0.907
w/o R𝐶 0.919 0.917 0.770 0.922 0.658 0.661 0.211 0.606 0.817 0.807 0.611 0.804 0.856 0.856 0.555 0.906

w/o R𝑁 , R𝐶 0.893 0.893 0.724 0.912 0.651 0.658 0.194 0.606 0.803 0.791 0.590 0.801 0.835 0.834 0.506 0.904

IBI layer of Amazon: 0.391 on NMI and 0.378 on Sim@5. The supe-

rior performance of GOAL indicates that the proposed prototypi-

cal contrastive learning strategy is better than the infomax-based

and graph augmentation based instance-wise contrastive learn-

ing strategies. We believe this is because prototypical contrasive

learning could effectively reduce the semantic errors.

4.3 Ablation Study
MultiplexHeterogeneous Graph Level. In Table 6, we study the
impact of the node-level and semantic-level alignments. The results

in Table 6 indicate that both of the node-level alignment (R𝑁 ) and

the semantic-level alignment (R𝐶 ) can improve the performance.

Homogeneous Graph Layer Level. The results for different con-
figurations of GOAL on the PAP layer of ACM are shown in Table 7.

First, all of the warm-up, the semantic-level loss LC and the node-

level lossLN are critical. Second, comparing GOAL (1st-order GCN

with tanh activation) with other GCN variants, (1) with the same

activation function, the 1st-order GCN perform better than the

original GCN; (2) tanh is better than relu. We believe this is because

the 1st-order GCN has a better capability for capturing the attribute

information, and tanh provides a better normalization for the node

embeddings. Finally, for the configurations of graph transformation,

if we replace dropout with masking, the performance will drop. This

is because dropout re-scales the outputs by 1/(1 − 𝑝𝑑𝑟𝑜𝑝 ), which
improves the performance. Besides, dropout on both attributes and

adjacency matrix is important.

4.4 Number of Clusters
Figure 4 shows the Macro-F1 and NMI scores on the PSP and PAP

layers of ACMw.r.t. the number of clusters𝐾 ∈ [3, 4, 5, 10, 20, 30, 50].
For PSP and PAP, the best Macro-F1 and NMI scores are obtained

when 𝐾 = 30 and 𝐾 = 5. The number of ground-truth classes for

Table 7: Ablation study of GOAL on the PAP layer of ACM.

MaF1 MiF1 NMI Sim@5

GOAL 0.908 0.908 0.735 0.917
w/o warm-up 0.863 0.865 0.721 0.903

w/o LC 0.865 0.867 0.693 0.899

w/o LN 0.878 0.880 0.678 0.881

1st-ord. GCN (relu) 0.865 0.866 0.559 0.859

GCN (tanh) 0.881 0.881 0.486 0.886

GCN (relu) 0.831 0.831 0.410 0.837

dropout → masking 0.888 0.890 0.716 0.903

w/o attribute drop 0.843 0.845 0.568 0.869

w/o adj. matrix drop 0.888 0.888 0.715 0.903

(a) Macro-F1 v.s. 𝐾 (b) NMI v.s. 𝐾

Figure 4: The number of 𝐾 on PSP and PAP of ACM

ACM is 3, and the results in Figure 4 indicate that over-clustering

is beneficial. We believe this is because there are many sub-clusters

in the embedding space, which is consistent with the prior findings

on image data [27].
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(a) LN on PSP (b) LN + LC on PSP (c) LN on PAP (d) LN + LC on PAP

Figure 5: Visualization of the embeddings for the PAP and PSP layers of the ACM graph.

(a) LN (b) LN + LC (c) LN + LC + RN (d) LN + LC + RN + RC

Figure 6: Visualization of the combined embeddings for the ACM graph.

4.5 Visualization
HomogeneousGraphLayer Level.The t-SNE [32] visualizations
of the embeddings for PSP and PAP of ACM are presented in Figure

5. LN , LC , RN and RC are the node-level loss, cluster-level loss,

node-level alignment and cluster-level alignment. The embeddings

extracted by the full GOAL framework (LN + LC ) are better sepa-
rated than the node-level loss LN only. For GOAL, the numbers

of clusters for PSP and PAP are 30 and 5 since they have the best

performance as shown in Figure 4.

Multiplex Heterogeneous Graph Level. The visualizations for
the combined embeddings are shown in Figure 6. Embeddings in

Figures 6a-6b are the average pooling of the layer-specific embed-

dings in Figure 5. Figure 6c and 6d are X-GOAL w/o cluster-level

alignment and the full X-GOAL. Generally, the full X-GOAL best

separates different clusters.

5 RELATEDWORK
5.1 Contrastive Learning for Graphs
The goal of CL is to pull similar nodes into close positions and push

dis-similar nodes far apart in the embedding space. Inspired by

word2vec [35], early methods, such as DeepWalk [42] and node2vec

[12] use random walks to sample positive pairs of nodes. LINE [50]

and SDNE [56] determine the positive node pairs by their first and

second-order structural proximity. Recent methods leverage graph

transformation to generate node pairs. DGI [53], GMI [41], HDI [18]

and CommDGI [69] obtain negative samples by randomly shuffling

the node attributes. MVGRL [14] transforms graphs via techniques

such as graph diffusion [24]. The objective of the above methods

is to maximize the mutual information of the positive embedding

pairs. GraphCL [67] uses various graph augmentations to obtain

positive nodes. GCA [76] generates positive and negative pairs

based on their importance. gCool [25] introduces graph communal

contrastive learning. Ariel [8, 9] proposes a information regular-

ized adversarial graph contrastive learning. These methods use the

contrastive losses similar to InfoNCE [36].

For multiplex heterogeneous graphs, MNE [68], MVN2VEC [47]

and GATNE [4] sample node pairs based on random walks. DMGI

[39] and HDMI [18] use random attribute shuffling to sample neg-

ative nodes. HeCo [59] decides positive and negative pairs based

on the connectivity between nodes. Above methods mainly rely on

the topological structures to pair nodes, yet do not fully explore

the semantic information, which could introduce semantic errors.

5.2 Deep Clustering and Contrastive Learning
Clustering algorithms [2, 62] can capture the semantic clusters of

instances. DeepCluster [2] is one of the earliest works which use

cluster assignments as “pseudo-labels" to update the parameters of

the encoder. DEC [62] learns a mapping from the data space to a

lower-dimensional feature space in which it iteratively optimizes a

clustering objective. Inspired by these works, SwAV [3] and PCL

[27] combine deep clustering with CL. SwAV compares the cluster

assignments rather than the embeddings of two images. PCL is

the closest to our work, which alternatively performs clustering

to obtain the latent prototypes and train the encoder by contrast-

ing positive and negative pairs of nodes and prototypes. However,

PCL has some limitations compared with the proposed X-GOAL:

it is designed for single view image data; it heavily relies on data

augmentations and momentum contrast [15]; it has some complex

assumptions over cluster distributions and embeddings.
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5.3 Multiplex Heterogeneous Graph Neural
Networks

The multiplex heterogeneous graph [4] considers multiple relations

among nodes, and it is also known as multiplex graph [18, 39],

multi-view graph [46], multi-layer graph [26] and multi-dimension

graph [30]. MVE [46] and HAN [58] uses attention mechanisms to

combine embeddings from different views. mGCN [31] models both

within and across view interactions. VANE [11] uses adversarial

training to improve the comprehensiveness and robustness of the

embeddings. Multiplex graph neural networks have been used in

many applications [7], such as time series [19], text summarization

[21], temporal graphs [10], graph alignment [63], abstract reasoning

[57], global poverty [22] and bipartite graphs [64].

5.4 Deep Graph Clustering
Graph clustering aims at discovering groups in graphs. SAE [51]

and MGAE [55] first train a GNN, and then run a clustering algo-

rithm over node embeddings to obtain the clusters. DAEGC [54]

and SDCN [1] jointly optimize clustering algorithms and the graph

reconstruction loss. AGC [70] adaptively finds the optimal order for

graph filters based on the intrinsic clustering scores. M3S [49] uses

clustering to enlarge the labeled data with pseudo labels. SDCN [1]

proposes a structural deep clustering network to integrate the struc-

tural information into deep clustering. COIN [20] co-clusters two

types of nodes in bipartite graphs. MvAGC [28] extends AGC [70] to

multi-view settings. However, MvAGC is not neural network based

methods which might not exploit the attribute and non-linearity

information. Recent methods combine CL with clustering to fur-

ther improve the performance. SCAGC [61] treats nodes within

the same cluster as positive pairs. MCGC [37] combines CL with

MvAGC [28], which treats each node with its neighbors as positive

pairs. Different from SCAGC and MCGC, the proposed GOAL and

X-GOAL capture the semantic information by treating a node with

its corresponding cluster center as a positive pair.

6 CONCLUSION
In this paper, we introduce a novel X-GOAL framework for multi-

plex heterogeneous graphs, which is comprised of a GOAL frame-

work for each homogeneous graph layer and an alignment regu-

larization to jointly model different layers. The GOAL framework

captures both node-level and cluster-level information. The align-

ment regularization is a nimble technique to jointly model and

propagate information across different layers, which could maxi-

mize the mutual information of different layers. The experimental

results on real-world multiplex heterogeneous graphs demonstrate

the effectiveness of the proposed X-GOAL framework.

A DERIVATION OF CLUSTER-LEVEL LOSS
The node-level contrastive loss is usually noisy, which could intro-

duce semantic errors by treating two semantic similar nodes as a

negative pair. To tackle this issue, we use a clustering algorithm

C (e.g. K-means) to obtain the semantic clusters of nodes, and we

use the EM algorithm to update the parameters of E to pull node

embeddings closer to their assigned clusters (or prototypes).

Following [27], we maximize the following log likelihood:

𝑁∑︁
𝑛=1

log𝑝 (h𝑛 |Θ,C) =
𝑁∑︁
𝑛=1

log

𝐾∑︁
𝑘=1

𝑝 (h𝑛, 𝑘 |Θ,C) (19)

where h𝑛 is the 𝑛-th row of h, Θ and C are the parameters of E
and K-means algorithm C, 𝑘 ∈ [1, · · · , 𝐾] is the cluster index, and
𝐾 is the number of clusters. Directly optimizing this objective is

impracticable since the cluster index is a latent variable.

The Evidence Lower Bound (ELBO) of Equation (19) is given by:

ELBO =

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑄 (𝑘 |h𝑛) log
𝑝 (h𝑛, 𝑘 |Θ,C)
𝑄 (𝑘 |h𝑛)

(20)

where 𝑄 (𝑘 |h𝑛) = 𝑝 (𝑘 |h𝑛,Θ,C) is the auxiliary function.

In the E-step, we fix Θ and estimate the cluster centers Ĉ and the

cluster assignments �̂� (𝑘 |h𝑛) by running the K-means algorithm

over the embeddings of the original graph H = E(G). If a node h𝑛
belongs to the cluster 𝑘 , then its auxiliary function is an indicator

function satisfying �̂� (𝑘 |h𝑛) = 1, and �̂� (𝑘 ′ |h𝑛) = 0 for ∀𝑘 ′ ≠ 𝑘 .
In the M-step, based on Ĉ and �̂� (𝑘 |h𝑛) obtained in the E-step,

we update Θ by maximizing ELBO:

ELBO =

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

�̂� (𝑘 |h𝑛) log 𝑝 (h𝑛, 𝑘 |Θ, Ĉ)

−
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

�̂� (𝑘 |h𝑛) log �̂� (𝑘 |h𝑛)

(21)

Dropping the second term of the above equation, which is a con-

stant, we will minimize the following loss function:

LC = −
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

�̂� (𝑘 |h𝑛) log 𝑝 (h𝑛, 𝑘 |Θ, Ĉ) (22)

Assuming a uniform prior distribution over h𝑛 , we have:

𝑝 (h𝑛, 𝑘 |Θ, Ĉ) ∝ 𝑝 (𝑘 |h𝑛,Θ, Ĉ) (23)

We define 𝑝 (𝑘 |h𝑛,Θ, Ĉ) by:

𝑝 (𝑘 |h𝑛,Θ, Ĉ) =
e(ĉ

𝑇
𝑘
·h𝑛/𝜏)∑𝐾

𝑘′=1 e(ĉ
𝑇
𝑘′ ·h𝑛/𝜏)

(24)

where h𝑛 ∈ R𝑑 is the embedding of the node x𝑛 , ĉ𝑘 ∈ R𝑑 is the

vector of the 𝑘-th cluster center, 𝜏 is the temperature parameter.

Let’s use𝑘𝑛 to denote the cluster assignment of h𝑛 , and normalize

the loss by
1

𝑁
, then Equation (22) can be rewritten as:

LC = − 1

𝑁

𝑁∑︁
𝑛=1

log

e(c
𝑇
𝑘𝑛

·h𝑛/𝜏)∑𝐾
𝑘=1

e(c
𝑇
𝑘
·h𝑛/𝜏)

(25)

The above loss function captures the semantic similarities be-

tween nodes by pulling nodes within the same cluster closer to

their assigned cluster center.
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