
Uniform Operational ConsistentQuery Answering
Marco Calautti

University of Trento

marco.calautti@unitn.it

Ester Livshits

University of Edinburgh

ester.livshits@ed.ac.uk

Andreas Pieris

University of Edinburgh &

University of Cyprus

apieris@inf.ed.ac.uk

Markus Schneider

University of Edinburgh

m.schneider@ed.ac.uk

ABSTRACT
Operational consistent query answering (CQA) is a recent frame-

work for CQA, based on revised definitions of repairs and consistent

answers, which opens up the possibility of efficient approximations

with explicit error guarantees. The main idea is to iteratively apply

operations (e.g., fact deletions), starting from an inconsistent data-

base, until we reach a database that is consistent w.r.t. the given set

of constraints. This gives us the flexibility of choosing the probabil-

ity with which we apply an operation, which in turn allows us to

calculate the probability of an operational repair, and thus, the prob-

ability with which a consistent answer is entailed. A natural way

of assigning probabilities to operations is by targeting the uniform

probability distribution over a reasonable space such as the set of

operational repairs, the set of sequences of operations that lead to

an operational repair, and the set of available operations at a certain

step of the repairing process. This leads to what we generally call

uniform operational CQA. The goal of this work is to perform a

data complexity analysis of both exact and approximate uniform

operational CQA, focusing on functional dependencies (and sub-

classes thereof), and conjunctive queries. The main outcome of

our analysis (among other positive and negative results), is that

uniform operational CQA pushes the efficiency boundaries further

by ensuring the existence of efficient approximation schemes in

scenarios that go beyond the simple case of primary keys, which

seems to be the limit of the classical approach to CQA.

ACM Reference Format:
Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2022.

Uniform Operational Consistent Query Answering. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 33 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Consistent query answering (CQA) is an elegant framework, intro-

duced in the late 1990s by Arenas, Bertossi, and Chomicki [1], that

allows us to compute conceptually meaningful answers to queries

posed over inconsistent databases, that is, databases that do not

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

conform to their specifications. The key elements underlying CQA

are (i) the notion of (database) repair of an inconsistent database 𝐷 ,

that is, a consistent database whose difference with 𝐷 is somehow

minimal, and (ii) the notion of query answering based on consistent
answers, that is, answers that are entailed by every repair. Since

deciding whether a candidate answer is a consistent answer is most

commonly intractable in data complexity (in fact, even for primary

keys and conjunctive queries, the problem is coNP-hard [7]), there

was a great effort on drawing the tractability boundary for CQA; see,

e.g., [11–13, 16–18]. Much of this effort led to interesting dichotomy

results that precisely characterize whenCQA is tractable/intractable

in data complexity. However, the tractable fragments do not cover

many relevant scenarios that go beyond primary keys.

As extensively argued in [5], the goal of a practically applicable

CQA approach should be efficient approximate query answering

with explicit error guarantees rather than exact query answering.

In the realm of the CQA approach described above, one could try to

devise efficient probabilistic algorithms with bounded one- or two-

sided error. However, it is unlikely that such algorithms exist since,

even for very simple scenarios (e.g., primary keys and conjunctive

queries), placing the problem in tractable randomized complexity

classes such as RP or BPP would imply that the polynomial hierar-

chy collapses [15]. Another promising idea is to replace the rather

strict notion of consistent answers with the more refined notion of

relative frequency, that is, the percentage of repairs that entail an

answer, and then try to approximate it via a fully polynomial-time

randomized approximation scheme (FPRAS); computing it exactly

is, unsurprisingly, ♯P-hard [19]. Indeed, for primary keys and con-

junctive queries, one can approximate the relative frequency via an

FPRAS; this is implicit in [9], and it has been made explicit in [3].

Moreover, a recent experimental evaluation revealed that approxi-

mate CQA in the presence of primary keys and conjunctive queries

is not unrealistic in practice [4]. However, it seems that the simple

case of primary keys is the limit of this approach. We have strong

indications that in the case of FDs the problem of computing the

relative frequency does not admit an FPRAS, while in the case of

keys it is a highly non-trivial problem [6].

The above limitations of the classical CQA approach led the au-

thors of [5] to propose a new framework for CQA, based on revised

definitions of repairs and consistent answers, which opens up the

possibility of efficient approximations with error guarantees. The

main idea underlying this new framework is to replace the declara-

tive approach to repairs with an operational one that explains the
process of constructing a repair. In other words, we can iteratively

ar
X

iv
:2

20
4.

10
59

2v
1

 [
cs

.D
B

]
 2

2
A

pr
 2

02
2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

apply operations (e.g., fact deletions), starting from an inconsis-

tent database, until we reach a database that is consistent w.r.t. the

given set of constraints. This gives us the flexibility of choosing

the probability with which we apply an operation, which in turn

allows us to calculate the probability of an operational repair, and

thus, the probability with which an answer is entailed.

Probabilities can be naturally assigned to operations in many sce-

narios leading to inconsistencies. This is illustrated by the following

example from [5]. Consider a data integration scenario that results

in a database containing the facts Emp(1,Alice) and Emp(1,Tom)
that violate the constraint that the first attribute of the relation name

Emp (the id) is a key. Suppose we have a level of trust in each of the

sources; say we believe that each is 50% reliable. With probability

0.5 · 0.5 = 0.25 we do not trust either tuple and apply the operation

that removes both facts. With probability (1 − 0.25)/2 = 0.375 we

remove either Emp(1,Alice) or Emp(1,Tom).
The preliminary data complexity analysis of operational CQA

performed in [5] revealed that computing the probability of a candi-

date answer is ♯P-hard and inapproximable, even for primary keys

and conjunctive queries. However, these negative results should

not be seen as the end of the story, but rather as the beginning since

operational CQA gives us the flexibility to choose the probabilities

assigned to operations. Indeed, the main question left open by [5]

is the following: how can we choose the probabilities assigned to

operations so that the existence of an FPRAS is guaranteed?

A natural way of choosing those probabilities is to follow the

uniform probability distribution over a reasonable space. The obvi-

ous candidates for such a space are (i) the set of operational repairs,

(ii) the set of sequences of operations that lead to a repair (note

that multiple such sequences can lead to the same repair), and (iii)

the set of available operations at a certain step of the repairing

process. This leads to the so-called uniform operational CQA. The
obvious question is how the complexity of exact and approximate

operational CQA is affected if we assign probabilities to operations

according to the above refined ways. In particular, we would like

to understand whether uniform operational CQA allows us to go

beyond the relatively simple case of primary keys.

Our goal is to perform a complexity analysis of uniform oper-

ational CQA, and provide answers to the above central questions.

Our main findings can be summarized as follows:

(1) Exact uniform operational CQA remains ♯P-hard, even in

the case of primary keys and conjunctive queries.

(2) Uniform operational CQA admits an FPRAS if we focus on

primary keys and conjunctive queries.

(3) In the case of arbitrary keys and FDs, although assigning

probabilities to operations based on uniform repairs and se-

quences (approaches (i) and (ii) discussed above) does not

lead (or it remains openwhether it leads) to the approximabil-

ity of operational CQA, the approach of uniform operations

renders the problem approximable. The latter is a significant

result since it goes beyond the simple case of primary keys.

2 PRELIMINARIES
We recall the basics on relational databases, functional dependen-

cies, and conjunctive queries. In the rest of the paper, we assume the

disjoint countably infinite sets C and V of constants and variables,
respectively. For 𝑛 > 0, let [𝑛] be the set {1, . . . , 𝑛}.

Relational Databases. A (relational) schema S is a finite set of

relation names with associated arity; we write 𝑅/𝑛 to denote that 𝑅

has arity 𝑛 > 0. Each relation name 𝑅/𝑛 is associated with a tuple

of distinct attribute names (𝐴1, . . . , 𝐴𝑛); we write att(𝑅) for the set
{𝐴1, . . . , 𝐴𝑛} of attributes . A fact over S is an expression of the

form 𝑅(𝑐1, . . . , 𝑐𝑛), where 𝑅/𝑛 ∈ S, and 𝑐𝑖 ∈ C for each 𝑖 ∈ [𝑛]. A
database 𝐷 over S is a finite set of facts over S. The active domain
of 𝐷 , denoted dom(𝐷), is the set of constants occurring in 𝐷 . For a

fact 𝑓 = 𝑅(𝑐1, . . . , 𝑐𝑛), with (𝐴1, . . . , 𝐴𝑛) being the tuple of attribute
names of 𝑅, we write 𝑓 [𝐴𝑖] for the constant 𝑐𝑖 .

Functional Dependencies. A functional dependency (FD) 𝜙 over

a schema S is an expression of the form 𝑅 : 𝑋 → 𝑌 , where 𝑅/𝑛 ∈ S
and 𝑋,𝑌 ⊆ att(𝑅). When 𝑋 or 𝑌 are singletons, we avoid the

curly brackets, and simply write the attribute name. We call 𝜙

a key if 𝑋 ∪ 𝑌 = att(𝑅). Given a set Σ of keys over S, we say

that Σ is a set of primary keys if, for each 𝑅 ∈ S, there exists at

most one key in Σ of the form 𝑅 : 𝑋 → 𝑌 . A database 𝐷 satisfies

an FD 𝜙 = 𝑅 : 𝑋 → 𝑌 , denoted 𝐷 |= 𝜙 , if, for every two facts

𝑅(𝑐1), 𝑅(𝑐2) ∈ 𝐷 the following holds: 𝑅(𝑐1) [𝐴] = 𝑅(𝑐2) [𝐴] for
every 𝐴 ∈ 𝑋 implies 𝑅(𝑐1) [𝐵] = 𝑅(𝑐2) [𝐵] for every 𝐵 ∈ 𝑌 . We say

that 𝐷 is consistent w.r.t. a set Σ of FDs, written 𝐷 |= Σ, if 𝐷 |= 𝜙 for

every 𝜙 ∈ Σ; otherwise, we say that 𝐷 is inconsistent w.r.t. Σ.

Conjunctive Queries. A (relational) atom 𝛼 over a schema S is

an expression of the form 𝑅(𝑡1, . . . , 𝑡𝑛), where 𝑅/𝑛 ∈ S, and 𝑡𝑖 ∈
C ∪ V for each 𝑖 ∈ [𝑛]. A conjunctive query (CQ) 𝑄 over S is an

expression of the form Ans(𝑥) :- 𝑅1 (𝑦1), . . . , 𝑅𝑛 (𝑦𝑛), where 𝑅𝑖 (𝑦𝑖),
for 𝑖 ∈ [𝑛], is an atom over S, 𝑥 are the answer variables of 𝑄 , and
each variable in 𝑥 is mentioned in 𝑦𝑖 for some 𝑖 ∈ [𝑛]. We may

write 𝑄 (𝑥) to indicate that 𝑥 are the answer variables of 𝑄 . When

𝑥 is empty, 𝑄 is called Boolean. The semantics of CQs is given via

homomorphisms. Let var(𝑄) and const(𝑄) be the set of variables
and constants in 𝑄 , respectively. A homomorphism from a CQ 𝑄 of

the form Ans(𝑥) :- 𝑅1 (𝑦1), . . . , 𝑅𝑛 (𝑦𝑛) to a database 𝐷 is a function

ℎ : var(𝑄) ∪ const(𝑄) → dom(𝐷), which is the identity over C,
such that 𝑅𝑖 (ℎ(𝑦𝑖)) ∈ 𝐷 for each 𝑖 ∈ [𝑛]. A tuple 𝑐 ∈ dom(𝐷) |𝑥 | is
an answer to 𝑄 over 𝐷 if there is a homomorphism ℎ from 𝑄 to 𝐷

with ℎ(𝑥) = 𝑐 . Let 𝑄 (𝐷) be the answers to 𝑄 over 𝐷 . For Boolean

CQs, we write 𝐷 |= 𝑄 , and say that 𝐷 entails 𝑄 , if () ∈ 𝑄 (𝐷).

3 OPERATIONAL CQA
We proceed to recall the recent operational approach to consistent

query answering, introduced in [5]. Although this new framework

can deal with arbitrary integrity constraints (i.e., tuple-generating

dependencies, equality-generating dependencies, and denial con-

straints), for our purposes we need its simplified version that only

deals with functional dependencies.

Operations and Violations. The notion of operation is the build-

ing block of the operational approach. In the original framework,

the operations are standard updates +𝐹 that add a set 𝐹 of facts

to the database, or −𝐹 that remove 𝐹 from the database. However,

since in this work we deal with FDs, we only need to remove facts

because the addition of a fact would never resolve a conflict. The

formal definition of the notion of operation follows. As usual, we

write P(𝑆) for the powerset of a set 𝑆 .

Definition 3.1. (Operation) For a database 𝐷 over a schema S, a
𝐷-operation is a function op : P(𝐷) → P(𝐷) such that, for some

non-empty set 𝐹 ⊆ 𝐷 of facts, for every𝐷 ′ ∈ P(𝐷), op(𝐷 ′) = 𝐷 ′\𝐹 .
We write −𝐹 to refer to this operation.

The operations −𝐹 depend on the database 𝐷 as they are defined

over 𝐷 . Since 𝐷 will be clear from the context, we may refer to

them simply as operations, omitting 𝐷 . Also, when 𝐹 contains a

single fact 𝑓 , we write −𝑓 instead of the more formal −{𝑓 }. The
main idea of the operational approach to CQA is to iteratively apply

operations, starting from an inconsistent database𝐷 , until we reach

a database 𝐷 ′ ⊆ 𝐷 that is consistent w.r.t. the given set Σ of FDs.

However, as discussed in [5], we need to ensure that at each step of

this repairing process, at least one violation is resolved. To this end,

we need to keep track of all the reasons that cause the inconsistency

of 𝐷 w.r.t. Σ. This brings us to the notion of FD violation.

Definition 3.2. (FD Violation) For a database 𝐷 over a schema

S, a 𝐷-violation of an FD 𝜙 = 𝑅 : 𝑋 → 𝑌 over S is a set {𝑓 , 𝑔} ⊆ 𝐷

of facts such that {𝑓 , 𝑔} ̸|= 𝜙 . We denote the set of 𝐷-violations of 𝜙

by V(𝐷,𝜙). Furthermore, for a set Σ of FDs, we denote by V(𝐷, Σ)
the set {(𝜙, 𝑣) | 𝜙 ∈ Σ and 𝑣 ∈ V(𝐷,𝜙)}.

Thus, a pair (𝜙, {𝑓 , 𝑔}) ∈ V(𝐷, Σ) means that one of the reasons

why the database 𝐷 is inconsistent w.r.t. Σ is because it violates 𝜙

due to the facts 𝑓 and 𝑔. As discussed in [5], apart from forcing an

operation to be fixing, i.e., to fix at least one violation, we also need

to force an operation to remove a set of facts only if it contributes

as a whole to a violation. Such operations are called justified.

Definition 3.3. (Justified Operation) Let 𝐷 be a database over

a schema S, and Σ a set of FDs over S. For a database 𝐷 ′ ⊆ 𝐷 , a

𝐷-operation −𝐹 is called (𝐷 ′, Σ)-justified if there exists (𝜙, {𝑓 , 𝑔}) ∈
V(𝐷 ′, Σ) such that 𝐹 ⊆ {𝑓 , 𝑔}.

Note that justified operations do not try to minimize the number

of atoms that need to be removed. As argued in [5], a set of facts

that collectively contributes to a violation should be considered as

a justified operation during the iterative repairing process since we

do not know a priori which atoms should be deleted, and therefore,

we need to explore all the possible scenarios.

Repairing Sequences. As said above, the main idea of the opera-

tional approach is to iteratively apply justified operations. This is

formalized via the notion of repairing sequence. Consider a data-

base 𝐷 and a set Σ of FDs. Given a sequence 𝑠 = (op𝑖)1≤𝑖≤𝑛 of

𝐷-operations, we define 𝐷𝑠
0
= 𝐷 and 𝐷𝑠

𝑖
= op𝑖 (𝐷𝑠𝑖−1

) for 𝑖 ∈ [𝑛]. In
other words, 𝐷𝑠

𝑖
is obtained by applying to 𝐷 the first 𝑖 operations

of 𝑠 . The notion of repairing sequence follows:

Definition 3.4. (Repairing Sequence) Consider a database 𝐷

and a set Σ of FDs. A sequence of 𝐷-operations 𝑠 = (op𝑖)1≤𝑖≤𝑛 is

called (𝐷, Σ)-repairing if, for every 𝑖 ∈ [𝑛], op𝑖 is (𝐷𝑠𝑖−1
, Σ)-justified.

Let RS(𝐷, Σ) be the set of all (𝐷, Σ)-repairing sequences.

It is easy to verify that the length of a (𝐷, Σ)-repairing sequence
is linear in the size of 𝐷 . It is also clear that the set RS(𝐷, Σ) is
finite. For a (𝐷, Σ)-repairing sequence 𝑠 = (op𝑖)1≤𝑖≤𝑛 , we define its
result as the database 𝑠 (𝐷) = 𝐷𝑠𝑛 , and call it complete if 𝑠 (𝐷) |= Σ,

𝜖
−𝑓1

−𝑓1, −𝑓2 −𝑓1, −𝑓3 −𝑓1, −{𝑓2, 𝑓3}
−{𝑓1, 𝑓2} −𝑓2 −{𝑓2, 𝑓3} −𝑓3

−𝑓3, −𝑓1 −𝑓3, −𝑓2 −𝑓3, −{𝑓1, 𝑓2}

𝑝1
𝑝6 𝑝7 𝑝8

𝑝2 𝑝3 𝑝4 𝑝5
𝑝9 𝑝10 𝑝11

Figure 1: Repairing Markov Chain

i.e., it leads to a consistent database. Let CRS(𝐷, Σ) be the set of all
complete (𝐷, Σ)-repairing sequences.
Operational Repairs. A candidate (operational) repair of a data-
base 𝐷 w.r.t. a set Σ of FDs is a database 𝐷 ′

such that 𝐷 ′ = 𝑠 (𝐷)
for some 𝑠 ∈ CRS(𝐷, Σ). Let CORep(𝐷, Σ) be the set of all candi-
date repairs of 𝐷 w.r.t. Σ. Although every database of CORep(𝐷, Σ)
corresponds to a conceptually meaningful way of repairing the

database 𝐷 , we would like to have a mechanism that allows us to

choose which candidate repairs should be considered for query

answering purposes, and assign likelihoods to those repairs.

The fact that we can operationally repair an inconsistent data-

base via repairing sequences gives us the flexibility of choosing

which operations (that is, fact deletions) are more likely than

others, which in turn allows us to talk about the probability of

a repair, and thus, the probability with which an answer is en-

tailed. The idea of assigning likelihoods to operations extending

sequences can be described as follows: for all possible extensions

𝑠 · op
1
, . . . , 𝑠 · op𝑘 of a repairing sequence 𝑠 , we assign probabilities

𝑝1, . . . , 𝑝𝑘 to them so they add up to 1. This is done by exploiting

a tree-shaped Markov chain that arranges its states (i.e., repairing

sequences) in a rooted tree, where (i) the empty sequence of op-

erations, which is by definition repairing, is the root, (ii) the chil-

dren of each state are its possible extensions, and (iii) the set of

states corresponding to complete sequences coincide with the set

of leaves. We write 𝜀 for the empty sequence of operations. We

further write Ops𝑠 (𝐷, Σ) for the set of (𝐷, Σ)-repairing sequences
{𝑠 ′ ∈ RS(𝐷, Σ) | 𝑠 ′ = 𝑠 · op for some 𝐷-operation op}.

Definition 3.5. (Repairing Markov Chain) For a database 𝐷

and a set Σ of FDs, a (𝐷, Σ)-repairing Markov chain is an edge-

labeled rooted tree 𝑇 = (𝑉 , 𝐸, P), where 𝑉 = RS(𝐷, Σ), 𝐸 ⊆ 𝑉 ×𝑉 ,

and P : 𝐸 → [0, 1], such that:

(1) the root is the empty sequence 𝜀,

(2) for a non-leaf node 𝑠 ∈ 𝑉 , {𝑠 ′ | (𝑠, 𝑠 ′) ∈ 𝐸} = Ops𝑠 (𝐷, Σ),
(3) for a non-leaf node 𝑠 ∈ 𝑉 ,

∑
𝑡 ∈{𝑠′ | (𝑠,𝑠′) ∈𝐸 } P(𝑠, 𝑡) = 1, and

(4) {𝑠 ∈ 𝑉 | 𝑠 is a leaf} = CRS(𝐷, Σ).
A repairing Markov chain generator w.r.t. Σ is a function𝑀Σ assign-

ing to every database 𝐷 a (𝐷, Σ)-repairing Markov chain.

We give a simple example, which will serve as a running example,

that illustrates the notion of repairing Markov chain:

Example 3.6. Consider the database 𝐷 = {𝑓1, 𝑓2, 𝑓3} over the

schema S = {𝑅/3}, where 𝑓1 = 𝑅(𝑎1, 𝑏1, 𝑐1), 𝑓2 = 𝑅(𝑎1, 𝑏2, 𝑐2) and
𝑓3 = 𝑅(𝑎2, 𝑏1, 𝑐2). Consider also the set Σ = {𝜙1, 𝜙2} of FDs over
S, where 𝜙1 = 𝑅 : 𝐴 → 𝐵 and 𝜙2 = 𝑅 : 𝐶 → 𝐵, assuming that

(𝐴, 𝐵,𝐶) is the tuple of attributes of 𝑅. It is easy to see that𝐷 ̸ |= Σ. In
particular, we have that V(𝐷, Σ) = {(𝜙1, {𝑓1, 𝑓2}), (𝜙2, {𝑓2, 𝑓3})}. It
is easy to verify that for the edge-labeled rooted tree𝑇 = (𝑉 , 𝐸, P) in

Figure 1,𝑉 = RS(𝐷, Σ), for a non-leaf node 𝑠 the set of its children is
Ops𝑠 (𝐷, Σ), and the set of leaves coincides with CRS(𝐷, Σ). Hence,
providing that 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 = 1, 𝑝6 + 𝑝7 + 𝑝8 = 1 and

𝑝9 + 𝑝10 + 𝑝11 = 1, 𝑇 is a (𝐷, Σ)-repairing Markov chain.

The purpose of a repairing Markov chain generator is to provide

a mechanism for defining a family of repairing Markov chains

independently of the database. One can design a repairing Markov

chain generator𝑀Σ once, and whenever the database 𝐷 changes,

the desired (𝐷, Σ)-repairing Markov chain is simply𝑀Σ (𝐷).
We now recall the notion of operational repair: they are candidate

operational repairs obtained via repairing sequences that are reach-
able leaves of a repairing Markov chain, i.e., leaves with non-zero

probability. The probability of a leaf is coming from the so-called

leaf distribution of a repairing Markov chain. Formally, given a data-

base 𝐷 and a set Σ of FDs, the leaf distribution of a (𝐷, Σ)-repairing
Markov chain𝑇 = (𝑉 , 𝐸, P) is a function 𝜋 that assigns to each leaf 𝑠

of𝑇 a number from [0, 1] as follows: assuming that (𝑠0, 𝑠1), (𝑠1, 𝑠2),
. . ., (𝑠𝑛−1, 𝑠𝑛), where 𝑛 ≥ 0, 𝜀 = 𝑠0 and 𝑠 = 𝑠𝑛 , is the unique path in

𝑇 from 𝜀 to 𝑠 , 𝜋 (𝑠) = P(𝑠0, 𝑠1) · P(𝑠1, 𝑠2) · · · · · P(𝑠𝑛−1, 𝑠𝑛). The set of
reachable leaves of 𝑇 , denoted RL(𝑇), is the set of leaves of 𝑇 that

have non-zero probability according to the leaf distribution of 𝑇 .

Definition 3.7. (Operational Repair) Given a database 𝐷 , a set

Σ of FDs, and a repairing Markov chain generator𝑀Σ w.r.t. Σ, an
(operational) repair of 𝐷 w.r.t.𝑀Σ is a database 𝐷 ′ ∈ CORep(𝐷, Σ)
such that 𝐷 ′ = 𝑠 (𝐷) for some 𝑠 ∈ RL(𝑀Σ (𝐷)). Let ORep(𝐷,𝑀Σ)
be the set of all operational repairs of 𝐷 w.r.t.𝑀Σ.

An operational repair may be obtainable via multiple repairing

sequences that are reachable leaves of the underlying repairing

Markov chain. The probability of a repair 𝐷 ′
is calculated by sum-

ming up the probabilities of all reachable leaves 𝑠 so that 𝐷 ′ = 𝑠 (𝐷).

Definition 3.8. (Operational Semantics) Given a database 𝐷 , a

set Σ of FDs, and a repairing Markov chain generator𝑀Σ w.r.t. Σ,
the probability of an operational repair 𝐷 ′

of 𝐷 w.r.t.𝑀Σ is

P𝐷,𝑀Σ (𝐷
′) =

∑︁
𝑠∈RL(𝑀Σ (𝐷)) and 𝐷′=𝑠 (𝐷)

𝜋 (𝑠),

where 𝜋 is the leaf distribution of𝑀Σ (𝐷). The operational seman-
tics of 𝐷 w.r.t. 𝑀Σ is defined as the set of repair-probability pairs

[[𝐷]]𝑀Σ
=

{(
𝐷 ′, P𝐷,𝑀Σ (𝐷 ′)

)
| 𝐷 ′ ∈ ORep(𝐷,𝑀Σ)

}
.

Operational CQA.We now have in place all the necessary notions

to recall the operational approach to consistent query answering,

and define the main problem of interest. For a database 𝐷 , a set Σ
of FDs, a Markov chain generator 𝑀Σ w.r.t. Σ, a query 𝑄 (𝑥), and
a tuple 𝑐 ∈ dom(𝐷) |𝑥 | , the probability of 𝑐 being an answer to 𝑄

over some operational repair of 𝐷 is defined as

P𝑀Σ,𝑄 (𝐷, 𝑐) =
∑︁

(𝐷′,𝑝) ∈[[𝐷]]𝑀Σ
and 𝑐∈𝑄 (𝐷′)

𝑝.

We can now talk about operational consistent answers. In particular,

the set of operational consistent answers to 𝑄 over 𝐷 according to

𝑀Σ is defined as the set

{(
𝑐, P𝑀Σ,𝑄 (𝐷, 𝑐)

)
| 𝑐 ∈ dom(𝐷) |𝑥 |

}
.

The problem of interest in this context, dubbed OCQA, accepts
as input a database 𝐷 , a set Σ of FDs, a repairing Markov chain

generator 𝑀Σ w.r.t. Σ, a query 𝑄 (𝑥), and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

and asks for the probability P𝑀Σ,𝑄 (𝐷, 𝑐). We are, in fact, interested

in the data complexity of OCQA, i.e., for a set Σ of FDs, a repairing

Markov chain generator𝑀Σ w.r.t. Σ, and a query𝑄 (𝑥), we focus on

PROBLEM : OCQA(Σ, 𝑀Σ, 𝑄 (𝑥))
INPUT : A database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
OUTPUT : P𝑀Σ,𝑄 (𝐷, 𝑐).

Until now, a repairing Markov chain generator is a general func-

tion. We proceed to discuss the novel idea of uniform operational

CQA, which provides concrete ways of defining such a function.

4 UNIFORM OPERATIONAL CQA
A natural way of defining a repairing Markov chain is to assign

probabilities to operations according to the uniform probability

distribution over a reasonable space. The obvious options for such

a space are (i) the set of candidate operational repairs, (ii) the set

of complete repairing sequences, and (iii) the set of available op-

erations at a certain step of the repairing process. More precisely,

given a set Σ of FDs, it is natural to consider the repairing Markov

chain generators𝑀ur
Σ (uniform repairs),𝑀us

Σ (uniform sequences),

and𝑀uo
Σ (uniform operations) w.r.t. Σ such that, for a database 𝐷 :

(i) ORep(𝐷,𝑀ur
Σ) = CORep(𝐷, Σ), and for𝐷 ′ ∈ ORep(𝐷,𝑀ur

Σ),
P𝐷,𝑀ur

Σ
(𝐷 ′) = 1

|ORep(𝐷,𝑀ur
Σ) | .

(ii) For every 𝑠 ∈ CRS(𝐷, Σ), assuming that 𝜋 is the leaf distri-

bution of𝑀us
Σ (𝐷), 𝜋 (𝑠) = 1

|CRS(𝐷,Σ) | .
(iii) For every 𝑠, 𝑠 ′ ∈ RS(𝐷, Σ), assuming that 𝑀uo

Σ (𝐷) =

(𝑉 , 𝐸, P), 𝑠 ′ ∈ Ops𝑠 (𝐷, Σ) implies P(𝑠, 𝑠 ′) = 1

|Ops𝑠 (𝐷,Σ) |
.

We now explain, by means of an example, how these Markov chain

generators are defined; the formal definitions are in Appendix A.

In the rest of the section, let 𝐷 and Σ be the database and the

set of FDs, respectively, from Example 3.6. Recall that any (𝐷, Σ)-
repairing Markov chain looks as the one depicted in Figure 1 with

𝑝1+𝑝2+𝑝3+𝑝4+𝑝5 = 1, 𝑝6+𝑝7+𝑝8 = 1 and 𝑝9+𝑝10+𝑝11 = 1. Thus,

the task of understanding how the Markov chain generators𝑀ur
Σ ,

𝑀us
Σ and𝑀uo

Σ should be defined boils down to understanding how

the probabilities 𝑝1, . . . , 𝑝11 should be calculated by𝑀ur
Σ ,𝑀us

Σ and

𝑀uo
Σ in order to guarantee the properties discussed above. We start

by explaining how the probabilities are calculated by𝑀us
Σ , which

will then help us to explain how the probabilities are calculated by

𝑀ur
Σ . We finally discuss𝑀uo

Σ , which is the simplest one.

Uniform Sequences. For a sequence 𝑠 ∈ RS(𝐷, Σ), let CRS𝑠 (𝐷, Σ)
be the set of all sequences of CRS(𝐷, Σ) that have 𝑠 as a prefix.

Thus, CRS𝑠 (𝐷, Σ) collects the leaves of the subtree rooted at 𝑠 ,

with CRS𝜖 (𝐷, Σ) = CRS(𝐷, Σ) being the set of leaves. Hence, for

𝑀us
Σ (𝐷) = (𝑉 , 𝐸, P) to induce the uniform distribution over the

leaves, it suffices, for 𝑠, 𝑠 ′ ∈ RS(𝐷, Σ) with 𝑠 ′ ∈ Ops𝑠 (𝐷, Σ), to let

P(𝑠, 𝑠 ′) = |CRS𝑠′ (𝐷, Σ) |
|CRS𝑠 (𝐷, Σ) |

.

Observe that

|CRS𝜖 (𝐷, Σ) | = 9

|CRS−𝑓1 (𝐷, Σ) | = |CRS−𝑓3 (𝐷, Σ) | = 3

|CRS−{𝑓1,𝑓2 } (𝐷, Σ) | = |CRS−𝑓2 (𝐷, Σ) | = |CRS−{𝑓2,𝑓3 } (𝐷, Σ) | = 1.

Hence, 𝑝1 = 𝑝5 = 3

9
, 𝑝2 = 𝑝3 = 𝑝4 = 1

9
. Similarly, we obtain that

𝑝6 = 𝑝7 = 𝑝8 = 1

3
, and 𝑝9 = 𝑝10 = 𝑝11 = 1

3
. Thus, RL(𝑀us

Σ (𝐷)) =
CRS(𝐷, Σ), and 𝜋 (𝑠) = 1

9
, for each 𝑠 ∈ RL(𝑀us

Σ (𝐷)), with 𝜋 being

the leaf distribution of𝑀us
Σ (𝐷), as needed.

Uniform Repairs. Since multiple complete sequences can lead to

the same database (e.g., −𝑓1,−{𝑓2, 𝑓3} and −𝑓3,−{𝑓1, 𝑓2}) we would
like to have a mechanism that gives non-zero probability to exactly

one such sequence. To this end, for each set of complete sequences

that lead to the same consistent database, we identify a represen-

tative one. We say that a (𝐷, Σ)-repairing sequence 𝑠 ∈ CRS(𝐷, Σ)
is canonical if there is no 𝑠 ′ ∈ CRS(𝐷, Σ) such that 𝑠 (𝐷) = 𝑠 ′(𝐷)
and 𝑠 ′ ≺ 𝑠 for some arbitrary ordering ≺ over the set RS(𝐷, Σ).
Let CanCRS(𝐷, Σ) be the set of all sequences of CRS(𝐷, Σ) that
are canonical. Furthermore, for a sequence 𝑠 ∈ RS(𝐷, Σ), we write
CanCRS𝑠 (𝐷, Σ) for the set of all sequences 𝑠 ′ of CanCRS(𝐷, Σ)
that have 𝑠 as a prefix. Hence, for 𝑠 ∈ RS(𝐷, Σ), CanCRS𝑠 (𝐷, Σ)
is the set of canonical leaves of the subtree rooted at 𝑠 , with

CanCRS𝜖 (𝐷, Σ) = CanCRS(𝐷, Σ) being the set of canonical leaves

of the tree. We can now follow the same approach discussed above

for uniform sequences with the key difference that only canonical

sequences are considered. In other words, for𝑀ur
Σ (𝐷) = (𝑉 , 𝐸, P) to

induce the uniform distribution over the set of operational repairs,

it suffices, for nodes 𝑠, 𝑠 ′ ∈ RS(𝐷, Σ) with 𝑠 ′ ∈ Ops𝑠 (𝐷, Σ), to let

P(𝑠, 𝑠 ′) = |CanCRS𝑠′ (𝐷, Σ) |
|CanCRS𝑠 (𝐷, Σ) |

.

Notice that P(𝑠, 𝑠 ′) is not defined if the subtree 𝑇𝑠 rooted at 𝑠 has

no canonical leaves, i.e., CanCRS𝑠 (𝐷, Σ) = ∅. In this case, none of

the leaves of 𝑇𝑠 is reachable with non-zero probability, and thus,

P(𝑠, 𝑠 ′) can get an arbitrary probability, e.g.,
1

|Ops𝑠 (𝐷,Σ) |
.

Let us illustrate the above discussion. Assuming, e.g., that for

𝑠, 𝑠 ′ ∈ RS(𝐷, Σ), 𝑠 ≺ 𝑠 ′ iff 𝑠 comes before 𝑠 ′ in a depth-first traversal

of the tree, we have that CanCRS(𝐷, Σ) consists of the sequences
−𝑓1,−𝑓2 −𝑓1,−𝑓3 −𝑓1,−{𝑓2, 𝑓3} −𝑓2 −{𝑓2, 𝑓3}.

Therefore, we get that

|CanCRS𝜖 (𝐷, Σ) | = 5 |CanCRS−𝑓1 (𝐷, Σ) | = 3

|CanCRS−𝑓2 (𝐷, Σ) | = |CanCRS−{𝑓2,𝑓3 } (𝐷, Σ) | = 1

|CanCRS−{𝑓1,𝑓2 } (𝐷, Σ) | = |CanCRS−𝑓3 (𝐷, Σ) | = 0.

Hence, 𝑝1 = 3

5
, 𝑝2 = 𝑝5 = 0, 𝑝3 = 𝑝4 = 1

5
, 𝑝6 = 𝑝7 = 𝑝8 = 1

3
, and 𝑝9

= 𝑝10 = 𝑝11 = 1

3
. Thus, RL(𝑀ur

Σ (𝐷)) = CanCRS(𝐷, Σ), and 𝜋 (𝑠) =
1

5
, for each 𝑠 ∈ RL(𝑀ur

Σ (𝐷)), with 𝜋 being the leaf distribution of

𝑀ur
Σ (𝐷). Hence, ORep(𝐷,𝑀ur

Σ) = {∅, {𝑓1}, {𝑓2}, {𝑓3}, {𝑓1, 𝑓3}} with
P𝐷,𝑀Σ (𝐷 ′) = 1

5
, for each 𝐷 ′ ∈ ORep(𝐷,𝑀ur

Σ), as needed.
Uniform Operations. For 𝑀uo

Σ we simply follow our intention.

In particular, 𝑀uo
Σ (𝐷) = (𝑉 , 𝐸, P) is such that, for nodes 𝑠, 𝑠 ′ ∈

RS(𝐷, Σ) with 𝑠 ′ ∈ Ops𝑠 (𝐷, Σ), P(𝑠, 𝑠 ′) = 1

|Ops𝑠 (𝐷,Σ) |
. Thus, 𝑝1 =

𝑝2 = 𝑝3 = 𝑝4 = 𝑝5 = 1

5
, 𝑝6 = 𝑝7 = 𝑝8 = 1

3
, and 𝑝9 = 𝑝10 = 𝑝11 =

1

3
. Notice that, unlike the Markov chain generators 𝑀ur

Σ and 𝑀us
Σ

discussed above, 𝑀uo
Σ is intrinsically “local” in the sense that the

probabilities assigned to operations at a certain step are completely

determined by that step. As we shall see, the local nature of 𝑀uo
Σ

has a significant impact on operational CQA when it comes to

approximations.

Our Main Objective. The data complexity of OCQA for arbitrary
Markov chain generators has been already studied in [5], showing

that it is, in general, intractable. In particular:

Theorem 4.1 ([5]). There exist a set Σ of primary keys, a re-
pairing Markov chain generator 𝑀Σ w.r.t. Σ, and a CQ 𝑄 such that
OCQA(Σ, 𝑀Σ, 𝑄) is ♯P-hard.

With the above intractability result in place, the authors of [5]

asked whether OCQA(Σ, 𝑀Σ, 𝑄 (𝑥)) is approximable, i.e., whether

the target probability can be approximated via a fully polynomial-
time randomized approximation scheme (FPRAS, for short). Formally,

an FPRAS for OCQA(Σ, 𝑀Σ, 𝑄 (𝑥)) is a randomized algorithm A
that takes as input a database 𝐷 , a tuple 𝑐 ∈ dom(𝐷) |𝑥 | , 𝜖 > 0, and

0 < 𝛿 < 1, runs in polynomial time in | |𝐷 | |, | |𝑐 | |,1 1/𝜖 and log(1/𝛿),
and produces a random variable A(𝐷, 𝑐, 𝜖, 𝛿) such that

Pr

(
|A(𝐷, 𝑐, 𝜖, 𝛿) − P𝑀Σ,𝑄 (𝐷, 𝑐) | ≤ 𝜖 · P𝑀Σ,𝑄 (𝐷, 𝑐)

)
≥ 1 − 𝛿.

It was shown that the problem in question does not admit an FPRAS,

under the widely accepted complexity assumption that RP ≠ NP.

Recall that RP is the complexity class of problems that are efficiently

solvable via a randomized algorithmwith a bounded one-sided error

(i.e., the answer may mistakenly be “no”) [2].

Theorem 4.2 ([5]). Unless RP = NP, there exist a set Σ of primary
keys, a Markov chain generator 𝑀Σ w.r.t. Σ, and a CQ 𝑄 such that
there is no FPRAS for OCQA(Σ, 𝑀Σ, 𝑄).

Having the natural Markov chain generators discussed above in

place, the question is how the complexity of exact and approximate

operational CQA is affected, i.e., how Theorems 4.1 and 4.2 are

affected if we consider these more refined Markov chain generators

instead of an arbitrary one. The goal of this work is to perform such

a complexity analysis. Our main findings are as follows:

(1) The complexity of exact operational CQA remains ♯P-hard,

even in the case of primary keys.

(2) Operational CQA is approximable, i.e., it admits an FPRAS,

if we focus on primary keys.

(3) In the case of arbitrary keys and FDs, although the Markov

chain generators based on uniform repairs and sequences do

not lead (or it remains open whether they lead) to the approx-

imability of operational CQA, the Markov chain generator

based on uniform operations renders the problem approx-

imable.
2
The latter should be attributed to the “local” nature

of the Markov chain generator based on uniform operations.

The rest of the paper is devoted to discussing the high-level ideas

underlying the above results; the formal proofs are in the appendix.

5 UNIFORM REPAIRS
We start our complexity analysis by considering the Markov chain

generator based on uniform repairs, and show the following result:

Theorem 5.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀ur

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of primary keys, and a CQ 𝑄 , OCQA(Σ, 𝑀ur

Σ , 𝑄)
admits an FPRAS.

1
As usual, | |𝑜 | | denotes the size of the encoding of a syntactic object 𝑜 .

2
In the case of FDs, the approximability result holds assuming that only operations that

remove a single fact (not a pair of facts) are considered; this is discussed in Section 7.

(3) Unless RP = NP, there exist a set Σ of FDs, and a CQ 𝑄 such
that there is no FPRAS for OCQA(Σ, 𝑀ur

Σ , 𝑄).

Notice that the above result does not cover the case of arbitrary

keys, which remains an open problem. We can extract, however,

from the proof of item (3) that for keys, unless RP = NP, the problem

of counting the number of operational repairs does not admit an

FPRAS. We see this as an indication that item (3) holds even in the

case of keys. We now discuss how Theorem 5.1 is shown.

We start with the simple observation that, for a database 𝐷 , a

set Σ of FDs, a CQ 𝑄 (𝑥), and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

P𝑀ur
Σ ,𝑄

(𝐷, 𝑐) =
|{𝐷 ′ ∈ CORep(𝐷, Σ) | 𝑐 ∈ 𝑄 (𝐷 ′)}|

|CORep(𝐷, Σ) | .

This ratio is the percentage of candidate operational repairs of 𝐷

w.r.t. Σ that entail𝑄 (𝑐), which we call the repair relative frequency of
𝑄 (𝑐) w.r.t. 𝐷 and Σ, and denote rrfreqΣ,𝑄 (𝐷, 𝑐). Therefore, we can
conveniently restate the problem OCQA(Σ, 𝑀ur

Σ , 𝑄) as the problem
of computing the repair relative frequency of 𝑄 (𝑐) w.r.t. 𝐷 and Σ,
which does not depend on the Markov chain generator𝑀ur

Σ :

PROBLEM : RRFreq(Σ, 𝑄 (𝑥))
INPUT : A database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
OUTPUT : rrfreqΣ,𝑄 (𝐷, 𝑐).

We proceed to discuss howwe establish Theorem 5.1 by directly con-

sidering the problem RRFreq(Σ, 𝑄) instead of OCQA(Σ, 𝑀ur
Σ , 𝑄);

further details can be found in Appendix B.

Item (1). We show that RRFreq(Σ, 𝑄) is ♯P-hard for a set Σ con-

sisting of a single key of the form 𝑅 : 𝐴 → 𝐵, where 𝑅 is a binary

relation namewith (𝐴, 𝐵) being its tuple of attributes, and a Boolean
CQ 𝑄 . This is done via a polynomial-time Turing reduction from a

graph-theoretic problem called ♯𝐻 -Coloring, where 𝐻 is an undi-

rected graph, to RRFreq(Σ, 𝑄). The problem ♯𝐻 -Coloring takes as
input an undirected graph𝐺 , and asks for the number of homomor-

phisms from 𝐺 to 𝐻 . The key of the proof is to carefully choose 𝐻

so that (i) ♯𝐻 -Coloring is ♯P-hard, and (ii) it allows us to devise the

desired polynomial-time Turing reduction, i.e., for an undirected

graph𝐺 , we can construct in polynomial time in | |𝐺 | | a database
𝐷𝐺 such that the number of homomorphisms from 𝐺 to 𝐻 can

be computed in polynomial time in | |𝐺 | |, assuming that we have

access to an oracle for the problem RRFreq(Σ, 𝑄), which we can call
to compute the number rrfreqΣ,𝑄 (𝐷𝐺 , ()); we use () to denote the

empty tuple. For choosing 𝐻 , we exploit an interesting dichotomy

from [10], which characterizes when ♯𝐻 -Coloring is solvable in

polynomial time or is ♯P-hard, depending on the structure of 𝐻 .

Item (2). For showing that, for a set Σ of primary keys and a CQ𝑄 ,

RRFreq(Σ, 𝑄) admits an FPRAS, we rely on Monte Carlo sampling.

We first show the existence of an efficient sampler:

Lemma 5.2. Given a database 𝐷 , and a set Σ of primary keys,
we can sample elements of CORep(𝐷, Σ) uniformly at random in
polynomial time in | |𝐷 | |.

The above lemma tells us that there exists a randomized algo-

rithm SampleRep that takes as input 𝐷 and Σ, runs in polynomial

time in | |𝐷 | |, and produces a random variable SampleRep(𝐷, Σ)
such that Pr(SampleRep(𝐷, Σ) = 𝐷 ′) = 1

|CORep(𝐷,Σ) | for every

database 𝐷 ′ ∈ CORep(𝐷, Σ). Notice, however, that the efficient

sampler provided by Lemma 5.2 does not immediately imply the

existence of an FPRAS for RRFreq(Σ, 𝑄) since the number of sam-

ples should be proportional to
1

rrfreqΣ,𝑄 (𝐷,𝑐) [8]. Hence, to obtain an

FPRAS using Monte Carlo sampling, we need show that the repair

relative frequency is never “too small”.

Lemma 5.3. Consider a set Σ of primary keys, and a CQ 𝑄 (𝑥). For
every database 𝐷 , and tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

rrfreqΣ,𝑄 (𝐷, 𝑐) ≥ 1

(2 · | |𝐷 | |) | |𝑄 | |

whenever rrfreqΣ,𝑄 (𝐷, 𝑐) > 0.

Given a set Σ of primary keys and a CQ 𝑄 , by exploiting Lem-

mas 5.2 and 5.3, we can easily devise an FPRAS for RRFreq(Σ, 𝑄).
Item (3). For showing that there exist a set Σ of FDs and a CQ 𝑄

such that, unless RP = NP, there is no FPRAS for RRFreq(Σ, 𝑄), we
provide a rather involved proof that proceeds in two main steps.

We first give an auxiliary lemma that is needed by both steps.

An undirected graph 𝐺 is called non-trivially connected if it con-
tains at least two nodes, and is connected. We write IS(𝐺) for the
set that collects all the independent sets of𝐺 . Recall that the conflict
graph of a database 𝐷 w.r.t. a set Σ of FDs, denoted CG(𝐷, Σ), is an
undirected graph whose node set is 𝐷 , and it has an edge between

𝑓 and 𝑔 if {𝑓 , 𝑔} ̸|= Σ. A database 𝐷 is non-trivially Σ-connected if
CG(𝐷, Σ) is non-trivially connected. We then show the following:

Lemma 5.4. Consider a non-trivially Σ-connected database
𝐷 , where Σ is a set of FDs. It holds that |CORep(𝐷, Σ) | =

|IS(CG(𝐷, Σ)) |.

Having the above auxiliary lemma in place, we can now describe

the two steps of the proof underlying Theorem 5.1(3). The first step

establishes the following inapproximability result about keys.

Proposition 5.5. Unless RP = NP, there exists a set Σ of keys
over {𝑅} such that, given a non-trivially Σ-connected database 𝐷 , the
problem of computing |CORep(𝐷, Σ) | does not admit an FPRAS.

The above result exploits the fact that, unless RP = NP, the

problem of counting the number of independent sets of a non-

trivially connected undirected graph of bounded degree does not

admit an FPRAS.
3
In particular, we show that there exists a set Σ𝐾

of keys over the schema S = {𝑅/Δ+1} such that the following holds:
given a non-trivially connected undirected graph 𝐺 of bounded

degree Δ, we can construct in polynomial time in | |𝐺 | | a database
𝐷𝐺 over S such that CG(𝐷𝐺 , Σ𝐾) is isomorphic to 𝐺 . Thus, by

Lemma 5.4, |CORep(𝐷𝐺 , Σ𝐾) | = |IS(𝐺) |. The construction of 𝐷𝐺
exploits Vizing’s Theorem, which states that a graph of degree Δ
always has a (Δ + 1)-edge-coloring, as well as the fact that such
an edge-coloring can be constructed in polynomial time as long

as Δ is bounded [20]. Hence, given a database 𝐷 , assuming that

the problem of computing the number |CORep(𝐷, Σ𝐾) | admits an

FPRAS, we can conclude that the problem of counting the number

of independent sets of a non-trivially connected undirected graph

of bounded degree admits an FPRAS, which, unless RP = NP, leads

3
This result is known for arbitrary, not necessarily non-trivially connected graphs [22].

Thus, for our purposes, we had to strengthen it to non-trivially connected graphs.

to a contradiction. Therefore, Proposition 5.5 follows with Σ = Σ𝐾 .
Notice that Proposition 5.5 tells us that for keys, unless RP = NP,

the problem of counting the number of operational repairs does

not admit an FPRAS. As said above, we see this as an indication

that item (3) of Theorem 5.1 holds even for keys.

We then proceed to show that, unless RP = NP, the existence of

an FPRAS for RRFreq(Σ, 𝑄), where Σ is a set of FDs and 𝑄 a CQ,

would contradict Proposition 5.5 . Let Σ𝐾 be the set of keys provided

by Proposition 5.5. We show the following auxiliary result:

Lemma 5.6. Assume that RRFreq(Σ, 𝑄) admits an FPRAS, for ev-
ery set Σ of FDs and CQ 𝑄 . Given a non-trivially Σ𝐾 -connected data-
base 𝐷 , the problem of computing |CORep(𝐷, Σ𝐾) | admits an FPRAS.

To establish the above result, we show that there exists a set Σ𝐹
of FDs such that, for every non-trivially Σ𝐾 -connected database

𝐷 , we can construct in polynomial time in | |𝐷 | | a database 𝐷𝐹
such that CG(𝐷𝐹 , Σ𝐹) consists of a graph 𝐺 that is isomorphic to

CG(𝐷, Σ𝐾), and an additional node that is connected via an edge

with every node of 𝐺 . Therefore, by Lemma 5.4, we get that

|CORep(𝐷𝐹 , Σ𝐹) | = |CORep(𝐷, Σ𝐾) | + 1.

Let us clarify that this is the place where we need the power of

FDs; it is unclear how we can devise a set of keys that has the same

properties as Σ𝐹 . We then construct an atomic Boolean CQ𝑄𝐹 with

rrfreqΣ𝐹 ,𝑄𝐹
(𝐷𝐹 , ()) =

1

|CORep(𝐷𝐹 , Σ𝐹) |
=

1

|CORep(𝐷, Σ𝐾) | + 1

;

we use () to denote the empty tuple. Now, by exploiting the above

equality, the fact that𝐷𝐹 can be constructed in polynomial time, and

the FPRAS forRRFreq(Σ𝐹 , 𝑄𝐹) (which exists by hypothesis), we can
devise an FPRAS for the problem of computing |CORep(𝐷, Σ𝐾) |
given a non-trivially Σ𝐾 -connected database 𝐷 , as claimed.

It is now straightforward to see that from Proposition 5.5 and

Lemma 5.6, we get that, unless RP = NP, there exist a set Σ of FDs

and a CQ 𝑄 such that there is no FPRAS for RRFreq(Σ, 𝑄).

6 UNIFORM SEQUENCES
We now concentrate on the Markov chain generator based on uni-

form sequences, and establish the following complexity result.

Theorem 6.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀us

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of primary keys, and a CQ 𝑄 , OCQA(Σ, 𝑀us

Σ , 𝑄)
admits an FPRAS.

Notice that the above result does not cover the cases of arbi-

trary keys and FDs. Unfortunately, despite our efforts, we have not

managed to prove or disprove the existence of an FPRAS for the

problem in question. We conjecture that there is no FPRAS even

for keys, i.e., unless RP = NP, there exist a set Σ of keys, and a CQ

𝑄 such that there is no FPRAS for OCQA(Σ, 𝑀us
Σ , 𝑄). We proceed

to discuss how Theorem 6.1 is shown.

As for Theorem 5.1, we can conveniently restate the problem in

question as a problem of computing a “relative frequency” ratio that

does not depend on the Markov chain generator. In particular, for a

database 𝐷 , a set Σ of FDs, a CQ 𝑄 (𝑥), and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

P𝑀us
Σ ,𝑄

(𝐷, 𝑐) =
|{𝑠 ∈ CRS(𝐷, Σ) | 𝑐 ∈ 𝑄 (𝑠 (𝐷))}|

|CRS(𝐷, Σ) | .

This ratio is the percentage of complete (𝐷, Σ)-repairing sequences
that lead to an operational repair that entails 𝑄 (𝑐), which we call

the sequence relative frequency of 𝑄 (𝑐) w.r.t. 𝐷 and Σ, and denote

srfreqΣ,𝑄 (𝐷, 𝑐). Thus, we can restateOCQA(Σ, 𝑀us
Σ , 𝑄) as the prob-

lem of computing the sequence relative frequency of 𝑄 (𝑐) w.r.t. 𝐷
and Σ, which is independent from the Markov chain generator𝑀us

Σ :

PROBLEM : SRFreq(Σ, 𝑄 (𝑥))
INPUT : A database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
OUTPUT : srfreqΣ,𝑄 (𝐷, 𝑐).

We now discuss how we establish Theorem 6.1 by directly consider-

ing the problem SRFreq(Σ, 𝑄) instead ofOCQA(Σ, 𝑀us
Σ , 𝑄); further

details can be found in Appendix C.

Item (1). Let Σ and 𝑄 be the singleton set of primary keys and the

Boolean CQ, respectively, for which RRFreq(Σ, 𝑄) is ♯P-hard; Σ and

𝑄 are obtained from the proof of Theorem 5.1(1). We show that also

SRFreq(Σ, 𝑄) is ♯P-hard via a polynomial-time Turing reduction

from ♯𝐻 -Coloring. Actually, we can exploit the same construction

as in the proof of item (1) of Theorem 5.1.

Item (2). For showing that, for a set Σ of primary keys and a CQ

𝑄 (𝑥), SRFreq(Σ, 𝑄) admits an FPRAS, we rely again onMonte Carlo

sampling. We first show that an efficient sampler exists. This relies

on a non-trivial technical lemma, which states that, for a database

𝐷 , |CRS(𝐷, Σ) | can be computed in polynomial time in | |𝐷 | |.

Lemma 6.2. For a database 𝐷 , and a set Σ of primary keys, we can
sample elements of CRS(𝐷, Σ) uniformly at random in polynomial
time in | |𝐷 | |.

To establish that the problem in question admits an FPRAS based

on Monte Carlo sampling, it remains to show the following:

Lemma 6.3. Consider a set Σ of primary keys, and a CQ 𝑄 (𝑥). For
every database 𝐷 , and tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

srfreqΣ,𝑄 (𝐷, 𝑐) ≥ 1

(2 · | |𝐷 | |) | |𝑄 | |

whenever srfreqΣ,𝑄 (𝐷, 𝑐) > 0.

Given a set Σ of primary keys and a CQ 𝑄 , by exploiting Lem-

mas 6.2 and 6.3, we can easily devise an FPRAS for SRFreq(Σ, 𝑄).

7 UNIFORM OPERATIONS
We finally consider the Markov chain generator based on uniform

operations, and establish the following complexity result.

Theorem 7.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀uo

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of keys, and a CQ 𝑄 , OCQA(Σ, 𝑀uo

Σ , 𝑄) admits an
FPRAS.

Notice that the above result does not cover the case of FDs, which

remains an open problem. However, as we explain below, for FDs

we can establish an approximability result under the assumption

that only operations that remove a single fact (not a pair of facts)

are considered. But let us first discuss the proof of Theorem 7.1.

Unlike Theorems 5.1 and 6.1 presented above, there is no obvious

way to conveniently restate the problem of interest as a problem

of computing a “relative frequency” ratio. Thus, the proof of Theo-

rem 7.1, which we discuss next, has to deal with OCQA(Σ, 𝑀uo
Σ , 𝑄)

for a set Σ of FDs and a CQ 𝑄 ; details are in Appendix D.

Item (1). As we did for item (1) of Theorem 6.1, we reuse the

construction underlying the proof of item (1) of Theorem 5.1.

Item (2).We show that OCQA(Σ, 𝑀uo
Σ , 𝑄), where Σ is a set of keys

and𝑄 a CQ, admits an FPRAS by relying once again onMonte Carlo

sampling. The existence of an efficient sampler follows easily from

the definition of the Markov chain generator𝑀uo
Σ . In particular:

Lemma 7.2. Given a database𝐷 , and a set Σ of keys, we can sample
elements of RL(𝑀uo

Σ (𝐷)) according to the leaf distribution of𝑀uo
Σ (𝐷)

in polynomial time in | |𝐷 | |.

The interesting task towards an FPRAS for the problem in ques-

tion is to show that the target probability is never “too small”.

Proposition 7.3. Consider a set Σ of keys, and a CQ𝑄 (𝑥). There is
a polynomial pol such that, for every database𝐷 , and 𝑐 ∈ dom(𝐷) |𝑥 | ,

P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) ≥ 1

pol(| |𝐷 | |)
whenever P𝑀uo

Σ ,𝑄
(𝐷, 𝑐) > 0.

We proceed to discuss the main ideas underlying the proof of

the above result. For the sake of clarity, we focus on atomic queries,

i.e., CQs with only one atom. The generalization to arbitrary CQs

can be found in the appendix. In the sequel, let Σ be a set of keys,

𝑄 (𝑥) an atomic query, 𝐷 a database, and 𝑐 a tuple of dom(𝐷) |𝑥 | .
Clearly, if there is no homomorphism ℎ from𝑄 to 𝐷 with ℎ(𝑥) =

𝑐 , then P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) = 0. Assume now that such a homomorphism

ℎ exists, and let 𝑓 be the fact of 𝐷 obtained after applying ℎ to the

single atom of 𝑄 . It is not difficult to see that

P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) ≥
∑︁

𝐷′∈ORep(𝐷,𝑀uo
Σ) and 𝑓 ∈𝐷′

P𝐷,𝑀uo
Σ
(𝐷 ′)

︸ ︷︷ ︸
Λ

.

Thus, it suffices to show that there exists a polynomial pol such
that Λ ≥ 1

pol(| |𝐷 | |) . Let 𝑆𝑓 and 𝑆¬𝑓 be the sets of sequences of

RL(𝑀uo
Σ (𝐷)) that keep 𝑓 and remove 𝑓 , respectively, i.e.,

𝑆𝑓 = {𝑠 ∈ RL(𝑀uo
Σ (𝐷)) | 𝑓 ∈ 𝑠 (𝐷)}

𝑆¬𝑓 = {𝑠 ∈ RL(𝑀uo
Σ (𝐷)) | 𝑓 ∉ 𝑠 (𝐷)}.

With 𝜋 being the leaf distribution of𝑀uo
Σ (𝐷), Λ =

Λ𝑓

Λ𝑓 +Λ¬𝑓
, where

Λ𝑓 =
∑︁
𝑠∈𝑆𝑓

𝜋 (𝑠) and Λ¬𝑓 =
∑︁
𝑠∈𝑆¬𝑓

𝜋 (𝑠).

Therefore, to establish the desired lower bound
1

pol(| |𝐷 | |) for Λ,

it suffices to show that there exists a polynomial pol′ such that

Λ¬𝑓 ≤ pol′(| |𝐷 | |) · Λ𝑓 . Indeed, in this case we can conclude that

Λ =
Λ𝑓

Λ𝑓 + Λ¬𝑓
≥

Λ𝑓

Λ𝑓 + pol′(| |𝐷 | |) · Λ𝑓
=

1

1 + pol′(| |𝐷 | |) ,

and the claim follows with pol(| |𝐷 | |) = 1 + pol′(| |𝐷 | |). The rest of
the proof is devoted to showing that a polynomial pol′ such that

Λ¬𝑓 ≤ pol′(| |𝐷 | |) · Λ𝑓 exists.

To get this inequality, we establish a rather involved technical

lemma that relates the sequences of 𝑆¬𝑓 with the sequences of 𝑆𝑓 ;

as usual, we write 𝜋 for the leaf distribution of𝑀uo
Σ (𝐷):

Lemma 7.4. There exists a function F : 𝑆¬𝑓 → 𝑆𝑓 such that:

(1) There exists a polynomial pol′′ such that, for every 𝑠 ∈ 𝑆¬𝑓 ,
𝜋 (𝑠) ≤ pol′′(| |𝐷 | |) · 𝜋 (F(𝑠)).

(2) For every 𝑠 ′ ∈ 𝑆𝑓 , |{𝑠 ∈ 𝑆¬𝑓 | F(𝑠) = 𝑠 ′}| ≤ 2 · | |𝐷 | | − 1.

For showing item (1) of Lemma 7.4, we transform each sequence

𝑠 ∈ 𝑆¬𝑓 into a sequence 𝑠 ′ ∈ 𝑆𝑓 , and let F(𝑠) = 𝑠 ′. This is done
by first deleting or replacing the operation op in 𝑠 that removes

𝑓 . In particular, if op = −𝑓 , then we simply delete it; otherwise,

if op = −{𝑓 , 𝑔}, then we replace it with the operation −𝑔. Notice,
however, that there is no guarantee that the sequence 𝑠 , obtained

after removing op from 𝑠 , is a complete sequence ofCRS(𝐷, Σ). This
is because 𝑠 (𝐷) might contain facts that are in a conflict with 𝑓 ,

and thus, by keeping 𝑓 , there is no guarantee that 𝑠 (𝐷) |= Σ. We

then convert 𝑠 into a complete sequence 𝑠 ′ by simply adding at the

end of 𝑠 additional operations (in some arbitrary order) that resolve

all the conflicts. Now, to show that 𝜋 (𝑠) ≤ pol′′(| |𝐷 | |) · 𝜋 (𝑠 ′), for
some polynomial pol′′, we rely on the following two crucial facts:

(1) Although the probabilities of the operations in 𝑠 ′ coming after

the operation in 𝑠 that removes 𝑓 might decrease, we can show that

they do not decrease “too much”. (2) The number of operations that

we need to add at the end of 𝑠 in order to get 𝑠 ′ depends only on Σ
(not on | |𝐷 | |). More precisely, by exploiting the fact that Σ consists

of keys, we can show that 𝑓 can be in a conflict with at most 𝑘 ≥ 0

facts of 𝑠 (𝐷), where 𝑘 is the number of keys in Σ over the relation

name of 𝑓 . This implies that we do not need to add more than 𝑘

operations at the end of 𝑠 . Note that the above facts do not hold for

FDs. To establish that 𝜋 (𝑠) ≤ pol′′(| |𝐷 | |) · 𝜋 (𝑠 ′) using the above

facts, we rely on the Cauchy–Schwarz inequality for 𝑛-dimensional

Euclidean spaces. Finally, once we have F in place, it is then not

difficult to show item (2) via a combinatorial argument.

It is now easy to establish the existence of the polynomial pol′

such that Λ¬𝑓 ≤ pol′(| |𝐷 | |) ·Λ𝑓 . Indeed, with F and pol′′ being the
function and the polynomial, respectively, provided by Lemma 7.4,

Λ¬𝑓 =
∑︁
𝑠∈𝑆¬𝑓

𝜋 (𝑠) ≤
∑︁
𝑠∈𝑆¬𝑓

pol′′(| |𝐷 | |) · 𝜋 (F(𝑠))

≤ pol′′(| |𝐷 | |) · (2 · | |𝐷 | | − 1) ·
∑︁
𝑠∈𝑆𝑓

𝜋 (𝑠)

= pol′′(| |𝐷 | |) · (2 · | |𝐷 | | − 1) · Λ𝑓 ,

and the claim follows with pol′(| |𝐷 | |) = pol′′(| |𝐷 | |) · (2 · | |𝐷 | | − 1).

An FPRAS for FDs. Recall that Theorem 7.1 does not cover the

case of FDs, which remains an open problem. At this point, one may

wonder whether Monte Carlo sampling can be used for devising an

FPRAS in the case of FDs. Indeed, the efficient sampler provided by

Lemma 7.2 holds even for FDs since the proof of that lemma does not

exploit keys in any way, but only the “local” nature of the Markov

chain generator. However, we do not have a result analogous to

Proposition 7.3, which states that the target probability is never “too

small”. In fact, there exist a set Σ of FDs, a Boolean atomic query

𝑄 , and a family of databases {𝐷𝑛}𝑛>0 with |𝐷𝑛 | = 𝑛, such that

0 < P𝑀uo
Σ ,𝑄

(𝐷𝑛, ()) ≤ 1

2
𝑛−1

; the proof is in the appendix. Hence,

for devising an FPRAS in the case of FDs (if it exists), we need a

more sophisticated machinery than the one based on Monte Carlo

sampling. On the other hand, we can establish a result analogous to

Proposition 7.3 for FDs, assuming that only operations that remove

a single fact (not a pair of facts) are considered. Given a set Σ of

FDs, let𝑀
uo,1
Σ be the Markov chain generator defined as𝑀uo

Σ , with

the difference that only sequences consisting of operations that

remove a single fact are considered. We then get the following:

Theorem 7.5. For a set Σ of FDs, and a CQ𝑄 ,OCQA(Σ, 𝑀uo,1
Σ , 𝑄)

admits an FPRAS.

Note that singleton operations do not alter the data complexity

of exact operational CQA; we can show that item (1) of Theorem 7.1

continues to hold. Let us also clarify that focusing on singleton

operations does not affect Theorem 5.1 and Theorem 6.1; all the

details about these results can be found in Appendix E.

8 FUTUREWORK
Although we understand pretty well uniform operational CQA,

there are still interesting open problems on approximability: (i) the

case of keys and uniform repairs (we only have a negative result

for the problem of counting repairs), (ii) the case of keys/FDs and

uniform sequences, and (iii) the case of FDs and uniform operations

(we only have a positive result assuming singleton operations).

REFERENCES
[1] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query

Answers in Inconsistent Databases. In PODS. 68–79.
[2] Sanjeev Aror and Boaz Barak. 2009. Computational Complexity: A Modern Ap-

proach. Cambridge University Press.

[3] Marco Calautti, Marco Console, and Andreas Pieris. 2019. Counting Database

Repairs under Primary Keys Revisited. In PODS. 104–118.
[4] Marco Calautti, Marco Console, and Andreas Pieris. 2021. Benchmarking Ap-

proximate Consistent Query Answering. In PODS. 233–246.
[5] Marco Calautti, Leonid Libkin, and Andreas Pieris. 2018. An Operational Ap-

proach to Consistent Query Answering. In PODS. 239–251.
[6] Marco Calautti, Ester Livshits, Andreas Pieris, andMarkus Schneider. 2021. Count-

ing Database Repairs Entailing a Query: The Case of Functional Dependencies.

CoRR abs/2112.09617 (2021).

[7] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity mainte-

nance using tuple deletions. Inf. Comput. 197, 1-2 (2005), 90–121.
[8] Paul Dagum, Richard M. Karp, Michael Luby, and Sheldon M. Ross. 2000. An

Optimal Algorithm for Monte Carlo Estimation. SIAM J. Comput. 29, 5 (2000),
1484–1496.

[9] Nilesh N. Dalvi and Dan Suciu. 2007. Management of probabilistic data: founda-

tions and challenges. In PODS. 1–12.
[10] Martin E. Dyer and Catherine S. Greenhill. 2000. The complexity of counting

graph homomorphisms. Random Struct. Algorithms 17, 3-4 (2000), 260–289.
[11] Ariel Fuxman, Elham Fazli, and Renée J. Miller. 2005. ConQuer: Efficient Man-

agement of Inconsistent Databases. In SIGMOD. 155–166.
[12] Ariel Fuxman and Renée J. Miller. 2007. First-order query rewriting for inconsis-

tent databases. J. Comput. Syst. Sci. 73, 4 (2007), 610–635.
[13] Floris Geerts, Fabian Pijcke, and Jef Wijsen. 2015. First-Order Under-

Approximations of Consistent Query Answers. In SUM. 354–367.

[14] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random generation

of combinatorial structures from a uniform distribution. Theoretical Computer
Science 43 (1986), 169–188.

[15] Richard M. Karp and Richard J. Lipton. 1980. Some Connections between Nonuni-

form and Uniform Complexity Classes. In STOC. 302–309.
[16] Paraschos Koutris and Dan Suciu. 2014. A Dichotomy on the Complexity of

Consistent Query Answering for Atoms with Simple Keys. In ICDT. 165–176.
[17] Paraschos Koutris and Jef Wijsen. 2015. The Data Complexity of Consistent

Query Answering for Self-Join-Free Conjunctive Queries Under Primary Key

Constraints. In PODS. 17–29.
[18] Paraschos Koutris and Jef Wijsen. 2021. Consistent Query Answering for Primary

Keys in Datalog. Theory Comput. Syst. 65, 1 (2021), 122–178.
[19] DanyMaslowski and JefWijsen. 2013. A dichotomy in the complexity of counting

database repairs. J. Comput. Syst. Sci. 79, 6 (2013), 958–983.

[20] Jayadev Misra and David Gries. 1992. A constructive proof of Vizing’s theorem.

Inform. Process. Lett. 41, 3 (1992), 131–133.
[21] J Scott Provan and Michael O. Ball. 1983. The Complexity of Counting Cuts and

of Computing the Probability that a Graph is Connected. SIAM J. Comput. 12
(1983), 777–788.

[22] Allan Sly. 2010. Computational Transition at the Uniqueness Threshold. In FOCS.
287–296.

A UNIFORM OPERATIONAL CQA
We provide the formal definitions of the “uniform” Markov chain

generators discussed in Section 4, and show that they indeed capture

our intention. In what follows, for a database 𝐷 , a set Σ of FDs, and

a sequence 𝑠 = op
1
, . . . , op𝑛 ∈ RS(𝐷, Σ), we write 𝑠0 for the empty

sequence 𝜀, and 𝑠𝑖 for the sequence op1
, . . . , op𝑖 , for 𝑖 ∈ [𝑛].

A.1 Uniform Repairs
We start with the Markov chain generator based on the uniform

probability distribution over the set of candidate operational re-

pairs. As discussed in the main body, since multiple complete re-

pairing sequences can lead to the same consistent database, we

focus on canonical complete sequences. Recall that, for a database

𝐷 , and a set Σ of FDs, we say that a (𝐷, Σ)-repairing sequence

𝑠 ∈ CRS(𝐷, Σ) is canonical if there is no 𝑠 ′ ∈ CRS(𝐷, Σ) such
that 𝑠 (𝐷) = 𝑠 ′(𝐷) and 𝑠 ′ ≺ 𝑠 for some arbitrary ordering ≺ over

the set RS(𝐷, Σ), and we write CanCRS(𝐷, Σ) for the set of all

sequences of CRS(𝐷, Σ) that are canonical. Furthermore, for a se-

quence 𝑠 ∈ RS(𝐷, Σ), we write CanCRS𝑠 (𝐷, Σ) for the set of all

sequences 𝑠 ′ of CanCRS(𝐷, Σ) that have 𝑠 as a prefix, i.e., 𝑠 ′ = 𝑠 ·𝑠 ′′
for some (possibly empty) sequence 𝑠 ′′. We are now ready to define

the desired Markov chain generator.

Definition A.1. (Uniform Repairs) Consider a set Σ of FDs. Let

𝑀ur
Σ be the function assigning to a database 𝐷 the (𝐷, Σ)-repairing

Markov chain (𝑉 , 𝐸, P), where, for each (𝑠, 𝑠 ′) ∈ 𝐸,

P(𝑠, 𝑠 ′) =

|CanCRS𝑠′ (𝐷,Σ) |
|CanCRS𝑠 (𝐷,Σ) | if CanCRS𝑠 (𝐷, Σ) ≠ ∅

1

|Ops𝑠 (𝐷,Σ) |
otherwise.

Note that the aboveMarkov chain generator is well-defined since,

for each 𝑠 ∈ RS(𝐷, Σ) that is not complete,

|CanCRS𝑠 (𝐷, Σ) | =
∑︁

𝑠′∈Ops𝑠 (𝐷,Σ)
|CanCRS𝑠′ (𝐷, Σ) |,

and thus, for a non-leaf node 𝑠 ∈ 𝑉 ,

∑
𝑡 ∈{𝑠′ | (𝑠,𝑠′) ∈𝐸 } P(𝑠, 𝑡) = 1. We

now show that the above definition captures our intention.

Proposition A.2. Consider a set Σ of FDs. For every database 𝐷 :

(1) ORep(𝐷,𝑀ur
Σ) = CORep(𝐷, Σ).

(2) For every 𝐷 ′ ∈ ORep(𝐷,𝑀ur
Σ), P𝐷,𝑀ur

Σ
(𝐷 ′) = 1

|ORep(𝐷,𝑀ur
Σ) | .

Proof. Item (1). It suffices to prove that RL(𝑀ur
Σ (𝐷)) =

CanCRS(𝐷, Σ). Let 𝑀ur
Σ (𝐷) = (𝑉 , 𝐸, P), and assume that 𝜋 is its

leaf distribution. Recall that for a sequence 𝑠 = op
1
, . . . , op𝑛 ∈

CRS(𝐷, Σ), 𝜋 (𝑠) = P(𝑠0, 𝑠1) · · · P(𝑠𝑛−1, 𝑠𝑛).
(⊇) Assume first that 𝑠 = op

1
, . . . , op𝑛 ∈ CanCRS(𝐷, Σ). This

implies that CanCRS𝑠𝑖 (𝐷, Σ) ≠ ∅, for each 𝑖 ∈ {0, 1, . . . , 𝑛}. There-
fore, P(𝑠𝑖 , 𝑠𝑖+1) > 0, for 𝑖 ∈ {0, 1, . . . , 𝑛}, and thus 𝜋 (𝑠) > 0. The

latter implies that 𝑠 ∈ RL(𝑀ur
Σ (𝐷)), which in turn shows that

RL(𝑀ur
Σ (𝐷)) ⊇ CanCRS(𝐷, Σ), as needed.

(⊆) Assume now that 𝑠 = op
1
, . . . , op𝑛 ∈ RL(𝑀ur

Σ (𝐷)). By contra-
diction, assume that 𝑠 ∉ CanCRS(𝐷, Σ). Since 𝑠 ∈ RL(𝑀ur

Σ (𝐷)), 𝑠
must be complete. The fact that 𝑠 is complete but not canonical im-

plies that there exists 𝑖 ∈ {0, . . . , 𝑛} such that CanCRS𝑠𝑖 (𝐷, Σ) = ∅.
In particular, let ℓ be the smallest integer in {0, 1, . . . , 𝑛} such that

CanCRS𝑠ℓ (𝐷, Σ) = ∅. Clearly, ℓ > 0, since CanCRS𝜖 (𝐷, Σ) is al-
ways non-empty. Thus, by the first rule of the expression defining

P in Definition A.1, we have that P(𝑠ℓ−1, 𝑠ℓ) = 0. Hence, 𝜋 (𝑠) = 0,

and thus, 𝑠 ∉ RL(𝑀ur
Σ (𝐷)), which contradicts our hypothesis.

Item (2). By the proof of item (1), RL(𝑀ur
Σ (𝐷)) = CanCRS(𝐷, Σ).

Hence, we conclude that

|ORep(𝐷,𝑀ur
Σ) | = |CanCRS(𝐷, Σ) | = |RL(𝑀ur

Σ (𝐷)) |.

Therefore, it suffices to show that, for 𝑠 ∈ CanCRS(𝐷, Σ), 𝜋 (𝑠) =
1

|CanCRS(𝐷,Σ) | . Let 𝑠 = op
1
, . . . , op𝑛 ∈ CanCRS(𝐷, Σ). Since 𝑠 ∈

RL(𝑀ur
Σ (𝐷)), 𝜋 (𝑠) is equal to

|CanCRS𝑠1
(𝐷, Σ) |

|CanCRS𝑠0
(𝐷, Σ) | · · ·

|CanCRS𝑠𝑛 (𝐷, Σ) |
|CanCRS𝑠𝑛−1

(𝐷, Σ) | =
|CanCRS𝑠𝑛 (𝐷, Σ) |
|CanCRS𝑠0

(𝐷, Σ) | .

Since CanCRS𝑠0
(𝐷, Σ) = CanCRS𝜖 (𝐷, Σ) = CanCRS(𝐷, Σ), and

CanCRS𝑠𝑛 (𝐷, Σ) = {𝑠𝑛}, then 𝜋 (𝑠) = 1

|CanCRS(𝐷,Σ) | , as needed.

A.2 Uniform Sequences
We now proceed to define the Markov chain generator based on the

uniform probability distribution over the set of complete repairing

sequences. It is defined similarly to the Markov chain generator

above with the difference that we consider arbitrary, not necessarily

canonical, complete sequences.

Definition A.3. (Uniform Sequences) Consider a set Σ of FDs.

Let 𝑀us
Σ be the function assigning to a database 𝐷 the (𝐷, Σ)-

repairing Markov chain (𝑉 , 𝐸, P), where, for each (𝑠, 𝑠 ′) ∈ 𝐸,

P(𝑠, 𝑠 ′) = |CRS𝑠′ (𝐷, Σ) |
|CRS𝑠 (𝐷, Σ) |

Observe that the above Markov chain generator is well-defined

since, for each 𝑠 ∈ RS(𝐷, Σ) that is not complete,

|CRS𝑠 (𝐷, Σ) | =
∑︁

𝑠′∈Ops𝑠 (𝐷,Σ)
|CRS𝑠′ (𝐷, Σ) |,

and thus, for a non-leaf node 𝑠 ∈ 𝑉 ,

∑
𝑡 ∈{𝑠′ | (𝑠,𝑠′) ∈𝐸 } P(𝑠, 𝑡) = 1. We

can easily show that𝑀us
Σ captures our intention:

Proposition A.4. Consider a set Σ of FDs. For every database 𝐷 :

(1) RL(𝑀us
Σ (𝐷)) = CRS(𝐷, Σ).

(2) For every 𝑠 ∈ CRS(𝐷, Σ), assuming that 𝜋 is the leaf distribu-
tion of𝑀us

Σ (𝐷), 𝜋 (𝑠) = 1

|CRS(𝐷,Σ) | .

Proof. Item (1). This item follows from the fact that each 𝑠 ∈
RL(𝑀us

Σ (𝐷)) is complete by definition, and each 𝑠 = op
1
, . . . , op𝑛 ∈

CRS(𝐷, Σ) is such thatCRS𝑠𝑖 (𝐷, Σ) ≠ ∅, for 𝑖 ∈ {0, . . . , 𝑛}, and thus
𝜋 (𝑠) > 0, where 𝜋 is the leaf distribution of𝑀us

Σ (𝐷).
Item (2). It is shown via a proof similar to the one used above

for item (2) of Proposition A.2.

A.3 Uniform Operations
We finally define the Markov chain generator based on the uniform

probability distribution over the set of available operations at a

single step of the repairing process.

Definition A.5. (Uniform Operations) Consider a set Σ of FDs.

Let 𝑀uo
Σ be the function assigning to a database 𝐷 the (𝐷, Σ)-

repairing Markov chain (𝑉 , 𝐸, P), where, for each (𝑠, 𝑠 ′) ∈ 𝐸,

P(𝑠, 𝑠 ′) = 1

|Ops𝑠 (𝐷, Σ) |

It is straightforward to see that the function𝑀uo
Σ captures our

intention; in fact, the following holds by definition:

Proposition A.6. Consider a set Σ of FDs. For every database 𝐷 :

(1) RL(𝑀uo
Σ (𝐷)) = CRS(𝐷, Σ).

(2) Assuming that 𝑀uo
Σ (𝐷) = (𝑉 , 𝐸, P), (𝑠, 𝑠 ′) ∈ 𝐸 implies

P(𝑠, 𝑠 ′) = 1

|Ops𝑠 (𝐷,Σ) |
.

B PROOFS OF SECTION 5
In this section, we prove the main result of Section 5, which we

recall here for the sake of readability:

Theorem 5.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀ur

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of primary keys, and a CQ 𝑄 , OCQA(Σ, 𝑀ur

Σ , 𝑄)
admits an FPRAS.

(3) Unless RP = NP, there exist a set Σ of FDs, and a CQ 𝑄 such
that there is no FPRAS for OCQA(Σ, 𝑀ur

Σ , 𝑄).

As discussed in Section 5, we actually need to prove the above

result for the problem RRFreq(Σ, 𝑄).

B.1 Proof of Item (1) of Theorem 5.1
Consider the undirected graph 𝐻 = (𝑉𝐻 , 𝐸𝐻), where 𝑉𝐻 = {0, 1, ?}
and 𝐸𝐻 = {{𝑢, 𝑣} | (𝑢, 𝑣) ∈ (𝑉𝐻 ×𝑉𝐻) \ {(1, 1)}}, i.e., the graph:

0

1

?

Given an undirected graph 𝐺 , a homomorphim from 𝐺 to 𝐻 is a

mapping ℎ : 𝑉𝐺 → 𝑉𝐻 such that {𝑢, 𝑣} ∈ 𝐸𝐺 implies {ℎ(𝑢), ℎ(𝑣)} ∈
𝐸𝐻 . We write hom(𝐺,𝐻) for the set of homomorphisms from 𝐺 to

𝐻 . The problem #𝐻 -Coloring is defined as follows:

PROBLEM : ♯𝐻 -Coloring
INPUT : An undirected graph 𝐺 .

OUTPUT : The number |hom(𝐺,𝐻) |.

It is implicit in [10] that ♯𝐻 -Coloring is ♯P-hard. In fact, [10] es-

tablishes the following dichotomy result: ♯�̂� -Coloring is ♯P-hard if

�̂� has a connected component which is neither an isolated node

without a loop, nor a complete graph with all loops present, nor

a complete bipartite graph without loops; otherwise, it is solvable

in polynomial time. Since our fixed graph 𝐻 above consists of a

single connected component which is neither a single node, nor a

complete graph with all loops present (the loop (1, 1) is missing),

nor a bipartite graph, we get that #𝐻 -Coloring is indeed ♯P-hard.

We proceed to show via a polynomial-time Turing reduction

from ♯𝐻 -Coloring that RRFreq(Σ, 𝑄) is ♯P-hard, where Σ and𝑄 are

as follows. Let S be the schema {𝑉 /2, 𝐸/2,𝑇 /1}, and let (𝐴, 𝐵) be
the tuple of attributes of 𝑉 . The set Σ consists of the single key

𝑉 : 𝐴 → 𝐵

and the (constant-free) Boolean CQ 𝑄 is

Ans() :- 𝐸 (𝑥,𝑦),𝑉 (𝑥, 𝑧),𝑉 (𝑦, 𝑧),𝑇 (𝑧) .

Given an undirected graph𝐺 = (𝑉𝐺 , 𝐸𝐺), we define the following
database over S encoding 𝐺 :

𝐷𝐺 = {𝑉 (𝑢, 0),𝑉 (𝑢, 1) | 𝑢 ∈ 𝑉𝐺 } ∪ {𝐸 (𝑢, 𝑣) | {𝑢, 𝑣} ∈ 𝐸𝐺 } ∪ {𝑇 (1)}.

We then define the algorithm HOM, which accepts as input an

undirected graph 𝐺 = (𝑉𝐺 , 𝐸𝐺), as follows:
(1) Construct the database 𝐷𝐺 .

(2) Compute the number 𝑟 = rrfreqΣ,𝑄 (𝐷𝐺 , ()).
(3) Output the number 3

|𝑉𝐺 | · (1 − 𝑟).
It is clear that HOM(𝐺) runs in polynomial time in | |𝐺 | | assuming

access to an oracle for the problem RRFreq(Σ, 𝑄). It remains to

show that |hom(𝐺,𝐻) | = HOM(𝐺). Recall that

rrfreqΣ,𝑄 (𝐷𝐺 , ()) =
|CORep(𝐷𝐺 , Σ, 𝑄) |
|CORep(𝐷𝐺 , Σ) |

,

where CORep(𝐷𝐺 , Σ, 𝑄) is the set of candidate repairs 𝐷 of 𝐷𝐺

w.r.t. Σ such that 𝐷 |= 𝑄 . Observe that there are 3
|𝑉𝐺 |

candidate

repairs of 𝐷𝐺 w.r.t. Σ, i.e., in each such a repair 𝐷 , for each node

𝑢 ∈ 𝑉 of 𝐺 , either 𝑉 (𝑢, 0) ∈ 𝐷 and 𝑉 (𝑢, 1) ∉ 𝐷 , or 𝑉 (𝑢, 0) ∉ 𝐷 and

𝑉 (𝑢, 1) ∈ 𝐷 , or 𝑉 (𝑢, 0),𝑉 (𝑢, 1) ∉ 𝐷 . Therefore,

rrfreqΣ,𝑄 (𝐷𝐺 , ()) =
|CORep(𝐷𝐺 , Σ, 𝑄) |

3
|𝑉𝐺 | .

Thus, HOM(𝐺) coincides with

3
|𝑉𝐺 | ·

(
1 − |CORep(𝐷𝐺 , Σ, 𝑄) |

3
|𝑉𝐺 |

)
= 3

|𝑉𝐺 | − |CORep(𝐷𝐺 , Σ, 𝑄) |.

Since 𝐷𝐺 has 3
|𝑉𝐺 |

candidate repairs w.r.t. Σ, we can conclude that

HOM(𝐺) is precisely the cardinality of the set CORep(𝐷𝐺 , Σ,¬𝑄),
which collects the candidate repairs 𝐷 of 𝐷𝐺 w.r.t. Σ such that

𝐷 ̸ |= 𝑄 . We proceed to show that:

Lemma B.1. |hom(𝐺,𝐻) | = |CORep(𝐷𝐺 , Σ,¬𝑄) |.

Proof. It suffices to show that there exists a bijection from

hom(𝐺,𝐻) to CORep(𝐷𝐺 , Σ,¬𝑄). To this end, we define the map-

ping 𝜇 : hom(𝐺,𝐻) → P(𝐷𝐺) as follows: for each ℎ ∈ hom(𝐺,𝐻),

𝜇 (ℎ) = {𝑉 (𝑢,★) | 𝑢 ∈ 𝑉𝐺 and ℎ(𝑢) = ★ ∈ {0, 1}} ∪
{𝐸 (𝑢, 𝑣) | {𝑢, 𝑣} ∈ 𝐸𝐺 } ∪ {𝑇 (1)}.

We proceed to show the following three statements:

(1) 𝜇 is correct, that is, it is indeed a function from hom(𝐺,𝐻)
to CORep(𝐷𝐺 , Σ,¬𝑄).

(2) 𝜇 is injective.

(3) 𝜇 is surjective.

The mapping 𝜇 is correct. Consider an arbitrary homomorphism

ℎ ∈ hom(𝐺,𝐻). We need to show that there exists a (𝐷𝐺 , Σ)-
repairing sequence 𝑠ℎ such that 𝜇 (ℎ) = 𝑠ℎ (𝐷𝐺), 𝑠ℎ (𝐷𝐺) |= Σ (i.e., 𝑠ℎ

is complete), and 𝑄 (𝑠ℎ (𝐷𝐺)) = ∅. Let 𝑉𝐺 = {𝑢1, . . . , 𝑢𝑛}. Consider
the sequence 𝑠ℎ = op

1
, . . . , op𝑛 such that, for every 𝑖 ∈ [𝑛]:

op𝑖 =

−𝑉 (𝑢𝑖 , 1) if ℎ(𝑢𝑖) = 0

−𝑉 (𝑢𝑖 , 0) if ℎ(𝑢𝑖) = 1

−{𝑉 (𝑢𝑖 , 0),𝑉 (𝑢𝑖 , 1)} if ℎ(𝑢𝑖) = ?

In simple words, the homomorphism ℎ guides the repairing pro-

cess, i.e., ℎ(𝑢𝑖) = 0 (resp., ℎ(𝑢𝑖) = 1) implies 𝑉 (𝑢𝑖 , 0) (resp.,

𝑉 (𝑢𝑖 , 1)) should be kept, while ℎ(𝑢𝑖) = ? implies none of the atoms

𝑉 (𝑢𝑖 , 0),𝑉 (𝑢𝑖 , 1) should be kept. It is easy to verify that 𝑠ℎ is in-

deed a (𝐷𝐺 , Σ)-repairing sequence 𝑠ℎ such that 𝜇 (ℎ) = 𝑠ℎ (𝐷𝐺) and
𝑠ℎ (𝐷𝐺) |= Σ. The fact that 𝑄 (𝑠ℎ (𝐷𝐺)) = ∅ follows from the fact

that, for every edge {𝑢, 𝑣} ∈ 𝐸𝐺 , {ℎ(𝑢), ℎ(𝑣)} ∈ 𝐸𝐻 cannot be the

self-loop on node 1, since it is not in 𝐻 . This implies that for every

{𝑢, 𝑣} ∈ 𝐸𝐺 , it is not possible that the atoms𝑉 (𝑢, 1),𝑉 (𝑣, 1) coexist
in 𝑠ℎ (𝐷𝐺), which in turn implies that 𝑄 (𝑠ℎ (𝐷𝐺)) = ∅, as needed.
The mapping 𝜇 is injective. Assume that there are two distinct

homomorphisms ℎ,ℎ′ ∈ hom(𝐺,𝐻) such that 𝜇 (ℎ) = 𝜇 (ℎ′). By the

definition of 𝜇, we get thatℎ(𝑢) = ℎ′(𝑢), for every node𝑢 ∈ 𝑉𝐺 . But

this contradicts the fact that ℎ and ℎ′ are different homomorphisms

of hom(𝐺,𝐻). Therefore, for every two distinct homomorphisms

ℎ,ℎ′ ∈ hom(𝐺,𝐻), 𝜇 (ℎ) ≠ 𝜇 (ℎ′), as needed.
The mapping 𝜇 is surjective. Consider an arbitrary candidate

repair 𝐷 ∈ CORep(𝐷𝐺 , Σ,¬𝑄). We need to show that there exists

ℎ ∈ hom(𝐺,𝐻) such that 𝜇 (ℎ) = 𝐷 . We define the mapping ℎ𝐷 :

𝑉𝐺 → 𝑉𝐻 as follows: for every 𝑢 ∈ 𝑉𝐺 :

ℎ𝐷 (𝑢) =

1 if 𝑉 (𝑢, 1) ∈ 𝐷 and 𝑉 (𝑢, 0) ∉ 𝐷

0 if 𝑉 (𝑢, 1) ∉ 𝐷 and 𝑉 (𝑢, 0) ∈ 𝐷

? if 𝑉 (𝑢, 1) ∉ 𝐷 and 𝑉 (𝑢, 0) ∉ 𝐷

It is clear that ℎ𝐷 is well-defined: for every 𝑢 ∈ 𝑉𝐺 , ℎ𝐷 (𝑢) = 𝑥

and ℎ𝐷 (𝑢) = 𝑦 implies 𝑥 = 𝑦. It is also clear that 𝜇 (ℎ𝐷) = 𝐷 . It

remains to show that ℎ𝐷 ∈ hom(𝐺,𝐻). Consider an arbitrary edge

{𝑢, 𝑣} ∈ 𝐸𝐺 . By contradiction, assume that {ℎ𝐷 (𝑢), ℎ𝐷 (𝑣)} ∉ 𝐸𝐻 .

This implies that ℎ𝐷 (𝑢) = 1 and ℎ𝐷 (𝑣) = 1. Therefore, 𝐷 contains

both atoms𝑉 (𝑢, 1) and𝑉 (𝑣, 1), which in turn implies that𝑄 (𝐷) ≠ ∅,
which contradicts the fact that 𝐷 ∈ CORep(𝐷𝐺 , Σ,¬𝑄).

Since HOM(𝐺) = |CORep(𝐷𝐺 , Σ,¬𝑄) |, Lemma B.1 implies

HOM(𝐺) = |hom(𝐺,𝐻) |,
which shows that indeed HOM is a polynomial-time Turing reduc-

tion from #𝐻 -Coloring to RRFreq(Σ, 𝑄).

B.2 Proof of Item (2) of Theorem 5.1
We prove that, for a set Σ of primary keys, and a CQ𝑄 , the problem

RRFreq(Σ, 𝑄) admits an FPRAS. Our proof consists of two main

steps, which we briefly explain before going into the detailed proofs.

The first step is to show that, given a database 𝐷 , we can sam-

ple elements of CORep(𝐷, Σ) uniformly at random in polynomial

time in | |𝐷 | |. The existence of such an efficient sampler implies

that we can employ Monte Carlo Sampling to obtain a polynomial-
time randomized approximation with additive (or absolute) error for
RRFreq(Σ, 𝑄 (𝑥)), that is, a randomized algorithm A that takes a in-

put a database 𝐷 , a tuple 𝑐 ∈ dom(𝐷) |𝑥 | , 𝜖 > 0, and 0 < 𝛿 < 1 runs

in polynomial time in | |𝐷 | |, | |𝑐 | |, 1/𝜖 and log(1/𝛿), and produces a

random variable A(𝐷, 𝑐, 𝜖, 𝛿) such that

Pr
(
|A(𝐷, 𝑐, 𝜖, 𝛿) − rrfreqΣ,𝑄 (𝐷, 𝑐) | ≤ 𝜖

)
≥ 1 − 𝛿.

More precisely, A(𝐷, 𝑐, 𝜖, 𝛿) samples 𝑁 = 𝑂

(
log(1

𝛿
)

𝜖2

)
elements of

the set CORep(𝐷, Σ), and returns the number
𝑆
𝑁

· |CORep(𝐷, Σ) |,
where 𝑆 is the number of sampled repairs 𝐷 ′

such that 𝑐 ∈ 𝑄 (𝐷 ′).
However, in general, the existence of an efficient sampler does

not guarantee the existence of an FPRAS, which bounds the multi-
plicative (or relative) error. In order to obtain an FPRAS via Monte

Carlo Sampling, the number of samples should be proportional to

1

rrfreqΣ,𝑄 (𝐷,𝑐) [8]. This brings us to the second step of our proof,

where we show that the ratio rrfreqΣ,𝑄 (𝐷, 𝑐) is never “too small”.

Formally, we show that, for every database 𝐷 , it either holds that

rrfreqΣ,𝑄 (𝐷, 𝑐) = 0 or rrfreqΣ,𝑄 (𝐷, 𝑐) ≥ 1

pol(| |𝐷 | |) for some poly-

nomial pol. In this case, we can use Monte Carlo Sampling (with a

different, yet polynomial, number of samples) to obtain an FPRAS.

We now proceed to formally show the existence of an efficient

sample, and the fact that target ratio is never “too small”

Step 1: Efficient Sampler. The formal statement, already given in

the main body of the paper, and its proof follow:

Lemma 5.2. Given a database 𝐷 , and a set Σ of primary keys,
we can sample elements of CORep(𝐷, Σ) uniformly at random in
polynomial time in | |𝐷 | |.

Proof. For every relation name 𝑅 of the underlying schema

with a primary key 𝑅 : 𝑋 → 𝑌 in Σ, we partition the set of facts

of 𝐷 over 𝑅 into blocks of facts that agree on the values of all the

attributes of 𝑋 . Clearly, two facts that belong to the same block,

always jointly violate the key of the corresponding relation; hence,

an operational repair will contain, for every block 𝐵 with |𝐵 | > 1,

either a single fact of 𝐵 or none of the facts of 𝐵 (hence, there are

|𝐵 | + 1 possible options). An operational repair of the first type can

be obtained, for example, via a sequence that removes the facts of 𝐵

one by one until there is one fact left. An operational repair of the

second type can be obtained, for example, by removing the facts

of 𝐵 one by one until there are two facts left, and then removing

the last two facts together. For a block 𝐵 such that |𝐵 | = 1, there is

no justified operation that removes the single fact of 𝐵; hence, this

fact will appear in every operational repair.

We denote all the blocks of𝐷 (over all the relations of the schema)

that have at least two facts by 𝐵1, . . . , 𝐵𝑛 . To sample a repair of

CORep(𝐷, Σ), we select, for each block 𝐵𝑖 , one of its |𝐵𝑖 |+1 possible

outcomes, with probability
1

|𝐵𝑖 |+1
. Then, an operational repair is

obtained by taking the union of all the selections, as well as all

the facts of 𝐷 over every relation 𝑅 of the schema that has no

primary key in Σ, and all the facts that belong to blocks consisting

of a single fact. It is rather straightforward that the probability of

obtaining each operational repair is
1

|CORep(𝐷,Σ) | , as the number

of operational repairs is

|CORep(𝐷, Σ) | = (|𝐵1 | + 1) × · · · × (|𝐵𝑛 | + 1),

and the claim follows.

𝐴1 𝐴2

𝑓1,1 𝑎1 𝑏1

𝑓1,2 𝑎1 𝑏2

𝑓1,3 𝑎1 𝑏3

𝑓2,1 𝑎2 𝑏1

𝑓3,1 𝑎3 𝑏1

𝑓3,2 𝑎3 𝑏2

Figure 2: A database over {𝑅/2} that is inconsistent w.r.t. the
primary key 𝑅 : 𝐴1 → 𝐴2.

We give a simple example that illustrates the proof of Lemma 5.2.

Example B.2. Consider the database depicted in Figure 2 over

the schema {𝑅/2}, with (𝐴1, 𝐴2) being the tuples of attributes of 𝑅,
and the set Σ = {𝑅 : 𝐴1 → 𝐴2} consisting of a single key. We write

𝑓𝑖, 𝑗 for 𝑅(𝑎𝑖 , 𝑏 𝑗). Clearly, for 𝑗 ≠ 𝑘 , {𝑓𝑖, 𝑗 , 𝑓𝑖,𝑘 } ̸|= Σ. The database
consists of three blocks w.r.t. 𝑅 : 𝐴1 → 𝐴2:

{𝑓1,1, 𝑓1,2, 𝑓1,3} {𝑓2,1} {𝑓3,1, 𝑓3,2}
Since the fact 𝑓2,1 is not involved in any violations of the constraints,

it will appear in every operational repair; however, every opera-

tional repair will contain at most one fact of the first block and

at most one fact of the third block. The number of operational re-

pairs according to the formula in the proof of Lemma 5.2 is then

(3 + 1) × (2 + 1) = 12. (Note that the blocks of size one are not

considered in the computation.) Indeed, there are twelve repairs:

{𝑓2,1} {𝑓1,1, 𝑓2,1} {𝑓1,2, 𝑓2,1} {𝑓1,3, 𝑓2,1}
{𝑓2,1, 𝑓3,1} {𝑓1,1, 𝑓2,1, 𝑓3,1} {𝑓1,2, 𝑓2,1, 𝑓3,1} {𝑓1,3, 𝑓2,1, 𝑓3,1}
{𝑓2,1, 𝑓3,2} {𝑓1,1, 𝑓2,1, 𝑓3,2} {𝑓1,2, 𝑓2,1, 𝑓3,2} {𝑓1,3, 𝑓2,1, 𝑓3,2}

The repair {𝑓1,1, 𝑓2,1, 𝑓3,1}, for example, is obtained by keeping the

fact 𝑓1,1 of the first block with probability
1

4
(as there are three facts

in the block, there are four possible options: (1) keep 𝑓1,1, (2) keep
𝑓1,2, (3) keep 𝑓1,3, or (4) remove all the facts of the block), and the

fact 𝑓3,1 of the third block with probability
1

3
. Hence, the probability

of selecting this operational repair is
1

4
× 1

3
= 1

12
, and the same

holds for any other operational repair.

Step 2: Polynomial Lower Bound. Now that we have an efficient

sampler for the operational repairs, we proceed to show that there is

a polynomial lower bound on rrfreqΣ,𝑄 (𝐷, 𝑐). The formal statement,

already given in the main body of the paper, and its proof follow:

Lemma 5.3. Consider a set Σ of primary keys, and a CQ 𝑄 (𝑥). For
every database 𝐷 , and tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

rrfreqΣ,𝑄 (𝐷, 𝑐) ≥ 1

(2 · | |𝐷 | |) | |𝑄 | |

whenever rrfreqΣ,𝑄 (𝐷, 𝑐) > 0.

Proof. By abuse of notation, we treat the CQ 𝑄 as the set of

atoms on the right-hand side of :- (hence, |𝑄 | is the number of atoms

occurring in 𝑄). Consider a database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
If there is no homomorphism ℎ from 𝑄 to 𝐷 such that ℎ(𝑄) |= Σ
and ℎ(𝑥) = 𝑐 , then it clearly holds that rrfreqΣ,𝑄 (𝐷, 𝑐) = 0.

Consider now the case that such a homomorphism ℎ exists. As-

suming that 𝑄 = {𝑅𝑖 (𝑦𝑖) | 𝑖 ∈ [𝑛]}, let ℎ(𝑄) = {𝑅𝑖 (ℎ(𝑦𝑖)) | 𝑖 ∈

[𝑛]}. Assume that |ℎ(𝑄) | =𝑚 for some𝑚 ≤ |𝑄 |. For every relation

name 𝑅 of the schema with a key 𝑅 : 𝑋 → 𝑌 in Σ, we partition the

set of facts of 𝐷 over 𝑅 into blocks of facts that agree on the values

of all the attributes of 𝑋 . For a relation name 𝑅 with no key in Σ,
we assume that every fact is a separate block. Let 𝐵1, . . . , 𝐵𝑛 be the

blocks of 𝐷 w.r.t. Σ (over all the relation names of the schema). We

assume, without loss of generality, that the facts of ℎ(𝑄) belong to

the blocks 𝐵1, . . . , 𝐵𝑚 . Clearly, no two facts of ℎ(𝑄) belong to the

same block; otherwise, ℎ(𝑄) ̸|= Σ, which is a contradiction.

Let 𝑅ne
𝐷,Σ,ℎ (𝑄) be the set of repairs 𝐸 ∈ CORep(𝐷, Σ) such that

𝐸 ∩ 𝐵 𝑗 ≠ ∅ for every 𝑗 ∈ [𝑚]. Let 𝑅e
𝐷,Σ,ℎ (𝑄) be the set of repairs

𝐸 ∈ CORep(𝐷, Σ) such that 𝐸 ∩ 𝐵 𝑗 = ∅ for some 𝑗 ∈ [𝑚]. Clearly,

|CORep(𝐷, Σ) | =

���𝑅ne𝐷,Σ,ℎ (𝑄)

��� + ���𝑅e𝐷,Σ,ℎ (𝑄)

��� .
Now, consider a repair 𝐸 of 𝑅e

𝐷,Σ,ℎ (𝑄) , and assume that 𝐸 is disjoint

with precisely ℓ blocks of {𝐵1, . . . , 𝐵𝑚}. Assume, without loss of

generality, that these are the blocks𝐵1, . . . , 𝐵ℓ .We can transform the

repair 𝐸 into a repair 𝐸 ′ ∈ 𝑅ne
𝐷,Σ,ℎ (𝑄) by bringing back an arbitrary

fact of each block 𝐵 𝑗 for 𝑗 ∈ [ℓ]. Therefore, the repair 𝐸 is mapped

to |𝐵1 | × · · · × |𝐵ℓ | distinct repairs of 𝑅ne𝐷,Σ,ℎ (𝑄) .

Observe that at most 2
𝑚 − 1 repairs 𝐸 ∈ 𝑅e

𝐷,Σ,ℎ (𝑄) are mapped

to the same repair 𝐸 ′ ∈ 𝑅ne
𝐷,Σ,ℎ (𝑄) . This holds since the repair

𝐸 ′ determines, for every block 𝐵 𝑗 that is not one of 𝐵1, . . . , 𝐵𝑚 ,

whether we keep a fact of 𝐵 𝑗 in the repair and which fact of 𝐵 𝑗
we keep. For the blocks 𝐵1, . . . , 𝐵𝑚 , a repair 𝐸 that is mapped to 𝐸 ′

can either contain the same fact as 𝐸 ′ contains from this block, or

none of the facts of the block. Hence, there are two possibilities for

each block of {𝐵1, . . . , 𝐵𝑚} and the total number of possibilities is

2
𝑚
. However, we have to disregard one of these possibilities, as it

represents 𝐸 ′ itself (where for every block of {𝐵1, . . . , 𝐵𝑚} we keep
the same fact as 𝐸 ′). We conclude that���𝑅e𝐷,Σ,ℎ (𝑄)

��� ≤ (2𝑚 − 1) ×
���𝑅ne𝐷,Σ,ℎ (𝑄)

���
and

|CORep(𝐷, Σ) | =
���𝑅e𝐷,Σ,ℎ (𝑄)

��� + ���𝑅ne𝐷,Σ,ℎ (𝑄)

���
≤ (2𝑚 − 1) ×

���𝑅ne𝐷,Σ,ℎ (𝑄)

��� + ���𝑅ne𝐷,Σ,ℎ (𝑄)

���
= 2

𝑚 ×
���𝑅ne𝐷,Σ,ℎ (𝑄)

��� .
Note that (2𝑚−1)×

���𝑅ne
𝐷,Σ,ℎ (𝑄)

��� is just an upper bound on ���𝑅e
𝐷,Σ,ℎ (𝑄)

���
because, as said above, each repair 𝐸 of 𝑅e

𝐷,Σ,ℎ (𝑄) is mapped to

several distinct repairs of 𝑅ne
𝐷,Σ,ℎ (𝑄) .

Finally, each repair of 𝑅ne
𝐷,Σ,ℎ (𝑄) keeps a fact of every block in

{𝐵1, . . . , 𝐵𝑚}. Here, we are interested in the repairs that keep all

the facts of ℎ(𝑄), as these repairs 𝐸 satisfy 𝑐 ∈ 𝑄 (𝐸). Clearly,

|{𝐸 ∈ CORep(𝐷, Σ) | ℎ(𝑄) ⊆ 𝐸}| = 1

|𝐵1 | × · · · × |𝐵𝑚 | ×
���𝑅ne𝐷,Σ,ℎ (𝑄)

���
as all the facts of a block are symmetric. Hence, we conclude that:

|{𝐸 ∈ CORep(𝐷, Σ) | ℎ(𝑄) ⊆ 𝐸}|
|CORep(𝐷, Σ) | ≥

1

|𝐵1 |×···× |𝐵𝑚 | ×
���𝑅ne
𝐷,Σ,ℎ (𝑄)

���
2
𝑚 ×

���𝑅ne
𝐷,Σ,ℎ (𝑄)

���

=
1

|𝐵1 | × · · · × |𝐵𝑚 | × 2
𝑚

≥ 1

|𝐷 |𝑚 × 2
𝑚

≥ 1

|𝐷 | |𝑄 | × 2
|𝑄 |

=
1

(2|𝐷 |) |𝑄 | ≥
1

(2| |𝐷 | |) | |𝑄 | |

and this is clearly a lower bound on rrfreqΣ,𝑄 (𝐷, 𝑐), as needed.

Here is a simple example that illustrates the argument given in

the proof of Lemma 5.3.

Example B.3. Consider again the database𝐷 depicted in Figure 2,

and the set Σ = {𝑅 : 𝐴1 → 𝐴2} consisting of a single key. Let

𝑄 be the CQ Ans(𝑥) :- 𝑅(𝑎1, 𝑥). A homomorphism ℎ from 𝑄 to 𝐷

with ℎ(𝑄) |= Σ and ℎ(𝑥) = 𝑏1 is such that ℎ(𝑄) = {𝑅(𝑎1, 𝑏1)}. The
fact 𝑅(𝑎1, 𝑏1) belongs to the block {𝑓1,1, 𝑓1,2, 𝑓1,3}. Hence, the set
𝑅ne
𝐷,Σ,ℎ (𝑄) consists of the repairs:

{𝑓1,1, 𝑓2,1} {𝑓1,2, 𝑓2,1} {𝑓1,3, 𝑓2,1}
{𝑓1,1, 𝑓2,1, 𝑓3,1} {𝑓1,2, 𝑓2,1, 𝑓3,1} {𝑓1,3, 𝑓2,1, 𝑓3,1}
{𝑓1,1, 𝑓2,1, 𝑓3,2} {𝑓1,2, 𝑓2,1, 𝑓3,2} {𝑓1,3, 𝑓2,1, 𝑓3,2}

and the set 𝑅e
𝐷,Σ,ℎ (𝑄) consists of the repairs:

{𝑓2,1} {𝑓2,1, 𝑓3,1} {𝑓2,1, 𝑓3,2}

According to the mapping defined in the proof of Lemma 5.3,

the repair {𝑓2,1} is mapped to the repairs in

{{𝑓1,1, 𝑓2,1}, {𝑓1,2, 𝑓2,1}, {𝑓1,3, 𝑓2,1}}

that have one additional fact from the block of 𝑅(𝑎1, 𝑏1). Similarly,

the repair {𝑓2,1, 𝑓3,1} is mapped to the repairs in

{{𝑓1,1, 𝑓2,1, 𝑓3,1}, {𝑓1,2, 𝑓2,1, 𝑓3,1}, {𝑓1,3, 𝑓2,1, 𝑓3,1}}

and the repair {𝑓2,1, 𝑓3,2} is mapped to the repairs in

{{𝑓1,1, 𝑓2,1, 𝑓3,2}, {𝑓1,2, 𝑓2,1, 𝑓3,2}, {𝑓1,3, 𝑓2,1, 𝑓3,2}}.

Hence, each repair of 𝑅e
𝐷,Σ,ℎ (𝑄) is mapped to precisely three re-

pairs of 𝑅ne
𝐷,Σ,ℎ (𝑄) , since three is the size of the block of 𝑅(𝑎1, 𝑏1).

Moreover, in this case, 2
𝑚 − 1 = 1, and a single repair of 𝑅e

𝐷,Σ,ℎ (𝑄)
is mapped to every repair of 𝑅ne

𝐷,Σ,ℎ (𝑄) .
Since all the facts of a block are symmetric with each other,

precisely
1

3
of the repairs in 𝑅ne

𝐷,Σ,ℎ (𝑄) contain the fact 𝑅(𝑎1, 𝑏1)—
three repairs. Thus, it holds that

|{𝐸 ∈ CORep(𝐷, Σ) | ℎ(𝑄) ⊆ 𝐸}| =
1

3

× 9 = 3

and

|CORep(𝐷, Σ) | = 12.

We conclude that

|{𝐸 ∈ CORep(𝐷, Σ) | ℎ(𝑄) ⊆ 𝐸}|
|CORep(𝐷, Σ) | =

3

12

=
1

4

.

Note that

1

(2|𝐷 |) |𝑄 | =
1

12

is indeed a lower bound on that value, and it is also a lower bound

on the ratio rrfreqΣ,𝑄 (𝐷, (𝑏1)) that, in this case, equals
1

4
.

B.3 Proof of Item (3) of Theorem 5.1
As discussed in the main body of the paper, the proof of item (3)

of Theorem 5.1 proceeds in two main steps, which correspond to

Proposition 5.5 and Lemma 5.6. Before giving the formal proofs, we

first need to introduce some auxiliary notions and results. In the

sequel, we concentrate on undirected graphs without self-loops.

Auxiliary Notions and Results. Consider an undirected graph 𝐺 =

(𝑉 , 𝐸) and an integer Δ ≥ 0. We say that 𝐺 has degree Δ if each

node of𝑉 participates in at most Δ edges. Moreover,𝐺 is connected

if there is a path between every two nodes of 𝐺 . We call 𝐺 trivially
connected if |𝑉 | ≤ 1; otherwise, it is non-trivially connected. Finally,
IS(𝐺) denotes the set of all independent sets of 𝐺 .

For a database 𝐷 and a set Σ of FDs, the conflict graph of 𝐷 w.r.t.
Σ is the undirected graph CG(𝐷, Σ) = (𝑉 , 𝐸), where 𝑉 = 𝐷 , and

{𝑓 , 𝑔} ∈ 𝐸 if {𝑓 , 𝑔} ̸|= Σ. We call 𝐷 non-trivially (resp., trivially)

Σ-connected if CG(𝐷, Σ) is non-trivially (resp., trivially) connected.
In order to prove the desired claims, we establish an auxiliary

result that relates the number of candidate repairs of an inconsis-

tent database that is non-trivially connected with the number of

independent sets of the underlying conflict graph; this is Lemma 5.4

in the main body, which we recall and prove here:

Lemma 5.4. Consider a non-trivially Σ-connected database
𝐷 , where Σ is a set of FDs. It holds that |CORep(𝐷, Σ) | =

|IS(CG(𝐷, Σ)) |.

Proof. (⊆) Consider a candidate repair 𝐷 ′ ∈ CORep(𝐷, Σ). By
definition, 𝐷 ′

is consistent, i.e., there are no two facts 𝑓 , 𝑔 ∈ 𝐷 ′

such that {𝑓 , 𝑔} ̸|= Σ. By definition of the conflict graph of𝐷 w.r.t. Σ,
we conclude that no two facts 𝑓 , 𝑔 ∈ 𝐷 ′

are connected via an edge

in CG(𝐷, Σ). Hence, 𝐷 ′
is an independent set of CG(𝐷, Σ).

(⊇) Consider now an independent set 𝐷 ′ ∈ IS(CG(𝐷, Σ)). Since
there are no two facts 𝑓 , 𝑔 ∈ 𝐷 ′

that are connected via an edge of

CG(𝐷, Σ), 𝐷 ′
is consistent w.r.t. Σ. It remains to show that there ex-

ists a sequence 𝑠 ∈ CRS(𝐷, Σ) such that 𝑠 (𝐷) = 𝐷 ′
; we distinguish

the two cases where either 𝐷 ′ ≠ ∅ or 𝐷 ′ = ∅.
Case 1. Let us first concentrate on the case where 𝐷 ′ ≠ ∅. In
order to define the repairing sequence 𝑠 ∈ CRS(𝐷, Σ) such that

𝑠 (𝐷) = 𝐷 ′
, we first define a convenient stratification of the facts of

𝐷 . We inductively define the strata 𝐿0, 𝐿1, . . . as follows:

• 𝐿0 = 𝐷 ′
.

• For each 𝑖 ≥ 1,

𝐿𝑖 = {𝑓 ∈ 𝐷 | 𝑓 ∉ 𝐿0 ∪ . . . ∪ 𝐿𝑖−1 and

there is 𝑓 ′ ∈ 𝐿𝑖−1 with {𝑓 , 𝑓 ′} ̸|= Σ}.

Observe that, since CG(𝐷, Σ) is connected, each fact 𝑓 ∈ 𝐷 occurs

in some 𝐿𝑖 , i.e., if 𝑛 is the smallest integer such that 𝐿ℓ = ∅, for
ℓ > 𝑛, we have that 𝐷 =

⋃𝑛
𝑖=0

𝐿𝑖 .

Let 𝐿𝑖 =

{
𝑓 𝑖
1
, . . . , 𝑓 𝑖|𝐿𝑖 |

}
, for each 𝑖 ∈ [𝑛]. We now construct

the desired sequence 𝑠 as follows. We let the first |𝐿𝑛 | operations
be −𝑓 𝑛

1
, . . . ,−𝑓 𝑛|𝐿𝑛 | . To see that −𝑓 𝑛

𝑗
is a (𝐷𝑠

𝑗−1
, Σ)-justified oper-

ation for every 1 ≤ 𝑗 ≤ |𝐿𝑛 |, observe that, by definition of 𝐿𝑛 ,

each 𝑓 𝑛
𝑗
is in a violation with some fact in 𝐿𝑛−1, which has not

been removed yet. The operations op |𝐿𝑛 |+1
, . . . , op |𝐿𝑛 |+ |𝐿𝑛−1 | will

be −𝑓 𝑛−1

1
, . . . ,−𝑓 𝑛−1

|𝐿𝑛−1 | , which are all justified because there exists a

violation for each fact with some fact from 𝐿𝑛−2 that has not been

removed yet. The next operations of 𝑠 are defined in the same way

for the remaining strata, until the last |𝐿1 | operations, which will

be −𝑓 1

1
, . . . ,−𝑓 1

|𝐿1 | . Again, these operations are justified since, by

definition, each of the facts 𝑓 1

1
, . . . , 𝑓 1

|𝐿1 | is in conflict with some fact

from 𝐿0 = 𝐷 ′
. Summing up, the sequence 𝑠 is

−𝑓 𝑛
1
, . . . ,−𝑓 𝑛|𝐿𝑛 |,−𝑓

𝑛−1

1
, . . . ,−𝑓 𝑛−1

|𝐿𝑛−1 |, . . . ,−𝑓
1

1
, . . . ,−𝑓 1

|𝐿1 | .

We have that 𝑠 ∈ RS(𝐷, Σ) and that 𝑠 (𝐷) = 𝐷 ′ |= Σ. Hence, 𝑠 ∈
CRS(𝐷, Σ), which implies 𝐷 ′ ∈ CORep(𝐷, Σ), as needed.

Case 2. The case where 𝐷 ′ = ∅ is treated similarly. We only need

to slightly adjust the last operation of the sequence 𝑠 . Fix some

fact 𝑓 ∗ ∈ 𝐷 . We stratify the facts of 𝐷 as in the first case, but we

let 𝐿0 = {𝑓 ∗}. We then define 𝑠 in the same way as above. Let

𝐿𝑛 be again the last non-empty stratum. Since CG(𝐷, Σ) is non-
trivially connected, 𝐷 ̸ |= Σ, and thus, we have that 𝑛 > 0, i.e., at

least stratum 𝐿1 is non-empty. Then, we have that the first |𝐿𝑛 |
operations are −𝑓 𝑛

1
, . . . ,−𝑓 𝑛|𝐿𝑛 | . We continue with the remaining

strata 𝐿𝑛−1 to 𝐿2 as before. The last |𝐿1 | operations are defined as

−𝑓 1

1
, . . . ,−𝑓 1

|𝐿1 |−1
,−

{
𝑓 1

|𝐿1 |, 𝑓
∗
}
. Note that, by definition of 𝐿1, every

fact 𝑓 1

1
, . . . , 𝑓 1

|𝐿1 |−1
is in a violation with 𝑓 ∗, and thus, their removal

is a justified operation. Now, there are only two facts left, 𝑓 1

|𝐿1 | and

𝑓 ∗, which together violate Σ (recall that 𝐿1 is non-empty). Therefore,

−
{
𝑓 1

|𝐿1 |, 𝑓
∗
}
is a justified operation, and we have that 𝑠 ∈ RS(𝐷, Σ)

and 𝑠 (𝐷) = 𝐷 ′ = ∅ |= Σ. Hence, 𝑠 ∈ CRS(𝐷, Σ), which in turn

implies that 𝐷 ′ ∈ CORep(𝐷, Σ), as needed.

We are now ready to proceedwith the twomain steps of the proof

of item (3) of Theorem 5.1, which correspond to Proposition 5.5

and Lemma 5.6, respectively. Note that both results are essentially

dealing with the following counting problem for a set Σ of FDs:

PROBLEM : ♯CORepcon (Σ)
INPUT : A non-trivially Σ-connected database 𝐷 .

OUTPUT : The number |CORep(𝐷, Σ) |.

Step 1: An Inapproximability Result About Keys. The formal state-

ment, already given in the main body, and its proof follow. Note

that the statement of Proposition 5.5 given below is more compact

than the one given in the main body of the paper since we explicitly

use the name of the problem ♯CORepcon (Σ).

Proposition 5.5. Unless RP = NP, there exists a set Σ of keys over
{𝑅} such that ♯CORepcon (Σ) does not admit an FPRAS.

Before giving the proof of Proposition 5.5, we need an auxiliary

result about the problem of counting the number of independent

sets of undirected graphs. For an integer Δ ≥ 0, we define

PROBLEM : ♯ISΔ
INPUT : An undirected graph 𝐺 of degree Δ.
OUTPUT : The number |IS(𝐺) |.

We know from [22] that the following holds:

Proposition B.4. For every Δ ≥ 6, unless RP = NP, #ISΔ does
not admit an FPRAS.

Note that the above result states the inapproximability of ♯ISΔ
for arbitrary, not necessarily non-trivially connected graphs. How-

ever, for showing Proposition 5.5, we need the stronger version

of Proposition B.4 that establishes the inapproximability of ♯ISΔ
even for non-trivially connected graphs. Let ♯ISconΔ be the problem

defined as ♯ISΔ with the difference that the input is a non-trivially

connected undirected graph. We proceed to show the following:

Lemma B.5. For every Δ ≥ 6, unless RP = NP, #ISconΔ does not
admit an FPRAS.

Proof. By contradiction, assume that #ISconΔ admits an FPRAS,

for some Δ ≥ 6, i.e., there is a randomized algorithm A that takes

as input a non-trivially connected graph 𝐺 = (𝑉 , 𝐸) of degree Δ,
𝜖 > 0, and 0 < 𝛿 < 1, runs in polynomial time in | |𝐺 | |, 1/𝜖 , and
log(1/𝛿), and produces a random variable A(𝐺, 𝜖, 𝛿) such that

Pr ((1 − 𝜖) · |IS(𝐺) | ≤ A(𝐺, 𝜖, 𝛿) ≤ (1 + 𝜖) · |IS(𝐺) |) ≥ 1 − 𝛿.

From this, we can construct an FPRAS A′
for #ISΔ as follows. Given

a graph 𝐺 = (𝑉 , 𝐸) of degree Δ, let the connected components,

i.e., the maximal connected subgraphs, of 𝐺 be (CC𝑖)1≤𝑖≤𝑛 with

CC𝑖 = (𝑉𝑖 , 𝐸𝑖). Furthermore, assume, w.l.o.g., that CC1, . . . ,CCℓ ,
are all the trivially connected components of 𝐺 , for some ℓ ≤ 𝑛.

Given 𝐺 , 𝜖 > 0, and 0 < 𝛿 < 1, A′
is defined as

A′(𝐺, 𝜖, 𝛿) = 2
ℓ ·

𝑛∏
𝑖=ℓ+1

A
(
CC𝑖 ,

𝜖

2𝑛
,
𝛿

2𝑛

)
.

Note that a run of A does not depend on any other run, and thus,

the random variables A(CC𝑖 , 𝜖
2𝑛 ,

𝛿
2𝑛) are independent from each

other. It is also easy to see that

|IS(𝐺) | = 2
ℓ ·

𝑛∏
𝑖=ℓ+1

|IS(CC𝑖) |.

Therefore, since A is an FPRAS for #ISconΔ , we have that

Pr
((

1 − 𝜖

2𝑛

)𝑛
· |IS(𝐺) | ≤ A′(𝐺, 𝜖, 𝛿) ≤(

1 + 𝜖

2𝑛

)𝑛
· |IS(𝐺) |

)
≥

(
1 − 𝛿

2𝑛

)𝑛
.

Finally, we know (see, e.g., [14]) that the following inequalities hold:

for 0 ≤ 𝑥 ≤ 1 and𝑚 ≥ 1,

1 − 𝑥 ≤
(
1 − 𝑥

2𝑚

)𝑚
and

(
1 + 𝑥

2𝑚

)𝑚
≤ 1 + 𝑥 .

Consequently,

Pr
(
(1 − 𝜖) · |IS(𝐺) | ≤ A′(𝐺, 𝜖, 𝛿) ≤ (1 + 𝜖) · |IS(𝐺) |

)
≥ 1 − 𝛿.

Hence, A′
fulfils the probabilistic guarantees required for an FPRAS.

To confirm the desired running time of A′
, note that there are at

most 𝑛 = |𝑉 | connected components of 𝐺 , which can be computed

in polynomial time via any textbook algorithm. Thus, since A is

an FPRAS for #ISconΔ , for each each 𝑖 ∈ [𝑛], the random variable

A(CC𝑖 , 𝜖
2𝑛 ,

𝛿
2𝑛) can be computed in polynomial time w.r.t. CC𝑖 ,

|𝑉 |
𝜖 ,

and
|𝑉 |
𝛿
. Since A′

multiplies at most |𝑉 | such random variables, A′

is an FPRAS for ♯ISΔ, which contradicts Proposition B.4.

With Lemma B.5 in place, we can now prove Proposition 5.5.

Proof of Proposition 5.5. Consider a non-trivially connected

undirected graph𝐺 = (𝑉 , 𝐸) with degree Δ = 6. Let S be the schema

consisting of the single relation name {𝑅/Δ+1}with (𝐴1, . . . , 𝐴Δ+1)
being the tuple of attributes of 𝑅, and Σ𝐾 = {𝜙1, . . . , 𝜙Δ+1} a set
of keys over S, where 𝜙𝑖 = 𝑅 : 𝐴𝑖 → att(𝑅) for each 𝑖 ∈ [Δ + 1].
We show that, unless RP = NP, we can construct a non-trivially

Σ𝐾 -connected database 𝐷𝐺 in polynomial time in | |𝐺 || such that

|IS(𝐺) | = |CORep(𝐷𝐺 , Σ𝐾) |. Hence, the existence of an FPRAS for

♯CORepcon (Σ𝐾) would imply the existence of an FPRAS for ♯ISconΔ ,

which in turn contradicts Lemma B.5.

The key property that 𝐷𝐺 should enjoy is the following: there

exists a bijection 𝜇 : 𝑉 → 𝐷𝐺 from the set of nodes of𝐺 to the facts

of 𝐷𝐺 such that (𝑢, 𝑣) ∈ 𝐸 iff {𝜇 (𝑢), 𝜇 (𝑣)} ̸|= Σ𝐾 . The latter imme-

diately implies that |IS(𝐺) | = |IS(CG(𝐷𝐺 , Σ𝐾)) |, which, together
with the fact that𝐺 is non-trivially connected, and hence,𝐷𝐺 is non-

trivially Σ𝐾 -connected, implies that |IS(𝐺) | = |CORep(𝐷𝐺 , Σ𝐾) |
by Lemma 5.4. The formal construction of 𝐷𝐺 follows.

The Database 𝐷𝐺 . It is known that the edges of 𝐺 are (Δ + 1)-
colourable, and such a coloring can be constructed in polynomial

time in | |𝐺 | | [20]. Therefore, we are able to efficiently assign the

colours 𝐶 = {𝑐1, . . . , 𝑐Δ+1} to the edges of 𝐺 in such a way that

none of the nodes belongs to two distinct edges of the same colour.

Let 𝑀 : 𝐸 → 𝐶 be such a coloring. The database 𝐷𝐺 is such that

dom(𝐷𝐺) = 𝐸 ∪ 𝐹 , where 𝐹 is a finite a set of constants with

𝐸 ∩ 𝐹 = ∅, and has the following facts:

(1) for each node 𝑣 ∈ 𝑉 , we add to 𝐷𝐺 a fact of the form

𝑅(𝑎𝑣
1
, . . . , 𝑎𝑣Δ+1

), and
(2) the constants of such facts are defined as follows:

(a) for every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, assuming that 𝑀 (𝑒) = 𝑐𝑖 ,

we let 𝑎𝑢
𝑖
= 𝑎𝑣

𝑖
= 𝑒 , and

(b) for every 𝑎𝑣
𝑖
not defined in the above step, we let 𝑎𝑣

𝑖
= 𝑓

for some constant 𝑓 ∈ 𝐹 only to be used once.

We use 𝑅(𝑎𝑣) to denote 𝑅(𝑎𝑣
1
, . . . , 𝑎𝑣Δ+1

), for short. Note that every
𝑎𝑣
𝑖
is well-defined since 𝑣 has at most one edge of colour 𝑐𝑖 , and

thus, 𝑎𝑣
𝑖
is uniquely defined by either the edge with colour 𝑐𝑖 , or in

case there is no such edge, by a fresh constant 𝑓 ∈ 𝐹 . Let us also

stress that we can build 𝐷𝐺 in polynomial time in | |𝐺 | |. We can

now prove the following crucial property of 𝐷𝐺 :

Lemma B.6. Consider two nodes 𝑢, 𝑣 of 𝐺 . Then, {𝑢, 𝑣} is an edge
in 𝐺 iff {𝑅(𝑎𝑢), 𝑅(𝑎𝑣)} ̸|= Σ𝐾 .

Proof. Consider an edge 𝑒 = {𝑢, 𝑣} in 𝐺 with 𝑀 (𝑒) = 𝑐𝑖 , for

some 𝑖 ∈ [Δ+1]. By construction of 𝐷𝐺 , it is clear that there will be

exactly two facts in 𝐷𝐺 such that the constant 𝑒 appears at position

𝑖 of those facts. These two facts will be precisely 𝑅(𝑎𝑢
1
, . . . , 𝑎𝑢Δ+1

)
and 𝑅(𝑎𝑣

1
, . . . , 𝑎𝑣Δ+1

), having 𝑎𝑢
𝑖
= 𝑎𝑣

𝑖
= 𝑒 . As there are no multiple

edges between two vertices, the constants at the other positions

will be pairwise different, i.e., 𝑎𝑢
𝑗
≠ 𝑎𝑣

𝑗
, for all 𝑗 ≠ 𝑖 . Hence, the two

facts together violate 𝜙𝑖 , and thus, {𝑅(𝑎𝑢), 𝑅(𝑎𝑣)} ̸|= Σ𝐾 .
Consider now two facts 𝑅(𝑎𝑢

1
, . . . , 𝑎𝑢Δ+1

) and 𝑅(𝑎𝑣
1
, . . . , 𝑎𝑣Δ+1

) that
together violate 𝜙𝑖 = 𝑅 : 𝐴𝑖 → att(𝑅) for some 𝑖 ∈ [Δ + 1]. Thus,
the same constant appears at position 𝑖 in both facts, i.e., 𝑎𝑢

𝑖
= 𝑎𝑣

𝑖
.

By construction of 𝐷𝐺 , the only reason why 𝑎𝑢
𝑖
= 𝑎𝑣

𝑖
is because

{𝑢, 𝑣} is an edge of 𝐺 , and the claim follows.

By Lemma B.6, we get that |IS(𝐺) | = |IS(CG(𝐷𝐺 , Σ𝐾)) |, and that
𝐷𝐺 is non-trivially Σ-connected. Hence, by Lemma 5.4, |IS(𝐺) | =
|IS(CG(𝐷𝐺 , Σ𝐾)) | = |CORep(𝐷𝐺 , Σ𝐾) |, and the claim follows.

Step 2: Transferring FPRAS. We proceed with the second and last

step of the proof of item (3) of Theorem 5.1, which corresponds to

Lemma 5.6. The formal statement, already given in the main body,

and its proof follow. Note that the statement of Lemma 5.6 given

below is more compact than the one given in the main body since

we explicitly use the name of the problem ♯CORepcon (Σ𝐾), where
Σ𝐾 is the set of keys provided by Proposition 5.5.

Lemma 5.6. Assume that RRFreq(Σ, 𝑄) admits an FPRAS, for ev-
ery set Σ of FDs and CQ𝑄 . Then, ♯CORepcon (Σ𝐾) admits an FPRAS.

Proof. By Proposition 5.5, unless RP = NP, Σ𝐾 is a set of keys

over a schema {𝑅/𝑛} such that ♯CORepcon (Σ𝐾) does not admit

an FPRAS. Let S = {𝑅′/𝑚}, where𝑚 = 𝑛 + 2, and, assuming that

(𝐴1, . . . , 𝐴𝑛) is the tuple of attributes of 𝑅, let (𝐴, 𝐵,𝐴1, . . . , 𝐴𝑛) be
the tuple of attributes of 𝑅′

. We first show that there exist a set Σ𝐹
of FDs over S, and a Boolean CQ 𝑄𝐹 over S such that, for every

non-trivially Σ𝐾 -connected database 𝐷 over {𝑅}, we can construct

in polynomial time in | |𝐷 | | a database 𝐷𝐹 over S such that

rrfreqΣ𝐹 ,𝑄𝐹
(𝐷𝐹 , ()) =

1

|CORep(𝐷, Σ𝐾) | + 1

. (∗)

By exploiting the above equation, the fact that 𝐷𝐹 can be con-

structed in polynomial time, and the FPRAS for RRFreq(Σ𝐹 , 𝑄𝐹)
(which exists by hypothesis), we will then explain how to devise

an FPRAS for the problem ♯CORepcon (Σ𝐾).
We start by explaining how Σ𝐹 and 𝐷𝐹 are defined in a way that

|CORep(𝐷𝐹 , Σ𝐹) | = |CORep(𝐷, Σ𝐾) | + 1.

We define the set Σ𝐹 of FDs over S as follows:

{𝑅′
: 𝑋 → 𝑌 | 𝑅 : 𝑋 → 𝑌 ∈ Σ𝐾 } ∪ {𝑅′

: 𝐴 → 𝐵}.
Note that each key𝜙 of Σ𝐾 over𝑅 becomes an FD𝜙 ′

over𝑅′
; indeed,

𝜙 ′
is not a key since 𝑅′

has two additional attributes. Now, given

a non-trivially Σ𝐾 -connected database 𝐷 over {𝑅}, we define the
database 𝐷𝐹 as follows with 𝑎, 𝑏 being constants not in dom(𝐷):

{𝑅′(𝑎, 𝑏, 𝑎1, . . . , 𝑎𝑛) | 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ 𝐷} ∪ {𝑅′(𝑎, 𝑎, . . . , 𝑎)}.
For brevity, we will write 𝑓 ∗ for the fact 𝑅′(𝑎, 𝑎, . . . , 𝑎). It is not
difficult to verify that the number |CORep(𝐷𝐹 , Σ𝐹) | is the sum

|{𝐷 ′ ∈ CORep(𝐷𝐹 , Σ𝐹) | 𝑓 ∗ ∈ 𝐷 ′}| +
|{𝐷 ′ ∈ CORep(𝐷𝐹 , Σ𝐹) | 𝑓 ∗ ∉ 𝐷 ′}|,

that is, the sum of the number of candidate repairs containing 𝑓 ∗

and the number of candidate repairs not containing 𝑓 ∗. It is not
difficult to see that {𝑓 ∗} is the only candidate repair containing 𝑓 ∗.
This is because 𝑓 ∗ is in a conflict with every other fact of 𝐷𝐹 due

to the FD 𝑅′
: 𝐴 → 𝐵. Moreover, one can easily devise a sequence

𝑠 ∈ CRS(𝐷𝐹 , Σ𝐹) removing all facts in 𝐷𝐹 \ {𝑓 ∗} in an arbitrary

order, and therefore obtaining {𝑓 ∗}.
Regarding the number of candidate repairs not containing 𝑓 ∗, ob-

serve that since 𝐷 is non-trivially Σ𝐾 -connected, and since 𝑓 ∗ is in
a conflict with every other fact of 𝐷𝐹 , then 𝐷𝐹 is non-trivially

Σ𝐹 -connected. Therefore, by Lemma 5.4, CORep(𝐷𝐹 , Σ𝐹) =

IS(CG(𝐷𝐹 , Σ𝐹)). Since {𝑓 ∗} is the only candidate repair of 𝐷𝐹

containing 𝑓 ∗, and thus, the only independent set of CG(𝐷𝐹 , Σ𝐹)
containing 𝑓 ∗, the set of candidate repairs without 𝑓 ∗, i.e., {𝐷 ′ ∈
CORep(𝐷𝐹 , Σ𝐹) | 𝑓 ∗ ∉ 𝐷 ′} coincides with IS(CG(𝐷𝐹 \ {𝑓 ∗}, Σ𝐹)).
Note that, by construction of 𝐷𝐹 and Σ𝐹 , since 𝐷 is non-trivially

Σ𝐾 -connected, 𝐷𝐹 \ {𝑓 ∗} is non-trivially Σ𝐹 -connected, and thus,

by Lemma 5.4, IS(CG(𝐷𝐹 \ {𝑓 ∗}, Σ𝐹)) = CORep(𝐷𝐹 \ {𝑓 ∗}, Σ𝐹).
Finally, by construction of𝐷𝐹 and Σ𝐹 , we have that |CORep(𝐷𝐹 \

{𝑓 ∗}, Σ𝐹) | = |CORep(𝐷, Σ𝐾) |. In fact, it suffices to observe that two

facts 𝑅(𝑎1, . . . , 𝑎𝑛), 𝑅(𝑏1, . . . , 𝑏𝑛) ∈ 𝐷 violate Σ𝐾 iff the correspond-

ing facts 𝑅′(𝑎, 𝑏, 𝑎1, . . . , 𝑎𝑛), 𝑅′(𝑎, 𝑏, 𝑏1, . . . , 𝑏𝑛) ∈ 𝐷𝐹 \ {𝑓 ∗} violate
Σ𝐹 . Hence, we conclude that

|CORep(𝐷𝐹 , Σ𝐹) | = |CORep(𝐷, Σ𝐾) | + 1.

Let us now define the Boolean CQ 𝑄𝐹 in such a way that the

equation (∗) holds. We define 𝑄𝐹 as the Boolean CQ

Ans() :- 𝑅′(𝑥, 𝑥, . . . , 𝑥) .

In simple words,𝑄𝐹 asks whether there exists a fact such that all the

attributes have the same value. Clearly, the only candidate repair

of CORep(𝐷𝐹 , Σ𝐹) that satisfies the query 𝑄𝐹 is {𝑓 ∗}, i.e.,

rrfreqΣ𝐹 ,𝑄𝐹
(𝐷𝐹 , ()) =

1

|CORep(𝐷𝐹 , Σ𝐹) |
.

Since, as shown above, |CORep(𝐷𝐹 , Σ𝐹) | = |CORep(𝐷, Σ𝐾) | + 1,

we get that the equation (∗) holds, as needed.

Building the FPRAS. We proceed to devise an FPRAS for the

problem ♯CORepcon (Σ𝐾) by exploiting the equation (∗), the fact
that 𝐷𝐹 can be constructed in polynomial time, and the FPRAS A′

for RRFreq(Σ𝐹 , 𝑄𝐹) (which exists by hypothesis).

Given a non-trivially Σ𝐾 -connected database 𝐷 , 𝜖 > 0, and

0 < 𝛿 < 1, we define A as the following randomized procedure:

(1) Compute 𝐷𝐹 from 𝐷 ;

(2) Let 𝜖 ′ = 𝜖
2+𝜖 ;

(3) Let 𝑟 = max

{
1−𝜖′

2· (1+2
|𝐷 |) ,A

′(𝐷𝐹 , (), 𝜖 ′, 𝛿)
}
;

(4) Output
1

𝑟 − 1.

We proceed to show that A is an FPRAS for ♯CORepcon (Σ𝐾).
Since 𝐷𝐹 can be constructed in polynomial time in | |𝐷 | |, A(𝐷, 𝜖, 𝛿)
runs in polynomial time in | |𝐷 | |, 1/𝜖 and log(1/𝛿) by definition.

We now discuss the probabilistic guarantees. By assumption,

Pr
(
(1 − 𝜖 ′) · rrfreqΣ𝐹 ,𝑄𝐹

(𝐷𝐹 , ()) ≤ A′(𝐷𝐹 , (), 𝜖 ′, 𝛿)

≤ (1 + 𝜖 ′) · rrfreqΣ𝐹 ,𝑄𝐹
(𝐷𝐹 , ())

)
≥ 1 − 𝛿.

Thus, it suffices to show that the left-hand side of the above in-

equality is bounded from above by

Pr ((1 − 𝜖) · |CORep(𝐷, Σ𝐾) | ≤ A(𝐷, 𝜖, 𝛿) ≤
(1 + 𝜖) · |CORep(𝐷, Σ𝐾) |) .

To this end, by equation (∗), we get that

Pr
(
(1 − 𝜖 ′) · rrfreqΣ𝐹 ,𝑄𝐹

(𝐷𝐹 , ()) ≤ A′(𝐷𝐹 , (), 𝜖 ′, 𝛿)

≤ (1 + 𝜖 ′) · rrfreqΣ𝐹 ,𝑄𝐹
(𝐷𝐹 , ())

)
= Pr(𝐸),

where 𝐸 is the event

1 − 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |
≤ A′(𝐷𝐹 , (), 𝜖 ′, 𝛿) ≤

1 + 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |
.

Note that |CORep(𝐷, Σ𝐾) | ≤ 2
|𝐷 |

, i.e., |CORep(𝐷, Σ𝐾) | is at most

the the number of all possible subsets of 𝐷 . Hence,

1 − 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |
≥ 1 − 𝜖 ′

1 + 2
|𝐷 | .

Thus, for 𝐸 to hold is necessary that the output of 𝐴′(𝐷𝐹 , (), 𝜖 ′, 𝛿)
is no smaller than

1−𝜖′
1+2

|𝐷 | . Hence, for any number 𝑝 < 1−𝜖′
1+2

|𝐷 | , 𝐸

coincides with the event

1 − 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |
≤ max

{
𝑝,A′(𝐷𝐹 , (), 𝜖 ′, 𝛿)

}
≤

1 + 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |
.

Hence, with 𝑝 = 1−𝜖′
2· (1+2

|𝐷 |) < 1−𝜖′
1+2

|𝐷 | , we conclude that

Pr(𝐸) = Pr
(

1 − 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |
≤ max

{
𝑝,A′(𝐷𝐹 , (), 𝜖 ′, 𝛿)

}
≤

1 + 𝜖 ′

1 + |CORep(𝐷, Σ𝐾) |

)
.

Since the random variable max{𝑝,A′(𝐷𝐹 , (), 𝜖 ′, 𝛿)} always outputs
a rational strictly larger than 0, the latter probability coincides with

Pr
(

1 + |CORep(𝐷, Σ𝐾) |
1 + 𝜖 ′

≤ 1

max {𝑝,A′(𝐷𝐹 , (), 𝜖 ′, 𝛿)}
≤

1 + |CORep(𝐷, Σ𝐾) |
1 − 𝜖 ′

)
.

For short, let 𝑋 be the random variable
1

max{𝑝,A′ (𝐷𝐹 ,(),𝜖′,𝛿) } . Since
1

1−𝜖′ = 1 + 𝜖′
1−𝜖′ and

1

1+𝜖 = 1 − 𝜖′
1+𝜖′ ≥ 1 − 𝜖′

1−𝜖′ , the probability

above is less or equal than

Pr
((

1 − 𝜖 ′

1 − 𝜖 ′

)
· (1 + |CORep(𝐷, Σ𝐾) |) ≤ 𝑋 ≤(

1 + 𝜖 ′

1 − 𝜖 ′

)
· (1 + |CORep(𝐷, Σ𝐾) |)

)
.

If we subtract 1 from all sides of the inequality, then the above

probability coincides with

Pr
((

1 − 𝜖 ′

1 − 𝜖 ′

)
· (1 + |CORep(𝐷, Σ𝐾) |) − 1 ≤ 𝑋 − 1 ≤(

1 + 𝜖 ′

1 − 𝜖 ′

)
· (1 + |CORep(𝐷, Σ𝐾) |) − 1

)
.

By expanding the products in the above expression, we obtain

Pr
(
|CORep(𝐷, Σ𝐾) | −

𝜖 ′

1 − 𝜖 ′
− 𝜖 ′

1 − 𝜖 ′
· |CORep(𝐷, Σ𝐾) | ≤

𝑋 − 1 ≤

|CORep(𝐷, Σ𝐾) | +
𝜖 ′

1 − 𝜖 ′
+ 𝜖 ′

1 − 𝜖 ′
· |CORep(𝐷, Σ𝐾) |

)
.

Finally, since |CORep(𝐷, Σ𝐾) | ≥ 1, we have that

𝜖 ′

1 − 𝜖 ′
≤ 𝜖 ′

1 − 𝜖 ′
· |CORep(𝐷, Σ𝐾) |.

Thus, the above probability is less or equal than

Pr
(
|CORep(𝐷, Σ𝐾) | − 2 · 𝜖 ′

1 − 𝜖 ′
· |CORep(𝐷, Σ𝐾) | ≤

𝑋 − 1 ≤ |CORep(𝐷, Σ𝐾) | + 2 · 𝜖 ′

1 − 𝜖 ′
· |CORep(𝐷, Σ𝐾) |

)
,

which coincides with

Pr
((

1 − 2 · 𝜖 ′

1 − 𝜖 ′

)
· |CORep(𝐷, Σ𝐾) | ≤

𝑋 − 1 ≤
(
1 + 2 · 𝜖 ′

1 − 𝜖 ′

)
· |CORep(𝐷, Σ𝐾) |

)
.

Recalling that 𝜖 ′ = 𝜖
2+𝜖 , one can verify that 2 · 𝜖′

1−𝜖′ = 𝜖 . Moreover,

𝑋 − 1 is A(𝐷, 𝜖, 𝛿). Hence, the above probability coincides with

Pr ((1 − 𝜖) · |CORep(𝐷, Σ𝐾) | ≤ A(𝐷, 𝜖, 𝛿) ≤
(1 + 𝜖) · |CORep(𝐷, Σ𝐾) |) .

Consequently, A is an FPRAS for #CORepcon (Σ𝐾), as needed.

It is now straightforward to see that from Proposition 5.5 and

Lemma 5.6, we can conclude item (3) of Theorem 5.1.

C PROOFS OF SECTION 6
In this section, we prove the main result of Section 6, which we

recall here for the sake of readability:

Theorem 6.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀us

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of primary keys, and a CQ 𝑄 , OCQA(Σ, 𝑀us

Σ , 𝑄)
admits an FPRAS.

As discussed in Section 6, we actually need to prove the above

result for the problem SRFreq(Σ, 𝑄).

C.1 Proof of Item (1) of Theorem 6.1
Let Σ and 𝑄 be the singleton set of primary keys and the Boolean

CQ, respectively, for which RRFreq(Σ, 𝑄) is ♯P-hard; Σ and 𝑄 are

obtained from the proof of item (1) of Theorem 5.1. We show that

also SRFreq(Σ, 𝑄) is ♯P-hard via a polynomial-time Turing reduc-

tion from ♯𝐻 -Coloring, where𝐻 is the graph employed in the proof

of item (1) of Theorem 5.1. Actually, we can exploit the same con-

struction as in the proof of item (1) of Theorem 5.1. Assuming that,

for an undirected graph𝐺 , 𝐷𝐺 is the database that the construction

in the proof of item (1) of Theorem 5.1 builds, we show that

rrfreqΣ,𝑄 (𝐷𝐺 , ()) = srfreqΣ,𝑄 (𝐷𝐺 , ()),
which implies that the polynomial-time Turing reduction from

♯𝐻 -Coloring to RRFreq(Σ, 𝑄) is also a polynomial-time Turing re-

duction from ♯𝐻 -Coloring to SRFreq(Σ, 𝑄). Recall that

srfreqΣ,𝑄 (𝐷𝐺 , ()) =
|{𝑠 ∈ CRS(𝐷𝐺 , Σ) | 𝑠 (𝐷) |= 𝑄}|

|CRS(𝐷𝐺 , Σ) |
.

By construction of 𝐷𝐺 , each candidate repair 𝐷 ∈ CORep(𝐷𝐺 , Σ)
can be obtained via |𝑉𝐺 |! different complete sequences of

CRS(𝐷𝐺 , Σ). Therefore, srfreqΣ,𝑄 (𝐷𝐺 , ()) is
|CORep(𝐷𝐺 , Σ, 𝑄) | · |𝑉𝐺 |!
|CORep(𝐷𝐺 , Σ) | · |𝑉𝐺 |!

=
|CORep(𝐷𝐺 , Σ, 𝑄) |
|ORep(𝐷𝐺 , Σ) |

.

The latter expression is precisely rrfreqΣ,𝑄 (𝐷𝐺 , ()), as needed.

C.2 Proof of Item (2) of Theorem 6.1
We prove that, for a set Σ of primary keys, and a CQ𝑄 , the problem

SRFreq(Σ, 𝑄) admits an FPRAS. As for item (2) of Theorem 5.1, the

proof consists of two steps: (1) existence of an efficient sampler,

and (2) provide a polynomial lower bound for srfreqΣ,𝑄 (𝐷, 𝑐).

Step 1: Efficient Sampler. To establish that we can efficiently sample

elements of CRS(𝐷, Σ) uniformly at random, we first need to show

that the number of complete repairing sequences can be computed

in polynomial time in the case of primary keys.

Lemma C.1. Consider a set Σ of primary keys. For every database
𝐷 , |CRS(𝐷, Σ) | can be computed in polynomial time in | |𝐷 | |.

Proof. Consider a database 𝐷 . As in the proof of Lemma 5.2,

let 𝐵1, . . . , 𝐵𝑛 be the blocks of 𝐷 w.r.t. Σ that contain at least two

facts. For a block 𝐵 of size𝑚 ≥ 2 and for 0 ≤ 𝑖 ≤
⌊
𝑚
2

⌋
, we denote

by 𝑆
ne,𝑖
𝑚 the number of sequences 𝑠 ∈ CRS(𝐵, Σ) such that 𝑠 (𝐵) ≠ ∅

(hence, 𝑠 (𝐵) contains a single fact) and precisely 𝑖 of the operations
of 𝑠 are pair removals. In the case where𝑚 is an even number, we

cannot obtain a non-empty repair with
𝑚
2
pair removals; hence, we

will have that 𝑆
ne,𝑚

2

𝑚 = 0. In any other case, we have that:

𝑆
ne,𝑖
𝑚 = 𝑚 ×

[(
𝑚 − 1

2𝑖

)
× (2𝑖)!

2
𝑖 · 𝑖!

× (𝑚 − 𝑖 − 1)!
]

= 𝑚 × (𝑚 − 1)!
(2𝑖)! · (𝑚 − 2𝑖 − 1)! ×

(2𝑖)!
2
𝑖 · 𝑖!

× (𝑚 − 𝑖 − 1)!

=
𝑚! · (𝑚 − 𝑖 − 1)!

2
𝑖 · 𝑖! · (𝑚 − 2𝑖 − 1)!

where:

• 𝑚 is the number of ways to select the single fact of 𝑠 (𝐵),
•

(𝑚−1

2𝑖

)
is the number of ways to select 2𝑖 facts out of the

remaining𝑚 − 1 facts (these are the facts removed in pairs),

• (2𝑖)!
2
𝑖 ·𝑖! is the number of ways to split 2𝑖 facts into 𝑖 pairs, and

• (𝑚 − 𝑖 − 1)! is the number of permutations of the𝑚 − 𝑖 − 1

operations in the sequence (𝑚 − 2𝑖 − 1 singleton removals,

and 𝑖 pair removals).

Similarly, we denote by 𝑆
e,𝑖
𝑚 the number of sequences 𝑠 ∈

CRS(𝐵, Σ) such that 𝑠 (𝐵) = ∅ and 𝑠 has precisely 𝑖 pair removals. As

we cannot obtain an empty repair without pair removals, it holds

that 𝑆
e,0
𝑚 = 0. For 𝑖 ≥ 1, the following holds:

𝑆
e,𝑖
𝑚 =

(
𝑚

2

)
×

((
𝑚 − 2

2𝑖 − 2

)
× (2𝑖 − 2)!

2
𝑖−1 · (𝑖 − 1)!

× (𝑚 − 𝑖 − 1)!
)

=
𝑚!

2! · (𝑚 − 2)! ×
(𝑚 − 2)!

(2𝑖 − 2)! · (𝑚 − 2𝑖)!

× (2𝑖 − 2)!
2
𝑖−1 · (𝑖 − 1)!

× (𝑚 − 𝑖 − 1)!

=
𝑚! · (𝑚 − 𝑖 − 1)!

2
𝑖 · (𝑖 − 1)! · (𝑚 − 2𝑖)!

where:

•
(𝑚

2

)
is the number of ways to select the last pair that will be

removed in the sequence,

•
(𝑚−2

2𝑖−2

)
is the number of ways to select 2(𝑖 −1) facts out of the

remaining𝑚 − 2 facts (these are the facts removed in pairs),

• (2𝑖−2)!
2
𝑖−1 · (𝑖−1)! is the number of ways to split 2(𝑖 − 1) facts into

𝑖 − 1 pairs, and

• (𝑚 − 𝑖 − 1)! is the number of permutations of the𝑚 − 𝑖 − 1

operations in the sequence excluding the last pair removal

(𝑚 − 2𝑖 singleton removals, and 𝑖 − 1 pair removals).

Since there are no conflicts among facts from different blocks,

the repairing sequences for different blocks are independent (in

the sense that an operation over the facts of one block has no im-

pact on the justified operations over the facts of another block).

Hence, every complete repairing sequence 𝑠 ∈ CRS(𝐷, Σ) is ob-
tained by interleaving sequences for the individual blocks. We can

compute this number of sequences in polynomial time using dy-

namic programming. We denote by 𝑃
𝑘,𝑖
𝑗

the number of sequences

𝑠 ∈ CRS(𝐵1 ∪ · · · ∪ 𝐵 𝑗 , Σ) with precisely 𝑖 pair removals such that

𝑠 (𝐷) ∩ 𝐵ℓ ≠ ∅ for 𝑘 of the blocks of 𝐵1, . . . , 𝐵 𝑗 (hence, 0 ≤ 𝑘 ≤ 𝑗).

For 𝑘 < 0 or 𝑘 > 𝑗 , we have 𝑃
𝑘,𝑖
𝑗

= 0. Then, it holds that:

CRS(𝐷, Σ) =

𝑛∑︁
𝑘=0

⌊
|𝐵

1
|

2

⌋
+···+

⌊
|𝐵𝑛 |

2

⌋∑︁
𝑖=0

𝑃
𝑘,𝑖
𝑛 .

Clearly, for every 𝑖 ∈
{
0, . . . ,

⌊
|𝐵1 |

2

⌋}
, we have that:

𝑃
0,𝑖
1

= 𝑆
e,𝑖
|𝐵1 |

𝑃
1,𝑖
1

= 𝑆
ne,𝑖
|𝐵1 | .

For 𝑗 > 1, it holds that:

𝑃
𝑘,𝑖
𝑗

=
∑︁

0≤𝑖1≤
⌊
|𝐵

1
|

2

⌋
+···+

⌊ |𝐵𝑗−1
|

2

⌋
0≤𝑖2≤

⌊ |𝐵𝑗 |
2

⌋
𝑖1+𝑖2=𝑖

[
𝑃
𝑘,𝑖1
𝑗−1

× 𝑆
e,𝑖2
|𝐵 𝑗 |×

(|𝐵1 ∪ · · · ∪ 𝐵 𝑗 | − 𝑖1 − 𝑖2 − 𝑘)!
(|𝐵1 ∪ · · · ∪ 𝐵 𝑗−1 | − 𝑖1 − 𝑘)! × (|𝐵 𝑗 | − 𝑖2)!

+

𝑃
𝑘−1,𝑖1
𝑗−1

× 𝑆
ne,𝑖2
|𝐵 𝑗 | ×

(|𝐵1 ∪ · · · ∪ 𝐵 𝑗 | − 𝑖1 − 𝑖2 − 𝑘)!
(|𝐵1 ∪ · · · ∪ 𝐵 𝑗−1 | − 𝑖1 − 𝑘 + 1)! × (|𝐵 𝑗 | − 𝑖2 − 1)!

]
,

where the last expression is the number of ways to interleave a

sequence of CRS(𝐵1 ∪ · · · ∪ 𝐵 𝑗−1, Σ) that has 𝑖1 pair removals with

a sequence of CRS(𝐵 𝑗 , Σ) that has 𝑖2 pair removals. Note that if

for a block 𝐵ℓ , the sequence 𝑠 has 𝑖 pair removals over the facts

of 𝐵ℓ and it holds that 𝑠 (𝐷) ∩ 𝐵ℓ ≠ ∅, then 𝑠 contains |𝐵ℓ | − 𝑖 − 1

operations over the facts of 𝐵ℓ (as we keep one of its facts in the

repair). If 𝑠 (𝐷) ∩𝐵ℓ = ∅, then 𝑠 contains |𝐵ℓ | − 𝑖 operations over the
facts of 𝐵ℓ . Hence, |𝐵1 ∪ · · · ∪ 𝐵 𝑗 | − 𝑖1 − 𝑖2 − 𝑘 is the total number

of operations in the combined sequence, |𝐵1 ∪ · · · ∪ 𝐵 𝑗−1 | − 𝑖1 − 𝑘

(or |𝐵1 ∪ · · · ∪ 𝐵 𝑗−1 | − 𝑖1 − 𝑘 + 1) is the number of operations over

the facts of the first 𝑗 − 1 blocks, and |𝐵 𝑗 | − 𝑖2 (or |𝐵 𝑗 | − 𝑖2 − 1) is

the number of operations over the facts of the 𝑗th block.

We give an example that illustrates the algorithm described in

the proof of Lemma C.1.

Example C.2. Consider again the database𝐷 depicted in Figure 2,

and the set Σ = {𝑅 : 𝐴1 → 𝐴2} consisting of a single key. The

complete repairing sequences over the facts of the first block (that

consists of the facts 𝑓1,1, 𝑓1,2, 𝑓1,3) are:

− 𝑓1,1,−𝑓1,2 − 𝑓1,1,−𝑓1,3 − 𝑓1,1,−{𝑓1,2, 𝑓1,3}
− 𝑓1,2,−𝑓1,1 − 𝑓1,2,−𝑓1,3 − 𝑓1,2,−{𝑓1,1, 𝑓1,3}
− 𝑓1,3,−𝑓1,1 − 𝑓1,3,−𝑓1,2 − 𝑓1,3,−{𝑓1,1, 𝑓1,2}
− {𝑓1,1, 𝑓1,2} − {𝑓1,1, 𝑓1,3} − {𝑓1,2, 𝑓1,3}

There are no repairing sequences over the facts of the second block,

as it only contains a single fact 𝑓2,1. The complete repairing se-

quences over the facts of the third block (with facts 𝑓3,1, 𝑓3,2) are:

− 𝑓3,1 − 𝑓3,2 − {𝑓3,1, 𝑓3,2}

Every complete repairing sequence over 𝐷 is obtained by interleav-

ing the complete repairing sequences over the different blocks. For

example, the following is one possible complete repairing sequence:

−𝑓1,2,−{𝑓3,1, 𝑓3,2},−𝑓1,1

and it has one pair removal.

In this case, we have that:

𝑆
ne,0
3

=
3! · (3 − 0 − 1)!

2
0 · 0! · (3 − 2 × 0 − 1)!

=
12

2

= 6

𝑆
ne,1
3

=
3! · (3 − 1 − 1)!

2
1 · 1! · (3 − 2 × 1 − 1)!

=
6

2

= 3

𝑆
e,0
3

= 0

𝑆
e,1
3

=
3! · (3 − 1 − 1)!

2
1 · (1 − 1)! · (3 − 2 × 1)!

=
6

2

= 3

Indeed, there are 12 repairing sequences over the facts of the first

block that contains three facts—six of them have no pair removals,

three have a single pair removal and result in a non-empty repair,

and three have a single pair removal and result in an empty repair.

For the third block, that has two facts, it holds that:

𝑆
ne,0
2

=
2! · (2 − 0 − 1)!

2
0 · 0! · (2 − 2 × 0 − 1)!

=
2

1

= 2

𝑆
ne,1
2

= 0

𝑆
e,0
2

= 0

𝑆
e,1
2

=
2! · (2 − 1 − 1)!

2
1 · (1 − 1)! · (2 − 2 × 1)!

=
1

2

= 1

Indeed, there are two sequences with no pair removals (that result

in non-empty repairs) and a single sequence with one pair removal

(that results in an empty repair).

Finally, we denote the block with three facts by 𝐵1, and the block

with two facts by 𝐵2. We have that:

𝑃
0,0
1

= 𝑆
e,0
3

= 0 𝑃
1,0
1

= 𝑆
ne,0
3

= 6

𝑃
0,1
1

= 𝑆
e,1
3

= 3 𝑃
1,1
1

= 𝑆
ne,1
3

= 3

Next,

𝑃
0,0
2

= 𝑃
0,0
1

× 𝑆
e,0
2

× (5 − 0)!
(3 − 0)! × (2 − 0)! = 0 × 0 × 10 = 0

Indeed, if 𝑠 has zero pair removals, then 𝑠 (𝐷) ∩ 𝐵1 ≠ ∅ and 𝑠 (𝐷) ∩
𝐵2 ≠ ∅; hence, 𝑃0,𝑘

2
> 0 only for 𝑘 = 2. Thus,

𝑃
1,0
2

= 𝑃
0,0
1

× 𝑆
ne,0
2

× (5 − 1)!
(3 − 0)! × (2 − 1)!

+ 𝑃
1,0
1

× 𝑆
e,0
2

× (5 − 1)!
(3 − 1)! × (2 − 0)!

= 0 × 0 × 4 + 6 × 0 × 6 = 0

And:

𝑃
2,0
2

= 𝑃
1,0
1

× 𝑆
ne,0
2

× (5 − 2)!
(3 − 1)! × (2 − 1)! = 6 × 2 × 3 = 36

Similarly, we compute:

𝑃
0,1
2

= 𝑃
0,0
1

× 𝑆
e,1
2

× (5 − 1)!
(3 − 0)! × (2 − 1)!

+ 𝑃
0,1
1

× 𝑆
e,0
2

× (5 − 1)!
(3 − 1)! × (2 − 0)!

= 0 × 1 × 4 + 3 × 0 × 6 = 0

𝑃
1,1
2

= 𝑃
1,1
1

× 𝑆
e,0
2

× (5 − 2)!
(3 − 2)! × (2 − 0)!

+ 𝑃
0,1
1

× 𝑆
ne,0
2

× (5 − 2)!
(3 − 1)! × (2 − 1)!

+ 𝑃
1,0
1

× 𝑆
e,1
2

× (5 − 2)!
(3 − 1)! × (2 − 1)!

+ 𝑃
0,0
1

× 𝑆
ne,1
2

× (5 − 2)!
(3 − 0)! × (2 − 2)!

= 3 × 0 × 3 + 3 × 2 × 3 + 6 × 1 × 3 + 0 × 0 × 1 = 36

𝑃
2,1
2

= 𝑃
1,0
1

× 𝑆
ne,1
2

× (5 − 3)!
(3 − 1)! × (2 − 2)!

+ 𝑃
1,1
1

× 𝑆
ne,0
2

× (5 − 3)!
(3 − 2)! × (2 − 1)!

= 6 × 0 × 1 + 3 × 2 × 2 = 12

And, finally:

𝑃
0,2
2

= 𝑃
0,1
1

× 𝑆
e,1
2

× (5 − 2)!
(3 − 1)! × (2 − 1)! = 3 × 1 × 3 = 9

𝑃
1,2
2

= 𝑃
1,1
1

× 𝑆
e,1
2

× (5 − 3)!
(3 − 2)! × (2 − 1)!

+ 𝑃
0,1
1

× 𝑆
ne,1
2

× (5 − 3)!
(3 − 1)! × (2 − 2)!

= 3 × 1 × 2 + 3 × 0 × 1 = 6

𝑃
2,2
2

= 𝑃
1,1
1

× 𝑆
ne,1
2

× (5 − 4)!
(3 − 2)! × (2 − 2)! = 3 × 0 × 1 = 0

We conclude that:

CRS(𝐷, Σ) = 0 + 0 + 36 + 0 + 36 + 12 + 9 + 6 + 0 = 99

That is, there are 99 complete repairing sequences of 𝐷 w.r.t. Σ.

Having Lemma C.1 in place, we can establish the existence of an

efficient sampler. The formal statement, already given in the main

body of the paper, and its proof follow:

Input: A database 𝐷 and a set Σ of primary keys over a

schema S.
Output: 𝑠 ∈ CRS(𝐷, Σ) with probability

1

|CRS(𝐷,Σ) | .

1 return Sample(𝐷, Σ, 𝜀)

2 Function Sample(𝐷, Σ, 𝑠):
3 if 𝑠 (𝐷) |= Σ then
4 return 𝑠;

5 else
6 Select a (𝑠 (𝐷), Σ)-justified operation op with

probability
|CRS(op (𝑠 (𝐷)),Σ) |
|CRS(𝑠 (𝐷),Σ) |

7 return Sample(𝐷, Σ, 𝑠 · op)

Algorithm 1: An algorithm SampleSeq for sampling ele-

ments of CRS(𝐷, Σ) uniformly at random.

Lemma 6.2. For a database 𝐷 , and a set Σ of primary keys, we can
sample elements of CRS(𝐷, Σ) uniformly at random in polynomial
time in | |𝐷 | |.

Proof. The algorithm SampleSeq, depicted in Algorithm 1, is

a recursive algorithm that returns a sequence 𝑠 ∈ CRS(𝐷, Σ) with
probability

1

|CRS(𝐷,Σ) | . The algorithm starts with the empty se-

quence 𝜀, and, at each step, extends the sequence by selecting one

of the justified operations at that point. That is, if the current se-

quence is 𝑠 , then we select one of the (𝑠 (𝐷), Σ)-justified operations.
The probability of selecting an operation op is:

|CRS(𝑜𝑝 (𝑠 (𝐷)), Σ) |
|CRS(𝑠 (𝐷), Σ) | .

Hence, the probability of returning a sequence 𝑠 = op
1
, . . . , op𝑛 of

CRS(𝐷, Σ) is:

|CRS(op
1
(𝐷), Σ) |

|CRS(𝜀 (𝐷), Σ) | ×
|CRS(op

2
(op

1
(𝐷)), Σ) |

|CRS(op
1
(𝐷), Σ) | × . . .

×
|CRS(op𝑛 (. . . 𝐷 . . .), Σ) |
|CRS(op𝑛−1

(. . . 𝐷 . . .), Σ) |

=
|CRS(op𝑛 (. . . 𝐷 . . .), Σ) |

|CRS(𝜀 (𝐷), Σ) | =
1

|CRS(𝐷, Σ) |

Most of the terms in the product cancel each other, and

|CRS(op𝑛 (. . . 𝐷 . . .), Σ) | = |CRS(𝑠 (𝐷), Σ) | = 1

since 𝑠 (𝐷) |= Σ; hence, there is a single complete repairing sequence

for 𝑠 (𝐷) w.r.t. Σ—the empty sequence.

Since the length of a sequence is bounded by |𝐷 | − 1, the number

of justified operations at each step is polynomial in | |𝐷 | | (as this is
the number of facts involved in violations of the constraints plus

the number of conflicting pairs of facts), and, by Lemma C.1, for a

set Σ of primary keys, we can compute |CRS(𝐷, Σ) | in polynomial

time in | |𝐷 | | for any database 𝐷 , we get that the total running time

of the algorithm is also polynomial in | |𝐷 | |, as needed.

Step 2: Polynomial Lower Bound. Now that we have an efficient

sampler for the complete repairing sequences, we show that there is

a polynomial lower bound on srfreqΣ,𝑄 (𝐷, 𝑐). The formal statement,

already given in the main body of the paper, and its proof follow:

Lemma 6.3. Consider a set Σ of primary keys, and a CQ 𝑄 (𝑥). For
every database 𝐷 , and tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

srfreqΣ,𝑄 (𝐷, 𝑐) ≥ 1

(2 · | |𝐷 | |) | |𝑄 | |

whenever srfreqΣ,𝑄 (𝐷, 𝑐) > 0.

Proof. The proof is very similar to the proof of Lemma 5.3, ex-

cept that here we reason about sequences rather than repairs. Recall

that we treat a query𝑄 as the set {𝑅𝑖 (𝑦𝑖) | 𝑖 ∈ [𝑛]} of atoms on the

right-hand side of :-, and, for a database 𝐷 and a homomorphism

ℎ from 𝑄 to 𝐷 , we denote by ℎ(𝑄) the set {𝑅𝑖 (ℎ(𝑦𝑖)) | 𝑖 ∈ [𝑛]}.
Here, we denote by 𝑆e

𝐷,Σ,ℎ (𝑄) the set of sequences 𝑠 ∈ CRS(𝐷, Σ)
such that 𝑠 (𝐷) ∩ 𝐵 𝑗 = ∅ for at least one block of {𝐵1, . . . , 𝐵𝑚}
(recall that these are the blocks that contains the facts of ℎ(𝑄)),
and by 𝑆ne

𝐷,Σ,ℎ (𝑄) the set of sequences 𝑠 ∈ CRS(𝐷, Σ) such that

𝑠 (𝐷) ∩ 𝐵 𝑗 ≠ ∅ for every block of {𝐵1, . . . , 𝐵𝑚}.
Now, for every sequence 𝑠 ∈ 𝑆e

𝐷,Σ,ℎ (𝑄) , and for every block 𝐵 𝑗

such that 𝑠 (𝐷) ∩ 𝐵 𝑗 = ∅, the last operation of 𝑠 over the facts

of 𝐵 𝑗 must remove a pair {𝑓 , 𝑔} of facts. We map each sequence

𝑠 ∈ 𝑆e
𝐷,Σ,ℎ (𝑄) to a sequence 𝑠 ′ ∈ 𝑆ne

𝐷,Σ,ℎ (𝑄) by replacing the last

operation of 𝑠 over each such 𝐵 𝑗 ∈ {𝐵1, . . . , 𝐵𝑚} with an operation

that removes only one of the facts of the pair—either 𝑓 or 𝑔. Hence,

if 𝑠 (𝐷) ∩ 𝐵 𝑗 = ∅ for precisely ℓ of the blocks of {𝐵1, . . . , 𝐵𝑚}, the
sequence 𝑠 is mapped to 2

ℓ
distinct sequences of 𝑆ne

𝐷,Σ,ℎ (𝑄) .

Similarly to the proof of Lemma 5.3, for every sequence 𝑠 ′ ∈
𝑆ne
𝐷,Σ,ℎ (𝑄) , there are 2

𝑚−1 sequences 𝑠 ∈ 𝑆e
𝐷,Σ,ℎ (𝑄) that are mapped

to it. This is because the sequence 𝑠 ′ determines all the opera-

tions over the blocks outside {𝐵1, . . . , 𝐵𝑚}, and for each block

𝐵 𝑗 ∈ {𝐵1, . . . , 𝐵𝑚}, it determines all the operations over 𝐵 𝑗 ex-

cept for the last one. If 𝑠 ′(𝐷) ∩ 𝐵 𝑗 = {𝑓 } and the last operation of

𝑠 ′ over 𝐵 𝑗 removes the fact 𝑔, then the last operation of 𝑠 over 𝐵 𝑗
either also removes𝑔 or removes the pair {𝑓 , 𝑔}. If the last operation
of 𝑠 ′ over 𝐵 𝑗 removes a pair {𝑔, ℎ} of facts, then the last operation of
𝑠 over 𝐵 𝑗 must also remove the same pair of facts. Hence, there are

at most two possible cases for each block of {𝐵1, . . . , 𝐵𝑚} and 2
𝑚

possibilities in total. And, again, we have to disregard the possibility

that is equivalent to 𝑠 ′ itself.
Therefore, we have that:���𝑆e𝐷,Σ,ℎ (𝑄)

��� ≤ (2𝑚 − 1) ×
���𝑆ne𝐷,Σ,ℎ (𝑄)

���
and

|CRS(𝐷, Σ) | =
���𝑆e𝐷,Σ,ℎ (𝑄)

��� + ���𝑆ne𝐷,Σ,ℎ (𝑄)

���
≤ (2𝑚 − 1) ×

���𝑆ne𝐷,Σ,ℎ (𝑄)

��� + ���𝑆ne𝐷,Σ,ℎ (𝑄)

���
= 2

𝑚 ×
���𝑆ne𝐷,Σ,ℎ (𝑄)

��� .
As said above, each sequence 𝑠 of 𝑆e

𝐷,Σ,ℎ (𝑄) can be mapped to 2
ℓ

distinct sequences of 𝑆ne
𝐷,Σ,ℎ (𝑄) , where ℓ is the number of blocks in

{𝐵1, . . . , 𝐵𝑚} for which 𝐸 ∩ 𝐵 𝑗 = ∅. Moreover, there are sequences

𝑠 ′ ∈ 𝑆ne
𝐷,Σ,ℎ (𝑄) such that no sequence 𝑠 ∈ 𝑆e

𝐷,Σ,ℎ (𝑄) is mapped to 𝑠 ′.

These are the sequences 𝑠 ′ where the last operation of 𝑠 ′ over every
block of {𝐵1, . . . , 𝐵𝑚} is a pair removal (but 𝑠 ′ keeps some fact of

each 𝐵 𝑗). Hence, (2𝑚 − 1) × |𝑆ne
𝐷,Σ,ℎ (𝑄) | is only an upper bound on

|𝑆e
𝐷,Σ,ℎ (𝑄) |. Since all the facts of a single block are symmetric,

|{𝑠 ∈ CRS(𝐷, Σ) | ℎ(𝑄) ⊆ 𝑠 (𝐷)}| = 1

|𝐵1 | × · · · × |𝐵𝑚 | ×
���𝑆ne𝐷,Σ,ℎ (𝑄)

���
and, we conclude that

|{𝑠 ∈ CRS(𝐷, Σ) | ℎ(𝑄) ⊆ 𝑠 (𝐷)}|
|CRS(𝐷, Σ) | ≥

1

|𝐵1 |×···× |𝐵𝑚 | ×
���𝑆ne
𝐷,Σ,ℎ (𝑄)

���
2
𝑚 ×

���𝑆ne
𝐷,Σ,ℎ (𝑄)

���
=

1

|𝐵1 | × · · · × |𝐵𝑚 | × 2
𝑚

≥ 1

|𝐷 |𝑚 × 2
𝑚

≥ 1

(2|𝐷 |) |𝑄 | ≥
1

(2| |𝐷 | |) | |𝑄 | |

Since all the sequences of {𝑠 ∈ CRS(𝐷, Σ) | ℎ(𝑄) ⊆ 𝑠 (𝐷)} are such
that ℎ(𝑄) ⊆ 𝑠 (𝐷) and so 𝑐 ∈ 𝑠 (𝐷), this concludes our proof.

We give an example that illustrates the argument given in the

proof of Lemma 6.3.

Example C.3. Consider the database 𝐷 , the set Σ of keys, the

query 𝑄 , and the homomorphism ℎ from Example B.3. Recall that

ℎ(𝑄) = {𝑅(𝑎1, 𝑏1)}. The set 𝑆e𝐷,Σ,ℎ (𝑄) contains, for example,

−𝑓1,2,−𝑓3,1,−{𝑓1,1, 𝑓1,3}

as the resulting database 𝑠 (𝐷) contains no fact from the block

of 𝑅(𝑎1, 𝑏1). According to the mapping defined in the proof of

Lemma 6.3, this sequence is mapped to the following two sequences:

−𝑓1,2,−𝑓3,1,−𝑓1,1

−𝑓1,2,−𝑓3,1,−𝑓1,3
that replace the last pair removal over the block of 𝑅(𝑎1, 𝑏1) with a

singleton removal. In this case, we have that

|{𝑠 ∈ CRS(𝐷, Σ) | ℎ(𝑄) ⊆ 𝑠 (𝐷)}| = 24.

These are all the sequences obtained by interleaving the following

operations over the facts of the first block (that do not remove 𝑓1,1),

with any of the three operations over the facts of the third block:

−𝑓1,2,−𝑓1,3 − 𝑓1,3,−𝑓1,2 − {𝑓1,2, 𝑓1,3}

Moreover, as we have seen in Example C.2, we have that

|CRS(𝐷, Σ) | = 99

Indeed, it holds that

24

99

≥ 1

12

=
1

(2|𝐷 |) |𝑄 |

as claimed.

D PROOFS OF SECTION 7
In this section, we prove the main result of Section 7, which we

recall here for the sake of readability:

Theorem 7.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀uo

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of keys, and a CQ 𝑄 , OCQA(Σ, 𝑀uo

Σ , 𝑄) admits an
FPRAS.

D.1 Proof of Item (1) of Theorem 7.1
As we did for item (1) of Theorem 6.1, we reuse the construction

underlying the proof of item (1) of Theorem 5.1. In particular, as-

suming that Σ and 𝑄 are the singleton set of primary keys and

the Boolean CQ, respectively, for which RRFreq(Σ, 𝑄) is ♯P-hard
(Σ and 𝑄 are extracted from the proof of item (1) of Theorem 5.1),

we show that OCQA(Σ, 𝑀uo
Σ , 𝑄) is ♯P-hard via a polynomial-time

Turing reduction from ♯𝐻 -Coloring by reusing the construction

in the proof of item (1) of Theorem 5.1; 𝐻 is the same undirected

graph employed in that proof. Assuming that, for an undirected

graph 𝐺 , 𝐷𝐺 is the database that the construction in the proof of

item (1) of Theorem 5.1 builds, we show that

rrfreqΣ,𝑄 (𝐷𝐺 , ()) = P𝑀uo
Σ ,𝑄

(𝐷𝐺 , ()),

which implies that the polynomial-time Turing reduction from

♯𝐻 -Coloring to RRFreq(Σ, 𝑄) is also a polynomial-time Turing re-

duction from ♯𝐻 -Coloring to OCQA(Σ, 𝑀uo
Σ , 𝑄).

In the proof of item (1) of Theorem 6.1, we have shown that

rrfreqΣ,𝑄 (𝐷𝐺 , ()) = srfreqΣ,𝑄 (𝐷𝐺 , ()). Thus, it suffices to show

srfreqΣ,𝑄 (𝐷𝐺 , ()) = P𝑀uo
Σ ,𝑄

(𝐷𝐺 , ()).

Let 𝑀uo
Σ (𝐷𝐺) = (𝑉 , 𝐸, P). Note that each node 𝑢 of 𝐺 induces a

violation {𝑉 (𝑢, 0),𝑉 (𝑢, 1)} in 𝐷𝐺 that can be resolved using one of

the following three operations: remove the first, the second, or both

facts. Hence, every complete sequence in CRS(𝐷𝐺 , Σ) is of length
precisely |𝑉𝐺 |, and for every non-leaf node 𝑠 ∈ 𝑉 , |Ops𝑠 (𝐷𝐺 , Σ) | =
3 · (|𝑉𝐺 | − |𝑠 |). Hence, by Definition A.5, for each (𝑠, 𝑠 ′) ∈ 𝐸,

P(𝑠, 𝑠 ′) =
1

|Ops𝑠 (𝐷𝐺 , Σ) |
=

1

3 · (|𝑉𝐺 | − |𝑠 |) .

We conclude that, with 𝜋 being the leaf distribution of 𝑀uo
Σ , for

each 𝑠 = op
1
, . . . , op𝑛 ∈ CRS(𝐷𝐺 , Σ),

𝜋 (𝑠) = P(𝑠0, 𝑠1) · · · P(𝑠𝑛−1, 𝑠𝑛) =
1

3
|𝑉𝐺 | · |𝑉𝐺 |!

.

Since each sequence 𝑠 ∈ CRS(𝐷𝐺 , Σ) is assigned the same non-zero

probability, 𝜋 is the uniform distribution over CRS(𝐷𝐺 , Σ). The
latter implies that srfreqΣ,𝑄 (𝐷𝐺 , ()) = P𝑀uo

Σ ,𝑄
(𝐷𝐺 , ()), as needed.

D.2 Proof of Item (2) of Theorem 7.1
We prove that, for a set Σ of keys, and a CQ 𝑄 , OCQA(Σ, 𝑀uo

Σ , 𝑄)
admits an FPRAS. As for item (2) of Theorems 5.1 and 6.1, the proof

consists of the usual two steps: (1) existence of an efficient sampler,

and (2) provide a polynomial lower bound for P𝑀uo
Σ ,𝑄

(𝐷, 𝑐).

Step 1: Efficient Sampler. Given a database 𝐷 , the definition of𝑀uo
Σ

immediately implies the existence of an efficient sampler that re-

turns a sequence 𝑠 ∈ RL(Σ, 𝑀uo
Σ (𝐷)) with probability 𝜋 (𝑠), where

𝜋 is the leaf distribution of𝑀uo
Σ (𝐷). The algorithm is very similar to

Algorithm 1, except that if the current sequence is 𝑠 , the probability

to select a (𝑠 (𝐷), Σ)-justified operation is

1

|Ops𝑠 (𝐷, Σ) |
.

Hence, we immediately obtain the following result, already given

in the main body of the paper:

Lemma 7.2. Given a database𝐷 , and a set Σ of keys, we can sample
elements of RL(𝑀uo

Σ (𝐷)) according to the leaf distribution of𝑀uo
Σ (𝐷)

in polynomial time in | |𝐷 | |.

Step 2: Polynomial Lower Bound. The rest of the section is devoted

to showing that there is a polynomial lower bound on P𝑀uo
Σ ,𝑄

(𝐷, 𝑐).

Proposition 7.3. Consider a set Σ of keys, and a CQ𝑄 (𝑥). There is
a polynomial pol such that, for every database𝐷 , and 𝑐 ∈ dom(𝐷) |𝑥 | ,

P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) ≥ 1

pol(| |𝐷 | |)
whenever P𝑀uo

Σ ,𝑄
(𝐷, 𝑐) > 0.

As usual, we treat the CQ𝑄 as the set {𝑅𝑖 (𝑦𝑖) | 𝑖 ∈ [𝑛]} of atoms

occurring on the right-hand side of :-. Moreover, for a database 𝐷

and a homomorphism ℎ from 𝑄 to 𝐷 , we write ℎ(𝑄) for the set
{𝑅𝑖 (ℎ(𝑦𝑖)) | 𝑖 ∈ [𝑛]}. Clearly, if there is no homomorphism ℎ from

𝑄 to𝐷 withℎ(𝑄) |= Σ andℎ(𝑥) = 𝑐 , then P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) = 0. Assume

now that such a homomorphism ℎ exists. We first prove the claim

for the case where |ℎ(𝑄) | = 1, and then generalize it to the case

where |ℎ(𝑄) | =𝑚 for some𝑚 ∈ [|𝑄 |].

The Case |ℎ(𝑄) | = 1

Let 𝑓 be the single fact of ℎ(𝑄), and

P𝐷,𝑀uo
Σ ,𝑄

(ℎ) =
∑︁

𝐷′∈ORep(𝐷,𝑀uo
Σ) and ℎ (𝑄) ⊆𝐷′

P𝐷,𝑀uo
Σ
(𝐷 ′).

Note that since ℎ(𝑥) = 𝑐 , it holds that

P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) ≥ P𝐷,𝑀uo
Σ ,𝑄

(ℎ).

Hence, it suffices to show that there is a polynomial pol such that

P𝐷,𝑀uo
Σ ,𝑄

(ℎ) ≥ 1

pol(| |𝐷 | |) . Let 𝑆𝑓 and 𝑆¬𝑓 be the sets of sequences
of RL(𝑀uo

Σ (𝐷)) that keep 𝑓 and remove 𝑓 , respectively, i.e.,

𝑆𝑓 = {𝑠 ∈ RL(𝑀uo
Σ (𝐷)) | 𝑓 ∈ 𝑠 (𝐷)}

𝑆¬𝑓 = {𝑠 ∈ RL(𝑀uo
Σ (𝐷)) | 𝑓 ∉ 𝑠 (𝐷)}.

With 𝜋 being the leaf distribution of𝑀uo
Σ (𝐷),

P𝐷,𝑀uo
Σ ,𝑄

(ℎ) =
Λ𝑓

Λ𝑓 + Λ¬𝑓
,

where

Λ𝑓 =
∑︁
𝑠∈𝑆𝑓

𝜋 (𝑠) and Λ¬𝑓 =
∑︁
𝑠∈𝑆¬𝑓

𝜋 (𝑠).

Therefore, to get the desired lower bound
1

pol(| |𝐷 | |) for P𝐷,𝑀uo
Σ ,𝑄

(ℎ),
it suffices to show that there exists a polynomial pol′ such that

Λ¬𝑓 ≤ pol′(| |𝐷 | |) · Λ𝑓 . Indeed, in this case we can conclude that

P𝐷,𝑀uo
Σ ,𝑄

(ℎ) =
Λ𝑓

Λ𝑓 + Λ¬𝑓

≥
Λ𝑓

Λ𝑓 + pol′(| |𝐷 | |) · Λ𝑓

=
1

1 + pol′(| |𝐷 | |) ,

and the claim follows with pol(| |𝐷 | |) = 1 + pol′(| |𝐷 | |).
We proceed to show that a polynomial pol′ such that Λ¬𝑓 ≤

pol′(| |𝐷 | |) ·Λ𝑓 exists. To this end, we establish an involved technical
lemma that relates the sequences of 𝑆¬𝑓 with the sequences of 𝑆𝑓 ;

as usual, we write 𝜋 for the leaf distribution of𝑀uo
Σ (𝐷):

Lemma D.1. There exists a function F : 𝑆¬𝑓 → 𝑆𝑓 such that:
(1) There exists a polynomial pol′′ such that, for every 𝑠 ∈ 𝑆¬𝑓 ,

𝜋 (𝑠) ≤ pol′′(| |𝐷 | |) · 𝜋 (F(𝑠)).
(2) For every 𝑠 ′ ∈ 𝑆𝑓 , |{𝑠 ∈ 𝑆¬𝑓 | F(𝑠) = 𝑠 ′}| ≤ 2 · | |𝐷 | | − 1.

Proof. The bulk of the proof is devoted to showing item (1),

whereas item (2) is shown via a simple combinatorial argument.

Item (1). Let 𝑠 ∈ RL(𝑀uo
Σ (𝐷)) be a repairing sequence that removes

𝑓 , i.e., 𝑠 ∈ 𝑆¬𝑓 . We transform 𝑠 into a repairing sequence 𝑠 ′ ∈
RL(𝑀uo

Σ (𝐷)) that does not remove 𝑓 , i.e., 𝑠 ′ ∈ 𝑆𝑓 , by deleting

or replacing the operation that removes 𝑓 , and adding additional

operations at the end of the sequence as follows. Assume that

𝑠 = op
1
, op

2
, . . . , op𝑖−1

, op𝑖 , op𝑖+1
, . . . , op𝑛

where op𝑖 = −𝑓 . Then, we define the sequence
𝑠 ′ = op

1
, op

2
, . . . , op𝑖−1

, op𝑖+1
, . . . , op𝑛, op′

1
, . . . , op′ℓ

where op′
1
, . . . , op′

ℓ
are new operations that we will describe later.

If op𝑖 is of the form −{𝑓 , 𝑔}, then
𝑠 ′ = op

1
, op

2
, . . . , op𝑖−1

, op∗𝑖 , op𝑖+1
, . . . , op𝑛,

op′
1
, . . . , op′ℓ

where op∗
𝑖
is the operation −𝑔, i.e., it removes only the fact 𝑔.

An important observation here is that since the sequence 𝑠 re-

moves 𝑓 , the repair 𝑠 (𝐷) might contain facts that conflict with 𝑓 ,

but at most 𝑘 such facts, where 𝑘 is the number of keys in Σ over the

relation name of 𝑓 . This is a property of keys. Indeed, if 𝑠 (𝐷) con-
tains 𝑘 + 1 facts that conflict with 𝑓 , then it contains two facts 𝑔1, 𝑔2

that violate the same key with 𝑓 , in which case 𝑔1, 𝑔2 also jointly

violate this key and cannot appear in the same repair. Therefore, at

the end of the sequence 𝑠 ′ we add ℓ new operations (for some ℓ ≤ 𝑘)

that remove the facts of 𝑠 (𝐷) that conflict with 𝑓 , in some arbitrary

order. Note that the sequence 𝑠 ′ is a valid repairing sequence, as an

additional fact (the fact 𝑓) cannot invalidate a justified repairing

operation, and we can remove the ℓ conflicting facts at the end in

any order, as they are all in conflict with 𝑓 . Here is a simple example

illustrating the construction of 𝑠 ′:

Example D.2. Consider again the database𝐷 depicted in Figure 2,

and the set Σ = {𝑅 : 𝐴1 → 𝐴2, 𝑅 : 𝐴2 → 𝐴1} of keys. Consider
also the query 𝑄 and homomorphism ℎ from Example B.3. Recall

that ℎ(𝑄) = {𝑅(𝑎1, 𝑏1)}. The following sequence is a sequence that
removes the fact 𝑅(𝑎1, 𝑏1):

𝑠1 = −𝑓1,2,−𝑓1,1,−𝑓3,1
Note that 𝑠 (𝐷) contains the facts 𝑓1,3 and 𝑓2,1 that conflict with 𝑓1,1.

This sequence is mapped to the following sequence 𝑠 ′:

𝑠 ′
1
= −𝑓1,2,−𝑓3,1,−𝑓1,3,−𝑓2,1

where we delete the operation −𝑓1,1 that removes the fact of ℎ(𝑄),
and add, at the end of the sequence, the operations −𝑓1,3 and −𝑓2,1
that remove the facts of 𝑠 (𝐷) that conflict with 𝑓1,1.

As another example, the sequence:

𝑠2 = −𝑓3,1,−{𝑓1,1, 𝑓1,2}

is mapped to the sequence:

𝑠 ′
2
= −𝑓3,1,−𝑓1,2,−𝑓2,1,−𝑓1,3 .

Here, the pair removal −{𝑓1,1, 𝑓1,2} is replaced by the singleton

removal −𝑓1,2, and, at the end of the sequence, we again add two

additional operations that remove (in some arbitrary order) the

facts 𝑓1,3 and 𝑓2,1 that conflict with 𝑓1,1.

Now, according to the definition of𝑀uo
Σ , we have that

𝜋 (𝑠) =
1

𝑁1

× 1

𝑁2

× · · · × 1

𝑁𝑖−1

× 1

𝑁𝑖
× 1

𝑁𝑖+1

× · · · × 1

𝑁𝑛

where 𝑁 𝑗 is the total number of (𝐷𝑠
𝑗−1

, Σ)-justified repairing opera-
tions before applying the operation op 𝑗 of the sequence (recall that
𝐷𝑠
𝑗−1

is the database obtained from 𝐷 by applying the first 𝑗 − 1

operations of 𝑠). Hence,

P((op
1
, . . . , op 𝑗−1

), (op
1
, . . . , op 𝑗)) =

1

𝑁 𝑗
.

Then,

𝜋 (𝑠 ′) = 1

𝑁1

× 1

𝑁2

× · · · × 1

𝑁𝑖−1

×
[

1

𝑁𝑖

]
× 1

𝑁 ′
𝑖+1

× · · · × 1

𝑁 ′
𝑛

×

1

2ℓ + 1

× 1

2(ℓ − 1) + 1

× 1

3

.

The probability P((op
1
, . . . , op 𝑗−1

), (op
1
, . . . , op 𝑗)), for 2 ≤ 𝑗 ≤ 𝑖−1,

is not affected by the decision to remove or keep 𝑓 at the 𝑖th step.

The probability P((op
1
, . . . , op 𝑗−1

), (op
1
, . . . , op 𝑗)) for 𝑖 +2 ≤ 𝑗 ≤ 𝑛,

on the other hand, might decrease in the sequence 𝑠 ′ compared

to the sequence 𝑠 , because the additional fact 𝑓 (that is removed

by 𝑠 but not by 𝑠 ′) might be involved in violations with the

remaining facts of the database and introduce additional justi-

fied operations, in which case 𝑁 𝑗 ≤ 𝑁 ′
𝑗
. Similarly, the probabil-

ity P((op
1
, . . . , op𝑖−1

), (op
1
, . . . , op𝑖−1

, op𝑖+1
)) (in the case where

op𝑖 = −𝑓) or P((op
1
, . . . , op★

𝑖
), (op

1
, . . . , op★

𝑖
, op𝑖+1

)) (in the case

where op𝑖 = −{𝑓 , 𝑔}) can only decrease compared to the probabil-

ity P((op
1
, . . . , op𝑖), (op1

, . . . , op𝑖 , op𝑖+1
)) in 𝑠; hence, 𝑁𝑖+1 ≤ 𝑁 ′

𝑖+1
.

The term
1

𝑁𝑖
denotes the probability of op★

𝑖
, and it only appears

in the expression if the sequence 𝑠 removes the fact 𝑓 jointly with

some other fact 𝑔 (and the operation op★
𝑖
removes 𝑔 by itself). Since

all the (𝐷𝑠′
𝑖−1

, Σ)-justified operations have the same probability to

be selected, the probabilities P((op
1
, . . . , op𝑖−1

), (op
1
, . . . , op𝑖)) and

P((op
1
, . . . , op𝑖−1

), (op
1
, . . . , op★

𝑖
) are the same. Finally, at the end

of the sequence, the only remaining conflicts are those involving

𝑓 . As said above, there are ℓ facts that conflict with 𝑓 for some

ℓ ≤ 𝑘 at that point, and each one of them violates a different key

with 𝑓 . Hence, there are 2ℓ + 1 justified operations before applying

op′
1
(removing one of the ℓ conflicting facts, removing one of these

facts jointly with 𝑓 , or removing 𝑓), there are 2(ℓ − 1) + 1 possible

operations before applying op′
2
and so on.

Example D.3. We continue with Example D.2. For the sequence

𝑠1, we have that

𝜋 (𝑠1) = P(𝜀, (−𝑓1,2)) × P((−𝑓1,2), (−𝑓1,2,−𝑓1,1))

× P((−𝑓1,2,−𝑓1,1), (−𝑓1,2,−𝑓1,1,−𝑓3,1)) =
1

14

× 1

10

× 1

5

.

This holds since, at first, all six facts are involved in violations of the

keys, and there are eight conflicting pairs; hence, the total number

of justified operations is 14. After removing the fact 𝑓1,2, the number

of justified operations reduces to 10, and after removing the fact

𝑓1,1, this number is 5. Now, for the sequence 𝑠 ′
1
,

𝜋 (𝑠 ′
1
) = P(𝜀, (−𝑓1,2)) × P((−𝑓1,2), (−𝑓1,2,−𝑓3,1))
× P((−𝑓1,2,−𝑓3,1), (−𝑓1,2,−𝑓3,1,−𝑓1,3))
× P((−𝑓1,2,−𝑓3,1,−𝑓1,3), (−𝑓1,2,−𝑓3,1,−𝑓1,3,−𝑓2,1))

=
1

14

× 1

10

× 1

5

× 1

3

.

Indeed, the probability of applying −𝑓1,2 (i.e., P(𝜀, (−𝑓1,2))) is the
same for both sequences (

1

14
), while the probability of applying the

operation −𝑓3,1 in 𝑠 ′
1
(i.e., P((−𝑓1,2), (−𝑓1,2,−𝑓3,1))) is smaller than

the probability (P((−𝑓1,2,−𝑓1,1), (−𝑓1,2,−𝑓1,1,−𝑓3,1))) of applying
this operation in 𝑠1:

1

10
compared to

1

5
. Finally, there are ℓ = 2 facts

in 𝑠 (𝐷) that conflict with 𝑓1,1 and we have that

P((−𝑓1,2,−𝑓3,1), (−𝑓1,2,−𝑓3,1,−𝑓1,3)) =
1

2 × 2 + 1

=
1

5

P((−𝑓1,2,−𝑓3,1,−𝑓1,3), (−𝑓1,2,−𝑓3,1,−𝑓1,3,−𝑓2,1))

=
1

2 × (2 − 1) + 1

=
1

3

.

As for the sequence 𝑠2, it holds that

𝜋 (𝑠2) = P(𝜀, (−𝑓3,1)) × P((−𝑓3,1), (−𝑓3,1,−{𝑓1,1, 𝑓1,2})) =
1

14

× 1

10

while for the sequence 𝑠 ′
2
, it holds that

𝜋 (𝑠 ′
2
) = P(𝜀, (−𝑓3,1)) × P((−𝑓3,1), (−𝑓3,1,−𝑓1,2))
× P((−𝑓3,1,−𝑓1,2), (−𝑓3,1,−𝑓1,2,−𝑓2,1))
× P((−𝑓3,1,−𝑓1,2,−𝑓2,1), (−𝑓3,1,−𝑓1,2,−𝑓2,1,−𝑓1,3))

=
1

14

× 1

10

× 1

5

× 1

3

.

Again, the probability of applying the operation −𝑓3,1 is the same

in 𝑠2 and 𝑠 ′
2
. The probability of applying −{𝑓1,1, 𝑓1,2} in 𝑠2 is the

same as the probability of applying the operation −𝑓1,2 in 𝑠 ′
2
, and

the probability of the two additional operations is again
1

5
× 1

3
.

For every 𝑗 ∈ {𝑖 + 1, . . . , 𝑛}, we denote by 𝑟 𝑗 the difference

between 𝑁 𝑗 and 𝑁 ′
𝑗
(that is, 𝑁 ′

𝑗
= 𝑁 𝑗 + 𝑟 𝑗). Hence, it holds that

𝜋 (𝑠) = 𝜋 (𝑠 ′) ×
[

1

𝑁𝑖

]
× 1

𝑁𝑖+1

× · · · × 1

𝑁𝑛
× (𝑁𝑖+1 + 𝑟𝑖+1) × · · · ×

× (𝑁𝑛 + 𝑟𝑛) × (2ℓ + 1) × · · · × 3

≤ 𝜋 (𝑠 ′) × 1

𝑁𝑖+1

× · · · × 1

𝑁𝑛
× (𝑁𝑖+1 + 𝑟𝑖+1) × · · · ×

× (𝑁𝑛 + 𝑟𝑛) × (2ℓ + 1) × · · · × 3

Note that here, the term
1

𝑁𝑖
only appears if the original sequence 𝑠

removes 𝑓 alone, in which case the term
1

𝑁𝑖
does not appear in the

expression for 𝜋 (𝑠 ′). We will show that

1

𝑁𝑖+1

× · · · × 1

𝑁𝑛
× (𝑁𝑖+1 + 𝑟𝑖+1) × · · · × (𝑁𝑛 + 𝑟𝑛)

× (2ℓ + 1) × · · · × 3 ≤ pol′′(| |𝐷 | |)
for some polynomial pol′′, or, equivalently,

(𝑁𝑖+1 + 𝑟𝑖+1) × · · · × (𝑁𝑛 + 𝑟𝑛) × (2ℓ + 1) × · · · × 3

≤ pol′′(| |𝐷 | |) × 𝑁𝑖+1 × · · · × 𝑁𝑛 .

Note that since ℓ ≤ 𝑘 , and 𝑘 is a constant (since we are interested in

data complexity), (2ℓ + 1) × · · · × 3 is bounded by a constant. From

this point, we denote this value by 𝑐 . Thus, we prove that

(𝑁𝑖+1 + 𝑟𝑖+1) × · · · × (𝑁𝑛 + 𝑟𝑛) × 𝑐 ≤ pol′′(| |𝐷 | |) ×𝑁𝑖+1 × · · · ×𝑁𝑛 .

To show the above, we need to reason about the values 𝑟 𝑗 . For

𝑗 ∈ {𝑖 + 1, . . . , 𝑛}, let 𝑁 𝑓

𝑗
be the number of facts in the database

that conflict with 𝑓 after applying all the operations of 𝑠 ′ that occur
before op 𝑗 , and before applying the operation op 𝑗 . Moreover, for

every 𝑝 ∈ {1, . . . , 𝑘}, let 𝑛𝑝
𝑗
be the number of facts in the database

that violate the 𝑝th key jointly with 𝑓 at that point. Note that

𝑛1

𝑗
+ · · · + 𝑛𝑝

𝑗
≥ 𝑁

𝑓

𝑗
, as the same fact might violate several distinct

keys jointly with 𝑓 . If 𝑛
𝑝

𝑗
≥ 2, then every fact that violates the 𝑝th

key jointly with 𝑓 participates in a violation of the constraints even

if 𝑓 is not present in the database (as all the facts that violate the

same key with 𝑓 also violate this key among themselves). Hence,

for each one of these 𝑛
𝑝

𝑗
facts, the operation that removes this fact is

a justified repairing operation regardless of the presence or absence

of 𝑓 in the database, and it is counted as one of the 𝑁 𝑗 operations

that can be applied at that point in the sequence 𝑠 . The addition of

𝑓 then adds 𝑛
𝑝

𝑗
new justified operations (the removal of a pair of

facts that includes 𝑓 and one of the 𝑛
𝑝

𝑗
conflicting facts).

On the other hand, if 𝑛
𝑝

𝑗
= 1, then the single fact that violates

the 𝑝th key jointly with 𝑓 at that point might not participate in

any violation once we remove 𝑓 . In this case, the presence of 𝑓

implies two additional justified operations in 𝑠 ′ compared to 𝑠—the

removal of this fact by itself and a pair removal that includes 𝑓 and

this fact. If 𝑛
𝑝

𝑗
= 0, then clearly the 𝑝th key has no impact on the

number of justified repairing operations w.r.t. 𝑓 at that point. Now,

assume, without loss of generality, that for some 1 ≤ 𝑝1 < 𝑝2 ≤ 𝑘 ,

it holds that 𝑛
𝑝

𝑗
≥ 2 for all 𝑝 ≤ 𝑝1, 𝑛

𝑝

𝑗
= 1 for all 𝑝1 < 𝑝 ≤ 𝑝2, and

𝑛
𝑝

𝑗
= 0 for all 𝑝 > 𝑝2. It then holds that

𝑟 𝑗 ≤ 𝑁
𝑓

𝑗
+ (𝑝2 − 𝑝1) + 1

(𝑁
𝑓

𝑗
operations remove 𝑓 jointly with one of its conflicting facts,

at most 𝑝2 − 𝑝1 operations remove a fact that violates the 𝑝th key

with 𝑓 if 𝑛
𝑝

𝑗
= 1, and one operation removes 𝑓 itself.) Moreover,

𝑁 𝑗 ≥ 𝑛1

𝑗 + · · · + 𝑛𝑝1

𝑗
+
𝑛1

𝑗
(𝑛1

𝑗
− 1)

2

+ · · · +
𝑛
𝑝1

𝑗
(𝑛𝑝1

𝑗
− 1)

2

=
(𝑛1

𝑗
)2 + · · · + (𝑛𝑝1

𝑗
)2 + 𝑛1

𝑗
+ · · · + 𝑛𝑝1

𝑗

2

.

Because, as already said, for every 𝑝 with 𝑛
𝑝

𝑗
≥ 2, the 𝑛

𝑝

𝑗
operations

that remove the facts that violate the 𝑝th keywith 𝑓 are also justified

operations at the 𝑗th step in 𝑠 , and there are

𝑛
𝑝

𝑗
(𝑛𝑝

𝑗
−1)

2
additional

justified operations that remove a pair from these 𝑛
𝑝

𝑗
facts, as each

such pair of facts jointly violates the 𝑝th key.

Example D.4. We continue with Example D.3. Let

𝑠3 = −𝑓3,1,−𝑓1,1,−𝑓1,2
Before applying the operation −𝑓1,2 of 𝑠3, there are five justified

operations:

−𝑓1,2 − 𝑓1,3 − 𝑓3,2 − {𝑓1,2, 𝑓1,3} − {𝑓1,2, 𝑓3,2}

At this point, the database contains three facts that conflict with 𝑓1,1.

The facts 𝑓1,2 and 𝑓1,3 jointly violate with it the key 𝑅 : 𝐴1 → 𝐴2,

while the fact 𝑓2,1 jointly violates with it the key 𝑅 : 𝐴2 → 𝐴1.

Observe that the operations −𝑓1,2,−𝑓1,3,−{𝑓1,2, 𝑓1,3} are justified
operations at this point, even though the fact 𝑓1,1 no longer appears

in the database, because 𝑓1,2 conflict with 𝑓1,3. If we bring 𝑓1,1 back,

we will have two additional justified operations that involve these

fact (one for each fact): −{𝑓1,1, 𝑓1,2} and −{𝑓1,1, 𝑓1,3}.
Contrarily, the fact 𝑓2,1 is not involved in any violation of the

constraints at this point (before applying the operation −𝑓1,2 of 𝑠3);

hence, removing this fact is not a justified operation. However, if

we bring 𝑓1,1 back, we will have two additional justified operations

that involve this fact: −𝑓2,1 and −{𝑓1,1, 𝑓2,1}.
Finally, the fact 𝑓1,1 introduces another justified operation—the

removal of this fact by itself (−𝑓1,1). Hence, in the sequence 𝑠 ′
3
that

𝑠3 is mapped to

𝑠 ′
3
= −𝑓3,1,−𝑓1,2,−𝑓2,1,−𝑓1,3

The number of justified operations before applying the operation

−𝑓1,2 is ten, while the number of justified operations before applying

this operation in 𝑠3 is five. That is,

P((−𝑓3,1,−𝑓1,1), (−𝑓3,1,−𝑓1,1,−𝑓1,2)) =
1

5

and

P((−𝑓3,1), (−𝑓3,1,−𝑓1,2)) =
1

5 + 5

=
1

10

According to the Cauchy–Schwarz inequality for 𝑛-dimensional

euclidean spaces, it holds that(
𝑣∑︁
𝑖=1

𝑥𝑖𝑦𝑖

)
2

≤
(
𝑣∑︁
𝑖=1

𝑥2

𝑖

)
×

(
𝑣∑︁
𝑖=1

𝑦2

𝑖

)
,

where 𝑣 ≥ 1 is an integer, and 𝑥𝑖 , 𝑦𝑖 for 𝑖 ∈ [𝑣] are real numbers.

By defining 𝑦𝑖 = 1 for every 𝑖 ∈ [𝑣], we then obtain that

(𝑥1 + · · · + 𝑥𝑣)2 ≤ 𝑣 ×
(
𝑥2

1
+ · · · + 𝑥2

𝑣

)
.

Hence, we have that

𝑁 𝑗 ≥
(𝑛1

𝑗
)2 + · · · + (𝑛𝑝1

𝑗
)2 + 𝑛1

𝑗
+ · · · + 𝑛𝑝1

𝑗

2

≥
(𝑛1

𝑗+···+𝑛
𝑝

1

𝑗
)2

𝑝1

+ 𝑛1

𝑗
+ · · · + 𝑛𝑝1

𝑗

2

=
(𝑛1

𝑗
+ · · · + 𝑛𝑝1

𝑗
)2 + 𝑝1 × (𝑛1

𝑗
+ · · · + 𝑛𝑝1

𝑗
)

2𝑝1

≥
(𝑁 𝑓

𝑗
− (𝑝2 − 𝑝1))2 + 𝑝1 × [𝑁 𝑓

𝑗
− (𝑝2 − 𝑝1)]

2𝑝1

.

Note that 𝑁
𝑓

𝑗
− (𝑝2 −𝑝1) is a lower bound on 𝑛1

𝑗
+ · · · +𝑛𝑝1

𝑗
because

for every 𝑝2 ≤ 𝑝 , there are no facts that violate the 𝑝th key with 𝑓 ,

and for 𝑝1 < 𝑝 ≤ 𝑝2, there is a single fact that violates the 𝑝th key

with 𝑓 ; hence, 𝑛
𝑝1+1

𝑗
+ · · · + 𝑛𝑝2

𝑗
≤ 𝑝2 − 𝑝1 and 𝑛

𝑝2+1

𝑗
+ · · · + 𝑛𝑘

𝑗
= 0.

As aforementioned, 𝑛1

𝑗
+ · · · + 𝑛𝑘

𝑗
≥ 𝑁

𝑓

𝑗
. Therefore,

𝑛1

𝑗 + · · · + 𝑛𝑝1

𝑗
≥ 𝑁

𝑓

𝑗
− (𝑛𝑝1+1

𝑗
+ · · · + 𝑛𝑝2

𝑗
) − (𝑛𝑝2+1

𝑗
+ · · · + 𝑛𝑘𝑗)

≥ 𝑁
𝑓

𝑗
− (𝑝2 − 𝑝1).

We conclude that

𝑟 𝑗 ≤ 𝑁
𝑓

𝑗
+ (𝑝2 − 𝑝1) + 1

and

𝑁 𝑗 ≥
(𝑁 𝑓

𝑗
− (𝑝2 − 𝑝1))2 + 𝑝1 × [𝑁 𝑓

𝑗
− (𝑝2 − 𝑝1)]

2𝑝1

.

Hence, it holds that

𝑁 𝑗 ≥
(𝑟 𝑗 − 2(𝑝2 − 𝑝1) − 1)2 + 𝑝1 × [𝑟 𝑗 − 2(𝑝2 − 𝑝1) − 1]

2𝑝1

.

If 𝑟 𝑗 ≥ 2(𝑝2 − 𝑝1) + 1, then 𝑝1 × [𝑟 𝑗 − 2(𝑝2 − 𝑝1) − 1] ≥ 0 and

𝑁 𝑗 ≥
(𝑟 𝑗 − 2(𝑝2 − 𝑝1) − 1)2

2𝑝1

and

𝑟 𝑗 ≤
√︁

2𝑝1𝑁 𝑗 + 2(𝑝2 − 𝑝1) + 1 ≤
√︃

2𝑘𝑁 𝑗 + 2𝑘 + 𝑘

≤
√︃

4𝑘2𝑁 𝑗 + 3𝑘
√︁
𝑁 𝑗 = 5𝑘

√︁
𝑁 𝑗 .

If 𝑟 𝑗 < 2(𝑝2 − 𝑝1) + 1, then 𝑟 𝑗 ≤ 2𝑘 + 𝑘 ≤ 5𝑘
√︁
𝑁 𝑗 . Thus, in both

cases, we have that 𝑟 𝑗 ≤ 5𝑘
√︁
𝑁 𝑗 .

Recall that our goal is to show that

(𝑁𝑖+1 + 𝑟𝑖+1) × · · · × (𝑁𝑛 + 𝑟𝑛) × 𝑐 ≤ pol′′(|𝐷 |) × 𝑁𝑖+1 × · · · × 𝑁𝑛 .

We have that

(𝑁𝑖+1+𝑟𝑖+1)×· · ·×(𝑁𝑛+𝑟𝑛) ≤ (𝑁𝑖+1+5𝑘
√︁
𝑁𝑖+1)×· · ·×(𝑁𝑛+5𝑘

√︁
𝑁𝑛) .

Thus, it suffices to show that

(
√︁
𝑁𝑖+1+5𝑘)×· · ·×(

√︁
𝑁𝑛+5𝑘)×𝑐 ≤ pol′′(| |𝐷 | |)×

√︁
𝑁𝑖+1×· · ·×

√︁
𝑁𝑛 .

For brevity, let 𝑥 𝑗 =
√︁
𝑁 𝑗 . Moreover, we can clearly define

pol′′(| |𝐷 | |) as 𝑐 × pol′′′(| |𝐷 | |) for some polynomial pol′′′, and get

rid of the constant 𝑐 . Therefore, we now show that

(𝑥𝑖+1 + 5𝑘) × · · · × (𝑥𝑛 + 5𝑘) ≤ pol′′′(| |𝐷 | |) × 𝑥𝑖+1 × · · · × 𝑥𝑛

for some polynomial pol′′′, or, equivalently,

𝑥𝑖+1 + 5𝑘

𝑥𝑖+1

× · · · × 𝑥𝑛 + 5𝑘

𝑥𝑛
≤ pol′′′(| |𝐷 | |).

Note that in the sequence 𝑠 , there are 𝑛 − 𝑗 + 1 operations after

the operation op 𝑗 (including the operation op 𝑗). Since the number

of justified operations can only decrease after applying a certain

operation, this means that 𝑁 𝑗 ≥ 𝑛 − 𝑗 + 1. Hence, we have that

𝑁𝑖+1 ≥ 𝑛 − 𝑖 , 𝑁𝑖+2 ≥ 𝑛 − 𝑖 − 1, and so on, which implies that 𝑥𝑖+1 ≥√
𝑛 − 𝑖 , 𝑥𝑖+2 ≥

√
𝑛 − 𝑖 − 1, etc. Now, an expression of the form

𝑥+5𝑘
𝑥

increases when the value of 𝑥 decreases (because
𝑥+5𝑘
𝑥 = 1 + 5𝑘

𝑥);

hence, we have that

𝑥𝑖+1 + 5𝑘

𝑥𝑖+1

× · · · × 𝑥𝑛 + 5𝑘

𝑥𝑛

≤
√
𝑛 − 𝑖 + 5𝑘
√
𝑛 − 𝑖

×
√
𝑛 − 𝑖 − 1 + 5𝑘
√
𝑛 − 𝑖 − 1

× · · · × 1 + 5𝑘

1

≤
⌊√

𝑛 − 𝑖
⌋
+ 5𝑘⌊√

𝑛 − 𝑖
⌋ ×

⌊√
𝑛 − 𝑖 − 1

⌋
+ 5𝑘⌊√

𝑛 − 𝑖 − 1

⌋ × · · · × 1 + 5𝑘

1

Next, for every𝑚 ≥ 1 it holds that

√
𝑚 − 1 ≥

√
𝑚 − 1

and thus, ⌊√
𝑚 − 1

⌋
≥

⌊√
𝑚

⌋
− 1

We then obtain the following:⌊√
𝑛 − 𝑖

⌋
+ 5𝑘⌊√

𝑛 − 𝑖
⌋ ×

⌊√
𝑛 − 𝑖 − 1

⌋
+ 5𝑘⌊√

𝑛 − 𝑖 − 1

⌋ × · · · × 1 + 5𝑘

1

≤
⌊√

𝑛 − 𝑖
⌋
+ 5𝑘⌊√

𝑛 − 𝑖
⌋ ×

⌊√
𝑛 − 𝑖

⌋
− 1 + 5𝑘⌊√

𝑛 − 𝑖
⌋
− 1

× · · · × 1 + 5𝑘

1

=
(
⌊√

𝑛 − 𝑖
⌋
+ 5𝑘)!

(
⌊√

𝑛 − 𝑖
⌋
)! × (5𝑘)!

=

(⌊√
𝑛 − 𝑖

⌋
+ 5𝑘

5𝑘

)
≤

(
𝑒 (

⌊√
𝑛 − 𝑖

⌋
+ 5𝑘)

5𝑘

)
5𝑘

≤
(
𝑒 (

⌊√
𝑛
⌋
+ 5𝑘)

5𝑘

)
5𝑘

≤
(𝑒

5𝑘

)
5𝑘

× (
√︁
|𝐷 | + 5𝑘)5𝑘

(Observe that the maximal length 𝑛 of a sequence is |𝐷 | − 1.) The

claim follows with

pol′′′(| |𝐷 | |) =

(𝑒

5𝑘

)
5𝑘

× (
√︁
| |𝐷 | | + 5𝑘)5𝑘 .

Recall that 𝑐 = (2ℓ + 1) × · · · × 3, where ℓ is the number of facts

that conflict with 𝑓 and are not removed by the sequence 𝑠 ; hence,

ℓ ≤ 𝑘 . Therefore, for every sequence 𝑠 that removes 𝑓 , there is some

sequence 𝑠 ′ that does not remove 𝑓 such that

𝜋 (𝑠) ≤ (2𝑘 + 1)! × pol′′′(| |𝐷 | |) × 𝜋 (𝑠 ′),
and item (1) of Lemma D.1 follows with

pol′′(| |𝐷 | |) = (2𝑘 + 1)! × pol′′′(| |𝐷 | |).

Item (2). We now show that the function F from sequences that

remove 𝑓 to sequences that do not remove 𝑓 , maps at most 2|𝐷 | − 1

sequences of the first type to the same sequence of the second type.

Given a sequence 𝑠 ′ ∈ 𝑆𝑓 , we can obtain this sequence either from

a sequence 𝑠 ∈ RL(𝑀uo
Σ (𝐷)) that has one additional operation that

removes 𝑓 , or from a sequence 𝑠 that removes 𝑓 jointly with some

other fact 𝑔, while 𝑠 ′ removes the fact 𝑔 by itself. (Some of the

operations at the end of 𝑠 ′ might not appear in 𝑠 , as they remove

facts that conflict only with 𝑓 .) Since the length of the sequence

𝑠 ′ is at most |𝐷 | − 1, there are at most |𝐷 | possible ways to insert

an additional operation that removes 𝑓 , and |𝐷 | − 1 ways to add

𝑓 to an existing operation. Hence, there are at most |𝐷 | + |𝐷 | − 1

sequences that remove 𝑓 that are mapped to the sequence 𝑠 ′. Here
is an example that illustrates the above combinatorial argument.

Example D.5. We continue with Example D.4. Consider again

the sequence 𝑠 ′
3
. Recall that

𝑠 ′
3
= −𝑓3,1,−𝑓1,2,−𝑓2,1,−𝑓1,3

This sequence can be obtained from any of the following sequences

that have an additional operation that removes 𝑓1,1:

−𝑓1,1,−𝑓3,1,−𝑓1,2
−𝑓3,1,−𝑓1,1,−𝑓1,2
−𝑓3,1,−𝑓1,2,−𝑓1,1

Note that the operations −𝑓2,1,−𝑓1,3 do not appear in these se-

quences, as after removing 𝑓1,1 they are no longer involved in

violations of the constraints.

The sequence 𝑠 ′
3
can also be obtained from the following se-

quences that replace an operation of 𝑠 ′
3
that removes a single fact

with an operation that removes a pair of conflicting facts:

−{𝑓1,1, 𝑓3,1},−𝑓1,2
−𝑓3,1,−{𝑓1,1, 𝑓1,2}

This completes the proof of Lemma D.1.

Having Lemma D.1 in place, it is now easy to establish the ex-

istence of the polynomial pol′ such that Λ¬𝑓 ≤ pol′(| |𝐷 | |) · Λ𝑓 .
Indeed, with F and pol′′ being the function and the polynomial,

respectively, provided by Lemma D.1,

Λ¬𝑓 =
∑︁
𝑠∈𝑆¬𝑓

𝜋 (𝑠) ≤
∑︁
𝑠∈𝑆¬𝑓

pol′′(| |𝐷 | |) · 𝜋 (F(𝑠))

≤ pol′′(| |𝐷 | |) · (2 · | |𝐷 | | − 1) ·
∑︁
𝑠∈𝑆𝑓

𝜋 (𝑠)

= pol′′(| |𝐷 | |) · (2 · | |𝐷 | | − 1) · Λ𝑓 ,
and the claim follows with pol′(| |𝐷 | |) = pol′′(| |𝐷 | |) · (2 · | |𝐷 | | − 1).
The Case |ℎ(𝑄) | ≥ 1

We now generalize the proof given above for the case |ℎ(𝑄) | = 1

to the case |ℎ(𝑄) | = 𝑚 for some 1 ≤ 𝑚 ≤ |𝑄 |. As in the case

where |ℎ(𝑄) | = 1, we map sequences that remove at least one of the

facts of ℎ(𝑄) to sequences that keep all these facts, by deleting or

replacing every operation that removes a fact of ℎ(𝑄) and adding

a constant number of operations at the end of the sequence that

remove all the facts that conflict with some fact of ℎ(𝑄).
More formally, let 𝑠 ∈ RL(𝑀uo

Σ (𝐷)) be a repairing sequence that
removes 𝑟 of the facts of ℎ(𝑄) (for some 1 ≤ 𝑟 ≤ 𝑚):

𝑠 = op
1
, . . . , op𝑖1 , . . . , op𝑖2 , . . . , op𝑖𝑟 , . . . , op𝑛

where the operations op𝑖1 , . . . , op𝑖𝑟 remove these 𝑟 facts. Note that

there are no conflicts among the facts of ℎ(𝑄); hence, it cannot
be the case that a single operation removes two of these facts. We

transform 𝑠 into a sequence 𝑠 ′ ∈ RL(𝑀uo
Σ (𝐷)) where each operation

op𝑖 𝑗 that removes a single fact is deleted, and every operation op𝑖 𝑗
that removes a pair {𝑓 , 𝑔} of facts where 𝑓 ∈ ℎ(𝑄) and 𝑔 ∉ ℎ(𝑄), is
replaced by the operation𝑜★

𝑖 𝑗
that removes only the fact𝑔. At the end

of the sequence 𝑠 ′, we add operations op′
1
, . . . , op′

ℓ
that remove the

facts that are in conflict with one of the facts ofℎ(𝑄) that appears in

𝑠 (𝐷). As we have explained before, for each such fact, the sequence

𝑠 keeps at most 𝑘 conflicting facts, where 𝑘 is the maximal number

of keys in Σ over the same relation 𝑅; hence, the total number of

conflicting facts that 𝑠 does not remove is bounded by𝑚×𝑘 , and this
is a bound on the number ℓ of additional operations (that remove

these conflicting facts one by one in some arbitrary order). As in

the case where ℎ(𝑄) = 1, the probability of applying the additional

ℓ operations at the end of the sequence is some constant that we

denote by
1

𝑐 . We provide below more details about this constant.

The probability P((op
1
, . . . , op 𝑗−1

), (op
1
, . . . , op 𝑗)), for 2 ≤ 𝑗 ≤

𝑖1 − 1, is not affected by the decision to remove or keep a certain

fact at the 𝑖1th step. However, for 𝑗 ≥ 𝑖1, the probability of applying

the operation op 𝑗 might decrease in the sequence 𝑠 ′ compared

to the sequence 𝑠 , because the additional facts of ℎ(𝑄) (that are
removed by 𝑠 but not by 𝑠 ′) might be involved in violations with the

remaining facts of the database and introduce additional justified

repairing operations at each step. As we have already shown, if

the number of (𝐷𝑠
𝑗−1

, Σ)-justified operations before applying the

operation op 𝑗 of 𝑠 is 𝑁 𝑗 , then the addition of a fact can increase this

number by at most 5𝑘
√︁
𝑁 𝑗 . Hence, the addition of at most𝑚 facts

(the facts of ℎ(𝑄)) can increase this number by at most 5𝑘𝑚
√︁
𝑁 𝑗 .

We again denote by 𝑟 𝑗 the factor by which the number of operations

increases, and we have that 𝑟 𝑗 ≤ 5𝑘𝑚
√︁
𝑁 𝑗 .

Now, all the arguments for the case where |ℎ(𝑄) | = 1 apply also

in this case, with the only difference being the value of 𝑟 𝑗 . Therefore,

we conclude that

𝜋 (𝑠) ≤ pol′′(| |𝐷 | |) × 𝜋 (𝑠 ′)
with

pol′′(| |𝐷 | |) = 𝑐 ×
(𝑒

5𝑘𝑚

)
5𝑘𝑚

× (
√︁
| |𝐷 | | + 5𝑘𝑚)5𝑘𝑚 .

Recall that
1

𝑐 is the probability of applying the additional operations

at the end of the sequence, and 𝑟 is the number of facts of ℎ(𝑄)
that are removed by the sequence 𝑠 . We would like to provide

a lower bound on this probability (hence, an upper bound on 𝑐).

Clearly, the lowest probability is obtained when the number of

additional operations is the highest (as for each additional operation

we need to multiply the probability by a number lower than one)

and when the probability of each individual operation is the lowest.

As mentioned above, for each one of the 𝑟 facts of ℎ(𝑄) that are
removed by 𝑠 , there are at most 𝑘 facts that conflict with it and are

not removed by 𝑠 . Hence, 𝑟 × 𝑘 is an upper bound on the number

of additional operations. Moreover, the lowest probability of each

operation is obtained when the number of justified operations at

the point of applying it is the highest. When there are ℓ facts in a

database 𝐷 ′
that are involved in violations of the constraints, an

upper bound on the number of (𝐷 ′, Σ)-justified operations (that is

obtained when every fact is in conflict with every other fact) is

ℓ + ℓ (ℓ − 1)
2

=
ℓ2 + ℓ

2

=
ℓ (ℓ + 1)

2

≤ (ℓ + 1)2

2

≤ (ℓ + 1)2 .

Therefore, we have that

1

𝑐
≥ 1

(𝑟𝑘 + 𝑟 + 1)2
× 1

(𝑟𝑘 + 𝑟)2
× 1

(𝑟𝑘 + 𝑟 − 1)2
× · · · × 1

3

≥ 1

((𝑟𝑘 + 𝑟 + 1)2)!
≥ 1

((𝑚𝑘 +𝑚 + 1)2)!

and

𝑐 ≤ ((𝑚𝑘 +𝑚 + 1)2)!
(Observe that 𝑟𝑘 + 𝑟 is the number of facts involved in violations if

each of the 𝑟 facts of ℎ(𝑄) that 𝑠 removes conflicts with 𝑘 facts of

𝑠 (𝐷).) Now, it holds that

((𝑚𝑘 +𝑚 + 1)2)! ×
(𝑒

5𝑘𝑚

)
5𝑘𝑚

× (
√︁
|𝐷 | + 5𝑘𝑚)5𝑘𝑚 ≤

((|𝑄 | |Σ| + |𝑄 | + 1)2)! × 𝑒5 |𝑄 | |Σ | × (
√︁
|𝐷 | + 5|𝑄 | |Σ|)5 |𝑄 | |Σ |

Hence, with

pol′′(| |𝐷 | |) = ((|𝑄 | |Σ|+|𝑄 |+1)2)!×𝑒5 |𝑄 | |Σ |×(
√︁
| |𝐷 | |+5|𝑄 | |Σ|)5 |𝑄 | |Σ |

we have thet

𝜋 (𝑠) ≤ pol′′(| |𝐷 | |) × 𝜋 (𝑠 ′),
as needed.

Finally, we show that our mapping from sequences that remove

at least one of the facts ofℎ(𝑄) to sequences that do not remove any

of these facts maps at most polynomially many sequences of the

first type to the same sequence of the second type. Given a sequence

𝑠 ′ that does not remove any of the facts of ℎ(𝑄), we can obtain

this sequence from any sequence 𝑠 that has additional operations

that remove some of the facts of ℎ(𝑄) individually or operations

that remove these facts jointly with another fact (while 𝑠 ′ removes

only one of these facts). The sequence 𝑠 can remove any number

1 ≤ 𝑟 ≤ 𝑚 of facts of ℎ(𝑄). And, in the case where it removes 𝑟

of the facts of ℎ(𝑄), for every ℓ ≤ 𝑟 there are
(𝑟
ℓ

)
possible ways to

choose a subset of size ℓ of ℎ(𝑄) of facts that will be removed by

themselves (while the remaining 𝑟 − ℓ facts will be removed jointly

with another fact). Since the length of the sequence 𝑠 is at most

|𝐷 | −1, there are at most

(|𝐷 |+ℓ−1

ℓ

)
possible choices for the positions

of the additional singleton deletions, and

(|𝐷 |−1

𝑟−ℓ
)
possible choices

for the individual fact removals that will become pair removals.

Hence, the number of sequences that remove a fact of ℎ(𝑄) that
are mapped to the sequence 𝑠 ′ is at most

𝑚∑︁
𝑟=1

𝑟∑︁
ℓ=0

(
𝑟

ℓ

)
×

(
|𝐷 | + ℓ − 1

ℓ

)
×

(
|𝐷 | − 1

𝑟 − ℓ

)
≤

𝑚∑︁
𝑟=1

𝑟∑︁
ℓ=0

(𝑒𝑟
ℓ

)ℓ
×

(
𝑒 (|𝐷 | + ℓ − 1)

ℓ

)ℓ
×

(
𝑒 (|𝐷 | − 1)

𝑟 − ℓ

)𝑟−ℓ
≤

|𝑄 |∑︁
𝑟=1

|𝑄 |∑︁
ℓ=0

(𝑒 |𝑄 |)ℓ × (𝑒 (|𝐷 | + ℓ − 1))ℓ × (𝑒 (|𝐷 | − 1)) |𝑄 |−ℓ

≤ |𝑄 | × (|𝑄 | + 1) × (𝑒 |𝑄 |) |𝑄 | × (𝑒 (|𝐷 | + |𝑄 | − 1)) |𝑄 | ×
(𝑒 (|𝐷 | − 1)) |𝑄 |

≤ (𝑒 |𝑄 |)2 × (𝑒 |𝑄 |) |𝑄 | × (𝑒 (|𝐷 | + |𝑄 | − 1)) |𝑄 | × (𝑒 (|𝐷 | − 1)) |𝑄 |

= (𝑒 |𝑄 |) |𝑄 |+2 × (𝑒 (|𝐷 | + |𝑄 | − 1)) |𝑄 | × (𝑒 (|𝐷 | − 1)) |𝑄 | .

This number is clearly polynomial in | |𝐷 | |. We denote this number

by pol′(| |𝐷 | |). Finally, similarly to the case where |ℎ(𝑄) | = 1,

P𝐷,𝑀uo
Σ ,𝑄

(ℎ) ≥ 1

1 + pol′′(| |𝐷 | |) × pol′(| |𝐷 | |) .

With pol(| |𝐷 | |) = 1 + pol′′(| |𝐷 | |) × pol′(| |𝐷 | |), we obtain that

P𝑀uo
Σ ,𝑄

(𝐷, 𝑐) ≥ P𝐷,𝑀uo
Σ ,𝑄

(ℎ) ≥ 1

pol(| |𝐷 | |) ,

which concludes our proof.

D.3 The case of Functional Dependencies
Unlike the case of keys, in the case of FDs, there is no polynomial

lower bound on the target probability, as we show next. This means

that we cannot rely onMonte Carlo Sampling for devising an FPRAS.

On the other hand, this does not preclude the existence of an FPRAS

in the case of FDs, which remains an open problem.

Proposition D.6. Consider the FD set {𝑅 : 𝐴1 → 𝐴2} over the
schema {𝑅/3}, and the Boolean CQ Ans() :- 𝑅(0, 0, 0). There exists a
family {𝐷𝑛}𝑛≥1 of databases such that

0 < P𝑀uo
Σ ,𝑄

(𝐷𝑛, ()) ≤
1

2
|𝐷𝑛 |−1

.

Proof. Let 𝐷𝑛 be the database that contains the fact 𝑅(0, 0, 0)
and 𝑛 − 1 additional facts 𝑅(0, 1, 𝑖) for 𝑖 ∈ {1, . . . , 𝑛 − 1}. Observe
that each fact 𝑅(0, 1, 𝑖) is in conflict with 𝑅(0, 0, 0), but there are no
conflicts among two facts 𝑅(0, 1, 𝑖) and 𝑅(0, 1, 𝑗) for 𝑖 ≠ 𝑗 . Clearly,

it holds that 0 < P𝑀uo
Σ ,𝑄

(𝐷, ()) as the operational repair that keeps
the fact 𝑅(0, 0, 0) entails𝑄 . We prove by induction on 𝑛, the number

of facts in the database, that for a database 𝐷 that contains the fact

𝑅(0, 0, 0) and 𝑛 − 1 facts of the form 𝑅(0, 1, 𝑖), it holds that:

P𝑀uo
Σ ,𝑄

(𝐷, ()) ≤ 1

2
𝑛−1

Base Case. For 𝑛 = 1, 𝐷 = {𝑅(0, 0, 0)} and there are no violations

of the FD. In this case, it is rather straightforward to see that

P𝑀uo
Σ ,𝑄

(𝐷, ()) =
1

2
1−1

= 1.

Inductive Step. We assume that the claim holds for 𝑛 = 1, . . . , 𝑝

and prove that it holds for 𝑛 = 𝑝 + 1. Let 𝐷 be such a database with

𝑝 + 1 facts; that is, 𝐷 contains the fact 𝑅(0, 0, 0) and 𝑝 facts of the

form 𝑅(0, 1, 𝑖). Whenever we have 𝑝 facts of the form 𝑅(0, 1, 𝑖) in
the database, there are 1 + 2𝑝 justified operations: (1) the removal

of 𝑅(0, 0, 0), (2) the removal of a fact of the form 𝑅(0, 1, 𝑖), or (3)
the removal of a pair {𝑅(0, 0, 0), 𝑅(0, 1, 𝑖)}. Only the 𝑝 operations

of type (2) keep the fact 𝑅(0, 0, 0) in the database. We denote these

operations by op
1
, . . . , op𝑝 . For every 𝑖 ∈ {1, . . . , 𝑝}, we have that

P(𝜀, (𝑜𝑝𝑖)) =
1

1 + 2𝑝
.

After removing a fact of the form 𝑅(0, 1, 𝑖) from the database,

we have 𝑝 − 1 such facts left, regardless of which specific fact we

remove. For every 𝑖 ∈ {1, . . . , 𝑝}, we denote by 𝐷𝑖 the database

op𝑖 (𝐷). By the inductive hypothesis, we have that

P𝑀uo
Σ ,𝑄

(𝐷𝑖 , ()) ≤ 1

2
𝑝−1

.

Every sequence 𝑠 ∈ RL(𝑀uo
Σ (𝐷)) with 𝑅(0, 0, 0) ∈ 𝑠 (𝐷) is of the

form op𝑖 ·𝑠𝑖 for some 𝑖 ∈ [𝑝] and 𝑠𝑖 ∈ RL(𝑀uo
Σ (𝐷𝑖)) with𝑅(0, 0, 0) ∈

𝑠𝑖 (𝐷). The probability P𝑀uo
Σ ,𝑄

(𝐷, ()) can then be written as

P𝑀uo
Σ ,𝑄

(𝐷, ()) =
∑︁

𝑠∈RL(𝑀uo
Σ (𝐷))

() ∈𝑄 (𝑠 (𝐷))

𝜋 (𝑠)

=

𝑝∑︁
𝑖=1

©«
P(𝜀, (op𝑖)) ×

∑︁
𝑠𝑖 ∈RL(𝑀uo

Σ (𝐷𝑖))
() ∈𝑄 (𝑠𝑖 (𝐷𝑖))

𝜋 (𝑠𝑖)
ª®®®®¬
.

As said above, for every 𝑖 ∈ {1, . . . , 𝑝},

P𝑀uo
Σ ,𝑄

(𝐷𝑖 , ()) =
∑︁

𝑠𝑖 ∈RL(𝑀uo
Σ (𝐷𝑖))

() ∈𝑄 (𝑠𝑖 (𝐷𝑖))

𝜋 (𝑠𝑖) ≤ 1

2
𝑝−1

.

Therefore, we conclude that

P𝑀uo
Σ ,𝑄

(𝐷, ()) ≤
𝑝∑︁
𝑖=1

(
1

1 + 2𝑝
× 1

2
𝑝−1

)
=

𝑝

(1 + 2𝑝) × 2
𝑝−1

=
𝑝

2
𝑝−1 + 𝑝 × 2

𝑝
≤ 𝑝

𝑝 × 2
𝑝
=

1

2
𝑝

and the claim follows.

D.4 Proof of Theorem 7.5
We now show that if only singleton removals are allowed, then

we can devise an FPRAS even for arbitrary FDs. For a database 𝐷

and a set Σ of FDs, we denote by RS1 (𝐷, Σ) the set of sequences in
RS(𝐷, Σ) mentioning only operations of the form −𝑓 , i.e., removing

a single fact. Similarly, we denote Ops1

𝑠 (𝐷, Σ) = {𝑠 ′ ∈ RS1 (𝐷, Σ) |
𝑠 ′ = 𝑠 · op for some 𝐷-operation op}. Then, we define the Markov

chain generator𝑀
uo,1
Σ such that for every 𝑠, 𝑠 ′ ∈ RS1 (𝐷, Σ), assum-

ing that𝑀
uo,1
Σ (𝐷) = (𝑉 , 𝐸, P), if 𝑠 ′ ∈ Ops1

𝑠 (𝐷, Σ) then

P(𝑠, 𝑠 ′) =
1

|Ops1

𝑠 (𝐷, Σ) |
.

Observe, however, that the Markov chain generator 𝑀
uo,1
Σ is de-

fined over all the sequences of RS(𝐷, Σ). If 𝑠 ∈ RS1 (𝐷, Σ) but

𝑠 ′ ∈ RS(𝐷, Σ) \ RS1 (𝐷, Σ) (and 𝑠 ′ ∈ Ops𝑠 (𝐷, Σ)), then we define

P(𝑠, 𝑠 ′) = 0. If 𝑠 ∈ RS(𝐷, Σ) \ RS1 (𝐷, Σ), none of the leaves of the
subtree 𝑇𝑠 is reachable with non-zero probability, and thus, P(𝑠, 𝑠 ′),
for any 𝑠 ′ ∈ Ops𝑠 (𝐷, Σ), can get an arbitrary probability (as long

as the sum of probabilities equals one), e.g.,
1

|Ops𝑠 (𝐷,Σ) |
.

We can now show that, assuming singleton removals, for FDs

the problem of interest admits an FPRAS. The formal statement,

already given in the main body of the paper, and its proof follow:

Theorem 7.5. For a set Σ of FDs, and a CQ𝑄 ,OCQA(Σ, 𝑀uo,1
Σ , 𝑄)

admits an FPRAS.

The proof consists of the usual two steps: (1) existence of an

efficient sampler, and (2) provide a polynomial lower bound on he

target probability.

Step 1: Efficient Sampler. We can sample elements of RL(𝑀uo,1
Σ (𝐷))

according to the leaf distribution of𝑀
uo,1
Σ (𝐷) in polynomial time

in | |𝐷 | |. This is done by employing the same iterative algorithm

as the one used to sample elements of RL(𝑀uo
Σ (𝐷)), but with the

difference that only justified operations that consist of singleton

removals are considered. In particular, at each step, the algorithm

extends the current sequence 𝑠 by selecting one of the (𝑠 (𝐷), Σ)-
justified operations of the form −𝑓 with probability

1

|Ops1

𝑠 (𝐷, Σ) |
.

Hence, we immediately obtain the following result:

Lemma D.7. Given a database 𝐷 , and a set Σ of keys, we can
sample elements of RL(𝑀uo,1

Σ (𝐷)) according to the leaf distribution
of𝑀uo,1

Σ (𝐷) in polynomial time in | |𝐷 | |.

Step 2: Polynomial Lower Bound. It remains to show that there exists

a polynomial lower bound on the target probability.

Lemma D.8. Consider a set Σ of keys, and a CQ 𝑄 (𝑥). For every
database 𝐷 , and 𝑐 ∈ dom(𝐷) |𝑥 | ,

P
𝑀

uo,1
Σ ,𝑄

(𝐷, 𝑐) ≥ 1

(𝑒 · | |𝐷 | |) | |𝑄 | |

whenever P
𝑀

uo,1
Σ ,𝑄

(𝐷, 𝑐) > 0.

Proof. Consider a database 𝐷 . If there is no homomorphism

ℎ from 𝑄 to 𝐷 such that ℎ(𝑄) |= Σ and ℎ(𝑥) = 𝑐 , then clearly

P
𝑀

uo,1
Σ ,𝑄

(𝐷, 𝑐) = 0. We now focus on the case where such a homo-

morphism ℎ exists. Assume that |ℎ(𝑄) | =𝑚 for some𝑚 ≤ |𝑄 |. We

prove by induction on 𝑛, that is, the number of facts in𝐷 \ℎ(𝑄) that
are involved in violations of the FDs (i.e., the facts 𝑓 ∈ (𝐷 \ ℎ(𝑄))
such that {𝑓 , 𝑔} ̸|= Σ for some 𝑔 ∈ 𝐷), the following:

P
𝐷,𝑀

uo,1
Σ ,𝑄

(ℎ) ≥ 1(𝑛+𝑚
𝑚

) .
Base Case. For 𝑛 = 0, since ℎ(𝑄) |= Σ, there are no violations of

the FDs in𝐷 , and𝐷 has a single operational repair, which is𝐷 itself.

In this case, the probability of obtaining an operational repair that

contains all the facts of ℎ(𝑄) is 1 = 1

(0+𝑚
𝑚) , as needed.

Inductive Step.We now assume that the claim holds for databases

where 𝑛 = 0, . . . , 𝑘 − 1, and we prove that it holds for databases

𝐷 where 𝑛 = 𝑘 . Every repairing sequence 𝑠 ∈ RL(𝑀uo,1
Σ (𝐷)) for

which ℎ(𝑄) ⊆ 𝑠 (𝐷) is such that the first operation of 𝑠 removes

a fact of 𝐷 \ ℎ(𝑄) that is involved in violations of the FDs. Let

𝑓1, . . . , 𝑓𝑘 be these facts of 𝐷 \ ℎ(𝑄), and for each 𝑖 ∈ {1, . . . , 𝑘}, let
op𝑖 be the operation that removes the fact 𝑓𝑖 . We then have that

P(𝜀, (𝑜𝑝𝑖)) ≥ 1

𝑘 +𝑚 .

This is because the probability of removing a certain fact is
1

𝑘+𝑝 ,
where 𝑝 is the number of facts involved in violations among the

facts of ℎ(𝑄). Since 𝑝 ≤ 𝑚, we get that
1

𝑘+𝑚 ≤ 1

𝑘+𝑝 .
After removing a conflicting fact of 𝐷 \ ℎ(𝑄) from the database,

we have at most 𝑘−1 such facts left, regardless of which specific fact

we remove. For every 𝑖 ∈ {1, . . . , 𝑝}, we denote by 𝐷𝑖 the database

op𝑖 (𝐷) and by 𝑛𝑖 the number of facts of 𝐷𝑖 \ℎ(𝑄) that are involved
in violations of the FDs; hence, we have that 𝑛𝑖 ≤ 𝑘 − 1. By the

inductive hypothesis, we have that

P
𝐷𝑖 ,𝑀

uo,1
Σ ,𝑄

(ℎ) ≥ 1(𝑛𝑖+𝑚
𝑚

) ≥ 1(𝑘−1+𝑚
𝑚

) .

Clearly, every sequence 𝑠 ∈ RL(𝑀uo
Σ (𝐷)) with ℎ(𝑄) ⊆ 𝑠 (𝐷) is of

the form op𝑖 · 𝑠𝑖 for some 𝑖 ∈ {1, . . . , 𝑘} and 𝑠𝑖 ∈ RL(𝑀uo
Σ (𝐷𝑖)) with

ℎ(𝑄) ⊆ 𝑠𝑖 (𝐷). Now, the following holds

P
𝐷,𝑀

uo,1
Σ ,𝑄

(ℎ) =

𝑘∑︁
𝑖=1

(
P(𝜀, (op𝑖)) × P

𝐷𝑖 ,𝑀
uo,1
Σ ,𝑄

(ℎ)
)
.

Therefore, we can conclude that

P
𝐷,𝑀

uo,1
Σ ,𝑄

(ℎ) ≥
𝑘∑︁
𝑖=1

(
1

𝑘 +𝑚 × 1(𝑘−1+𝑚
𝑚

))
=

𝑘

𝑘 +𝑚 × 1(𝑘−1+𝑚
𝑚

)
=

𝑘

𝑘 +𝑚 × 1

(𝑘−1+𝑚)!
𝑚!×(𝑘−1)!

=
𝑚! × 𝑘!

(𝑘 +𝑚)!

=
1(𝑘+𝑚
𝑚

) .
Finally, it is well known that

(𝑛
𝑘

)
≤

(
𝑒𝑛
𝑘

)𝑘
. We conclude that, for

a database 𝐷 such that 𝐷 \ ℎ(𝑄) contains 𝑛 facts that are involved

in violations of the FDs, we have that

P
𝐷,𝑀

uo,1
Σ ,𝑄

(ℎ) ≥ 1(𝑛+𝑚
𝑛

)
≥ 1(

𝑒 (𝑛+𝑚)
𝑚

)𝑚
=

𝑚𝑚

𝑒𝑚
× 1

(𝑛 +𝑚)𝑚

≥
(𝑚
𝑒

)𝑚
× 1

|𝐷 |𝑚

≥
(

1

𝑒

) |𝑄 |
× 1

|𝐷 | |𝑄 | .

Since ℎ(𝑄) ⊆ 𝐷 ′
implies 𝑐 ∈ 𝑄 (𝐷 ′), it holds that

P
𝑀

uo,1
Σ ,𝑄

(𝐷, 𝑐) ≥ P
𝐷,𝑀

uo,1
Σ ,𝑄

(ℎ) ≥ 1

(𝑒 |𝐷 |) |𝑄 | ≥ 1

(𝑒 | |𝐷 | |) | |𝑄 | | ,

which concludes our proof.

E SINGLETON OPERATIONS
As mentioned in the main body of the paper (see the last paragraph

of Section 7), focusing on singleton operations does not affect The-

orem 5.1, Theorem 6.1, and item (1) of Theorem 7.1 that deals with

exact query answering. In this section, we formally prove the above

statements. But let us first briefly discuss the Markov chain gener-

ators based on uniform repairs and sequences that consider only

singleton operations. The version of the Markov chain generator

based on uniform operations that considers only singleton opera-

tions has been already discussed in the previous section.

Given a database 𝐷 and a set Σ of FDs, we write CRS1 (𝐷, Σ)
for the set of sequences in CRS(𝐷, Σ) mentioning only operations

of the form −𝑓 , i.e., removing a single fact. Similarly, we define

CORep1 (𝐷, Σ) = {𝐷 ′ ∈ CORep(𝐷, Σ) | 𝑠 (𝐷) = 𝐷 ′
for some 𝑠 ∈

CRS1 (𝐷, Σ)}. Our intention is to focus on the repairing Markov

chain generators𝑀
ur,1
Σ and𝑀

us,1
Σ enjoying the following:

(1) ORep(𝐷,𝑀ur,1
Σ) = CORep1 (𝐷, Σ), and for every repair 𝐷 ′ ∈

ORep(𝐷,𝑀ur,1
Σ), P

𝐷,𝑀
ur,1
Σ

(𝐷 ′) = 1��ORep(𝐷,𝑀ur,1
Σ)

�� .
(2) For every 𝑠 ∈ CRS1 (𝐷, Σ), assuming that 𝜋 is the leaf distri-

bution of𝑀
us,1
Σ (𝐷), 𝜋 (𝑠) = 1

|CRS1 (𝐷,Σ) | .
It is not difficult to adapt Definitions A.1 and A.3 in order to ob-

tain the Markov chain generators𝑀
ur,1
Σ and𝑀

us,1
Σ with the above

properties. We proceed with our results about singleton operations.

E.1 Uniform Repairs
In this section, we prove the version of Theorem 5.1 that considers

singleton operations:

Theorem E.1. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀ur,1

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of primary keys, and a CQ 𝑄 , OCQA(Σ, 𝑀ur,1

Σ , 𝑄)
admits an FPRAS.

(3) Unless RP = NP, there exist a set Σ of FDs, and a CQ 𝑄 such
that there is no FPRAS for OCQA(Σ, 𝑀ur,1

Σ , 𝑄).
As for Theorem 5.1, we can conveniently restate the problem of

interest as the problem of computing a “relative frequency” ratio.

Indeed, for a database 𝐷 , a set Σ of FDs, a CQ 𝑄 (𝑥), and a tuple

𝑐 ∈ dom(𝐷) |𝑥 | , P
𝑀

ur,1
Σ ,𝑄

(𝐷, 𝑐) = rrfreq1

Σ,𝑄 (𝐷, 𝑐), where

rrfreq1

Σ,𝑄 (𝐷, 𝑐) =
|{𝐷 ′ ∈ CORep1 (𝐷, Σ) | 𝑐 ∈ 𝑄 (𝐷 ′)}|

|CORep1 (𝐷, Σ) |
.

Hence, OCQA(Σ, 𝑀ur,1
Σ , 𝑄 (𝑥)) coincides with the following prob-

lem, which is independent from the Markov chain generator𝑀
ur,1
Σ :

PROBLEM : RRFreq1 (Σ, 𝑄 (𝑥))
INPUT : A database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
OUTPUT : rrfreq1

Σ,𝑄 (𝐷, 𝑐).

We proceed to establish Theorem E.1 by directly considering the

problem RRFreq1 (Σ, 𝑄) instead of OCQA(Σ, 𝑀ur,1
Σ , 𝑄).

Proof of Item (1) of Theorem E.1. We provide a polynomial-time Tur-

ing reduction from the ♯P-hard problem ♯Pos2DNF [21]. A positive

2DNF formula is a Boolean formula of the form 𝜑 = 𝐶1 ∨ · · · ∨𝐶𝑛 ,

where each 𝐶𝑖 is a conjunction of two variables occurring posi-

tively in 𝐶𝑖 . Let var(𝜑) be the set of Boolean variables occurring in

𝜑 . An assignment for 𝜑 is a function 𝜇 : var(𝜑) → {0, 1}. Such an

assignment is satisfying for 𝜑 if 𝜇 (𝜑) = 1, i.e., the formula obtained

after replacing each variable 𝑥 of 𝜑 with 𝜇 (𝑥), evaluates to 1. We

write sat(𝜑) for the set of satisfying assignments for 𝜑 , i.e., the

assignments for 𝜑 that evaluate 𝜑 to 1. The problem in question is

PROBLEM : ♯Pos2DNF
INPUT : A positive 2DNF formula 𝜑 .

OUTPUT : The number |sat(𝜑) |.

Consider the schema S = {𝑉 /2,𝐶/2,𝑇 /1}, and let (𝐴, 𝐵) be the
tuple of attributes of 𝑉 . We define the set Σ over S consisting of

𝑉 : 𝐴 → 𝐵

and the (constant-free) Boolean CQ 𝑄 over S

Ans() :- 𝐶 (𝑥,𝑦),𝑉 (𝑥, 𝑧),𝑉 (𝑦, 𝑧),𝑇 (𝑧) .

Our goal is to show that RRFreq1 (Σ, 𝑄) is ♯P-hard via a polynomial-

time Turing reduction from ♯Pos2DNF. Given a positive 2DNF

formula 𝜑 = 𝐶1 ∨ · · · ∨𝐶𝑛 , we define the database

𝐷𝜑 = {𝑉 (𝑐𝑥 , 0),𝑉 (𝑐𝑥 , 1) | 𝑥 ∈ var(𝜑)} ∪
{𝐶 (𝑐𝑥 , 𝑐𝑦) | 𝐶𝑖 = (𝑥 ∧ 𝑦) for some 𝑖 ∈ [𝑛]} ∪ {𝑇 (1)}︸ ︷︷ ︸

𝐷𝑐

,

where, for each 𝑥 ∈ var(𝜑), 𝑐𝑥 is a constant, which essentially

encodes 𝜑 . We now define the algorithm SAT, which accepts as

input a positive 2DNF formula 𝜑 , and performs the following steps:

(1) Construct the database 𝐷𝜑 .

(2) Compute the number 𝑟 = rrfreq1

Σ,𝑄 (𝐷𝜑 , ()).
(3) Output the number 2

|var(𝜑) | · 𝑟 .
It is clear that the above algorithm runs in polynomial time in

| |𝜑 | |. Hence, to prove that it is indeed a Turing reduction from

♯Pos2DNF to RRFreq1 (Σ, 𝑄), it suffices to prove that

rrfreq1

Σ,𝑄 (𝐷𝜑 , ()) =
|sat(𝜑) |
2
|var(𝜑) | .

Since we consider only single fact removals, a database 𝐷 is an

operational repair of CORep1 (𝐷𝜑 , Σ) iff it is of the form

{𝑉 (𝑐𝑥 ,★) | 𝑥 ∈ var(𝜑) and ★ ∈ {0, 1}} ∪ 𝐷𝑐 ,

which keeps precisely one fact 𝑉 (𝑐𝑥 ,★), for each variable

𝑥 in 𝜑 . Hence, |CORep1 (𝐷𝜑 , Σ) | = 2
|var(𝜑) |

. Thus, with

CORep1 (𝐷𝜑 , Σ, 𝑄) being the set of repairs 𝐷 in CORep1 (𝐷𝜑 , Σ)
such that 𝐷 |= 𝑄 , it is easy to see that |CORep1 (𝐷𝜑 , Σ, 𝑄) | =

|sat(𝜑) |. Consequently,

rrfreq1

Σ,𝑄 (𝐷𝜑 , ()) =
|CORep1 (𝐷𝜑 , Σ, 𝑄) |
|CORep1 (𝐷𝜑 , Σ) |

=
|sat(𝜑) |
2
|var(𝜑) | ,

and the claim follows.

Proof of Item (2) of Theorem E.1. We can employ a proof similar

to the one underlying item (2) of Theorem 5.1, which consists of

two steps: (1) existence of an efficient sampler, and (2) provide a

polynomial lower bound for the target ratio. The key difference is

that now we focus on the set of repairs CORep1 (𝐷, Σ), rather than
CORep(𝐷, Σ). Thus, each repair in CORep1 (𝐷, Σ) is obtained by

keeping from 𝐷 precisely one fact from each block of 𝐷 .

We first show the existence of an efficient sampler.

Lemma E.2. Given a database 𝐷 , and a set Σ of primary keys,
we can sample elements of CORep1 (𝐷, Σ) uniformly at random in
polynomial time in | |𝐷 | |.

Proof. Let 𝐵1, . . . , 𝐵𝑛 be the blocks of 𝐷 w.r.t. Σ. That is, for
every relation name 𝑅 of the schema with 𝑅 : 𝑋 → 𝑌 ∈ Σ, we split
the set of facts of 𝐷 over 𝑅 into blocks of facts that agree on the

values of all the attributes in 𝑋 . If there is no such key in Σ, then
every fact is a separate block. As aforementioned, every repair of

CORep1 (𝐷, Σ) contains one fact of each block. Hence,

|CORep1 (𝐷, Σ) | = |𝐵1 | × · · · × |𝐵𝑛 |.

In order to sample an element of CORep1 (𝐷, Σ) with probability

1

|𝐵1 | × · · · × |𝐵𝑛 |

we simply need to select, for each block 𝐵𝑖 , one of its |𝐵𝑖 | possible
outcomes (one of its facts that will appear in the repair), uniformly

at random, namely with probability
1

|𝐵𝑖 |).

It remains to show that there exists a polynomial lower bound

on the target ratio.

Lemma E.3. Consider a set Σ of primary keys, and a CQ𝑄 (𝑥). For
every database 𝐷 , and tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

rrfreq1

Σ,𝑄 (𝐷, 𝑐) ≥ 1

(| |𝐷 | |) | |𝑄 | |

whenever rrfreq1

Σ,𝑄 (𝐷, 𝑐) > 0.

Proof. Let𝐷 be a database. If there is no homomorphismℎ from

𝑄 to 𝐷 such that ℎ(𝑄) |= Σ and ℎ(𝑥) = 𝑐 , then it clearly holds that

rrfreq1

Σ,𝑄 (𝐷, 𝑐) = 0.

We now consider the case where such a homomorphism ℎ exists.

Assume that |ℎ(𝑄) | = 𝑚 for some 1 ≤ 𝑚 ≤ |𝑄 |. As in the proof

of Lemma E.2, let 𝐵1, . . . , 𝐵𝑛 be the blocks of 𝐷 w.r.t. Σ. Assume,

without loss of generality, that the facts ofℎ(𝑄) belong to the blocks
𝐵1, . . . , 𝐵𝑚 . Note that no two facts ofℎ(𝑄) belong to the same block,

as two facts that belong to the same block always jointly violate

the corresponding key, and it holds that ℎ(𝑄) |= Σ.
Since all the facts of a block are symmetric to each other, each

of these facts has an equal chance to appear in a repair. In particu-

lar, every operational repair contains one fact from each block in

{𝐵1, . . . , 𝐵𝑚}, and precisely

1

|𝐵1 | × · · · × |𝐵𝑚 |

repairs of CORep1 (𝐷, Σ) contain all the facts of ℎ(𝑄). Hence,

rrfreq1

Σ,𝑄 (𝐷, 𝑐) ≥ |{𝐸 ∈ CORep1 (𝐷, Σ) | ℎ(𝑄) ⊆ 𝐸}|
|CORep1 (𝐷, Σ) |

≥
1

|𝐵1 |×···× |𝐵𝑚 | × |CORep1 (𝐷, Σ) |

|CORep1 (𝐷, Σ) |

=
1

|𝐵1 | × · · · × |𝐵𝑚 |

≥ 1

|𝐷 |𝑚

≥ 1

|𝐷 | |𝑄 |

≥ 1

(| |𝐷 | |) | |𝑄 | | ,

and the claim follows.

Proof of Item (3) of Theorem E.1. The proof of this item proceeds

similarly to the one used to prove item (3) of Theorem 5.1. Here we

highlight the key differences.

We first need to prove a result analogous to Lemma 5.4, but

for the setting of singleton operations. For an undirected graph 𝐺 ,

IS≠∅ (𝐺) denotes the set of all non-empty independent sets of 𝐺 .

Lemma E.4. Consider a non-trivially Σ-connected database 𝐷 ,
where Σ is a set of FDs. Then, |CORep1 (𝐷, Σ) | = |IS≠∅ (CG(𝐷, Σ)) |.

Proof. (⊆) Consider a candidate repair 𝐷 ′ ∈ CORep1 (𝐷, Σ).
By definition, 𝐷 ′

is consistent w.r.t. Σ, i.e., there are no two facts

𝑓 , 𝑔 of 𝐷 ′
such that {𝑓 , 𝑔} ̸|= Σ. Thus, by definition of the conflict

graph of 𝐷 w.r.t. Σ, we get that no two facts of 𝐷 ′
are connected via

an edge in CG(𝐷, Σ). Hence, 𝐷 ′
is an independent set of CG(𝐷, Σ).

It remains to show that 𝐷 ′ ≠ ∅. Since 𝐷 ′ ∈ CORep1 (𝐷, Σ), there
is a sequence 𝑠 = op

1
, . . . , op𝑛 ∈ CRS1 (𝐷, Σ) such that 𝑠 (𝐷) = 𝐷 ′

.

Since op𝑛 must be (𝑠𝑛−1 (𝐷), Σ)-justified, there must be a violation

(𝜙, {𝑓 , 𝑔}) ∈ V(𝑠𝑛−1 (𝐷), Σ), for some FD 𝜙 ∈ Σ. Moreover, since

𝑠 (𝐷) |= Σ, this is the only violation. Hence, op𝑛 = −𝑓 , and then

𝑔 ∈ 𝑠 (𝐷), or op𝑛 = −𝑔, and then 𝑓 ∈ 𝑠 (𝐷). Thus, 𝑠 (𝐷) = 𝐷 ′ ≠ ∅.
(⊇) Consider now an independent set 𝐷 ′ ∈ IS≠∅ (CG(𝐷, Σ)),

which is by definition non-empty. We have already shown in

the proof of Lemma 5.4 that one can construct a sequence 𝑠 ∈
CRS(𝐷, Σ) such that 𝑠 (𝐷) = 𝐷 ′

. In particular, by inspecting that

proof, we can see that indeed 𝑠 uses only operations of the form

−𝑓 , and thus, 𝑠 ∈ CRS1 (𝐷, Σ). Hence, 𝐷 ′ ∈ CORep1 (𝐷, Σ).

The rest of the proof proceeds in two steps. We first prove the

following result, which is analogous to Proposition 5.5. We write

♯CORepcon,1 (Σ) for the problem of computing |CORep1 (𝐷, Σ) |,
given a non-trivially Σ-connected database 𝐷 .

Proposition E.5. Unless RP = NP, there exists a set Σ of keys
over {𝑅} such that ♯CORepcon,1 (Σ) does not admit an FPRAS.

Proof. We provide a reduction from the problem of counting

non-empty independent sets of non-trivially connected graphs of

bounded degree. With ♯ISconΔ,≠∅ , for some integer Δ ≥ 0, being the

problem of computing |IS≠∅ (𝐺) |, given a non-trivially connected

graph 𝐺 with degree Δ, we first need to prove that:

Lemma E.6. Unless RP = NP, ♯ISconΔ,≠∅ has no FPRAS, for all Δ ≥ 6.

Proof. By contradiction, assume that ♯ISconΔ,≠∅ admits an FPRAS,

for some Δ ≥ 6. We then show that ♯ISconΔ admits an FPRAS, con-

tradicting Lemma B.5. Assume that A is an FPRAS for ♯ISconΔ,≠∅ . Let
A′

be the randomized algorithm that, given a non-trivially con-

nected undirected graph 𝐺 , 𝜖 > 0 and 0 < 𝛿 < 1, is such that

A′(𝐺, 𝜖, 𝛿) = A(𝐺, 𝜖, 𝛿) +1. We proceed to show that A′
is an FPRAS

for #ISconΔ . Since A is an FPRAS for ♯ISconΔ,≠∅ ,

Pr ((1 − 𝜖) · |IS≠∅ (𝐺) | ≤ A(𝐺, 𝜖, 𝛿) ≤ (1 + 𝜖) · |IS≠∅ (𝐺) |) ≥ 1 − 𝛿.

By adding 1 in all sides of the inequality, we obtain that

Pr
(
(1 − 𝜖) · |IS≠∅ (𝐺) | + 1 ≤ A′(𝐺, 𝜖, 𝛿) ≤

(1 + 𝜖) · |IS≠∅ (𝐺) | + 1) ≥ 1 − 𝛿.

Since

(1 − 𝜖) · |IS≠∅ (𝐺) | + 1 ≥ (1 − 𝜖) · |IS≠∅ (𝐺) | + 1 − 𝜖

(1 + 𝜖) · |IS≠∅ (𝐺) | + 1 ≤ (1 + 𝜖) · |IS≠∅ (𝐺) | + 1 + 𝜖,

by factorizing the terms in the two inequalities, we obtain that

(1 − 𝜖) · |IS≠∅ (𝐺) | + 1 ≥ (1 − 𝜖) · (|IS≠∅ (𝐺) | + 1)
(1 + 𝜖) · |IS≠∅ (𝐺) | + 1 ≤ (1 + 𝜖) · (|IS≠∅ (𝐺) | + 1) .

Since |IS≠∅ (𝐺) | + 1 = |IS(𝐺) |, we conclude that

Pr
(
(1 − 𝜖) · |IS(𝐺) | ≤ A′(𝐺, 𝜖, 𝛿) ≤ (1 + 𝜖) · |IS(𝐺) |

)
≥ 1 − 𝛿,

and the claim follows.

With the above lemma in place, we establish our main claim

by showing that there exists a set Σ𝐾 of keys such that, given a

non-trivially connected undirected graph 𝐺 , we can construct a

non-trivially Σ𝐾 -connected database𝐷𝐺 in polynomial time in | |𝐺 | |
such that |IS≠∅ (𝐺) | = |CORep1 (𝐷𝐺 , Σ𝐾) |. Hence, unless RP = NP,

the existence of an FPRAS for ♯CORepcon,1 (Σ𝐾) would imply an

FPRAS for ♯ISconΔ,≠∅ , contradicting Lemma E.6.

The set Σ𝐾 and the database 𝐷𝐺 are defined in exactly the same

way as in the proof of Proposition 5.5. We recall that 𝐷𝐺 and Σ𝐾
are such that |IS(𝐺) | = |IS(CG(𝐷𝐺 , Σ𝐾)) |. Hence, |IS≠∅ (𝐺) | =

|IS≠∅ (CG(𝐷𝐺 , Σ𝐾)) |. Since 𝐷𝐺 is non-trivially Σ𝐾 -connected, by
Lemma E.4, |IS≠∅ (CG(𝐷𝐺 , Σ𝐾)) | = |CORep1 (𝐷𝐺 , Σ𝐾) |. Hence,
|IS≠∅ (𝐺) | = |CORep1 (𝐷𝐺 , Σ𝐾) |, as needed.

It remains to prove a result analogous to Lemma 5.6. Let Σ𝐾 be

the set of keys provided by Proposition E.5.

Lemma E.7. Assume that RRFreq1 (Σ, 𝑄) admits an FPRAS, for
every set Σ of FDs and CQ 𝑄 . ♯CORepcon,1 (Σ𝐾) admits an FPRAS.

Proof. The proof of this claim proceeds in the same way as the

one of Lemma 5.6. The key difference is that now, given a non-

trivially Σ𝐾 -connected database 𝐷 , we must show that for the set

Σ𝐹 of FDs and the Boolean CQ 𝑄𝐹 as defined in that proof, the

database 𝐷𝐹 obtained from 𝐷 is such that

rrfreq1

Σ𝐹 ,𝑄𝐹
(𝐷𝐹 , ()) =

1��CORep1 (𝐷, Σ𝐾)
�� + 1

.

This is done using the same argument as in the proof of Lemma 5.6,

with the difference that we exploit Lemma E.4, instead of Lemma 5.4,

to prove that |CORep1 (𝐷𝐹 , Σ𝐹) | = |CORep1 (𝐷, Σ𝐾) | + 1.

It is now straightforward to see that from Proposition E.5 and

Lemma E.7, we can conclude item (3) of Theorem E.1.

E.2 Uniform Sequences
In this section, we prove the version of Theorem 6.1 that considers

singleton operations:

Theorem E.8. (1) There exist a set Σ of primary keys, and a
CQ 𝑄 such that OCQA(Σ, 𝑀us,1

Σ , 𝑄) is ♯P-hard.
(2) For a set Σ of primary keys, and a CQ 𝑄 , OCQA(Σ, 𝑀us,1

Σ , 𝑄)
admits an FPRAS.

As for Theorem 6.1, we can conveniently restate the problem of

interest as the problem of computing a “relative frequency” ratio.

Indeed, for a database 𝐷 , a set Σ of FDs, a CQ 𝑄 (𝑥), and a tuple

𝑐 ∈ dom(𝐷) |𝑥 | , P
𝑀

us,1
Σ ,𝑄

(𝐷, 𝑐) = srfreq1

Σ,𝑄 (𝐷, 𝑐), where

srfreq1

Σ,𝑄 (𝐷, 𝑐) = |{𝑠 ∈ CRS1 (𝐷, Σ) | 𝑐 ∈ 𝑄 (𝑠 (𝐷))}|
|CRS1 (𝐷, Σ) |

.

Hence, OCQA(Σ, 𝑀us,1
Σ , 𝑄 (𝑥)) coincides with the following prob-

lem, which is independent from the Markov chain generator𝑀
us,1
Σ :

PROBLEM : SRFreq1 (Σ, 𝑄 (𝑥))
INPUT : A database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
OUTPUT : srfreq1

Σ,𝑄 (𝐷, 𝑐).

We proceed to establish Theorem E.8 by directly considering the

problem SRFreq1 (Σ, 𝑄 (𝑥)) instead of OCQA(Σ, 𝑀us,1
Σ , 𝑄).

Proof of Item (1) of Theorem E.8. We provide a polynomial-time

Turing reduction from ♯Pos2DNF. In fact, the reduction is identical

to the one used to prove item (1) of Theorem E.1. We only need to

argue that, given a positive 2DNF formula 𝜑 ,

srfreq1

Σ,𝑄 (𝐷𝜑 , ()) =
|sat(𝜑) |
2
|var(𝜑) | ,

where 𝐷𝜑 , Σ and 𝑄 are as in the proof of item (1) of Theorem E.1.

A database 𝐷 is a repair in CORep1 (𝐷𝜑 , Σ) iff it keeps from

𝐷𝜑 precisely one fact 𝑉 (𝑐𝑥 ,★), for each variable 𝑥 of 𝜑 . Hence,

|CORep1 (𝐷𝜑 , Σ) | = 2
|var(𝜑) |

. Moreover, since no two violations

in V(𝐷𝜑 , Σ) share a fact, each such a repair is the result of pre-

cisely |var(𝜑) |! sequences of CRS1 (𝐷𝜑 , Σ) (i.e., operations can

be applied in any order). Hence, |CRS1 (𝐷𝜑 , Σ) | = 2
|var(𝜑) | ·

|var(𝜑) |!. Thus, with CRS1 (𝐷𝜑 , Σ, 𝑄) being the set of sequences

𝑠 of CRS1 (𝐷𝜑 , Σ) such that 𝑠 (𝐷𝜑) |= 𝑄 , it is straightforward to see

that |CRS1 (𝐷𝜑 , Σ, 𝑄) | = |sat(𝜑) | · |var(𝜑) |!. Therefore,

srfreq1

Σ,𝑄 (𝐷𝜑 , ()) =
|CRS1 (𝐷𝜑 , Σ, 𝑄) |
|CRS1 (𝐷𝜑 , Σ) |

=
|sat(𝜑) | · |var(𝜑) |!
2
|var(𝜑) | · |var(𝜑) |!

=
|sat(𝜑) |
2
|var(𝜑) | ,

and the claim follows.

Proof of Item (2) of Theorem E.8. As for item (2) of Theorem 6.1,

the proof consists of two steps: (1) existence of an efficient sampler,

and (2) provide a polynomial lower bound on the target ratio.

We first show that an efficient sampler exists.

Lemma E.9. Given a database 𝐷 , and a set Σ of primary keys, we
can sample elements of CRS1 (𝐷, Σ) uniformly at random in polyno-
mial time in | |𝐷 | |.

Proof. The algorithm SampleSeq (Algorithm 1) that is used to

sample elements of CRS(𝐷, Σ) can be used to sample elements of

CRS1 (𝐷, Σ) as well. The only difference lies on the set of (𝑠 (𝐷), Σ)-
justified operations that, in the case of CRS(𝐷, Σ) consists of

both single-fact removals and pair removals, while in the case of

CRS1 (𝐷, Σ) it consists only of single-fact removals.

We now show the polynomial lower bound on the target ratio.

Lemma E.10. Consider a set Σ of primary keys, and a CQ 𝑄 (𝑥).
For every database 𝐷 , and tuple 𝑐 ∈ dom(𝐷) |𝑥 | ,

srfreq1

Σ,𝑄 (𝐷, 𝑐) ≥ 1

(| |𝐷 | |) | |𝑄 | |

whenever srfreq1

Σ,𝑄 (𝐷, 𝑐) > 0.

Proof. Let𝐷 be a database. If there is no homomorphismℎ from

𝑄 to 𝐷 such that ℎ(𝑄) |= Σ and ℎ(𝑥) = 𝑐 , then clearly it holds that

srfreq1

Σ,𝑄 (𝐷, 𝑐) = 0.

We now consider the case where such a homomorphism ℎ exists.

Assume that |ℎ(𝑄) | = 𝑚 for some 1 ≤ 𝑚 ≤ |𝑄 |. As in the proof

of Lemma E.3, let 𝐵1, . . . , 𝐵𝑛 be the blocks of 𝐷 w.r.t. Σ. Assume,

w.l.o.g., that the facts of ℎ(𝑄) belong to the blocks 𝐵1, . . . , 𝐵𝑚 .

Since all the facts of a block are symmetric to each other, if for

some 𝑓 ∈ 𝐵𝑖 , there are 𝑚 sequences 𝑠 in CRS1 (𝐵𝑖 , Σ) such that

𝑓 ∈ 𝑠 (𝐵𝑖), then the same holds for every fact 𝑔 ∈ 𝐵𝑖 . Moreover,

since every operational repair of RL(𝑀us,1
Σ) keeps precisely one

fact from each block, and the blocks are independent (in the sense

that an operation over some block has no impact on the justified

operations of another block), we can conclude that precisely

1

|𝐵1 | × · · · × |𝐵𝑚 |
of the sequences 𝑠 inCRS1 (𝐷, Σ) are such thatℎ(𝑄) ⊆ 𝑠 (𝐷) (i.e., the
sequence 𝑠 keeps the fact 𝐵𝑖 ∩ ℎ(𝑄) for every 𝐵𝑖 ∈ {𝐵1, . . . , 𝐵𝑚}).

We then have that

srfreq1

Σ,𝑄 (𝐷, 𝑐) ≥ |{𝑠 ∈ CRS1 (𝐷, Σ) | ℎ(𝑄) ⊆ 𝑠 (𝐷)}|
|CRS1 (𝐷, Σ) |

≥
1

|𝐵1 |×···× |𝐵𝑚 | × |CRS1 (𝐷, Σ) |

|CRS1 (𝐷, Σ) |

=
1

|𝐵1 | × · · · × |𝐵𝑚 |

≥ 1

|𝐷 |𝑚

≥ 1

|𝐷 | |𝑄 |

≥ 1

(| |𝐷 | |) | |𝑄 | | ,

and the claim follows.

E.3 Uniform Operations
In this last section, we prove that item (1) of Theorem 7.1 holds also

in the case of singleton operations.

Theorem E.11. There exist a set Σ of primary keys, and a CQ 𝑄

such that OCQA(Σ, 𝑀uo,1
Σ , 𝑄) is ♯P-hard.

Proof. We use the reduction form the proof of Theorem E.1(1).

We only need to argue that, given a positive 2DNF formula 𝜑 ,

P
𝑀

uo,1
Σ ,𝑄

(𝐷𝜑 , ()) =
|sat(𝜑) |
2
|var(𝜑) | ,

where 𝐷𝜑 , Σ and 𝑄 are as in the proof of item (1) of Theorem E.1.

Let𝑀
uo,1
Σ (𝐷𝜑) = (𝑉 , 𝐸, P). By the definition of the Markov chain

generator, RL(𝑀uo,1
Σ (𝐷𝜑)) = CRS1 (𝐷𝜑 , Σ). Moreover, we note that

each variable 𝑥 of 𝜑 induces a violation {𝑉 (𝑐𝑥 , 0),𝑉 (𝑐𝑥 , 1)} in 𝐷𝜑 ,

which can be resolved with one of two operations removing a single

fact. Hence, every complete sequence in CRS1 (𝐷𝜑 , Σ) is of length
precisely |var(𝜑) |, and for every non-leaf node 𝑠 ∈ 𝑉 that is also in

Ops1

𝐷𝜑
(Σ,), |Ops1

𝑠 (𝐷𝜑 , Σ) | = 2· (|var(𝜑) |−|𝑠 |). Hence, by Definition
of 𝑀

uo,1
Σ , with 𝜋 being the leaf distribution of 𝑀uo

Σ (𝐷𝜑), for each
𝑠 = op

1
, . . . , op𝑛 ∈ CRS1 (𝐷𝐺 , Σ) = RL(𝑀uo,1

Σ (𝐷𝜑)),

𝜋 (𝑠) = P(𝑠0, 𝑠1) · · · P(𝑠𝑛−1, 𝑠𝑛) =
1

2
|var(𝜑) | · |var(𝜑) |!

.

This means that each sequence 𝑠 ∈ CRS1 (𝐷𝜑 , Σ) = RL(𝑀uo,1
Σ (𝐷𝜑))

is assigned the same non-zero probability, i.e., 𝜋 is the uniform distri-

bution overCRS1 (𝐷𝜑 , Σ). The latter implies that P
𝑀

uo,1
Σ ,𝑄

(𝐷𝜑 , ()) =
srfreq1

Σ,𝑄 (𝐷𝜑 , ()). As we have already seen that

rrfreq1

Σ,𝑄 (𝐷𝜑 , ()) = srfreq1

Σ,𝑄 (𝐷𝜑 , ()) =
|sat(𝜑) |
2
|var(𝜑) |

the claim follows.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Operational CQA
	4 Uniform Operational CQA
	5 Uniform Repairs
	6 Uniform Sequences
	7 Uniform Operations
	8 Future Work
	References
	A Uniform Operational CQA
	A.1 Uniform Repairs
	A.2 Uniform Sequences
	A.3 Uniform Operations

	B Proofs of Section 5
	B.1 Proof of Item (1) of Theorem 5.1
	B.2 Proof of Item (2) of Theorem 5.1
	B.3 Proof of Item (3) of Theorem 5.1

	C Proofs of Section 6
	C.1 Proof of Item (1) of Theorem 6.1
	C.2 Proof of Item (2) of Theorem 6.1

	D Proofs of Section 7
	D.1 Proof of Item (1) of Theorem 7.1
	D.2 Proof of Item (2) of Theorem 7.1
	D.3 The case of Functional Dependencies
	D.4 Proof of Theorem 7.5

	E Singleton Operations
	E.1 Uniform Repairs
	E.2 Uniform Sequences
	E.3 Uniform Operations

