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Figure 1: Our Skeleton2Humanoid system can directly synthesize a complete humanoid character transition motion in a
physics simulator (Bottom) given past keyframes and a future keyframe (Top). Our system can produce both accurate and
physically-plausible character motions.

ABSTRACT
Human motion synthesis is a long-standing problem with various
applications in digital twins and the Metaverse. However, modern
deep learning based motion synthesis approaches barely consider
the physical plausibility of synthesized motions and consequently
they usually produce unrealistic human motions. In order to solve
this problem, we propose a system “Skeleton2Humanoid” which
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performs physics-oriented motion correction at test time by regu-
larizing synthesized skeleton motions in a physics simulator. Con-
cretely, our system consists of three sequential stages: (I) test time
motion synthesis network adaptation, (II) skeleton to humanoid
matching and (III) motion imitation based on reinforcement learn-
ing (RL). Stage I introduces a test time adaptation strategy, which
improves the physical plausibility of synthesized human skeleton
motions by optimizing skeleton joint locations. Stage II performs
an analytical inverse kinematics strategy, which converts the op-
timized human skeleton motions to humanoid robot motions in a
physics simulator, then the converted humanoid robot motions can
be served as reference motions for the RL policy to imitate. Stage III
introduces a curriculum residual force control policy, which drives
the humanoid robot to mimic complex converted reference motions
in accordance with the physical law. We verify our system on a
typical human motion synthesis task, motion-in-betweening. Ex-
periments on the challenging LaFAN1 dataset show our system can
outperform prior methods significantly in terms of both physical
plausibility and accuracy. Code will be released for research pur-
poses at: https://github.com/michaelliyunhao/Skeleton2Humanoid.
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1 INTRODUCTION
Synthesizing both accurate and realistic virtual human motions has
been a widely explored but challenging task in computer vision
and graphics [48, 49] with various applications in digital twins and
the Metaverse. Recently, deep learning sheds light onto a way to
generate accurate human motions and has been applied to various
motion synthesis tasks, such as human motion prediction [2–4,
11, 16, 17, 53–55, 60], human motion completion [31, 58, 59] and
human motion in-betweening [1, 47, 56, 57]. Although they have
shown great performance on synthesizing accurate human body
motions with small skeleton joint errors comparing with ground
truth motions, they fail to model the motions under the physics
laws. Consequently, the synthesized motions are usually physically
implausible. For example, the synthesized feet often penetrate the
ground, the body joints are rotated with impossible angles, the
whole body motions are unsmooth, the synthesized feet slide back
and forth while they should be in static and touch the ground.
These synthesized artifacts significantly limits the application of
motion synthesis on the virtual human animation and the incoming
Metaverse because they easily make humans feel unrealistic.

Utilizing humanoid characters in a physics simulator to optimize
motions is a promising solution because the physics simulator can
guarantee the physical plausibility of the generated motions. Prior
works [39, 40, 52] utilized reinforcement learning (RL) to actuate
the humanoid character to imitate various reference mocap data
for creating physical character animation. Inspired by them, Recent
works [8, 29] also attempted to utilize RL to imitate motions synthe-
sized by deep neural networks, in the format of skeletons or SMPL
[9] models, aiming at producing physically-plausible motions for
3D pose estimation. However, these methods are only validated
on simple motions such as walking and talking in the Human3.6m
dataset and cannot generalize well to complex motions or irregular
motions. In addition, RL based imitation requires transferring syn-
thesized human skeleton motions to humanoid motions, where a
humanoid character should be carefully designed to exactly match
the human skeletons in terms of both shapes and the kinematics
tree. This limits RL based imitation to transfer motions between
skeleton and humanoid with different shapes and kinematics trees.

To address these issues, we propose Skeleton2Humanoid, a novel
system which is able to improve the physical plausibility of the
motions synthesized from motion synthesis networks, though the
transfer from human skeleton motions to humanoid character mo-
tions. Our Skeleton2Humanoid system consists of three sequential

stages: (I) Test Time Motion Synthesis Network Adaptation:
We adapt the motion synthesis network with a few gradients on
the test data using two new self-supervised losses, a foot contact
consistency loss and a motion smoothness loss, which can improve
the physical plausibility of the predicted motions. (II) Skeleton to
HumanoidMatching:Wematch the synthesized human skeleton
motions to humanoid character motions by a novel general analyti-
cal inverse kinematic method. Inverse kinematics is able to convert
human skeleton motions to humanoid motions even when the body
structure is different from the human skeleton. (III) Motion Imi-
tation base on RL: Finally, we animate the humanoid character to
imitate various synthesized motions. Specifically, based on recent
work [26, 29], we propose a curriculum residual force control hu-
manoid control policy (CRP) by introducing a curriculum learning
paradigm that dynamically adjusts a residual force scale during RL
training, which can improves asymptotic RL performance on imi-
tating various synthesized motions. To verify the effectiveness of
our Skeleton2Humanoid system, we select “motion in-betweening”
task, as it is a recent proposed challenging motion prediction task
[1, 47] for evaluation. Motion in-betweening aims at predicting
the transition motions between the past given keyframes and a
provided future keyframe. Experiments on challenging LaFAN1
dataset show the superiority of our Skeleton2Humanoid system.

The main contributions of this paper are as follows: (1) We
present Skeleton2Humanoid, a new system that converts human
skeleton motions to humanoid character motions to produce physi-
cal plausible motions. (2) Our proposed test time adaptation stage
can further improve the prediction accuracy and physical plausibil-
ity on large mocap dataset LaFAN1 for the motion in-betweening
task. With test time adaptation, we achieve a new benchmark accu-
racy on the motion in-betweening task. (3) Our proposed curricu-
lum residual force control policy enables finer character control and
outperforms prior arts on motion imitation. (4) Our whole Skele-
ton2Humanoid system significantly improves the performance of
human in-betweeningmotions on physical plausibility and achieves
comparable motion prediction accuracy.

2 RELATEDWORK
Human/character motion synthesis: Motion synthesis is a gen-
eral term which contains several tasks including motion prediction,
in-betweening and completion. Motion prediction aims at predict-
ing future human motions given past motions. Deterministic mo-
tion prediction estimates a single accurate motion and prior works
used various network architectures including recurrent neural net-
work [2–4], graph convolution network [61] or transformer [16]
to model human motions. Stochastic motion prediction produces
diverse future human motions by utilizing generative model such
as VAE [6, 17, 55, 66], GAN [12, 14, 65]. Motion completion and
in-betweening aim at filling gaps of motion with predefined key-
frame constraints. Current works utilized convolution networks
[31, 57, 59, 62], recurrent networks [1, 63] or transformers [47] to
synthesize accurate and consistent results. For instance, Harvey et
al. [1] proposed a transition generation technique based on recur-
rent neural networks for motion in-betweening task. Duan et al.
[47] utilized transformer architecture to model human motions in a
sequence-to-sequence manner for the motion in-betweening task.

https://doi.org/10.1145/3503161.3548093
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Figure 2: An overview of our Skeleton2Humanoid system on the motion in-betweening task. Given the test data containing
past keyframes𝑚−9:0 and a future keyframe𝑚𝑇 , Stage I optimizes skeleton joint locations by test time adaptation and produces
more plausible skeletonmotions �̂�1:𝑇−1. Stage II converts the optimized skeletonmotions �̂�1:𝑇−1 to humanoidmotions �̃�1:𝑇−1
in the physics simulator by analytical inverse kinematics. Stage III finally drives the humanoid to mimic converted skeleton
motions �̃�1:𝑇−1 to produce physically-plausible humanoid motions𝑚1:𝑇−1.

Test TimeAdaptation: Test time adaptation is a recently proposed
method that utilize the self-supervised distribution information
from the test data presented at test time to quickly adapt models
with a few gradient steps [32, 33, 36], which can further improve
the model performance on test data. The first work [32] introduced
test time adaptation by proposing an auxiliary branch with self-
supervised rotation prediction loss to adapt the classification model.
Wang et al. [36] minimized the predicted entropy of classification
model on test data to improve the performance. Recently, more
works start to utilize test time adaptation on the 2D/3D human
pose related task [34, 35]: For instance, Guan et al. [35] proposed
an online bilevel adaptation framework for 3D human mesh recon-
struction which greatly improves model generalization. In contrast
to other works, Our approach is the first one to study test time
adaptation on the human motion in-betweening task.
Reinforcement Learning for Humanoid Character Control:
Deep RL is a promising approach for learning character control
policies [37–41] to help character perform various motions. Peng et
al. [39] first utilize hand craft rewards to imitate a single sequence
of human poses. Recently, some works [8, 29, 42, 43, 51] used RL to
produce simple humanmotions from egocentric videos for ego-pose
estimation or 3d human pose estimation. Yuan et al. [26] proposed
to add external residual forces and help characters to better imitate
agile single reference motions. In addition, some works [44–46]
utilized deep RL to learn a interactive controllable policies from
large motion capture data for character animation. However, Prior
works mostly focused on learning control policies on motion cap-
ture data, while we learn a policy to imitate synthesized motions.
We propose a curriculum residual force control policy (CRP) that
can better imitate diverse motions.

3 APPROACH
3.1 System Overview
The human motion in-betweening task can be formulated as: given
the past 10 human skeleton poses 𝑚−9:0 and a future skeleton
keyframe 𝑚𝑇 at time T, we want to recover the ground truth

Figure 3: Details of our test time adaptation method. 𝑞,
^𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , FK and 𝑝 represent the predicted root positions, the

contact prediction of feet joints, the forward kinematic pro-
cess and 3d joint positions for human skeleton, respectively.

transition motions𝑚1:𝑇−1. Given a pretrained typical motion in-
betweening network [1], our Skeleton2Humanoid performs a physics-
oriented motion correction consists of 3 stages as presented in Fig.
2 to optimize synthesized in-betweening motions. Stage I optimizes
the pretrained motion in-betweening network at test time to pre-
dict more physically-plausible skeleton transition motions �̂�1:𝑇−1.
Then Stage II transfers the optimized skeleton motions �̂�1:𝑇−1 to
humanoid motions �̃�1:𝑇−1 through analytical inverse kinematics.
Finally, Stage III learns a curriculum residual force control policy
to imitate the transferred humanoid motions �̃�1:𝑇−1 to produce
physically-plausible humanoid motions𝑚1:𝑇−1.

In our Skeleton2Humanoid framework,𝑚𝑡 and �̂�𝑡 are skeleton
motions, and𝑚𝑡 is represented by𝑚𝑡 ≜ (𝑞𝑡 , 𝑟𝑡 , 𝑝𝑡 ), where𝑞𝑡 and 𝑟𝑡
denote body joint angles in quaternions and root translation, 𝑝𝑡 de-
notes 3d joint positions calculated by forward kinematics. Similarly,
�̂�𝑡 ≜ (𝑞𝑡 , 𝑟𝑡 , 𝑝𝑡 ). In addition, �̃�𝑡 and𝑚𝑡 are humanoid motions, �̃�𝑡

is represented by �̃�𝑡 ≜ (𝑞𝑡 , 𝑟𝑡 , 𝑝𝑡 ), where 𝑞𝑡 , 𝑟𝑡 and 𝑝𝑡 denote joint
angles in euler angles, root translation and 3d joint positions of the
reference humanoid motions. Similarly,𝑚𝑡 ≜ (𝑞𝑡 , 𝑟𝑡 , 𝑝𝑡 ).

3.2 Test Time Motion In-betweening Network
Adaptation

3.2.1 Adaptation for Physically-plausible Skeleton Motion. Previ-
ous human motion in-betweening model [1] has shown great per-
formance on synthesizing accurate human motions. However, it
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still suffers from implausibility on testing data because of the do-
main shift between training data and testing data. For example, the
synthesized human motions usually have the foot sliding problem
which makes motions look strange and it is hard for humanoid in
a physics simulator to imitate this motion. In addition, the root
joint velocity of the synthesized human motion sometimes changes
drastically and results in on unsmooth motion. Inspired by these
observations, we propose a test time adaptation method which
updates the motion in-betweening network on test data and design
two new self-supervised losses for test time adaptation.
Foot contact consistency loss: We encourage that the feet should
be in static contact with the ground when performing various
motions. The loss is:

𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =

𝑡=𝑇−2∑︁
𝑡=0

∑︁
𝑓 𝑜𝑜𝑡 ∈𝐹

���𝑝 𝑓 𝑜𝑜𝑡𝑡+1 − 𝑝
𝑓 𝑜𝑜𝑡
𝑡

��� · ^𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑓 𝑜𝑜𝑡

𝑡+1 , (1)

where 𝑃 𝑓 𝑜𝑜𝑡
𝑡 is the predicted 3D position of the foot joint at time

t, 𝐹 is a subset of joints which contains all foot-related joints, i.e.
"left ankle", "right ankle", "left front feet" and "right front feet".

^𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑓 𝑜𝑜𝑡

𝑡+1 represents the predicted contact probability for the
foot joint at time t.
Motion smoothness loss: We encourage the root joint positions
along the time axis to be smooth. The motion smoothness loss is:

𝐿𝑠𝑚𝑜𝑜𝑡ℎ =

𝑇−2∑︁
𝑡=0

∥𝑟𝑡+1 − 𝑟𝑡 ∥2 , (2)

where 𝑟𝑡 is the 3D position of root joint at time t.
By utilizing these two losses, we can optimize the motion in-

betweening network which is trained on the training set given the
test set. In the following section, we will introduce our method in
detail.

3.2.2 Implementation Detail. Now, we describe the training phase
and the testing phase of our test time adaptation method, respec-
tively.

During training, as shown in Fig. 3, we select the typical motion
in-betweening network [1] as our baseline to generate transition
human skeleton motions. The training process is the same as [1].
The training loss is formulated as:

𝐿𝑡𝑟𝑎𝑖𝑛 = 𝐿𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝛼𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , (3)
where 𝐿𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the sum of all the training losses used in [1],
𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the foot contact consistency loss, and 𝛼 is a constant
coefficients.

During testing, we only use the self-supervised losses to update
the motion in-betweening model for several epochs on the whole
test data. The testing loss is formulated as:

𝐿𝑡𝑒𝑠𝑡 = 𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 + 𝛽𝐿𝑠𝑚𝑜𝑜𝑡ℎ, (4)
where 𝛽 is a constant coefficients. After test time adaptation, the mo-
tion in-betweening network is able to produce optimized plausible
skeleton motions �̂�1:𝑇−1.

3.3 Skeleton to Humanoid Matching
After acquiring optimized skeleton motions �̂�1:𝑇−1 from stage I,
we then transfer the skeleton motions �̂�1:𝑇−1 to corresponding
humanoid motions �̃�1:𝑇−1 which can be imitated by RL. To achieve

Figure 4: Illustration of skeleton to humanoidmatching pro-
cess in left elbow. (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤), (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) and (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 ) rep-
resent the world coordinate, the child coordinate(left elbow)
and the parent coordinate(left shoulder) respectively.

this, recent works [8, 29] constructed a humanoid model which is
exactly the same as the skeleton or the SMPL model in shapes and
kinematics tree, hence it is easy to transfer the motions to humanoid
motions with no error because they can directly transfer the axis-
angles of the SMPL model to the corresponding euler angles of
humanoid. However, we emphasize that it is not suitable for all
cases in practice.

First, this method is not general and cumbersome because it
needs to carefully construct a humanoid model and it is not possible
to flexibly transfer motions between human skeleton and humanoid
with different shapes and kinematics trees. Second, constructing
an exactly same humanoid model is an ideal solution because the
pose of humanoid �̃�𝑡 in the physics simulator is represented by
euler angles 𝑞𝑡 with specific ranges which corresponds body joints
constraints. For example, the euler angle of the shoulder joint in z
axis is usually between -90 and 90 degrees. However, transferring
the quaternions of the skeleton to the corresponding euler angles
of humanoid in a specific range is actually an ill-posed problem.
The range of the euler angle in each axis is between -180 and 180
degrees, hence one rotation can be represented by many different
euler angles. For human skeletons with strange poses or strange
kinematics trees, it is difficult to transfer the quaternions to the
corresponding euler angles in a specific range.

To solve this problem, inverse kinematics is a solution that can
convert the 3d joint positions of skeleton into the euler angles of
humanoid. Analytical Inverse kinematics calculates the rotation
vectors at the end of a kinematic chain in a given position and can
match motions between skeletons and humanoids with different
shapes and kinematics trees. Previous works use analytical inverse
kinematics [18, 19] to convert the 3d joint positions of skeleton to
the axis-angles of the SMPL model. We extend their works to con-
vert 3d joint positions of skeleton to the euler angles of humanoid
via specific matching equations. Concretely, we select a suitable
axis definition for each joint of the skeleton that can compute the
corresponding euler angle of the humanoid model. We take the left
elbow for instance to describe the detailed matching process in Fig.
4. Following [19], we consider the skeleton and the humanoid as
articulated bodies with pairs of parent-children joints. Suppose the
parent and the child coordinate system of joints in 3d skeleton is
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denoted as [x𝑝 , y𝑝 , z𝑝 ] and [x𝑐 , y𝑐 , z𝑐 ], then the parent and child
coordinate system of the left elbow is calculated by Eqn. 24,


[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑙𝑠−𝑙𝑒
|𝑙𝑙𝑠−𝑙𝑒 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , −𝑙𝑙𝑠−𝑙𝑒 ⊗ 𝑙𝑙𝑒−𝑙𝑤
|𝑙𝑙𝑠−𝑙𝑒 ⊗ 𝑙𝑙𝑒−𝑙𝑤 |

]
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑙𝑒−𝑙𝑤
|𝑙𝑙𝑒−𝑙𝑤 | ,

z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

, z𝑝

] , (5)

where each item (e.g., x𝑐 ) is a 3*1 vector in world coordinate sys-
tem. I𝑎−𝑏 indicates the vector pointing from joint 𝑎 to joint 𝑏 and
subscripts 𝑙𝑠 , 𝑙𝑒 , 𝑙𝑤 denote left shoulder, left elbow and left wrist,
respectively. Specifically, 𝑙𝑙𝑒−𝑙𝑤 means the vector pointing from the
left elbow joint to the left wrist joint. Then we can calculate the
euler angle E of the left elbow of the humanoid via Eqn. 6,



®𝑁 = [𝑛0, 𝑛1, 𝑛2] = [x𝑐 · x𝑇𝑝 , x𝑐 · y𝑇𝑝 , x𝑐 · z𝑇𝑝 ]
®𝑂 = [𝑜0, 𝑜1, 𝑜2] = [y𝑐 · x𝑇𝑝 , y𝑐 · y𝑇𝑝 , y𝑐 · z𝑇𝑝 ]
®𝐴 = [𝑎0, 𝑎1, 𝑎2] = [z𝑐 · x𝑇𝑝 , z𝑐 · y𝑇𝑝 , z𝑐 · z𝑇𝑝 ]

E𝑧 = 𝑎𝑡𝑎𝑛2(𝑛1
𝑛0

)

E𝑦 = 𝑎𝑡𝑎𝑛2( −𝑛2
𝑛0 ∗ 𝑐𝑜𝑠 (E𝑧) + 𝑛1 ∗ 𝑠𝑖𝑛(E𝑧)

)

E𝑥 = 𝑎𝑡𝑎𝑛2( −𝑎1 ∗ 𝑐𝑜𝑠 (E𝑧) + 𝑎0 ∗ 𝑠𝑖𝑛(E𝑧)
𝑜1 ∗ 𝑐𝑜𝑠 (E𝑧) − 𝑜0 ∗ 𝑠𝑖𝑛(E𝑧)

)

E =
[
E𝑧 ,E𝑦,E𝑥

]

, (6)

where E is the euler angle of the humanoid model in z-y-x rota-
tion order. After applying the similar matching operation on the
other joints of the humanoid, the whole human skeleton motions
�̂�10:𝑇−1 can be converted to humanoid motions �̃�10:𝑇−1. In ad-
dition, because the matching process is applied frame by frame,
the values of the converted euler angles usually flip and become
discontinued due to the 𝑎𝑡𝑎𝑛2 process in equation 6. We correct
the values of euler angles by adding a temporally checking process,
suppose E𝑡

𝑧 is a euler angle of a joint in z axis at time t,{
E𝑡+1
𝑧 = E𝑡+1

𝑧 + 2𝜋, if E𝑡
𝑧 > 0and|E𝑡+1

𝑧 − E𝑡
𝑧 | > 𝜆

E𝑡+1
𝑧 = E𝑡+1

𝑧 − 2𝜋, if E𝑡
𝑧 <= 0and|E𝑡+1

𝑧 − E𝑡
𝑧 | > 𝜆

, (7)

where 𝜆 is a threshold value for checking if the euler angles are
discontinued or not and we set 𝜆 to 5. In the end, we can convert
the synthesized skeleton motions �̂�1:𝑇−1 to humanoid motions
�̃�1:𝑇−1.

3.4 Motion Imitation based on RL
After getting the converted humanoid motions �̃�1:𝑇−1, they are
still physically implausible due to lack of physical constraint. Mo-
tivated by [8, 26, 29], we utilize reinforcement learning to learn a
curriculum residual force control policy 𝜋𝐶𝑅𝑃 which can imitate
�̃�1:𝑇−1 to generate physically-plausible humanoid motions𝑚1:𝑇−1.
The motion imitation problem is usually formulated as a Markov
decision process. Given a reference motion and current state 𝑠𝑡 , the
humanoid agent interacts with the physics simulator environment
by action 𝑎𝑡 and receive reward 𝑟𝑡 . The action is produced by a
policy 𝜋𝐶𝑅𝑃 (𝑎𝑡 |𝑠𝑡 ) conditioned on state 𝑠𝑡 . The reward encourages
the agent to act like the reference motion. When an action is taken,

Figure 5: Overview of a curriculum residual force control
policy 𝜋𝐶𝑅𝑃 . Our 𝜋𝐶𝑅𝑃 can actuate the humanoid to itera-
tively imitate the reference pose in next one frame precisely
given the reference pose in next two frames.

the current agent state 𝑠𝑡 changes to next state 𝑠𝑡+1. The goal of
the motion imitation is to learn a policy that can maximizes the
average cumulative rewards.

3.4.1 Motion Imitation Paradigm. Here we detail the states, actions,
rewards and the training process.
State. Previous work [8, 26, 39] construct the humanoid state 𝑠𝑡
which contains the information of the character’s current pose
and the information of the reference pose in the next frame. We
utilize the information of the reference pose in the next two frames
that can learn a finer control policy. Specifically, the state 𝑠𝑡 ≜
(𝑞𝑡 , 𝑣𝑡 , 𝑞𝑡+1, 𝑣𝑡+1, 𝑞𝑡+2) and we apply a hand-craft feature extrac-
tion to obtain informative features 𝑓𝑡 as the input of 𝜋𝐶𝑅𝑃 from
𝑠𝑡 . We formulate 𝑓𝑡 ≜ (𝑞𝑡 , 𝑣𝑡 , 𝑗𝑡 , 𝑔𝑡 , (𝑞𝑡+1 − 𝑞𝑡 ), ( �̃�𝑡+1 − 𝑗𝑡 ), (𝑔𝑡+1 −
𝑔𝑡 ), (𝑣𝑡+1−𝑣𝑡 ), (𝑞𝑡+2−𝑞𝑡 ), ( �̃�𝑡+2− 𝑗𝑡 ), (𝑔𝑡+2−𝑔𝑡 ), (𝑣𝑡+2−𝑣𝑡 )), where
𝑞𝑡 is the euler angle of the simulated humanoid, 𝑣𝑡 is the joint veloc-
ity computed by finite difference, 𝑗𝑡 and 𝑔𝑡 are the 3d joint position
in local head coordinates and global coordinates, 𝑞𝑡+1 is the euler
angle of reference pose in time t+1, 𝑣𝑡+1 the joint velocity of the
reference pose in time t+1, �̃�𝑡+1 and 𝑔𝑡+1 are the 3d joint position of
the reference pose in local head coordinates and global coordinates.
Action. Following prior works [8, 26, 29], we utilize proportional
derivative (PD) controller [28] at each non-root joint to generate
torques. Under this setting, the action 𝑎𝑡 is the target joint angles𝑢𝑡
of the PD controllers. The joint torques 𝜏𝑡 are specifically calculated
by:

𝜏𝑡 = 𝑘𝑝 ◦ (𝑢𝑡 − 𝑞𝑡 ) − 𝑘𝑑 ◦ ¤𝑞𝑡 , (8)
where 𝑘𝑝 and 𝑘𝑑 are manually defined parameters and ◦ is element-
wise multiplication. The PD controllers act like damped springs that
drive joints to target angles𝑢𝑡 , while 𝑘𝑝 and 𝑘𝑑 are the stiffness and
damping of the springs. Prior works [26, 29] also allowed the policy
to apply external residual forces 𝜂𝑡 = 𝑘𝑟 ◦ 𝑆𝑟 to joints to improve
the motion imitation performance, 𝑆𝑟 is a predefined residual force
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scale and 𝑘𝑟 ∈ [0, 1] is a weighting parameter learned by policy
. In section 3.4.2, we will introduce our curriculum residual force
learning that can dynamically adjust the residual force scale 𝑆𝑟 in
RL training. Overall, our action is 𝑎𝑡 ≜ (𝑢𝑡 , 𝜂𝑡 ).
Reward. Following [26, 29], we implement the same reward func-
tion that encourages the policy to mimic the reference pose.

3.4.2 Curriculum Learning for Residual Forces. The residual forces
𝜏𝑡 proposed by [26] aims at utilizing additional forces to enable finer
control of the humanoid character. Recent works [8, 26] used it to
perform humanoid motions with extra interaction such sitting on
the chair even there is no chair in the physics simulator. However,
large scale residual forces will make humanoids perform some
unnatural motions or overly energetic movements. Meanwhile,
removing the residual forces will cause the low converge speed
of RL and a bad imitation performance. To balance the trade-off
between the motion naturalness and the imitation performance, we
propose a curriculum learning strategy that gradually adjusts the
residual force scale in the training of reinforcement learning.

Starting from a large residual forces, we gradually decrease the
residual force scale in RL training. Suppose 𝑖 is the training iteration
of PPO RL algorithm, 𝑆𝑟 is residual force scale which is adjusted
by:

𝑆𝑟 =


𝑆𝑖𝑛𝑖𝑡𝑟 , if 0 ≤ 𝑖 ≤ 𝑖𝑠𝑡𝑎𝑟𝑡

𝑆𝑖𝑛𝑖𝑡𝑟 − 𝛼 ∗ (𝑖 − 𝑖𝑠𝑡𝑎𝑟𝑡 ), if 𝑖𝑠𝑡𝑎𝑟𝑡 ≤ 𝑖 ≤ 𝑖𝑒𝑛𝑑

𝑆𝑖𝑛𝑖𝑡𝑟 − 𝛼 ∗ (𝑖𝑒𝑛𝑑 − 𝑖𝑠𝑡𝑎𝑟𝑡 ), if 𝑖 ≥ 𝑖𝑒𝑛𝑑

, (9)

where 𝑖𝑠𝑡𝑎𝑟𝑡 and 𝑖𝑒𝑛𝑑 are the start and end iterations of the curricu-
lum, and 𝛼 is a hyper-parameter indicating the changing rate of 𝑆𝑟 .
We empirically set 𝑆𝑖𝑛𝑖𝑡𝑟 = 220, 𝑖𝑒𝑛𝑑 = 1300, 𝑖𝑠𝑡𝑎𝑟𝑡 = 100, 𝛼 = 0.1
and train RL for 1500 iterations. By introducing curriculum learn-
ing for residual forces, the policy can quickly learn to imitate the
reference motion precisely with the help of large residual forces
and learn to maintain the imitation performance while getting rid
of large residual forces.

4 EXPERIMENTS
In this section, we perform experimental evaluations of our Skele-
ton2Humanoid system on the motion realism and accuracy, then
we analyze the properties of the test time adaptation stage, the
skeleton to humanoid matching stage and the motion imitation
stage based on RL individually.
Dataset. To demonstrate the effectiveness of our Skeleton2Humanoid
system on the motion in-betweening task, We employ the follow-
ing datasets in our experiments: (1) LaFAN1 [1], which is a widely
used large scale dataset for evaluating motion in-betweening per-
formance. LaFAN1 dataset contains various complex motions such
as fighting, crawling and climbing obstacles. To be noticed, We only
evaluate the test time adaptation stage of our Skeleton2Humanoid
system on LaFAN1 dataset and we will explain it later. (2) Noob-
jects LaFAN1 is a subset of LaFAN1 dataset for evaluating the
physical plausibility of our synthesized in-betweening motions.
LaFAN1 dataset contains many human object interaction motions
such as climbing obstacles and we can not construct objects in
the physics simulator due to the absence of the ground truth of

3d objects, hence we remove these motions and only consider hu-
man motions performing on the ground. We evaluate our whole
Skeleton2Humanoid system on this dataset.
EvaluationMetrics.Weuse the followingmetrics including physics-
based and accuracy-based metrics for all following evaluations: (1)
FP, which is the foot penetration that computes the mean pene-
tration distance of feet joints and ground following [64]. (2) FQ,
which computes the frequency of the penetrations between the
feet and ground penetrations. (3) JQ, which similarly computes the
frequency of penetrations between all the joints and the ground. (4)
SM, which represents motion smoothness that computes the aver-
age L2 distance between body joints within two adjacent frames. (5)
MPJPE, which is the mean per joint position error for evaluating
the mismatch between poses. (6) L2Q and L2P, where L2Q denotes
the the average L2 distances of the global quaternions between the
predicted motions and their ground truth. Similarly, L2P denotes
the average L2 distance of the global positions. We follow standard
evaluations from [1] to compute them.

4.1 Evaluation of Skeleton2humanoid System
Experiment Setting. We evaluate our whole Skeleton2Humanoid
system on the Noobjects LaFAN1 dataset. We select the typical state-
of-the-art motion in-betweening approach Harvey et al. [1] as a
baseline and validate our approach based on it. The baseline method
is trained with various transition lengths (5 frames to 30 frames)
between past keyframes and a future keyframe and is evaluated
when transition lengths are 5 frames, 15 frames and 30 frames.
Results and Discussion. The results on the Noobjects LaFAN1
dataset are summarized in table 1. First, it is evident that our Skele-
ton2Humanoid outperforms the baseline in all physics-based met-
rics and achieves comparable performance in accuracy-based met-
rics. In particular, Skeleton2Humanoid achieve significantly lower
FP, FQ, JQ and SM, which demonstrates that utilizing the simulated
humanoid character can effectively reduce the physical artifacts
such as the penetration problem between human bodies and the
ground and can produce physically-plausible motions. Second, we
can observe that our test time adaptation stage (TTA) outperforms
the baseline in both physics-based metrics and accuracy-based
metrics, demonstrating that our TTA can optimize the motion
in-betweening model to produce not only plausible but also ac-
curate motions. Third, we find that applying the analytical inverse
kinematics and the curriculum residual force control policy (CRP)
cause worse L2P. The reason is that our efficient analytical inverse
kinematics strategy can not perfectly matching the skeleton and
humanoid even its matching error is already really low (MPJPE:
11.29mm) as discussed in section. 4.2.2, and our state-of-the-art
motion imitation policy CRP as shown in section. 4.2.3 still struggle
to imitate various complex in-betweening motions perfectly. Such
a phenomenon is also observed in [29] when they utilize RL to
imitate human motions for ego pose estimation. We emphasize that
current motion in-betweening method should not only consider
the accuracy of synthesized motions but also consider the physical
plausibility.

We also provide qualitative results in Fig. 6, we can see that the
imitated humanoid motions can accurately synthesize joint contact
with the ground and without penetration. Our state-of-the-art RL
policy is also able to control the humanoid to perform complex
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Figure 6: Qualitative Results of motions synthesized by our Skeleton2Humanoid system. The top row shows the skeleton
motions (blue) after our test time adaptation stage (TTA), the middle row shows the matched humanoid motions (red) by
our analytical inverse kinematics method (IK), the bottom row shows our final imitated humanoid motions (pink) by our
curriculum residual force control policy 𝜋𝐶𝑅𝑃 . Ground penetration is highlighted with boxes.

FP FQ JQ SM L2P
length 5 15 30 5 15 30 5 15 30 5 15 30 5 15 30
baseline[1] -0.47 -0.43 -1.43 1.04% 4.12% 8.37% 0.68% 1.25% 2.08% 20.8 20.8 20.2 0.19 0.55 1.16
baseline w/ TTA -0.04 -0.29 -1.13 0.89% 2.91% 6.57% 0.07% 1.08% 1.79% 20.6 20.6 19.9 0.16 0.53 1.13
baseline w/ TTA,IK -0.24 -0.63 -1.73 6.28% 7.70% 11.3% 1.49% 1.80% 2.53% 20.6 20.6 20.0 0.23 0.56 1.16
baseline w/ TTA,IK,CRP -0.06 -0.04 -0.08 1.48% 0.73% 0.80% 0.35% 0.16% 0.16% 20.5 20.5 19.8 0.34 0.68 1.27

Table 1: Evaluation of our Skeleton2Humanoid i.e. baseline w/ TTA,IK,CRP on Noobjects LaFAN1 dataset. "TTA", "IK" and
"CRP" represent the test time adaptation, analytical inverse kinematics and curriculum residual force control policy respec-
tively.

motions such as crawling. We provide more qualitative results in
supplementary material for demonstrating the physical plausibility
of our synthesized humanoid motions.

4.2 Evaluation of Each Stage
In this section, we concretely analyze the effect of each stage in our
Skeleton2Humanoid system.
4.2.1 Evaluation of Test Time Motion In-betweening Network Adap-
tation Stage. We evaluate our test time adaptation stage on the test
set of the whole LaFAN1 dataset [1]. Since no domain generaliza-
tion approach or test time adaptation approach has been proposed
for motion synthesis tasks, we compare against the state-of-the-art
motion in-betweening approaches including Kaufmann et al. [31],
duan et al. [47] and our implemented baseline Harvey et al. [1]. We
select L2Q, L2P, FP, FQ, JQ, SM as evaluation metrics.
Results and discussion The results are shown in Table 3 and Ta-
ble 2. First, As shown in Table 2, we observe that our test time
adaptation stage (TTA) outperforms the baseline approach regard-
ing all physics-based metrics. It shows that TTA can help reduce the
physical artifacts and produce more physically-plausible motions
for the humanoid character to imitate. Second, we can see that with

our test time adaptation stage, our adapted motion in-betweening
network significantly outperforms comparison approaches regard-
ing all accuracy-based metrics in Table 3. We also achieve a new
state-of-the-art performance in the L2Q and the L2P metrics. The
ablation (w/o ablation, i.e. w/o smooth loss) shows that the motion
smooth loss is also useful for test time adaptation.

4.2.2 Evaluation of Skeleton to Humanoid Matching Stage. To eval-
uate our analytical inverse kinematics (IK) method, we report the
matching performance on the synthesized in-betweening motions
(transition lengths: 30 frames) by TTA on the test set of Noob-
ject LaFAN1 dataset by computing the mean per joint position
error (MPJPE) and inference time. Our analytical inverse kinemat-
ics method achieves excellent performance in terms of precision
(MPJPE: 11.29mm) and speed (0.122s/sequence). It is worth noting
that even our method precisely transfers the skeleton motions to
humanoid motions, it still causes a slight performance degradation
problem in the L2P metric as shown in table 1 (baseline w/ TTA,
IK). This shows that current state-of-the-art motion in-between
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FP FQ JQ SM
length 5 15 30 5 15 30 5 15 30 5 15 30
baseline [1]* -0.039 -0.351 -1.186 0.884% 3.49% 7.04% 0.538% 1.02% 1.71% 20.7 20.9 20.6
baseline w/ TTA -0.036 -0.235 -0.930 0.775% 2.42% 5.52% 0.527% 0.861% 1.46% 20.5 20.5 20.0

Table 2: Evaluation of test time adaptation stage in terms of physics-based metrics on LaFAN1 dataset. "*" means self-
implementation (better results than the original paper). "TTA" represents the test time adaptation.

L2Q L2P
length 5 15 30 5 15 30
Zero-Vel 0.56 1.10 1.51 1.52 3.69 6.60
Interp 0.22 0.62 0.98 0.37 1.25 2.32
Kaufmann et al. [31] 0.49 0.60 0.78 0.84 1.07 1.53
duan et al. [47] 0.18 0.37 0.61 0.23 0.56 1.06
baseline [1] 0.17 0.42 0.69 0.23 0.65 1.28
baseline [1]* 0.138 0.373 0.667 0.183 0.548 1.167
baseline w/ ablation 0.134 0.367 0.662 0.162 0.527 1.142
baseline w/ TTA 0.133 0.367 0.661 0.162 0.526 1.140

Table 3: Evaluation of test time adaptation stage in terms
of accuracy-based metrics on LaFAN1 dataset. "TTA" repre-
sents our test time adaptation. "ablation" represents apply-
ing test time adaptation without motion smoothness loss.

Method L2P (↓) MPJPE (↓)
UHC [8] 1.307 31.68mm

CRP w/o TwoFrameFeats 1.281 29.16mm
CRP w/o CurForce 1.292 29.95mm

CRP (Ours) 1.272 27.63mm

Table 4: Evaluation of our curriculum residual force con-
trol policy 𝜋𝐶𝑅𝑃 on Noobjects LaFAN1 dataset. "CurForce"
represents applying curriculum learning for residual forces.
"TwoFrameFeats" represents utilizing state information
from target poses of next two frames

methods can already predict transition motions with very high ac-
curacy, hence a slight difference in poses will sensitively influence
the prediction accuracy.

4.2.3 Evaluation of Motion Imitation based on RL Stage. Now we
detailedly study the performance of our proposed curriculum resid-
ual force control policy 𝜋𝐶𝑅𝑃 , we evaluate the motion imitation
performance on the synthesized humanoid motions with transition
lengths of 30 frames by our test time adaptation and skeleton to
humanoid matching on the test set of Noobject LaFAN1 dataset. For
baseline method, we select universal humanoid controller (UHC)
[29] which is a state-of-the-art motion imitation approach based
on residual force control [26] for comparison. Since our framework
uses different humanoid characters, we use an in-house implemen-
tation of UHC [29]. We adopt the same residual force scale and
state feature in each frame for fair comparison. All the policies are
trained in 1500 iterations and we report the L2P and the MPJPE
metrics.

The results are shown in Table 4. First, we can see that our 𝜋𝐶𝑅𝑃
can imitate the synthesized motion with high accuracy, and signifi-
cantly outperform the baseline approach. Second, from the ablation
study, we can observe that the curriculum learning of residual force

Figure 7: Visualization of the reference motions (red hu-
manoids) and imitated motions (pink humanoids) by our
curriculum residual force control policy 𝜋𝐶𝑅𝑃 .

contributes to better motion imitation accuracy as shown by the
corresponding ablations (w/o CurForce and w/o TwoFrameFeats).
With the curriculum learning of residual force, the policy can easily
learn a optimal control policy with large residual force and grad-
ually learn to control the character precisely while getting rid of
the large residual force. We also observe that utilizing the feature
of reference poses in next two frames is instrumental, because it
extracts informative features from more frames to learn control
that advances the character to the next pose.

We also provide qualitative results in Fig. 7, we can see that our
curriculum residual force control policy can imitate many com-
plex motions accurately. More qualitative results can be seen in
supplementary material.

5 CONCLUSION
In this paper, we proposed a system “Skeleton2Humanoid” which
performs physics-oriented motion correction at test time by regu-
larizing synthesized skeleton motions in a physics simulator. Con-
cretely, our system consists of three sequential stages: (I) test time
motion synthesis network adaptation, (II) skeleton to humanoid
matching and (III) motion imitation based on reinforcement learn-
ing (RL). We verified our system on the motion-in-betweening task
and showed our method can significantly improve the physical
plausibility of synthesized motions. For future work, we plan to
transfer the system to other tasks and support more complex human
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motions including human-object interactions or human-human in-
teractions.
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A ANALYTICAL INVERSE KINEMATICS
Here we concretely introduce our analytical inverse kinematics
approach used in skeleton to humanoid matching stage, which is
able to convert human skeleton motions to humanoid motions even
when the body structure is different from the human skeleton.

We first construct a humanoidmodel whose body structure (bone
length, joint number) is identical to the skeleton except for the
kinematics tree. Concretely, the bone length and the joint number
of the humanoid and the skeleton are the same, but the initial pose
of the humanoid and the skeleton are different and each joint of the
humanoid and the skeleton rotates in a different order. We visualize
the humanoid model and the skeleton in Fig. 8, each model contains
20 joints, and we only calculate the rotations of 15 joints from the
positions of all 20 joints. We describe the detailed matching process
for 15 calculated joints:

(1) left elbow:
[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑙𝑠−𝑙𝑒
|𝑙𝑙𝑠−𝑙𝑒 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , −𝑙𝑙𝑠−𝑙𝑒 ⊗ 𝑙𝑙𝑒−𝑙𝑤
|𝑙𝑙𝑠−𝑙𝑒 ⊗ 𝑙𝑙𝑒−𝑙𝑤 |

]
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑙𝑒−𝑙𝑤
|𝑙𝑙𝑒−𝑙𝑤 | ,

z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

, z𝑝

] , (10)

(2) left shoulder:
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑙𝑠−𝑙𝑒
|𝑙𝑙𝑠−𝑙𝑒 |

,
z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

,
−𝑙𝑙𝑠−𝑙𝑒 ⊗ 𝑙𝑙𝑒−𝑙𝑤
|𝑙𝑙𝑠−𝑙𝑒 ⊗ 𝑙𝑙𝑒−𝑙𝑤 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑙𝑐𝑙−𝑙𝑠
|𝑙𝑙𝑐𝑙−𝑙𝑠 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , 𝑙𝑙𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑝��𝑙𝑙𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑝x𝑝
��
] ,
(11)

(3) left clavicle:
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑙𝑐𝑙−𝑙𝑠
|𝑙𝑙𝑐𝑙−𝑙𝑠 |

,
z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

,
𝑙𝑙𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑐��𝑙𝑙𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑐x𝑐

��
]

[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟𝑐𝑙−𝑙𝑐𝑙
|𝑙𝑟𝑐𝑙−𝑙𝑐𝑙 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑙𝑐𝑙 ⊗ 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑟𝑐𝑙
|𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑙𝑐𝑙 ⊗ 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑟𝑐𝑙 |

] ,
(12)

(4) right elbow:
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑟𝑤−𝑟𝑒
|𝑙𝑟𝑤−𝑟𝑒 |

,
z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

,
𝑙𝑟𝑒−𝑟𝑤 ⊗ 𝑙𝑟𝑒−𝑟𝑠
|𝑙𝑟𝑒−𝑟𝑤 ⊗ 𝑙𝑟𝑒−𝑟𝑠 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟𝑒−𝑟𝑠
|𝑙𝑟𝑒−𝑟𝑠 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , z𝑐
] , (13)

(5) right shoulder:
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑟𝑒−𝑟𝑠
|𝑙𝑟𝑒−𝑟𝑠 |

,
z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

,
𝑙𝑟𝑒−𝑟𝑤 ⊗ 𝑙𝑟𝑒−𝑟𝑠
|𝑙𝑟𝑒−𝑟𝑤 ⊗ 𝑙𝑟𝑒−𝑟𝑠 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟𝑠−𝑟𝑐𝑙
|𝑙𝑟𝑠−𝑟𝑐𝑙 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , 𝑙𝑟𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑝��𝑙𝑟𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑝
��
] , (14)

(6) right clavicle:
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑟𝑠−𝑟𝑐𝑙
|𝑙𝑟𝑠−𝑟𝑐𝑙 |

,
z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

,
𝑙𝑟𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑐��𝑙𝑟𝑐𝑙−𝑚𝑠𝑝𝑖𝑛𝑒 ⊗ x𝑐

��
]

[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟𝑐𝑙−𝑙𝑐𝑙
|𝑙𝑟𝑐𝑙−𝑙𝑐𝑙 |

,
z𝑝 ⊗ x𝑝��z𝑝 ⊗ x𝑝

�� , 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑙𝑐𝑙 ⊗ 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑟𝑐𝑙
|𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑙𝑐𝑙 ⊗ 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑟𝑐𝑙 |

] ,
(15)

(7) lower neck
[x𝑐 , y𝑐 , z𝑐 ] =

[
𝑙𝑟𝑐𝑙−𝑙𝑐𝑙
|𝑙𝑟𝑐𝑙−𝑙𝑐𝑙 |

,
z𝑐 ⊗ x𝑐
|z𝑐 ⊗ x𝑐 |

,
𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑙𝑐𝑙 ⊗ 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑟𝑐𝑙
|𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑙𝑐𝑙 ⊗ 𝑙𝑙𝑜𝑤𝑛𝑒𝑐−𝑟𝑐𝑙 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
y𝑝 ⊗ 𝑙𝑡ℎ−𝑚𝑠𝑝𝑖𝑛𝑒��y𝑝 ⊗ 𝑙𝑡ℎ−𝑚𝑠𝑝𝑖𝑛𝑒

�� , 𝑙𝑡ℎ−𝑙𝑜𝑤𝑛𝑒𝑐

|𝑙𝑡ℎ−𝑙𝑜𝑤𝑛𝑒𝑐 |
,
x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝

��
] ,

(16)
(8) thorax
[x𝑐 , y𝑐 , z𝑐 ] =

[
y𝑐 ⊗ 𝑙𝑡ℎ−𝑚𝑠𝑝𝑖𝑛𝑒��y𝑐 ⊗ 𝑙𝑡ℎ−𝑚𝑠𝑝𝑖𝑛𝑒

�� , 𝑙𝑡ℎ−𝑙𝑜𝑤𝑛𝑒𝑐

|𝑙𝑡ℎ−𝑙𝑜𝑤𝑛𝑒𝑐 |
,
x𝑐 ⊗ y𝑐
|x𝑐 ⊗ y𝑐 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
y𝑝 ⊗ 𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑟𝑜𝑜𝑡��y𝑝 ⊗ 𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑟𝑜𝑜𝑡

�� , 𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑡ℎ��𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑡ℎ
�� , x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝

��
] ,
(17)
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Figure 8: Visualization of the skeleton model (a) and the humanoid model (b). Each model contains 20 joints.

(9) mid spine


[x𝑐 , y𝑐 , z𝑐 ] =

[
y𝑐 ⊗ 𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑟𝑜𝑜𝑡��y𝑐 ⊗ 𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑟𝑜𝑜𝑡

�� , 𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑡ℎ��𝑙𝑚𝑠𝑝𝑖𝑛𝑒−𝑡ℎ
�� , x𝑐 ⊗ y𝑐
|x𝑐 ⊗ y𝑐 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝��𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝 �� , 𝑙𝑟𝑜𝑜𝑡−𝑟ℎ𝑖𝑝 ⊗ 𝑙𝑟𝑜𝑜𝑡−𝑙ℎ𝑖𝑝��𝑙𝑟𝑜𝑜𝑡−𝑟ℎ𝑖𝑝 ⊗ 𝑙𝑟𝑜𝑜𝑡−𝑙ℎ𝑖𝑝

�� , x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝
��
] ,

(18)
(10) left hip


[x𝑐 , y𝑐 , z𝑐 ] =

[
y𝑐 ⊗ z𝑐
|y𝑐 ⊗ z𝑐 |

,
𝑙𝑙𝑘−𝑙ℎ𝑖𝑝��𝑙𝑙𝑘−𝑙ℎ𝑖𝑝 �� , 𝑙𝑙ℎ𝑖𝑝−𝑟ℎ𝑖𝑝 ⊗ −y𝑐��𝑙𝑙ℎ𝑖𝑝−𝑟ℎ𝑖𝑝 ⊗ −y𝑐

��
]

[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝��𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝 �� , 𝑙𝑟𝑜𝑜𝑡−𝑟ℎ𝑖𝑝 ⊗ 𝑙𝑟𝑜𝑜𝑡−𝑙ℎ𝑖𝑝��𝑙𝑟𝑜𝑜𝑡−𝑟ℎ𝑖𝑝 ⊗ 𝑙𝑟𝑜𝑜𝑡−𝑙ℎ𝑖𝑝

�� , x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝
��
] ,

(19)
(11) left knee


[x𝑐 , y𝑐 , z𝑐 ] =

[
−y𝑐 ⊗ 𝑙𝑙𝑘−𝑙ℎ𝑖𝑝��−y𝑐 ⊗ 𝑙𝑙𝑘−𝑙ℎ𝑖𝑝

�� , 𝑙𝑙𝑎𝑛−𝑙𝑘
|𝑙𝑙𝑎𝑛−𝑙𝑘 |

,
x𝑐 ⊗ y𝑐
|x𝑐 ⊗ y𝑐 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
y𝑐 ⊗ z𝑐
|y𝑐 ⊗ z𝑐 |

,
𝑙𝑙𝑘−𝑙ℎ𝑖𝑝��𝑙𝑙𝑘−𝑙ℎ𝑖𝑝 �� , 𝑙𝑙ℎ𝑖𝑝−𝑟ℎ𝑖𝑝 ⊗ −y𝑐��𝑙𝑙ℎ𝑖𝑝−𝑟ℎ𝑖𝑝 ⊗ −y𝑐

��
] , (20)

(12) left ankle:


[x𝑐 , y𝑐 , z𝑐 ] =

[
y𝑐 ⊗ z𝑐
|y𝑐 ⊗ z𝑐 |

,
𝑙𝑙𝑎𝑛−𝑙𝑘
|𝑙𝑙𝑎𝑛−𝑙𝑘 |

,
𝑙𝑙𝑎𝑛−𝑙 𝑓��𝑙𝑙𝑎𝑛−𝑙 𝑓 ��

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
−y𝑝 ⊗ 𝑙𝑙𝑘−𝑙ℎ𝑖𝑝��−y𝑝 ⊗ 𝑙𝑙𝑘−𝑙ℎ𝑖𝑝

�� , 𝑙𝑙𝑎𝑛−𝑙𝑘
|𝑙𝑙𝑎𝑛−𝑙𝑘 |

,
x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝

��
] , (21)

(13) right hip
[x𝑐 , y𝑐 , z𝑐 ] =

[
y𝑐 ⊗ z𝑐
|y𝑐 ⊗ z𝑐 |

,
𝑙𝑟𝑘−𝑟ℎ𝑖𝑝��𝑙𝑟𝑘−𝑟ℎ𝑖𝑝 �� , −y𝑐 ⊗ 𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝��−y𝑐 ⊗ 𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝

��
]

[
x𝑝 , y𝑝 , z𝑝

]
=

[
𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝��𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝 �� , 𝑙𝑟𝑜𝑜𝑡−𝑟ℎ𝑖𝑝 ⊗ 𝑙𝑟𝑜𝑜𝑡−𝑙ℎ𝑖𝑝��𝑙𝑟𝑜𝑜𝑡−𝑟ℎ𝑖𝑝 ⊗ 𝑙𝑟𝑜𝑜𝑡−𝑙ℎ𝑖𝑝

�� , x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝
��
] ,

(22)
(14) right knee

[x𝑐 , y𝑐 , z𝑐 ] =
[
−y𝑐 ⊗ 𝑙𝑟𝑘−𝑟ℎ𝑖𝑝��−y𝑐 ⊗ 𝑙𝑟𝑘−𝑟ℎ𝑖𝑝

�� , 𝑙𝑟𝑎𝑛−𝑟𝑘
|𝑙𝑟𝑎𝑛−𝑟𝑘 |

,
x𝑐 ⊗ y𝑐
|x𝑐 ⊗ y𝑐 |

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
y𝑝 ⊗ z𝑝��y𝑝 ⊗ z𝑝

�� , 𝑙𝑟𝑘−𝑟ℎ𝑖𝑝��𝑙𝑟𝑘−𝑟ℎ𝑖𝑝 �� , −y𝑝 ⊗ 𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝��−y𝑝 ⊗ 𝑙𝑟ℎ𝑖𝑝−𝑙ℎ𝑖𝑝
��
] ,
(23)

(15) right ankle
[x𝑐 , y𝑐 , z𝑐 ] =

[
y𝑐 ⊗ z𝑐
|y𝑐 ⊗ z𝑐 |

,
𝑙𝑟𝑎𝑛−𝑟𝑘
|𝑙𝑟𝑎𝑛−𝑟𝑘 |

,
𝑙𝑟𝑎𝑛−𝑟 𝑓��𝑙𝑟𝑎𝑛−𝑟 𝑓 ��

]
[
x𝑝 , y𝑝 , z𝑝

]
=

[
−y𝑝 ⊗ 𝑙𝑟𝑘−𝑟ℎ𝑖𝑝��−y𝑝 ⊗ 𝑙𝑟𝑘−𝑟ℎ𝑖𝑝

�� , 𝑙𝑟𝑎𝑛−𝑟𝑘
|𝑙𝑟𝑎𝑛−𝑟𝑘 |

,
x𝑝 ⊗ y𝑝��x𝑝 ⊗ y𝑝

��
] , (24)

where 𝑙𝑠 , 𝑙𝑒 , 𝑙𝑤 , 𝑙𝑐𝑙 ,𝑚𝑠𝑝𝑖𝑛𝑒 ,𝑙𝑜𝑤𝑛𝑒𝑐 ,𝑡ℎ,𝑟𝑜𝑜𝑡 ,𝑙ℎ𝑖𝑝 ,𝑙𝑘 ,𝑙𝑎𝑛 and 𝑙 𝑓 rep-
resent left shoulder, left elbow, left wrist, left clavicle, mid spine,
lower neck, thorax, root, left hip, left knee, left ankle and left foot.

B IMPLEMENTATION DETAILS
B.1 Network Architecture
Our motion in-betweening network is the same as Harvey et al. [1],
which is a popular motion in-betweening model based on recurrent
neural network. Our curriculum residual force control policy 𝜋𝐶𝑅𝑃



MM ’22, October 10–14, 2022, Lisboa, Portugal Yunhao Li et al.

Figure 9: Qualitative results of the reference motions (red humanoids) and imitated motions (pink humanoids) by our curricu-
lum residual force control policy 𝜋𝐶𝑅𝑃 .

is a multi-layer preceptron (MLP) network with 3 hidden layers
whose size is (1024,512,256).

B.2 Experiments Details
We implement our whole system on PyTorch [67]. The three stages
in our Skeleton2Humanoid system are implemented in a sequential
manner. The motion in-betweening network is trained following
[1] on the train set of the LaFAN1/Noobjects LaFAN1 dataset with
various transition lengths (from 5 frames to 30 frames) between
past keyframes and a future keyframe, then the test time adaptation
stage individually optimizes the pretrained motion in-betweening
network on different test sets whose transition lengths of skeleton
motions are 5 frames, 15 frames and 30 frames. The skeleton to
humanoid matching stage converts human skeleton motions syn-
thesized from the test sets to humanoid motions. Our curriculum
residual force control policy 𝜋𝐶𝑅𝑃 is trained on the converted hu-
manoid motions from the test sets. We severally train a policy for
the converted humanoid motions with different transition lengths
(5 frames, 15 frames and 30 frames).

We utilize Mujoco as our physics simulator. During RL training,
we apply the standard reinforcement learning algorithm PPO. The
policy network is a typical 3-layerMLP network with size (1024, 512,
256). We train the curriculum residual force control policy for 1500
iterations. For each iteration, we keep collecting data by sampling
RL episodes until the total number of time steps reaches 50000.
For each RL episode, the RL agent explores to act and imitate a
randomly sampled matched humanoid motion sequence and creates
corresponding rewards. The RL episode is terminated when the
end frame is reached or the humanoid’s root height is 0.5 below
the root height of the reference pose.

L2P L2Q
length 5 15 30 5 15 30
baseline[1] 0.183 0.548 1.167 0.138 0.373 0.667
iteration 1 0.171 0.538 1.153 0.135 0.370 0.663
iteration 2 0.167 0.532 1.145 0.134 0.368 0.661
iteration 3 0.164 0.529 1.141 0.134 0.367 0.661
iteration 4 0.163 0.527 1.140 0.133 0.367 0.661
iteration 5 0.162 0.526 1.142 0.133 0.367 0.663
iteration 6 0.162 0.526 1.146 0.133 0.367 0.666
iteration 7 0.162 0.527 1.151 0.133 0.367 0.669

Table 5: performance gains from test time adaptation and
the number of iterations.

C QUALITATIVE EVALUATION
C.1 Qualitative Results of Skeleton2Humanoid

System
We provide more visualization results of our Skeleton2humanoid
System including ground truth skeletonmotions, predicted skeleton
motions, converted humanoid motions and imitated humanoid
motions in attached videos. As shown in our videos, our approach
can synthesize various physically-plausible humanoid motions.

C.2 Qualitative Results of Our Curriculum
Residual Force Control Policy

In this section, we providemore qualitative results of our curriculum
residual force policy 𝜋𝐶𝑅𝑃 (CRP) which are shown in Fig. 9. we can
see that our curriculum residual force control policy can imitate
many complex motions accurately.
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wall time
length 5 15 30
baseline[1] 8.30ms 8.85ms 9.88ms
iteration 1 0.91ms 1.75ms 3.08ms
iteration 2 1.83ms 3.56ms 6.18ms
iteration 3 2.75ms 5.39ms 9.30ms
iteration 4 3.68ms 7.18ms 12.43ms
iteration 5 4.61ms 8.97ms 15.54ms
iteration 6 5.54ms 10.78ms 18.70ms
iteration 7 6.46ms 12.57ms 21.83ms

Table 6: The relation between the inference/wall time (per
sequence) and the number of iterations.

C.3 inference time penalty of the TTA stage
We provide the trade-off results between the extra performance
gains from TTA and the number of iterations as suggested by the
reviewer in table. 5 and table. 6. The result is obtained on the LaFAN1
dataset (about 2245 sequences) with various transition lengths (5
frames, 15 frames, 30 frames) using a single 3090 GPU.
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