
DR
AF
T

Beauty and the beast:
A case study on performance prototyping of

data-intensive containerized cloud applications
Floriment Klinaku
University of Stuttgart
Stuttgart, Germany

klinaku@iste.uni-stuttgart.de

Martina Rapp
Jörg Henss

FZI Forschungszentrum Informatik
Karlsruhe, Germany
{rapp,henss}@fzi.de

Stephan Rhode
Robert Bosch GmbH
Renningen, Germany

stephan.rhode@de.bosch.com

Abstract
Data-intensive container-based cloud applications have be-
come popular with the increased use cases in the Internet of
Things domain. Challenges arise when engineering such ap-
plications to meet quality requirements, both classical ones
like performance and emerging ones like elasticity and re-
silience. There is a lack of reference use cases, applications,
and experiences when prototyping such applications that
could benefit the research community. Moreover, it is hard
to generate realistic and reliable workloads that exercise the
resources according to a specification. Hence, designing ref-
erence applications that would exhibit similar performance
behavior in such environments is hard. In this paper, we
present a work in progress towards a reference use case and
application for data-intensive containerized cloud applica-
tions having an industrial motivation. Moreover, to generate
reliable CPU workloads we make use of ProtoCom, a well-
known library for the generation of resource demands, and
report the performance under various quality requirements
in a Kubernetes cluster of moderate size. Finally, we present
the scalability of the current solution assuming a particular
autoscaling policy. Results of the calibration show high vari-
ability of the ProtoCom library when executed in a cloud
environment. We observe a moderate association between
the occupancy of node and the relative variability of execu-
tion time.

CCS Concepts: • Software and its engineering → Soft-
ware performance; Software architectures; Publish-subscribe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotCloudPerf 2022, April 09–10, 2022, Virtual Conference
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

/ event-based architectures; • Computer systems organiza-
tion → Cloud computing.

Keywords: cloud, elasticity, modelling

ACM Reference Format:
Floriment Klinaku, Martina Rapp, Jörg Henss, and Stephan Rhode.
2022. Beauty and the beast: A case study on performance proto-
typing of data-intensive containerized cloud applications. In Pro-
ceedings of 5th Workshop on Hot Topics in Cloud Computing Per-
formance (HotCloudPerf 2022). ACM, New York, NY, USA, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Containers [18] have become the de-facto standard for pack-
aging and deploying microservice-based applications in the
cloud. A particular class of such applications continuously
processes streams of data generated by a variety of con-
nected data-sources. The performance of such applications
is business-critical. In addition to performance, elasticity
and resilience have become two required quality attributes
to cost-efficiently handle disruptive events like unexpected
failures or changes in the demand.
Scaling non-trivial microservice-based applications re-

mains a challenge for service providers due to the uncer-
tain cloud environment. Achieving elasticity and resilience
through an upfront engineering process requires suitable
prediction models. There is, however, a lack of reference
use cases, applications and experiences matching the char-
acteristics of data-intensive cloud applications that would
allow researchers to evaluate their approaches. Two promi-
nent reference applications are proposed to foster research
of microservice-based cloud applications: TeaStore [21] and
SockShop [3]. Both serve more traditional use cases of clas-
sical human-centered request-reply applications. They lack,
however, a processing pipeline of continuous data and also
do not use asynchronous messaging communication which
is very popular in such use cases. In addition, when prototyp-
ing such systems, it is hard to generate realistic workloads
that utilize the resources according to a given specification
(e.g., the time, that operations should consume the CPU).

ar
X

iv
:2

20
3.

09
27

7v
1

 [
cs

.S
E

]
 1

7
M

ar
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

DR
AF
T

HotCloudPerf 2022, April 09–10, 2022, Virtual Conference Klinaku and Rapp, et al.

To tackle the aforementioned problems we present a work
in progress towards a reference use case and application
for enabling research for data-intensive containerized cloud
applications. To generate more reliable CPU workloads and
to make the application more predictable in terms of perfor-
mance, wemake use of ProtoCom [7], a library for calibrating
and generating CPU demands on various hardware. In ad-
dition we present two different scaling strategies for the
defined application and present scalability experiments to
obtain a first assessment of the capabilities of the applica-
tion. Moreover, we investigate on the high variability of the
load generation approach as our initial results showed high
deviations from the expected response times.
The focus of this work is twofold: first, in Section 3, we

introduce the reference use case and present performance
requirements and the chosen implementation stack; second,
in Section 4, we show the variability of the resource demand
generation with ProtoCom in a cloud environment, initial
scaling variants for the use case and experiments that show
the scalability aspect of our microservice-based implementa-
tion. In addition, Section 2 presents related work and finally,
Section 5 concludes the paper and provides an outlook on
future work.

2 Related Work
Our related work can be divided into two different categories.
On the one hand, several benchmarks have been developed
as a reference for cloud applications and their performance.
On the other hand microbenchmarking has been applied
to measure the impact of virtualized environments and to
quantify the performance isolation available in those. While
we can not solve these inherent problems, developersmust be
aware of those effects affecting performance and scalability
in virtualized and containerized applications.

In [16] Nikounia et al. introduce the noisy neighbour prob-
lem, an effect that can be observed in shared infrastructures
where the activity on a neighboring core may lead to per-
formance degradation. They report on performance degra-
dation of up to 16x slowdown in virtualized environments.
This is caused by noisy neighbour VMs, overcommitment
and hypervisor noise.
In [12] Laaber et al. present their findings on using mi-

crobenchmarking to assess the performance impact in virtu-
alized environments. The authors performed several experi-
ments on systems deployed in public cloud environments and
report on slowdown effects ranging from 0.003% to > 100%.
They state that several repetitions on several VM instances
are required to get robust results for microbenchmarks and
to detect potential slowdowns.
In [14] Lehrig et al. present experiments conducted with

the ProtoCom library in a virtualized cloud environment.
They show that ProtoCom is well suited to emulate CPU de-
mands realistically when using a calibration based approach.

In addition to many benchmark and test application like
Spring PetClinic [4] or ACME Air [1], several academic case-
study systems have been developed in the past for evaluating
the performance of cloud and containerised systems: In [21]
the Tea Store case-study is presented, a system for studying
the performance of microservices based systems. A similar
microservices based benchmark using container technolo-
gies, the Sock Shop, is presented in [3]. The CloudStore appli-
cation [13] is a reference application for comparing different
cloud providers, cloud service architectures, and assess cloud
deployment options. The TrainTicket benchmark [22] in ad-
dition focuses on the fault-analysis of microservice-based
applications. All four case-study systems have in common
that mostly request-response semantics is employed. Asyn-
chronous data-centric communication patterns as typical
found in IoT systems are missing.

3 Running Example
Before going into the implementation details of the running
example in Section 3.3, we will explain the considered use
case, its purpose and architecture in Section 3.1, and discuss
performance challenges in Section 3.2.

3.1 Reference Use Case
The herein considered use case – called remote measuring –
is a fraction of one service package from the Bosch mobil-
ity cloud [9]. The mobility cloud is a cloud-based integra-
tion platform for developing and updating vehicle software
and services. The services are grouped into three packages:
over-the-air services (update, function call, essentials, vehi-
cle data), data services (data integration, navigation, broker),
and core services (service integration, application run time,
application marketplace). Remote measuring is one service
from the over-the-air vehicle data package.We consider parts
of remote measuring in the implemented running example
and its model representation.
The app remote measuring is designed for vehicle data

acquisition campaigns. Such cloud-based campaigns are ben-
eficial in vehicle development, fleet observation (e.g. tracking
of failure codes in a delivery car fleet), predictive diagnos-
tics, and optimization of spare part logistics in aftermarket
business. Imagine a vehicle homologation task [15], where
several vehicles must collect data from test rides. Cloud-
based remote measuring allows test engineers to configure
and conduct a signal measurement setup through web ser-
vices. Such a setup contains the number and kind of signals,
their recording frequency and recording triggers. The test
engineer starts the measurement through a web front end.
Data is cached in the car and pushed to the cloud, where
the data is stored in a database. Then, the data is converted
and presented as dashboard, or exported via an API for ex-
ternal applications. This is more flexible and convenient in
contrast to conventional workflows, where each vehicle was

DR
AF
T

Beauty and the beast: A Case Study on Perf. of Data-Intensive Containerized Cloud Apps HotCloudPerf 2022, April 09–10, 2022, Virtual Conference

Cloud

Data Processing

Database
Device

Communication

Data Provider

save raw data load raw data

trigger: new
measurement arrived

trigger: preview, raw data

send converted data (json)

trigger: export
data

User

send vehicle CAN data

User Interface

and API

Device

Figure 1. Architectural snipped of remote measuring appli-
cation in mobility cloud suite.

equipped with a signal recorder, a laptop, and a test engineer
who configured the campaign, stored the data and fed it into
a data center afterwards.

Figure 1 explains the architecture of the running example
remote measuring. Starting in the lower left corner, one or
more devices (vehicles) send data from their vehicle bus
(CAN bus [10]) to the device communication service. This
service tracks the readiness of the device, caches data, stores
the raw data in a data base, and triggers the next service
data provider. Once, a new batch of data arrived, the data
provider service triggers the data processing service, which
conducts data pre-processing and data compression. For this,
the data processing fetches the raw data from data base. This
part of the use case is considered and implemented in the
running example.
The user interface and API on the right in Figure 1 are

not implemented in the running example but shown here to
understand the use case from end to end. The data processing
triggers an export service, which provides the converted data
through API and triggers a data dashboard. The API can be
used for customized data analysis on customer side.

3.2 Requirements and Performance Challenges
The remote measuring use case provides several challenges
for development and operations in the mobility cloud. These
challenges affect elasticity and resilience properties of the
application in practice.

In regard to elasticity, the first challenge arises from broad
range of configuration options in data acquisition campaigns.
These campaigns may differ largely in terms of number of
recorded vehicle signals, their record frequency, and the
number of devices itself. In vehicle homologation, the num-
ber of connected devices is rather small, but the number of
considered signals is large. Add to this, the data recording
frequency in homologation is large and such a campaign is
usually triggered in parallel within a few days. This results

into single events where large amount of data is pushed into
the cloud from the test vehicles.
In contrast, in fleet observation the number of devices

is large, but the number of signals and their recording fre-
quency are small. Due to large number of devices, the accu-
mulated load is large as well, but during fleet observation, we
assume that devices connect to the cloud in a rather random
and asynchronous profile.

The goal in both usage scenarios is to provide the remote
measuring service with acceptable response time for the cus-
tomer. Hence, remote measuring requires sufficient elasticity
to cope with different usage scenarios.
Add to this, the elasticity property of remote measur-

ing determines another service level objective: the cloud
costs. While under provisioning causes unacceptable high
response times for the users, over provisioning causes high
costs, which reduce the revenue of the remote measuring
service. Therefore, we search for optimal elasticity property
of remote measuring in development and operations.
With respect to resilience, the homologation scenario re-

quires credible data handling to avoid data loss during ex-
pensive and elaborate vehicle test rides. Compared with fleet
observation, data loss during homologation would cause rep-
etitions of test rides, which can destruct project plans and
time to market goals in vehicle development projects. In
addition, outage of remote measuring during homologation
usage would destroy user trust in the application. Due to
this, methods to design and test resilience of the applications
are of high importance.

3.3 Performance Prototype/Demonstrator
The remote measuring use case from Figure 1 was re-imp-
lemented as performance prototype based on the Spring
Boot 1 framework. The components device communication,
data provider, data processing, and database were deployed
as containers on an eight node Kubernetes (K8s) 2 cluster on
bwCloud 3, a state funded academic cloud. The components
use the ProtoCom 4 library to emulate CPU demands.

All components and the database were connected through
a RabbitMQ 5 message broker, which runs on a dedicated
node on K8s cluster. The database was deployed as Mon-
goDB 6 container. The functionality of the devices was re-
sembled by Gatling 7 load generator. Gatling was used to
define load profiles for the system. A load profile consists of
the number and the ramp up time of the connecting devices,
and frequency and size of sent data. Gatling was deployed
as container on a dedicated node in K8s.

1https://spring.io/projects/spring-boot
2https://kubernetes.io/
3https://www.bw-cloud.org/
4https://sdqweb.ipd.kit.edu/wiki/ProtoCom
5https://www.rabbitmq.com/
6https://www.mongodb.com/
7https://gatling.io/

DR
AF
T

HotCloudPerf 2022, April 09–10, 2022, Virtual Conference Klinaku and Rapp, et al.

Table 1. Example calibration run output

Time (ms) Iterations Time/Iterations
1,00 537389 1,86085E-06
2,00 1172345 1,70598E-06
4,00 2539921 1,57485E-06
7,97 5062500 1,57511E-06
15,85 10060004 1,5753E-06
25,73 16319999 1,57641E-06
63,44 40159726 1,57978E-06
126,68 79983883 1,58383E-06
234,10 148379031 1,57771E-06
541,72 316609902 1,71101E-06
1026,21 630079016 1,6287E-06

Several experiments were conducted with different load
profiles. Each experiment was triggered as K8s job and the
results from Gatling were stored together with monitoring
data from Prometheus 8 for following analysis.

4 Performance Variability of Resource
Demand Generation

As described previously, to emulate processing of messages
in the different services (e.g., the data processing service)
each microservice uses ProtoCom. ProtoCom requires a low
contention calibration phase to determine the input for a
particular algorithm (say Fibbonaci number computations)
to put load on the CPU for a given time amount (e.g., con-
sume the CPU for 0.2 CPU-seconds). The results of the cal-
ibration are stored in a model as shown in Table 1 which
contains the approximated input parameter associated with
their individual execution times. Every other resource de-
mand is generated by composing these demands. Since the
calibration process consumes time (around 20 minutes for
HIGH accuracy) and the test-bed cluster is homogeneous we
initially thought of pre-calibrating ProtoCom and sharing
the calibration for all service replicas. This would allow us
to execute elasticity experiments and upon the spin-up of
new containers, the calibration would not affect the start-up
time. A precondition for this is, that there is an acceptable
variability in CPU time across nodes. Hence, we decide to
benchmark the resource demand generation library, namely
ProtoCom, to determine how it performs in our cluster.

Table 2. Kubernetes nodes and their occupancy in number
of Pods and average utilization in millicores

Name # Pods Avg. Millicores Characteristic App Pods
minion-01 17 207.15
minion-02 12 805.80 rabbit-broker
minion-03 12 152.10
minion-04 10 176.85 mongodb
minion-05 8 133.30
minion-06 7 84.50
minion-07 11 142.20 demonstrator pods

8https://prometheus.io

4.1 Environment and Experimentation Setup
The Kubernetes cluster consists of seven worker nodes of
identical flavor m1.large with 4vCPUs, 8GB RAM and 12GB
storage. On the worker nodes there are various numbers
of container being deployed where some are application-
specific and some come from the platform itself. Table 2
summarizes the number of pods per node together with
some characteristic application pods. The average millicores
determines the average CPU usage of the cluster when no
workload is running. During the benchmark execution the
three services of the application—namely, the Device Com-
munication service, the Data Processing service, and the
Data Provider service—are co-located on node minion-07.

We define as a compilation of the cluster the state after all
VMs have been rebooted. We execute the benchmark with
two different container QoS classes enabled: best-effort (no
limit, no guaranteed share) and guaranteed (limits are equal
to guaranteed share). For each class we make five executions
where in each execution five measurement iterations follow
after an initial five warm-up iterations9. The execution hap-
pens on all the seven nodes. A total of 5250 observations
determine the performance of ProtoCom in a Kubernetes
cluster under two different QoS classes.
To automate the benchmarking process of ProtoCom we

make use of the Java Microbenchmark Harness (JMH)10 that
facilitates building, running, and analysing (micro-)bench-
marks in Java. We containerised JMH and use Kubernetes
OpenKruise11 to define a BroadcastJob that will execute
the benchmark on all the nodes in the cluster. We execute
five times the benchmark on all nodes. In each run the bench-
mark initially calibrates the ProtoCom library in a MEDIUM
accuracy setting. There are three different levels of accuracy
one can set: LOW, MEDIUM, and HIGH. We chose MEDIUM as a
compromise between accuracy and experimentation time
that showed sufficient stability. After the calibration, the
benchmark varies the resource demand parameter in three
levels 50, 200 and 1000 milliseconds. The selection of the
resource demands was motivated from the demands which
we inject in the demonstrator application.

4.2 Discussion of Calibration Results
First, we compare the results for the two used Kubernetes
QoS-classes and the three parameter levels. Figure 2 sum-
marizes the overall results where the performance is highly
variable and observations deviate up to 40% in both direc-
tions. This happens consistently for the different specified
demands. The difference between the set container QoS class
is not significant both statistically and practically. The mini-
mal difference stems from the fact that nodes are not highly

9In initial experiments we discovered some warm-up effects affecting the
proper calibration of ProtoCom.
10https://openjdk.java.net/projects/code-tools/jmh/
11https://github.com/openkruise/kruise

DR
AF
T

Beauty and the beast: A Case Study on Perf. of Data-Intensive Containerized Cloud Apps HotCloudPerf 2022, April 09–10, 2022, Virtual Conference

50 200 1000

best−effort guaranteed best−effort guaranteed best−effort guaranteed

900

1000

1100

1200

1300

150

200

250

300

30

40

50

60

70

80

QoS Class

E
xe

cu
tio

n
T

im
e

(m
se

c.
)

Figure 2. Overall variability of measurements for all in-
stances and executions for the demand parameter set to
50, 200 and 1000 milliseconds in two different Kubernetes
QoS classes: best-effort and guaranteed.

utilized. Table 2 shows what additional load (noise) was de-
ployed on the cluster. For the least loaded node, minion-06,
variability is low and variability increases for the guaranteed
casewhile the servicemight get throttled if it has exceeded its
limits. For the most loaded node, minion-02, using the guar-
anteed class shows a positive impact, where for demand 50
the 95th percentile is much closer to the desired target; same
applies for demand 1000. Besides the expected slowdown
effects, we also measured several occurrences of speed-ups
in our benchmark. The box plots show, that the first quartile
is matching the desired execution time. Thus 75% of resource
requests are taking more time to complete. Table 3 shows
that for parameters 50 and 200 the 95th percentile and stan-
dard deviation is slightly lower when comparing best-effort
to guaranteed Kubernetes QoS-class. For parameter value
1000 the opposite is true.

Table 3. Execution Time by Parameter and QoS-Class

demand par. QoS mean median 95th perc. SD
50 best-effort 52.58131 52.248 66.5653 8.965577

guaranteed 54.06818 54.102 65.8925 8.115489
200 best-effort 211.0581 206.769 254.0771 24.69515

guaranteed 214.5613 212.349 253.0308 23.41644
1000 best-effort 1042.363 1033.147 1155.02 63.28705

guaranteed 1042.841 1032.238 1166.254 68.88045

Second, we compare the results of the benchmark across
the nodes in the cluster. We expect to observe differences in
the slowdowns due to different placement of VMs in cloud
and different level of occupancy of nodes. As expected, in dif-
ference to the QoS class, the variability of the results seems
to differ on different nodes. Figure 3 depicts the distribu-
tion of data points of all iterations on different nodes. The
least loaded nodes—in terms of number of pods deployed—
experience less variability. For estimating the reproducibility
of the experiment we added an additional benchmark run
(best-effort-old) that was conducted in a different cluster

compilation before. Results show, though the state of the
underlying cloud should have changed, that the variance
measured on the nodes is similar.
To analyze the impact of individual node occupancy we

calculate the correlation between number of Pods on the
node, the CPU utilization in millicores and the sample coef-
ficient of variation (CV) which is the ratio of the standard
deviation and the average. In Kubernetes the utilization is
measured inmillicores that denotes a thousands of one vCPU,
i.e. a utilization of 207.15 millicores corresponds to 5.18% for
a 4 vCPU node.

Figure 4 shows a moderate association between both node
occupancy, measured in number of pods or millicores CPU,
and the relative variability measured through the CV. To
sum up, we show that the intuitive assumption that a higher
node occupancy leads to higher variance in execution time
during load generation holds. Moreover, even nodes with
moderate average CPU utilization of less than 20% are af-
fected by slowdowns and varying speeds. Developers should
take that into account when designing performance tests
and benchmarks and measure the variability in processing
speeds using multiple nodes. Our simple occupancy metrics
can be used as an initial indicator for potential slowdown
variations, however, several other factors, like the burstiness
of CPU workloads or the I/O usage, could also affect the
execution.
Furthermore, these slowdown effects also impact model-

based performance prediction methods, as varying execution
time must be taken into account. While developers could
try to model all influencing factors on the nodes in detail,
however, a better solution would be to systematically quan-
tify and model the uncertainty in CPU speeds. Based on
these information scaling policies and mechanisms can be
optimized.

4.3 Scaling Policies and Mechanisms
Bondi [8] distinguishes four general types of scalability,
namely load, space, space-time and structural scalability.
In this work we focus only on load scalability which is the
system’s ability “to function gracefully, i.e., without undue
delay and without unproductive resource consumption or
resource contention at light, moderate, or heavy loads while
making good use of available resources” ([8]). Mircoser-
vice.io presents commonly used deployment patterns and
distinguishes between the cases of multiple service instances
per host and service instance per host, VM or container
[17]. AWS autoscaling supports a more VM-based scaling
approach by creating collections of EC2 instances through
scaling a bunch of VMs instead of spinning up containers
[6]. Kubernetes supports scaling on a container level by ap-
plying a horizontal pod autoscaling approach, i.e. it assigns
more resources by starting additional replicas of a pod (i.e. a
container) that is already running for the current workload
[5] using the equation:

DR
AF
T

HotCloudPerf 2022, April 09–10, 2022, Virtual Conference Klinaku and Rapp, et al.

best−effort−old best−effort guaranteed

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

30

40

50

60

70

80

30

40

50

60

70

80

30

40

50

60

70

80

VMs

E
xe

cu
tio

n
T

im
e

(m
se

c.
)

(a) Demand 50

best−effort−old best−effort guaranteed

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

800

1000

1200

1400

800

1000

1200

1400

800

1000

1200

1400

VMs

E
xe

cu
tio

n
T

im
e

(m
se

c.
)

(b) Demand 1000

Figure 3. Variability of measurements across instances for the demand parameters 50, and 1000 for two different Kubernetes
QoS classes: best-effort and guaranteed. The best-effort-old is the execution of the benchmark in a different cluster compilation
prior to the reboot of VMs for the experiment.

R = 0.38, p = 0.014

0.0

0.1

0.2

200 400 600 800
Millicores

C
V

R = 0.47, p = 0.0017

0.0

0.1

0.2

7.5 10.0 12.5 15.0 17.5
Number of Pods on Node

C
V

Figure 4. The coefficient of variation plotted against the
node occupancy for two different measures: average Mil-
licore CPU (left) and the number of pods deployed on a node
(right).

replicasdesired = ceil

(
replicascurrent ·

metriccurrent
metricdesired

)
.

While this works for any availablemetric value, commonly
an average utilization metric is used. Pods are placed on
existing nodes by the k8s node-scheduler using a two-step
filtering and scoring approach12.
Based on the chosen patterns and technology, software

architects might end up with evaluating different kinds of
policies. For the demonstrator application, since it is con-
tainerized and deployable in Kubernetes, it is possible to
employ both service-based policies and also node-based poli-
cies. Here we describe the two different policies and the
mechanisms to implement them briefly.
For the service-based autoscaling policy we rely on the

Horizontal Pod Autoscaler (HPA) [5] to define a separate
scaling policy for the three different services that constitute
the demonstrator application. When fully characterizing the
12https://kubernetes.io/docs/concepts/scheduling-eviction/kube-
scheduler/

services, various metrics could be used in the configuration
of the HPA.
For the node-based autoscaling policy, we design and

implement a controller that replicates Kubernetes nodes and
proportionally scales the pods of the three services deployed
on the cluster similar to the cluster proportional autoscaler
of Kubernetes [2]. A scale out (in) decision occurs whenever
the average utilization of available nodes surpasses an upper
threshold (falls behind a lower threshold). The number of
replicas for each service follows the number of available
nodes. For example, if there are two nodes available in the
cluster there will be 2 replicas for each of the services. The
initial state constitutes one node whereas there may be up to
four nodes where the demonstrator can be allocated. Other
nodes are reserved for different services and experimentation
tools.

Algorithm 1 Node-based Autoscaling of Services
Require: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 0 ≤ 𝑢𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 1, 0 ≤

𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 1
Ensure: 𝑛𝑜𝑑𝑒𝑠 = 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑃𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡
1: loop ⊲ Control loop
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑒𝑡𝑈 𝑡𝑖𝑙𝐹𝑟𝑜𝑚𝐾8𝑠 ()
3: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 > 𝑢𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
4: makeOneAdditionalNodeAvailable()
5: scaleOutAllDeploymentsByOne()
6: end if
7: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 < 𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8: makeOneNodeUnavailable()
9: scaleInAllDeploymentsByOne()
10: end if
11: sleep()
12: end loop

DR
AF
T

Beauty and the beast: A Case Study on Perf. of Data-Intensive Containerized Cloud Apps HotCloudPerf 2022, April 09–10, 2022, Virtual Conference

The two different policies lead to different cluster compi-
lations over time. In the next section we explore the scalabil-
ity boundaries of the demonstrator when assuming a node-
based autoscaling policy. This allows us to designmeaningful
scenarios for the elasticity experiments and later evaluate
various autoscaling policies including the described ones.

4.4 Scalability Assessment as a Prerequisite of
Designing Elasticity Scenarios

Several proposals exist in literature to asses the scalability
of applications, e.g., [11]. The main purpose of assessing the
scalability in our case is to estimate the processing limits
of the application and use this information for designing
elasticity experiments. To determine whether a configuration
can handle a certain load (in terms of devices) we observe the
performance and the utilization of the system. We follow a
binary search procedure [20] to reach faster the upper bound
on the number of devices that a particular configuration can
handle without violating a given performance service level
objective (SLO). For the remotemeasuring use case, we define
the target SLO to be one second response time for the 95th
percentile during a constant load of active devices. Since
we lack data for workload characterization for the reference
application, we generate synthetic load using Gatling that
stresses the application in two configurations: the initial
configuration where the demonstrator is deployed on one
node and the final configuration where the demonstrator is
deployed on four nodes.
As Figure 5 depicts, the demonstrator application is able

to scale with additional resources i.e., when such resources
are provided by means of VM replication and scaling pro-
portionally the corresponding pods. One data point in the
plot shows the 95th percentile of response time for requests
that have been generated by the active devices given on
the x-axis. The red dashed line shows the SLO boundary of
1000ms that should not be violated. The synthetic workload
influences response times through the number of concurrent
users (devices), how fast they ramp-up, and the sleep value.
The combination of the time to ramp up (5 seconds), the
frequency of sending data (60 seconds) and the number of
devices together with the intrinsic randomness of the work-
load generation tool and setup leads to different distributions
of inter-arrival times for requests. As the highlighted data
point in the scaled part depicts that spawning 2000 devices
in 5 seconds in one case leads to the violation of the SLOs
while the configuration is able to sustain higher number of
devices—and up to a maximum of 5000 in one observation—
when the devices are increased gradually.

Initial experiments allow us to estimate the performance
boundaries of the application when assuming a node-based
scaling policy for the initial and the most scaled configura-
tion that may occur. However, when employing a service-
based policy, although the initial configuration might be

1000 1000

Initial Scaled

0 500 1000 1500 2000 2500 0 2500 5000 7500 10000
0

2500

5000

7500

0

2000

4000

6000

Devices

R
es

po
ns

e
T

im
e

(m
se

c.
)

Figure 5. The 95th percentile of response time of the initial
and scaled cluster compilation for synthetic generated load
assuming that the application scales using a node-based
autoscaling policy.

assumed similar, the most scaled configuration is not eas-
ily derived upfront. However, the approximated processing
capabilities are used for designing scenarios for elasticity ex-
periments in which both alternatives for autoscaling policies
could be evaluated.

5 Conclusions and Future Work
Existing reference applications for experimenting and re-
search are not representative for data-intensive container-
ized cloud applications. They are serving more traditional
use cases of human-centered request-reply communication
without a continuous data processing pipeline and without
using asynchronous messaging for the communication.

In attempt to fill this gap, in this work we present a refer-
ence use case coupled with the initial architecture design and
with the engineering challenges for elasticity and resilience.
To make the reference application suitable for research of
elasticity and resilience mechanisms through increasing the
predictability in performance, we have experimented with
the CPU load generation tool ProtoCom. Results show a
high variability in execution time when generating load for
a given time demand. We observe a moderate association
between node occupancy and the relative variability. In addi-
tion, we sketch how the application could be scaled through
two different autoscaling policies and investigate the scala-
bility of the solution assuming a node-based approach.
In the future we plan to investigate further on the per-

formance influences of using different QoS classes for con-
tainers. Moreover, we will perform additional experiments
using container quotas and CPU throttling. Consolidating
and publishing the reference application including the eval-
uation of elasticity and resilience scenarios is another item
for future work. In parallel we have started to construct a
performance model of the application that will allow the
evaluation of architecture alternatives. Moreover, we created
initial simulation models to emulate the QoS-based shared
CPU scheduling regime used in Kubernetes and alike. In the
long run, we want to optimize scalability and resilience for

DR
AF
T

HotCloudPerf 2022, April 09–10, 2022, Virtual Conference Klinaku and Rapp, et al.

dynamic cloud applications by incorporating models of un-
certain execution environments [19] into simulation-based
prediction techniques.

Acknowledgments
This paper was partly funded by the Federal Ministry of
Education and Research under grant number 01IS18069A.
For computational resources we acknowledge the bwCloud
(https://www.bw-cloud.org), funded by the Ministry of Sci-
ence, Research and Arts Baden-Württemberg (Ministerium
für Wissenschaft, Forschung und Kunst Baden-Württem-
berg).

References
[1] ACME Air: Acme Air Sample and Benchmark . Online: https://github.

com/acmeair/acmeair. [Online; 2022-01-25].
[2] Cluster Proportional Autoscaler. Online: https://github.com/

kubernetes-sigs/cluster-proportional-autoscaler. [Online; 2022-01-
25].

[3] Sockshop microservice demo application. Online:
https://microservices-demo.github.io.

[4] Spring PetClinic. Online: https://github.com/spring-project:spring-
petclinic. [Online; 2022-01-25].

[5] Kubernetes Horizontal pod autoscaling. https://kubernetes.io/docs/
tasks/run-application/horizontal-pod-autoscale/, 2021. [Online; 2021-
12-09].

[6] Amazon EC2 Auto scaling. https://docs.aws.amazon.com/autoscaling/
ec2/userguide/what-is-amazon-ec2-auto-scaling.html, 2022. [Online;
2022-01-25].

[7] Steffen Becker, Tobias Dencker, and Jens Happe. Model-driven gen-
eration of performance prototypes. In Samuel Kounev, Ian Gorton,
and Kai Sachs, editors, Performance Evaluation: Metrics, Models and
Benchmarks, pages 79–98, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[8] André B. Bondi. Characteristics of scalability and their impact on
performance. In Proceedings of the second international workshop on
Software and performance - WOSP '00. ACM Press, 2000.

[9] Bosch. Mobility Cloud. https://www.bosch-mobility-solutions.
com/media/global/products-and-services/mobility-services/plcs/
mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-
rgb_en.pdf, 2021. [Online; 2021-12-16].

[10] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. Un-
derstanding and Using the Controller Area Network Communication
Protocol: Theory and Practice. Springer Publishing Company, Incorpo-
rated, 2014.

[11] Sören Henning and Wilhelm Hasselbring. How to measure scalability
of distributed stream processing engines? In Johann Bourcier, Zhen
Ming (Jack) Jiang, Cor-Paul Bezemer, Vittorio Cortellessa, Daniele Di
Pompeo, and Ana Lucia Varbanescu, editors, ICPE ’21: ACM/SPEC
International Conference on Performance Engineering, Virtual Event,
France, April 19-21, 2021, Companion Volume, pages 85–88. ACM, 2021.

[12] Christoph Laaber, Joel Scheuner, and Philipp Leitner. Software mi-
crobenchmarking in the cloud. how bad is it really? Empirical Softw.
Engg., 24(4):2469–2508, aug 2019.

[13] Sebastian Lehrig, Richard Sanders, Gunnar Brataas, Mariano Cecowski,
Simon Ivanšek, and Jure Polutnik. Cloudstore—towards scalability,
elasticity, and efficiency benchmarking and analysis in cloud comput-
ing. Future Generation Computer Systems, 78:115–126, 2018.

[14] Sebastian Lehrig and Thomas Zolynski. Performance prototyping
with protocom in a virtualised environment: A case study. Proceedings
to Palladio Days, pages 17–18, 2011.

[15] Albert Lutz, Bernhard Schick, Henning Holzmann, Michael Kochem,
Harald Meyer-Tuve, Olav Lange, Yiqin Mao, and Guido Tosolin. Simu-
lation methods supporting homologation of electronic stability control
in vehicle variants. Vehicle System Dynamics, 55(10):1432–1497, 2017.

[16] Seyed Hossein Nikounia and Siamak Mohammadi. Hypervisor and
neighbors’ noise: Performance degradation in virtualized environ-
ments. IEEE Transactions on Services Computing, 11(5):757–767, 2015.

[17] Chris Richardson. microservices.io deployment patterns.
https://microservices.io/microservices/news/2015/03/15/deployment-
patterns.html, 2021. [Online; 2022-01-25].

[18] Rami Rosen. Linux containers and the future cloud. Linux J, 240(4):86–
95, 2014.

[19] Max Scheerer, Martina Rapp, and Ralf Reussner. Design-time valida-
tion of runtime reconfiguration strategies: An environmental-driven
approach. In 2020 IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems (ACSOS), pages 75–81, 2020.

[20] Piyush Shivam, Varun Marupadi, Jeffrey S. Chase, Thileepan Subrama-
niam, and Shivnath Babu. Cutting corners: Workbench automation for
server benchmarking. In Rebecca Isaacs and Yuanyuan Zhou, editors,
2008 USENIX Annual Technical Conference, Boston, MA, USA, June 22-27,
2008. Proceedings, pages 241–254. USENIX Association, 2008.

[21] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer,
Johannes Grohmann, and Samuel Kounev. Teastore: A micro-service
reference application for benchmarking, modeling and resource man-
agement research. In 2018 IEEE 26th International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 223–236. IEEE, 2018.

[22] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan
Ding. Fault analysis and debugging of microservice systems: Industrial
survey, benchmark system, and empirical study. IEEE Trans. Software
Eng., 47(2):243–260, 2021.

https://github.com/acmeair/acmeair
https://github.com/acmeair/acmeair
https://github.com/kubernetes-sigs/cluster-proportional-autoscaler
https://github.com/kubernetes-sigs/cluster-proportional-autoscaler
https://github.com/spring-project:spring-petclinic.
https://github.com/spring-project:spring-petclinic.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://microservices.io/microservices/news/2015/03/15/deployment-patterns.html
https://microservices.io/microservices/news/2015/03/15/deployment-patterns.html

	Abstract
	1 Introduction
	2 Related Work
	3 Running Example
	3.1 Reference Use Case
	3.2 Requirements and Performance Challenges
	3.3 Performance Prototype/Demonstrator

	4 Performance Variability of Resource Demand Generation
	4.1 Environment and Experimentation Setup
	4.2 Discussion of Calibration Results
	4.3 Scaling Policies and Mechanisms
	4.4 Scalability Assessment as a Prerequisite of Designing Elasticity Scenarios

	5 Conclusions and Future Work
	References

