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ABSTRACT
When developing a new networking algorithm, it is established
practice to run a randomized experiment, or A/B test, to evaluate its
performance. In an A/B test, traffic is randomly allocated between a
treatment group, which uses the new algorithm, and a control group,
which uses the existing algorithm. However, because networks are
congested, both treatment and control traffic compete against each
other for resources in a way that biases the outcome of these tests.
This bias can have a surprisingly large effect; for example, in lab
A/B tests with two widely used congestion control algorithms, the
treatment appeared to deliver 150% higher throughput when used
by a few flows, and 75% lower throughputwhen used bymost flows—
despite the fact that the two algorithms have identical throughput
when used by all traffic.

Beyond the lab, we show that A/B tests can also be biased at scale.
In an experiment run in cooperation with Netflix, estimates from
A/B tests mistake the direction of change of some metrics, miss
changes in other metrics, and overestimate the size of effects. We
propose alternative experiment designs, previously used in online
platforms, to more accurately evaluate new algorithms and allow
experimenters to better understand the impact of congestion on
their tests.

CCS CONCEPTS
• Networks → Network experimentation; • Mathematics of
computing → Probability and statistics.
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1 INTRODUCTION
Engineers routinely run A/B tests when testing new network al-
gorithms. In an A/B test, the experimenter randomly allocates a
small fraction of traffic (say 1% or 5%) to a new algorithm, called
the treatment group, and compares its performance against the
control group running the old algorithm. A/B tests are widely used
as the gold standard for understanding how a new algorithm will
behave at scale. Almost all large tech companies routinely use
A/B tests to evaluate changes before deploying them [18, 22, 34,
48, 53, 58, 63, 70, 76]. Networking research often includes the re-
sults of A/B tests, and uses them to justify new algorithms [17–
19, 24, 25, 29, 42, 46, 49, 55, 57, 58, 60, 63, 72, 87].

So when we recently ran experiments to test whether bitrate
capping reduces network congestion for Netflix, we ran A/B tests.
Bitrate capping was introduced in response to COVID-19; major
streaming services cooperated with governments to lower bitrates
offered and reduce overall internet load [3, 33]. This caused a re-
duction in congestion in certain networks around the globe.

We decided to dig deeper, to understand exactly how bitrate
capping reduces congestion, and how doing so impacts video qual-
ity metrics. While we had data from just before and after bitrate
capping was deployed (and later when it was removed), these were
during periods of lockdown and stay-at-home orders when the
internet was changing rapidly. We wanted to conduct a more sys-
tematic study of its effects. Naturally, we ran an A/B test where we
capped a fraction of traffic to a very congested network.

In this A/B test, capping didn’t appear to reduce congestion at all!
In fact, it appeared to make things worse: capped traffic experienced
5% lower throughput and 5% higher delay. The A/B test results were
so marginal that if we had not had evidence showing that bitrate
capping reduced congestion when widely deployed, we might have
dismissed it and not explored further. How could a treatment that
we knew reduced congestion at scale not also reduce congestion in
an A/B test?

Stepping back, we realized the confusion could be caused by
interference. Interference is when units in the treatment group in-
teract with units in the control group. It is well known in causal
inference that interference can bias experiment results [45]. In
social networks, changing something for a user in the treatment
group can impact the behavior of their friends in the control group
and bias the results of an experiment [28]. In online marketplaces,
increasing the price of items in a treatment group can increase the
demand for the relatively cheaper items in the control group and
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bias results [39]. There are many examples of interference bias from
markets, education, disease, and more [21, 38, 41, 52].

Both treatment and control groups in our test used the same net-
work, and their packets traversed the same links and same queues.
There is a long line of networking research showing that algo-
rithms compete with each other when sharing a congested network
[2, 5, 8, 15, 16, 23, 43, 44, 50, 56, 71, 81, 82, 84–86]. If capping bitrates
freed up bandwidth, the uncapped control traffic could take up that
bandwidth and get better performance. This could make bitrate
capping look worse than it would if the uncapped traffic were not
present, even if it was improving congestion. This gave us reason
to believe that interference may exist, which would explain our
unexpected A/B test results.

In this work we show that interference exists in experiments
run in congested networks, and biases the results of A/B tests
at scale. We show that bitrate capping does reduce congestion,
and that the misleading A/B test result was due to interference.
In order to do this, we propose and test new experiment designs
whichmore accurately evaluate new algorithms. Our results suggest
that usual A/B testing practice paints an incomplete picture of the
performance of new algorithms in congested networks, and should
be complemented by additional experiments.

Without interference, A/B tests give us a way to safely and accu-
rately evaluate performance using a very small fraction of traffic.
But because of interference, A/B tests on small fractions of traffic do
not accurately predict performance at scale. Interference therefore
creates a tradeoff between safety and accuracy: the only way to
accurately measure performance is to run an algorithm on 100%
of traffic, but nobody would do this with an untested algorithm!
Our goal in this paper is to make the networking community, both
academic researchers and industry practitioners, aware of this trade-
off and to propose techniques to help mitigate it. We encourage
the community to apply these techniques broadly and evaluate
networking algorithms with alternate experiments. We encourage
continued measurement and the development of new techniques
to mitigate bias.

We begin with an overview of experiment design in Section 2.We
describe how A/B tests are run, and which quantities they estimate.
Using a framework from the field of causal inference, we define the
relevant quantities of interest for new networking algorithms.

We then run small lab experiments in Section 3 to give exam-
ples of how networking A/B tests can be biased. We show that
experiments using multiple parallel connections, packet pacing,
and different congestion control schemes all exhibit bias. If we were
to evaluate these algorithms using naïve A/B tests, we would make
incorrect conclusions. We might prematurely abandon a good al-
gorithm, or deploy an algorithm that behaves worse when widely
deployed than in the experiment.

Returning to our bitrate capping experiments, in Section 4 we
describe our joint experiments with Netflix. We study the perfor-
mance of bitrate capping and report on the bias we found in our
initial A/B tests. While measurements show that bitrate capping
significantly reduces congestion, naïve A/B tests do not reflect this
behavior. Naïve A/B tests miss changes in some metrics, overes-
timate or underestimate the changes in others, and even get the
direction of improvement wrong for a few. We were able to carry
out this analysis due to a unique network architecture at Netflix.

Using a pair of reliably congested links with well-balanced traffic,
we ran different experiments on each link and compared the results.

Based on our experience, in Section 5 we investigate possible
ways experimenters can accurately evaluate new algorithms at
scale. We discuss two possible paths to managing the tradeoff be-
tween safety and bias. The first is to adapt the common process of
gradual deployments to measure interference. The second involves
the use of small-scale, targeted switchback experiments to more
accurately measure the effects of a new algorithm while managing
safety concerns. We use the results of our paired link experiment
to simulate what the experimenter might have obtained in these
alternate approaches, and show that both substantially reduce bias.

We believe this paper is just the beginning of work on unbiased
network experimentation. There is much to explore in designing
more effective experiments, improving the analysis of experiments
we run, and understanding the way interference behaves in net-
works. We wonder how many effective algorithms have been aban-
doned because of the way we run experiments, and what ineffective
algorithms have been deployed because we were misled by A/B
tests? Accordingly, we situate our work within the broader context
of related research in Section 6 and conclude in Section 7.

2 WHATWEWANT TO MEASURE
Before discussing experiments in more detail, it will be useful to
give some background on how they are run, and what they can
measure. In this section we provide a formal statistical foundation
for A/B testing. The presentation is borrowed from causal infer-
ence [45]. The description is simplified, but gives enough conceptual
scaffolding for the remainder of our work.

Treatment assignment. When we evaluate a new algorithm
there are some units which run the algorithm. Units may be users,
sessions, flows, connections, servers, etc... We let 𝑈 be the set of
all units. Each unit 𝑖 ∈ 𝑈 is allocated to either treatment where it
runs the new algorithm or control where it does not. Let 𝐴 be the
vector of treatment assignments to all units. We denote treatment
as 𝐴𝑖 = 1, and the set of treated units as 𝑇 . We denote control as
𝐴𝑖 = 0 and the set of control units as 𝐶 .

Potential outcomes. When evaluating a new algorithm, we
are interested in how it improves various metrics. In the language
of causal inference, these metrics are called outcomes. Let 𝑌𝑖 (𝐴)
be the outcome of interest on unit 𝑖 given the vector of treatment
assignments 𝐴. 𝑌𝑖 (𝐴) might be the average throughput of unit 𝑖 ,
the minimum latency, or the 99th percentile packet loss. 𝑌𝑖 (𝐴)
can be a random variable, since we expect some variability due to
randomness in algorithms and randomness in arrivals. 1

Randomized unit assignment. In an A/B test, we randomly
assign units to treatment independently with probability 𝑝 or con-
trol with probability 1−𝑝 . In other words, each𝐴𝑖 is an independent
Bernoulli(𝑝) random variable. We refer to the probability 𝑝 as the
treatment allocation.

To make this point more explicit, we introduce some additional
notation. Define 𝜇𝑇 (𝑝) (resp., 𝜇𝐶 (𝑝)) to be the average outcome
value over the randomness in the assignment of treatment (resp.

1This approach to causal inference via potential outcomes was pioneered by Neyman
[75] (a 1990 translation of the original 1923 publication) and Rubin [66]; see [45] for
details.
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(a) A/B tests without congestion interference (b) A/B tests with congestion interference

Figure 1: A/B tests are used to estimate the total treatment effect: how much better a treatment is than control if both were
deployed globally. A/B Tests give accurate estimates of Total Treatment Effect (TTE) when there is no interference between
sessions as in (a), but may be misleading when there is as in (b).

control), when the treatment allocation is 𝑝:

𝜇𝑇 (𝑝) = E
𝑇 ⊂𝑈

[∑
𝑖∈𝑇 𝑌𝑖 (𝐴)
|𝑇 |

]
.

Depending on the setting and the treatment, 𝜇𝑇 (𝑝) may or may not
depend on the treatment allocation 𝑝 . This is visually depicted in
Figure 1. 𝜇𝑇 (𝑝) is the purple treatment line, and 𝜇𝐶 (𝑝) is the pink
control line.

Average treatment effect. An A/B test evaluates the average
treatment effect. This is how much better the treatment group
performs than the control group, when a 𝑝 fraction of the traffic is
allocated to treatment and 1 − 𝑝 to control. It is defined as:

𝜏 (𝑝) = 𝜇𝑇 (𝑝) − 𝜇𝐶 (𝑝), (1)

This is visually depicted in Figure 1. The treatment effect at any
point on the graph is the difference between the treatment and
control lines.

Total Treatment Effect.When evaluating a new algorithm, we
are often interested in what would happen if we were to deploy
it widely. This is the Total Treatment Effect, or TTE: the difference
between the average outcome when all flows are in treatment and
when all flows are in control. In terms of our notation above:

TTE = 𝜇𝑇 (1) − 𝜇𝐶 (0).
This is depicted in Figure 1: it is the difference between the right-
hand side of the treatment line (when all traffic is treated), and the
left-hand side of the control line (when all traffic is allocated to
control). Depending on the setting, it may or may not equal the
average treatment effect.

Note that this definition of TTE is from the perspective of the
experimenter, and not the internet. The experimenter may only
control a small fraction of all traffic on the internet, and in this
case TTE measures what happens if they switched all traffic under
their control to a new algorithm. The TTE is also sometimes called
the “global average treatment effect” in causal inference work (e.g.,
[51]), but we have avoided this name to avoid confusion around
this point.

It is also reasonable to talk about TTE in specific groups of traffic.
For instance, we may be interested in the TTE if we were to move
all traffic globally to a new algorithm, but we may be also interested

in the TTE for a single network or a group of networks. This can be
incorporated into the definition by changing the set of treatment
and control flows.

Spillover. In addition to how well a new algorithm performs
on its own, we are often also interested in how a new algorithm
impacts existing algorithms. Recently, [84] defined the notion of
the “harm” of a new algorithm, which is the negative effect caused
by a new algorithm competing with an existing algorithm. This net-
working concept is similar to the concept of spillovers in the causal
inference literature (e.g. [21, 37]). Formally, we define the spillover
of treatment on control as the effect of increasing the treatment
fraction to 𝑝 on control units, relative to when the treatment units
were not present. In terms of our notation:

𝑠 (𝑝) = 𝜇𝐶 (𝑝) − 𝜇𝐶 (0).

Spillover is non-zero when deploying a treatment algorithm has
some impact on the control algorithm. This is shown in Figure 1b.
Note that spillover is only defined for 𝑝 < 1. If 𝑝 = 1, there is no
control traffic and no spillover can occur.

Spillovers may or may not be undesirable. It is possible that
deploying a new algorithm can improve existing traffic, and we will
see examples of this later.

Estimating from A/B tests All the quantities above are expec-
tations over the distribution of all possible treatment assignments.
Any experiment has only one set of treatment assignments and can
only observe one set of potential outcomes—all other potential out-
comes are missing. The fundamental problem in causal inference is
to reason about these missing outcomes given what we observe.

In causal inference, we use the observed outcomes to estimate the
quantities above. An estimator is called unbiased for some quantity
if its expectation is equal to that quantity.

In an A/B test we randomly allocate units to treatment or control,
and measure

𝜇𝑇 (𝑝) =
∑
𝑖∈𝑇 𝑌𝑖 (𝐴)
|𝑇 | .

This process gives an unbiased estimator of 𝜇𝑇 (𝑝), since E 𝜇𝑇 (𝑝) =
𝜇𝑇 (𝑝), and similarly for 𝜇𝐶 (𝑝). By linearity of expectation,

𝜏 (𝑝) = 𝜇𝑇 (𝑝) − 𝜇𝐶 (𝑝)
3



IMC ’21, November 2–4, 2021, Virtual Event, USA Spang et al.

is an unbiased estimator for 𝜏 (𝑝), and we can define similar estima-
tors T̂TE, and �̂� (𝑝).

Congestion Interference In virtually all real-world experi-
ments in networking today, experimenters run an A/B test. They
infer that an improvement in the A/B test implies an improvement
if the treatment were to be deployed. In our notation, this means
that they use 𝜇𝑇 (𝑝) and 𝜇𝐶 (𝑝) as an unbiased estimate of the aver-
age treatment effect 𝜏 (𝑝), and then interpret 𝜏 (𝑝) as if it were the
TTE. This is what we refer to as “naïve" A/B testing.

This process gives an unbiased estimate of TTE only in the very
special case when the outcome of a unit does not depend on the
fraction of other units allocated to treatment. This is part of the
Stable Unit Treatment Value Assumption (SUTVA) [45], and re-
quires that TTE = 𝜏 (𝑝) for all 𝑝 , and that spillovers are zero for
all 𝑝 . Visually, this process assumes that algorithms behave like
Figure 1a and not Figure 1b.

Any A/B test that runs over a congested network has a clear
pathway for interference between units in the treatment and control
groups. Any explicit or implicit change in how the treatment group
uses the congested network can create a different network condition
for the control groups, which may lead to different behavior. This is
especially true if the test explicitly changes the timing of how traffic
is sent, or the amount of traffic that uses the network. Because of
this, we will refer to violations of SUTVA as congestion interference.

Note on averages Average treatment effects, spillovers, and
TTE are all defined as averages. Average here refers to the distri-
bution of units in the A/B test, and not the outcome metric. The
average treatment effect could measure the average difference in
average latency, but it could also measure the variance of average la-
tency or 99th percentile latency. Practitioners may also be interested
in quantile treatment effects, e.g. the difference in 99th percentile
latency between treatment and control. These are regularly esti-
mated from A/B test results [1, 78]. It is straightforward to adapt
our definitions to measure quantile treatment effects, and could be
done by replacing 𝜇𝑇 (𝑝) and 𝜇𝐶 (𝑝) with quantile estimators.

3 SMALL LAB EXPERIMENTS
When interference is present, naïve A/B tests do not accurately
describe the behavior of a new algorithm. They mispredict the
TTE and give no estimate of spillover. To illustrate this, we set up
a small test network in the lab. The lab setup gives us a global
view of how a new algorithm performs at any fraction allocation,
and lets us recreate Figure 1 for actual algorithms. With these
results, we can look at the results of different A/B tests, estimate
TTE, and measure spillover. These experiments do not tell us how
different algorithms would behave at scale, but they provide easy-
to-understand examples of how congestion interference causes bias
in naïve A/B tests.

Lab Setup Our lab consists of two servers running Linux 5.5.0,
each with an Intel 82599ES 10Gb/s NIC. Each NIC is connected to a
port of a 6.5Tb/s Barefoot Tofino switch via 4× 10Gb/s breakout ca-
bles. The switch has a 1 BDP buffer. The sender server is connected
to the Tofino with two 10G cables. The interfaces are bonded and
packets are equally split between them, which ensures that conges-
tion happens at the switch (otherwise we only see congestion at the
sender NIC). We set MTUs to 9000 bytes so the servers can sustain a

10Gb/s rate. We add 1ms of delay at the sender using Linux’s traffic
controller tc, and use iperf3 to generate TCP traffic.

3.1 Test 1: Multiple connections
Web browsers, video streaming clients, and other applications re-
quest data over multiple TCP connections in parallel. Making si-
multaneous requests reduces head-of-line blocking, reduces page
load time, and increases utilization [35, 36, 69, 73]. This behavior
depends heavily on the particular ways an application uses TCP
connections and the particular networks it traverses, and so would
typically be evaluated with a large-scale A/B test.

However, using multiple TCP connections can also allow an
application to outcompete its peers and achieve higher throughput,
and so is often called “unfair” in the academic literature [8, 15]. This
makes it an ideal example to illustrate how congestion interference
can bias A/B tests.

We ran an experiment in the lab to illustrate this behavior and
understand the bias it causes. We ran eleven tests in which ten
applications used either one or two TCP Reno connections to trans-
fer bulk data. We measured the average long-term throughput and
retransmission rates experienced by each application.

Figure 2a shows the results of the lab tests. Each test has two
boxplots showing the average throughput for applications using
one or two connections. Applications using two connections had
100% higher throughput and identical retransmission rates than
applications using one. As more applications used two connections,
their average throughput decreased. When all applications used
two connections, their average throughput was identical to when
all applications used one. Even worse, retransmission rates were
higher when all applications used two connections.

These results are because of the way TCP fairly shares through-
put between connections. If 𝑛 identical TCP connections share a
bottleneck link of capacity𝐶 , we expect each to receive a long-term
average throughput of𝐶/𝑛. A group of flows with two connections
should get a throughput of 2𝐶/𝑛, 100% larger than 𝐶/𝑛. But funda-
mentally, increasing the number of connections does not increase
the capacity of the link so there can be no overall improvement.

This behavior is a well-understood consequence of TCP Reno’s
throughput fairness. But supposewe followed common practice [17–
19, 24, 25, 29, 42, 46, 49, 55, 57, 58, 60, 63, 72, 87] and ran an A/B
test to measure how using two parallel connections performed.
To illustrate the potential for bias, we will use the same data set
interpreted in a different way.

In a naïve A/B test, we would randomly allocate some fraction
of traffic to treatment and the rest to control. Treatment would use
two connections and the rest would use one. We would compare
the throughput and retransmissions of the treatment and control
groups. No matter what allocation we picked, we would see that two
connections have a 100% higher throughput than one, and that there
was no impact on retransmission rates. The naïve interpretation is
that we should always use two connections in production.

TTE and spillover give us a better idea of how two connections
perform. The TTE shows that there would be no improvement in
throughput and a 200% increase in the percentage of retransmitted
bytes if all traffic were switched to two connections. Spillovers
allow us to measure the impact of using two connections on other

4
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(a) Units are applications using 1 or 2 long-lived TCP connections. (b) Units are TCP connections which either pace traffic or not.

Figure 2: Throughput and retransmits in experiments where 10 units share a 10 Gb/s link. Every point on the x-axis is a
different A/B test. All tests suggest a large change in throughput and no change in retransmissions, but the difference between
10 treated and 10 control units (TTE) is zero for throughput and large for retransmissions.

applications. When nine applications use two connections, the
spillovers on the one remaining application using one connection
are a 25% decrease in throughput and an almost 175% increase in
retransmissions.

These results demonstrate that any single A/B test would not
accurately measure the impact of changing the number of connec-
tions. But we should be careful not to extrapolate too much from the
lab results. Applications may benefit from being more aggressive,
but using multiple connections can also increase utilization. With-
out more experimentation, either could be a plausible explanation
for a measured increase in throughput. Fundamentally, we believe
that the only way to accurately measure the performance of such a
policy would be to run an experiment at scale, on real traffic. We
will discuss how to run such experiments later in Section 5.

3.2 Test 2: Pacing
Pacing is a generic, widely-used mechanism for reducing packet
burstiness in a network [2, 17, 61, 67]. With pacing, a host adds
delay between successive packets so that it sends a smooth, evenly
paced stream of data into the network.

The Linux Kernel has supported pacing for TCP since 2013 [26,
27]. It adds delay between successive packets to ensure a rate of 2×
𝑐𝑤𝑛𝑑/𝑅𝑇𝑇 during slow start and 1.2×𝑐𝑤𝑛𝑑/𝑅𝑇𝑇 during congestion
avoidance [79].

Prior work, using ns-2, has shown that unpaced TCP traffic
outcompetes paced traffic in terms of throughput [2, 86]. They rec-
ommend pacing at a rate of (𝑐𝑤𝑛𝑑 +1)/𝑅𝑇𝑇 , which is implemented
by Linux. These fairness concerns suggest that spillover may be
nonzero, which implies that there would be congestion interference
in an A/B test.

We ran pacing A/B tests in our lab to measure whether this
interference still exists and if it would impact the results of an
A/B test. Figure 2b shows the results. Paced traffic (the treatment)

Figure 3: Experiments where 10 TCP connections using Cu-
bic or BBR share a 10 Gb/s link. Throughput is the same if
everyone uses either algorithm, but A/B tests suggest that
both are improvements.

obtains 50% lower throughput than unpaced traffic (the control) in
any A/B test, regardless of allocation. In each A/B test, we observed
essentially no reduction in retransmissions for pacing.

Applying usual A/B testing practice to these results might have
led us to decide not to deploy pacing. However, if we did deploy pac-
ing, we would be pleasantly surprised to see no impact on through-
put and a large decrease in retransmissions. The A/B tests also miss
that pacing is good for other traffic: the spillovers from pacing are
an increase in throughput and a decrease in retransmissions.

Pacing highlights the importance of estimating TTE when ex-
perimenting with networking algorithms. It is not obvious that
pacing changes the way connections compete with each other: we
expected it would smooth out bursts and cause lower RTT and loss
with no impact on throughput. Without careful experiment design,
an experimenter could be easily misled into thinking that pacing is
not useful, or waste effort chasing a non-existent bug.

5
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3.3 Test 3: Congestion Control Algorithms
There has been extensive study of the fairness of congestion control
algorithms (e.g. [5, 15, 16, 23, 43, 44, 56, 71, 81, 82, 84, 85]). A treat-
ment algorithm is often said to be unfair if it gets a larger share of
throughput when competing against a control algorithm. In terms
of our metrics, this would be if the spillover on control traffic is a
decrease in throughput.

An A/B test will not accurately measure the TTE for an unfair
algorithm. The treatment algorithm will take throughput away
from the control, making the control perform worse than if the
treatment were not present. Most widely-used congestion control
algorithms are known to be unfair to at least some other algorithms
in certain settings. The resulting biases undermine A/B tests on
new congestion control algorithms at scale.

As an example, it’s been widely reported that BBR is unfair to
Cubic in certain situations [16, 43, 44, 71, 84, 85]. This unfairness
suggests congestion interference, so we ran simulated A/B tests
in our lab. We ran ten long-lived TCP connections, and allocated
some fraction of them to BBR and the rest to Cubic. Figure 3 shows
our results. If we were interested in deploying BBR in this setting
and ran a 10% allocation, we would see a huge improvement in
throughput. If instead we were interested in deploying Cubic and
ran a 10% allocation, we would also see a huge improvement! But
in this setting there is no difference in throughput between a global
allocation to either BBR or Cubic.

4 PAIRED LINK EXPERIMENTWITH
BITRATE CAPPING

In response to the increased network usage during the beginning of
the COVID-19 pandemic, Netflix worked with various governments
to reduce load on the Internet, and rolled out a bitrate capping
program which reduced video quality [30]. This program capped
the video bitrate delivered to clients, while preserving the video
resolution based on their subscription plans. It was observed that
between March and June 2020, capping the bitrate reduced Netflix
traffic in many countries by 25%, and reduced congestion for a
number of ISPs.

In this section, we will describe a controlled experiment we
ran to accurately measure the effects of bitrate capping. Given
that bitrate capping reduced Netflix traffic by 25%, we suspected it
would decrease congestion. Our preceding lab studies also led us
to suspect that standard A/B tests may give biased results. So our
goals with this experiment were to:

(1) Measure the impact of bitrate capping on network perfor-
mance and video quality of experience, by estimating TTE
and spillover effects.

(2) Estimate the bias of naïve A/B tests on these measurements,
and

(3) Evaluate whether alternate experiment designswould reduce
this bias.

These are challenging goals to accomplish simultaneously. To
evaluate the bias of a naïve A/B test and newer experimental designs,
we need to measure what happens when all traffic is treated. But
if we treat all traffic, we have nothing to compare against! We
could run sequential experiments and compare their results, but
this makes strong assumptions about how the system behaves over

ISP

…
Servers Router

Link 1 

Treatment

Link 2…
Servers Router

Control

Figure 4: Diagram of the paired link experiment.

time. These would be useful assumptions to make when running
alternate experiment designs, and we wanted to use this experiment
to evaluate these assumptions.

In this section we describe the experiment we ran to achieve
these goals. In Netflix’s network, there are a pair of 100 Gb/s peering
links to an ISP. The links are reliably congested during peak hours,
and are statistically very similar.We treat these two links as “parallel
universes,” and can compare the outcomes of different experiments
to investigate A/B test biases and congestion interference.

Our results are striking and sobering. Bitrate capping reduced
congestion at the cost of slightly lower video quality, and improved
the performance of uncapped traffic. This was almost completely un-
detected by naïve A/B tests which underestimated some treatment
effects, failed to detect others, and, as we will see, even inferred the
wrong direction of improvement for certain metrics.

4.1 Paired peering links
Netflix has a location with a pair of identical clusters, replicated for
scale and redundancy. Each cluster is identically configured with
a router and a number of cache servers. Each router connects to a
partner ISP via a 100 Gb/s peering link. This setup is depicted in
Figure 4.

During peak viewing hours, demand from users connecting via
this ISP increases until eventually a large standing queue builds up
on both links. Latency increases, and throughput and video quality
decrease. The congestion has a large impact on the quality observed
by traffic, and we suspected strong congestion interference between
connections sharing the same link.

A priori, we are not guaranteed that the two links will be similar
to each other, since the system is optimized to serve video and not
to run experiments. The content available on the two clusters is
not identical, and different traffic is routed to the servers across
each link. To validate statistical similarity between the two links,
we collected data on both links during a week-long baseline period,
comprising over five million sessions: 50.8% on link 1, and 49.2%
on link 2. Netflix collects client- and server-side data on video
performance. We looked at 24 important metrics including ones
related to network performance (throughput, RTT, etc...) and video
QoE (perceptual quality, stability, etc...). For each metric, we used
the analysis approach described in Appendix B to compare links 1
and 2. We will discuss the most relevant subset of these metrics.

We obtained the following results, reported as means and 95%
confidence intervals. Relative to link 2, link 1 had 5% (0.5%-10%)
more overall bytes sent, a 2% (0.1%-3%) higher video stability metric,
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and 0.1% (0.03%-0.25%) lower perceptual quality. The largest differ-
ences were related to rebuffers. Rebuffers are moments when video
playback is interrupted because the client is unable to download
a piece of video from the server. Relative to link 2, link 1 had 20%
(13-27%) more sessions with rebuffers; there were four additional
metrics related to rebuffers that also exhibited similar differences.
All other metrics did not have statistically significant differences.
Notably, we did not see differences in most metrics we will discuss
in our experiment below, including RTT, throughput, video bitrate,
cancelled starts, or packet retransmissions.

Traffic on these links is not perfectly balanced, but it is clearly
quite similar. Although the pre-existing differences in rebuffers is
large, it is important to note that in absolute terms rebuffers are rare.
Given the similarity in other metrics, we believe they are caused
by some other difference, such as the content served on the two
links. Nevertheless, we carefully discuss our experimental findings
regarding rebuffers in Section 4.3, where our observations suggest
this difference in fact causes us to underestimate the extent to which
naïve A/B tests are biased.

Being able to run an experiment like this is an extremely un-
usual situation. Operators work hard to avoid persistent congestion,
so it is rare to have a pair of congested peering links. It is even
rarer for the traffic to be balanced, and to be able to run separate
experiments on each link. Netflix has hundreds of locations and
thousands of peering links worldwide, but only two were suitable
for this experiment.

4.2 Experiment design and analysis
We now describe the experiment we ran. Our goal was to estimate
the effects when most traffic was capped, the TTE, and compare this
to the results of A/B tests. We also wanted to measure the spillover
of capped traffic on uncapped traffic.

To accomplish this, we ran a pair of A/B tests on the two links.
On link 1, we allocated 95% of flows to treatment (𝑝 = 0.95). On link
2, we allocated 5% to treatment. Computing the naïve 𝜏 (𝑝) estima-
tor on sessions within each link allows us to calculate 𝜏 (0.95) and
𝜏 (0.05). By comparing the mean of the 95% treatment sessions on
link 1 to the 95% control sessions on link 2, we obtain an approximate
estimate of TTE. By comparing the mean of the 5% control sessions
on link 1 to the 95% control sessions on link 2, we can obtain an
approximate estimate of the spillover of capping. With this design,
we ran A/B tests simultaneously on the pair of links. The experi-
ment ran for five days, and included about fourteen million video
sessions. We analyzed the experiment using techniques described
in Appendix B.

In practice, network experiments are usually run in one of two
settings. The first is an initial experiment with a relatively low level
of initial treatment allocation, corresponding to the 5% A/B test.
The second is a long-term holdback test, where almost all traffic
is treated. We might naïvely hope that by treating more traffic, we
would reduce congestion interference, and this corresponds to the
95% A/B test.

This experiment may at first appear a bit odd. We are measuring
the difference in behavior when almost all traffic is capped and
almost all is uncapped. This is an interesting quantity which tells us
a lot about the behavior of bitrate capping during congestion, but it

is only an approximation to TTE. The most straightforward way to
estimate TTE in this network would be to cap 100% of sessions on
link 1 as treatment, and uncap 100% of sessions on link 2 as control.
We could then compare the means of each group to estimate TTE.
However, if we did this, we would have no instances where capped
and uncapped traffic shared a link, and we would be unable to
compare the results to an A/B test or measure spillover. We could
run other experiments other times on the links and compare the
results, but we would be making strong assumptions about time
invariance. This would require careful experimental design and
analysis, and one of our goals here was to validate these designs.

Putting it another way: one of our goals is to test the SUTVA
assumption, and check whether treatment effects as measured by
A/B tests give good predictions of what happens when an algorithm
is widely deployed. If SUTVA holds, as in Figure 1a, spillover must
be zero, and there must be no difference between the results of the
two A/B tests and the approximate TTE we measure. If there is any
difference between these quantities in our experiments, SUTVA
cannot hold. Knowing that SUTVA does not hold, we would not
expect slightly increasing the fraction of capped traffic to fix this
problem.

4.3 Results
Our results can be summarized as follows: bitrate capping substan-
tially reduced congestion and improved performance of uncapped
traffic, and yet the naïve estimator would have largely failed to
detect this.

Figure 5 reports our estimates of treatment effects and 95% confi-
dence intervals for several important video streaming and network
metrics. We report the results of 5% and 95% Naïve A/B test results
(i.e., 𝜏 (0.05) and 𝜏 (0.95)), as well as our estimate of approximate
TTE and our estimate of spillover. The naïve estimators are also
wrong about the direction of improvement for minimum RTT and
average throughput, and the magnitude of average play delay and
video bitrate. The spillover is non-zero for most metrics.

Taking the example of average throughput, the two naïve A/B
tests predicted a 5% decrease in throughput, which naïvely suggests
that capping increased congestion. However, the TTE tells a very
different story: that capping increased average throughput by 12%.
Spillover shows that capping also benefited other traffic sharing
the link: control traffic on the mostly capped link had 16% higher
throughput than that on the mostly uncapped link.

These results can be explained by the way bitrate capping re-
duced congestion. There was significantly less capped traffic, so
it took a larger number of users for the link to become congested.
Since user demand was the same on both links, congestion started
later, ended earlier, and was less severe on the majority-capped
link. The naïve estimators were unable to detect this because both
capped and uncapped traffic used the same congested link, and
therefore saw similar performance.

This becomes clearer if we take a closer look at how the aver-
age throughput of sessions changes in Figure 6b, which can be
contrasted with how the behavior during the baseline period in Fig-
ure 6a. We report the average of all client throughputs during each
hour, normalized by the largest hourly throughput. Throughput
slowly decreases as overall traffic increases throughout the day, and
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Figure 5: Treatment effects with 95% confidence intervals in our bitrate capping experiments. Each row is a metric of interest,
with the naïve A/B Test estimates, and TTE and spillovers as estimated by the paired link experiment.

(a) Average throughput for the Saturday of the baseline test period. (b) Average throughput for the Saturday of the main experiment.

Figure 6: Client-reported average throughput over time in the experiments, normalized to the largest hourly average. During
peak hours, the links become congested and throughput decreases. Capping the majority of traffic in (b) causes Link 1 to be
less congested and have higher throughput during most of the peak hours.

then suddenly drops when the link becomes congested during peak
hours. During the baseline period, there is no difference between
throughputs for the two links. During the main experiment, the
mostly capped link remains uncongested for longer during peak
hours, and has higher throughput before and after the most heavily
loaded hours. Despite this difference, the capped and uncapped
traffic on the same link have very similar performance.

In Figure 7, we show the four outcomes of throughput in the
experiment: for capped and uncapped traffic as a function of allo-
cation percentage. Both A/B tests confidently report that capped
traffic reduces throughput relative to uncapped traffic. However
by capping the majority of traffic, we improve throughput for all
traffic using the link. This leads to an improvement as measured by
TTE, and a positive spillover.

If we considered just one of the A/B tests in isolation, we would
falsely conclude that capping traffic makes throughput slightly
worse. This is our “smoking gun”—the confusion arises because
treatment and control interfere with each other via congestion on
the link.

We observed similar behavior for round-trip times in the experi-
ment, as shown in Figure 8. During congested hours, large queues
build up at the congested link, which causes all packets in a session
to be delayed, and leads to a sharp increase in the minimum RTT

Figure 7: Average values of throughput in the cells in this
experiment, with estimands of interest.

observed during each session. However, because bitrate capping
delayed the onset of congestion, the majority-capped link (link 1)
had empty queues for more time. The total treatment effect was
a 24% improvement in the minimum RTT for the bitrate-capped
sessions. The spillover was positive: capping traffic improved the
minimum RTT by 27% for uncapped traffic. Again this was incor-
rectly estimated by the naïve A/B tests which both reported a 5%
and 12% increase in minimum RTT.
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Figure 8: Average of minimumRTT in each connection, nor-
malized to smallest cell value.

We saw similar effects in start play delay, which is the time it
takes a video to start playing. This is not surprising: improving
throughput and reducing queueing delay should cause videos to
load faster. Neither A/B test predicted a significant decrease in start
play delay, whereas there was actually a 10% improvement in total
treatment effect. The spillover was also positive: capping traffic
reduced play delay by 9% for both itself and for uncapped traffic.

We measured a 33% reduction in video bitrate, with positive
spillover. Capping the majority of traffic meant that the uncapped
traffic was able to take up more bandwidth and achieve higher
bitrates. It is surprising that despite the spillover, the two A/B
tests still give reasonably good estimates of TTE. We believe this
is because the majority of the reduction in bitrate comes from the
artifical cap, which is applied independently of how other traffic
behaves. The spillover is small relative to this effect, but might
explain the difference between the 95% treatment effect and TTE.

We observed the total treatment effect for capping was a 10%
increase in the fraction of sent bytes that were retransmitted. This
was driven by a 16% increase in the fraction of retransmitted bytes
during off-peak hours, and a 20% decrease during peak hours as
shown in Figure 9. This may seem surprising since bitrate capping
reduced congestion, but in fact retransmits did not get worse. Cap-
ping reduced the absolute number of bytes retransmitted during
both during peak and off-peak hours. The apparent increase in
the percentage was caused by the absolute number of sent bytes
decreasing more than the absolute number of retransmitted bytes.
Although odd, Netflix observed similar behavior in a number of
ISPs when removing bitrate capping.

Finally, we discuss the impact on rebuffers. Recall from Sec-
tion 4.2 that we observed a 20% difference in rebuffers between the
links from our baseline analysis prior to the experiment. Based on
our experiment, we believe bitrate capping had at least some impact
on rebuffers: we see a 15% decrease in rebuffers in the A/B tests
within each link. We also measured that rebuffers for the mostly
capped traffic in link 1 were 18% lower compared to the mostly
uncapped traffic in link 2.

Given that rebuffer rates were not identical pre-experiment, we
investigated further and measured rebuffer rates for both links
during the month after we ran the experiment. We consistently
found a difference: link 1 had on average 15% more rebuffers. In 70%
of all hours, and in all but one peak hour, link 1 had more rebuffers
than link 2. While we are not certain of the underlying reason

Figure 9: Capping bitrate generally reduced the fraction of
retransmitted bytes during congested hours, but caused an
increase in uncongested hours.

for the difference, we believe an 18% improvement is probably an
underestimate of the improvement of rebuffers. If we account for
the underlying difference between links 1 and 2, it is closer to a
20%-30% improvement (rather than 15% improvement from the
naïve estimate), suggesting congestion interference.

We conclude by highlighting one reason our results may under-
estimate the amount of congestion interference. As discussed in
Appendix B, A/B test analysis usually assumes that sessions from
different users are statistically independent of each other. By esti-
mating standard errors only on data aggregated to the hourly level,
our analysis effectively makes a nearly worst-case assumption that
sessions in the same hour are perfectly correlated. This dramatically
increases the size of the confidence intervals we report for TTE and
spillover.

5 UNBIASED EXPERIMENTS AT SCALE
We care about two different things when evaluating a new algo-
rithm: testing it safely and accurately measuring its performance.
We want to experiment safely: if a new algorithm works so poorly
that it could cause material harm to the service, we want to detect it
quickly and avoid deploying it widely. We also want to be accurate:
the goal of a new algorithm is usually to improve some metric, and
we need to accurately evaluate whether it succeeded.

A/B tests are used today with the assumption that they are both
safe and accurate. If the SUTVA assumption held, we can accu-
rately estimate performance by running an A/B test on a very small
fraction of users. This allows us to predict the performance of an
algorithm at scale, without broadly deploying a harmful algorithm.

But in the worst case, congestion interference means that an A/B
test is neither safe nor accurate. An algorithm which performs well
in an A/B test might cause significant harm when it is deployed
globally. But if an algorithm has marginal A/B test results and we
do not deploy it globally, we may miss out on extremely effective
algorithms.

This is a fundamental tradeoff with congestion interference, and
what makes it so difficult to work with in practice. If we want to get
a completely unbiased estimate of TTE, we need to allocate 100% of
traffic to a treatment. But for safety reasons we would never allocate
100% of traffic to an untested or poorly performing algorithm.

In this section, we provide some guidance on how to run exper-
iments in practice. We will not be able to completely resolve this
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tradeoff, but we will describe two ways of measuring congestion
interference despite it.

Naïve A/B tests are biased in congested networks because of the
combination of the A/B experiment design itself, and the flawed
causal interference used when interpreting the results of that de-
sign. We will propose modifications to the A/B experiment design,
and describe the improved causal inference that these modifications
allow. First, we propose slightly modifying existing deployment
practices to look for congestion interference. This is easy to do and
helps build intuition around when congestion interference exists, at
the cost of time-related bias and rejecting effective algorithms. To
counter this, we also propose running small-scale, targeted switch-
back experiments to measure how a new algorithm behaves in a
specific network.

5.1 Measure deployed algorithms with event
studies

When deploying an algorithm, it is important to get an accurate
estimate of TTE. Optimistically, an algorithm might perform better
at scale than it did in small-scale evaluations. Perhaps when an
algorithm is run by a larger fraction of traffic, it even further reduces
congestion and improves performance than it did in small-scale
experiments. Accurately quantifying the improvement is important
to understanding its behavior and giving the team working on the
algorithm the credit they deserve.

Pessimistically, a new algorithm might perform worse at scale
than in small-scale evaluations. This might be a sign of some bug
or unexpected behavior in the algorithm, and might suggest it
increases congestion or interferes with other traffic on the internet.
These are things that are important to know about, so they can be
addressed.

Primarily for safety reasons, engineers have developed sophis-
ticated techniques for deploying new algorithms. Engineers grad-
ually deploy changes by slowly increasing the allocation fraction.
They continually monitor the system, and stop the deployment if
performance degrades.

While engineers typically use gradual deployments to safeguard
against failure, they could also be used to conveniently measure
the performance of a new algorithm and look for congestion inter-
ference. A gradual deployment is effectively a series of A/B tests
with treatment allocations ranging from 0% to 100%. At each alloca-
tion (𝑝1, 𝑝2, etc...) we can observe the outcomes for treatment and
control. This gives us points on the graph of Figure 1, and we can
use these values to estimate the average treatment effect 𝜏 (𝑝𝑖 ), the
spillover 𝑠 (𝑝𝑖 ), and a partial treatment effect 𝜌 (𝑝𝑖 ) = 𝜇𝑇 (𝑝𝑖 )−𝜇𝐶 (0).
Once the deployment is finished, we can compare 100% allocation
to 0% allocation and estimate TTE. If there is no interference, for
all allocations 𝑖 and 𝑗 , the average treatment effects are the same
𝜏 (𝑝𝑖 ) = 𝜏 (𝑝 𝑗 ), the partial treatment effects are the same as the
average treatment effects 𝜌 (𝑝𝑖 ) = 𝜏 (𝑝𝑖 ), and there is no spillover
𝑠 (𝑝𝑖 ) = 0. We can use statistical tests to check each of these re-
lationships. If they do not hold, it could be a sign of congestion
interference.

This is a type of observational design called an event study or
an interrupted time series [54, Ch. 11]. In an event study, we in-
troduce some change, and compare the state of the system before

and after. This can be contrasted with a naïve A/B test, where we
simultaneously compare units with and without the change. In the
gradual deployment setting, the change is the increase of treatment
allocation from 𝑝𝑖 to 𝑝𝑖+1.

A major flaw with event studies is that it can be difficult to
attribute observed behavior to a particular change. This is especially
true because of seasonality: holidays, weekends, and political events
all tend to have different traffic patterns than other times. Other
teams or organizations regularly make changes and deploy software
which can affect similar metrics. In the bitrate capping example,
we had data from before and after deployment, but chose to run
a more controlled experiment to rule out the possibility of other
causes for the behavior we observed.

Another flaw is that this process works well for safely deploy-
ing new algorithms, but it is heavily biased towards rejecting new
algorithms. As an example, suppose we were testing a new algo-
rithm which behaved like the pacing lab experiment in Section 3.2.
In a small allocation A/B test, this algorithm would look worse:
throughput would be down and loss would be unaffected. Seeing
this, we might invest our time in other, more promising algorithms.
We could slightly increase the size of the allocation to look for inter-
ference, but throughput increased quite slowly with allocation size.
Even if we were able to detect this interference, it would look small.
At this point, we might stop the deployment before the algorithm
is able to clearly improve performance.

Despite these flaws, event studies are quick and easy ways to get
estimates of TTE and spillovers. Large organizations continually
deploy changes. When a deployment happens, it is easy to look
at the already-collected metrics and use these metrics to estimate
TTE and spillovers. Doing so will help build intuition around which
algorithms could be affected by congestion interference.

5.2 Measure algorithms in development with
targeted switchbacks

Running an event study when deploying a new algorithm is a good
way to measure congestion interference and build intuition, but it
is a bad way to experiment with new algorithms. We do not want
to deploy marginal algorithms to all traffic, and so we may not
invest in algorithms that perform poorly in an A/B test. We may
miss out on algorithms that have very different effects when widely
deployed, like bitrate capping, pacing, or changing the number of
TCP connections.

Because of this, we recommend running small targeted experi-
ments in addition to small A/B tests. A targeted experiment allocates
a large fraction of traffic within a specific network. The network
needs to be structured in such a way that the allocated traffic does
not interact with non-allocated traffic. In the paired link experiment
in Section 4, we targeted an experiment to two congested links.
Using the results from the large fraction allocation, we can get a
good estimate of TTE and spillover in this network.

Targeting an experiment allows us to estimate TTE and spillover
within a network, without needing to run an algorithm on 100% of
traffic globally. It is standard practice in online platforms [52, 68].
While we estimate TTE and spillover for a specific network instead
of globally, this helps give additional context to A/B test results and
improves our understanding of how a new algorithm behaves.
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When running these targeted experiments, we recommend using
switchback designs. A switchback design divides time into intervals;
a given interval is randomly assigned to be either treatment or
control. In a treatment interval, we treat almost all of the traffic
with the new algorithm. In a control interval, almost all traffic runs
the old algorithm.

At a high level, switchback experiments are analyzed by compar-
ing the treatment and control intervals. While we could do 100%
allocations in these intervals to get a good TTE estimate, we rec-
ommend a smaller allocation (e.g. 90-99%) as in the paired link
experiment. Doing so allows us to additionally estimate spillover
and the bias of A/B tests, which gives valuable insight into algo-
rithm behavior. The allocation size should be large enough to give
statistically significant results, and can be determined by a power
calculation.

Like event studies, switchback experiments rely on the change
between treatment and control intervals being due to the treatment.
However, the assumption is weaker: instead of needing no other
events to impact the outcome, a switchback requires that another
event does not line up with the treatment intervals.

A switchback experiment can also be vulnerable to carryover
effects [14, 32]. The presence of the treatment algorithm can influ-
ence the initial conditions of the control algorithm and vice versa.
This can cause bias: imagine if we were to switch sessions between
one and two parallel connections. Until all sessions that used two
parallel connections had completed, the sessions using one would
have lower throughput than necessary. If the system reacts poorly
to switching between treatment and control, this could also cause
problems.

Carryover effects can be mitigated with sufficiently long inter-
vals. However, typically switchback experiments make the worst-
case assumption that all sessions in an interval are dependent (see
Appendix B for more details), which essentially means that each
interval gives us one data point. Increasing the length of intervals
effectively lowers the sample size of the experiment. For networking
algorithms, we believe a switch interval of one day is a reasonably
conservative place to start. Depending on the setting and the algo-
rithm, it may be appropriate to use a shorter interval on the order
of hours or minutes.

5.3 Evaluating alternate designs
Our paired link experiment gives us the results of simultaneous,
comparable experiments. We previously analyzed that data to esti-
mate TTE and spillovers. We now use it to evaluate event studies
and switchback designs, and show that these designs also accurately
estimate TTE.

Having two simultaneous experiments allows us to ask what
would have happened if we ran only one experiment at a time.
Our experiment in Section 4 ran from Wednesday through Sunday,
giving us five possible days of data. We can emulate an event study
by using data from the 5% link for a few days and then switching
to data from the 95% link, representing a deployment of bitrate
capping to 95% of traffic. We can emulate a switchback experi-
ment by switching between treatment days and control days more
frequently.

We first used baseline data to calibrate a switchback experiment.
We ran an A/A test [54, Ch. 19] on the paired links in the week
following our main experiment: we applied the control to both links
and looked for underlying differences. Using the data from the A/A
test, we checked that there would have been no false positives with
any switchback design. This increases confidence that there isn’t
a reliable difference between days in a way that would bias the
experiment, and we would recommend doing this in most cases.

We also used baseline data to calibrate an event study. We ob-
served that there were false positives in the majority of metrics
with any event study in this experiment. We believe this is because
weekends tend to have different traffic patterns than weekdays,
and an event study must either treat all the weekend days or all
the weekdays together. This is an advantage of using a switchback
design.

For the event study, we switched to 95% bitrate capping between
Thursday and Friday as shown in Figure 11. For the switchback, we
alternated between treatment and control, and randomly started
with treatment. This assignment is shown in Figure 12. All other
ways of assigning treatment to days yielded similar results, provided
at least one day was in treatment and at least one day was in control.

Figure 12 shows the average throughput for this example switch-
back design, which can then be compared with the throughput in
the paired link experiment in Figure 6. Note that because we are
switching between experiments, the clear difference in throughput
in the paired link time series is much harder to see in the switch-
back. This highlights the power of running statistical analyses on
switchback data.

Our goal with this approach was to use the clean results from
our paired link experiment to demonstrate the power of switch-
back experiments and event studies. If we had actually run these
experiments, the results may have been slightly different. For in-
stance, traffic from both links likely shares some bottlenecks in the
provider network during offpeak hours, so it is possible that our
results during offpeak hours are biased by congestion interference.
However the congestion interference we detect is largely because
of the behavior during congested hours on isolated congested links.

5.4 Results
The analysis approach for these experiments is identical to the
paired link experiment, with the caveat that we only use the subset
of the data corresponding to each experiment. We describe the
details in Appendix B.

Figure 10 shows the values of TTE estimated by the switchback
experiment, event study, and paired link experiment. Both alternate
experiments give reasonably good estimates of TTE. The switchback
experiment results are very close, and the confidence intervals for
its estimates include every TTE from the paired link experiment.
It has larger confidence intervals because it includes half as much
data. We expect that running the experiment for longer would have
reduced the size of the confidence intervals.

The event study gives reasonably accurate estimates of TTE for
most metrics, but is biased for throughput, cancelled starts, and %
retransmitted bytes. As we observed in analyzing the baseline data,
we believe this is because of seasonality issues: weekends tend to
have different behavior than weekdays, and so it is more difficult to
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Figure 10: TTE as estimated by the paired link experiment, a switchback experiment, and an event study.

Figure 11: Throughput in a bitrate capping event study. Be-
tween Thurs. and Fri., we apply 95% bitrate capping.

Figure 12: Average throughput over time in a bitrate capping
switchback experiment. 95% of traffic is capped on the first
and third and fifth day.

attribute the change to the treatment. This is one of the advantages
of switchback experiments: randomly choosing intervals over many
days helps avoid certain seasonality effects. Despite this, given that
event studies are so easy to incorporate into existing workflows,
we still recommend cautiously using them to estimate TTE and
spillovers when deploying new algorithms.

6 RELATEDWORK
A/B tests are heavily used in industry research. There recently have
been a number of published A/B tests comparing congestion control
algorithms, including BBR [17–19, 46, 72], COPA [63], and Swift

[55]. There have also been many other published A/B tests for other
networking algorithms. These include work on initial congestion
windows [25], TCP’s loss recovery [29], PRR [24], QUIC [49, 58],
failure recovery [57], and ABR algorithms [42, 60, 87]. We do not
know how congestion interference affected these results.

We are aware of a few published results that include event studies:
Dropbox and Verizon both used them to evaluate BBRv1 [46, 72],
and Google reported one for Timely in [61]. In Section 5, we show
how to design and analyze these event studies to measure TTE
and spillover, and describe how switchback experiments give more
reliable results.

Experiments on router performance, especially those related to
buffer sizing [11, 12, 74], naturally must treat all traffic using the
router. Because of this, they tend to have good estimates of total
treatment effects.

Recent studies of social network and marketplace platforms have
led to improved understanding of causal inference under interfer-
ence (e.g., [4, 6, 9, 13, 59]), both through novel experimental design
(e.g., [7, 14, 20, 32, 40, 47, 68, 83]) and improved inferential methodol-
ogy (e.g., [6, 9, 10, 77]). We believe our work is the first to show that
these issues affect networking experiments and bias their results at
scale.

Switchback designs found recent favor as an approach to testing
matching and dispatch policies in ridesharing and food delivery
platforms, though they have also been used in applications as varied
as agriculture [14, 20, 52, 64, 65]. We are unaware of any prior usage
of switchbacks in networking.

We have heard some folklore predictions from the networking
community that these sort of issues may exist. The only citeable
version of this we know of is in [80].

Finally, our work is informed by the long line of work on fair-
ness in networking. Unfairness between Cubic and BBR, which we
describe in Section 3, was previously reported by [16, 43, 44, 71,
81, 82, 84, 85]. Unfairness between parallel connections was first
observed by [8]. Unfairness between paced and unpaced Reno flows
was shown by [2, 86]. Fairness work is about how algorithms ought
to share resources, and usually shows that algorithms are unfair
in simulations or in a lab [5, 15, 16, 23, 43, 44, 50, 56, 71, 81, 82, 85].
Our work does not address how algorithms should share resources,
but rather how to avoid experimental bias when they do. One way
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of interpreting our work is as a way to measure unfairness between
treatment and control at scale, in production networks.

7 CONCLUSION
Congestion interference biases the results of networking A/B tests
at scale, and it is our responsibility as a community to be aware
of this phenomenon. Our results suggest that we should be skepti-
cal when interpreting the results of naïve A/B tests, and consider
whether alternate experiment designs should be used instead.

As discussed in Section 5, experimenters can make small changes
to existing deployment processes to begin to measure congestion
interference, and use targeted switchbacks to further improve these
measurements. We should be especially wary of interference when
an algorithm changes traffic volumes, tries to control congestion,
or is similar to algorithms discussed in the past fairness research in
Section 6.

We would love to see more work in networking evaluated with
congestion interference in mind, either with published switchback
experiments, or at least event studies run during a gradual deploy-
ment. This is especially true for high consequence proposals, such
as new internet standards.

On the research side, there is much more work to be done on
evaluating algorithms at scale in congested networks.We encourage
further studies to measure bias, in different networks and with
different algorithms. We think it would be valuable to design new
experiments and analyses specifically for congested networks. The
bias of naïve A/B tests is both a cautionary tale and a significant
opportunity for innovation. The internet surely works better thanks
to A/B tests of algorithms run in congested networks. We hope that
new algorithms tested with better experiments will help improve it
even further.
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A ETHICS
While our experiments involve live traffic running on a large video
streaming service, our work is not human subjects research, and
we have no way to identify the individual users of the platform. We
only have access to performance-related data. We ran experiments
which improved behavior during congestion, but they did so at the
cost of reducing video quality. Netflix’s customers have the ability
to opt out of experiments, if they choose to.

B APPENDIX: ANALYSIS OF EXPERIMENTAL
DATA

In this appendix we describe our general approach to analysis of
data from experiments at scale, and how we apply this approach in
the context of the experiments reported in Sections 4 and 5. For the
duration of the appendix, we consider data for a fixed representative
metric collected on a per-session basis (e.g., average throughput).

In our experiments units are video sessions, and we let𝐴𝑖 denote
the treatment condition of session 𝑖 , where𝐴𝑖 = 1 denotes treatment

Figure 13: Comparison of treatment effect sizes and confi-
dence intervals when aggregating by hour or by account.

and 𝐴𝑖 = 0 denotes control. Let 𝑌𝑖 denote the observed outcome
on session 𝑖 . Let ℎ𝑖 ∈ {1, . . . , 24} denote the hour of session 𝑖 . Our
first step in analysis is to aggregate data at the hourly level: for
each hour 𝑡 = 1, . . . , 24 and each treatment condition 𝐴 = 0, 1, we
compute:

𝑍𝑡 (𝐴) =
∑
𝑖 𝑌𝑖1ℎ𝑖=𝑡,𝐴𝑖=𝐴∑
𝑖 1ℎ𝑖=𝑡,𝐴𝑖=𝐴

.

This is the average outcome for sessions in treatment condition 𝐴

during hour 𝑡 .
Next, we use a regression approach to estimate the treatment

effect [31, Ch 9], using the following model specification:

𝑍𝑡 (𝐴) = 𝑐 + 𝛽0𝐴 + 𝛽𝑡 + 𝜀𝑖 , for all 𝑡, 𝐴.

Here 𝑡 = 1, . . . , 24 and 𝐴 = 0, 1; 𝛽0 is the coefficient on the treat-
ment indicator; each 𝛽𝑡 is a fixed effect to control for hour-of-day
heterogeneity; 𝑐 is an intercept term; and 𝜀𝑖 is the error term. We
fit this model using least squares linear regression, and estimate
confidence intervals using Newey-West robust standard errors [62]
with a lag of two hours. This is a common approach in economet-
rics to account for autocorrelation between successive hours, and
heteroskedasticity in the error terms 𝜀𝑖 . We use hats to denote the
corresponding estimates; in particular, 𝛽0 is the estimated coef-
ficient on the treatment indicator, and thus an estimator for the
average treatment effect.

We note that the approach we take here—where we aggregate
data to the hourly level—essentially makes a worst case assump-
tion that sessions within a given hour and treatment condition are
perfectly correlated with each other. This is a very conservative
assumption, that we feel only strengthens the case in our paper.
Though conservative, this is current practice in analysis of switch-
back experiments in other industries [52]. If we were to analyze the
results using the standard account-level standard errors, we would
get much tighter confidence intervals as shown in Figure 13. Cor-
recting standard error estimates to properly estimate dependencies
between sessions remains an active area of investigation.

We now describe howwe apply this approach to our experiments
in Sections 4 and 5.
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B.1 Application to paired link experiment
In Section 4, sessions on link 1 were randomized 95% to treatment
and 5% to control; and sessions on link 2 were randomized 5% to
treatment and 95% to control.

We carry out four separate analyses on this data. First, to com-
pute the approximate estimate T̂TE for TTE, we consider the 95%
of all sessions in the treatment group on link 1 as our treatment
sessions (𝐴𝑖 = 1); and the 95% of all sessions in the control group on
link 2 as our control sessions (𝐴𝑖 = 0). We ignore all other sessions.
We then follow the analysis workflow above, and set T̂TE = 𝛽0
from the resulting fitted regression.

To estimate spillover, we use only the 5% control sessions on
link 1 and the 95% control sessions on link 2. We set 𝐴𝑖 = 1 for
the control sessions on link 1, and 𝐴𝑖 = 0 on link 2. We compute
�̂� (0.95) = 𝛽0 from the resulting fitted regression.

Finally we compute two “naïve” estimates using the difference
in means estimator (1) from Section 2. In particular, for 𝑝 = 0.95,
we use only the sessions on link 1: we consider all sessions in the
treatment group on link 1 as our treatment sessions (𝐴𝑖 = 1), and
all sessions in the control group on link 1 as our control sessions
(𝐴𝑖 = 0). All sessions on link 2 are ignored. An analogous approach

is carried out for 𝑝 = 0.05 using the treatment and control sessions
on link 2 (ignoring all sessions on link 1), to compute 𝜏 (0.05). We
aggregate to the account level, not the hour level, as is standard
when analyzing A/B tests.

Finally, all reported values are normalized to make them more
interpretable. In particular, we divide all estimates by the average
across all control sessions on link 2 (where 95% of the traffic was
control). This approach ensures all reported values are a relative
difference measured against the same global control condition.

B.2 Application to switchback experiments
and event studies

In Section 5, we analyzed a switchback experiment and an event
study that was emulated using the data from the paired link experi-
ment. This analysis was carried out as follows. For the three days
chosen to be treatment intervals, we define all treatment sessions
on link 1 to have 𝐴𝑖 = 1, and ignore all other sessions. For the two
days chosen to be control intervals, we define all control sessions
on link 2 to have 𝐴𝑖 = 0, and ignore all other sessions. We then
proceed with the analysis workflow above, and report 𝛽0 as our
emulated estimate of TTE.
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