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ABSTRACT
Fairness is well studied in the context of resource allocation. Re-

searchers have proposed various fairness notions like envy-freeness

(EF), and its relaxations, proportionality and max-min share (MMS).

There is vast literature on the existential and computational aspects

of such notions. While computing fair allocations, any algorithm

assumes agents’ truthful reporting of their valuations towards the

resources. Whereas in real-world web-based applications for fair

division, the agents involved are strategic and may manipulate

for individual utility gain. In this paper, we study strategy-proof

mechanisms without monetary transfer, which satisfies the various

fairness criteria.

We know that for additive valuations, designing truthful mech-

anisms for EF, MMS and proportionality is impossible. Here we

show that there cannot be a truthful mechanism for EFX and the

existing algorithms for EF1 are manipulable. We then study the

particular case of single-minded agents. For this case, we provide a

Serial Dictatorship Mechanism that is strategy-proof and satisfies

all the fairness criteria except EF.
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1 INTRODUCTION
Fair division of resources is critical in various situations like division

of inheritance or land and allocation of rooms to housemates, jobs

to workers, time slots to courses. In a typical scenario, the agents

involved report their valuations for the resources available. The

central aggregator or the underlying software aggregates these

reported valuations to output a fair allocation. Various web-based
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applications like Spliddit
1
, Fair Proposals System

2
, Coursematch

3
,

Divide Your Rent Fairly
4
, etc offer such solutions readily. Often the

participants are strategic and misreport their valuations to improve

their utility. The party that strictly adheres to the protocol and

reveals its true valuation (while it can misreport and achieve more

utility) may find it unfair if others misreport for their benefit even

though the underlying algorithm is fair for the reported types. In

auction settings, one prevents such strategic manipulations through

monetary transfers. Whereas in resource allocation, no monetary

transfers are allowed. Hence, it is essential to look for truthful

mechanisms that ensure fairness without payments.

In this paper, we focus on indivisible resources and the fairness

notions of envy freeness (EF), proportionality and maxi-min share
(MMS). Proportionality [22] is the first concept of fairness ever

proposed. It ensures that each agent receives a fair share of its utility.

Another popular notion is envy-freeness (EF). An allocation is EF

when no pair of agents exist such that one of the agents increases

its utility by exchanging their allocated goods [14]. For divisible

goods, EF allocations always exist [23], and complete allocation

may not exist for indivisible goods. It is also NP-hard to compute an

approximation to EF [16]. When the valuations are sub-additive, EF

implies proportionality [5]. Although proportionality is a weaker

notion, its existence is still not guaranteed for indivisible goods.

Given the above results, in [7, 16], the authors relax EF and

introduce EF up to the most-valued good or EF1. An EF1 allocation

is always guaranteed to exist even for indivisible goods and can be

computed in polynomial time by the cycle-elimination algorithm

[16]. It is interesting to consider EFX, which is EF up to the least-

valued good [9]. It is stronger than EF1. EFX always exists for up

to three agents [10]. For indivisible goods, another fairness criteria

considered is MMS [7], where each agent’s utility is at least its MMS

guarantee. The MMS guarantee is the worst-case value an agent

receives when partitioning the goods and others choose before it.

MMS allocation is guaranteed to exist for up to two agents [20].

The above existential and complexity results assume that each

agent’s preferences (determined using their valuations for each

bundle) are known. In this work, we are interested in preference

elicitation to prevent manipulations. Hence we study the existence

of truthful or SP (Strategy-Proof) mechanisms that ensure fairness

or Strategy-Proof Fair (SPF).

1
www.spliddit.org

2
www.fairproposals.com

3
www.coursematch.io

4
https://www.nytimes.com/interactive/2014/science/rent-division-calculator.html

5
Only when proportionality exists
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Property Single-Minded Identical Additive

Additive (NSP) (𝑛 = 2) (𝑛 ≥ 𝑚)

EF ✗[16]

Proportionality ✓(SD)
5 ✗[2] (alternate proof)

EFX ✓(SD) ✗(Theorem 3.2) (even for𝑚 = 4 )

EF1 ✓(SD) ✓(RSD) ✗[1] (𝑚 ≥ 5) ✓(RSD)

MMS ✓(SD) ✗[2]

Table 1: Existence of SPF Mechanisms for Various Types of Valuations

1.1 Strategy-Proof Fair
A direct-revelation mechanism takes all the input valuation func-

tions and returns an allocation. A direct-revelation mechanism is

SPF if it ensures fair allocation when no agent can gain higher util-

ity by misreporting. In mechanism design literature, it is standard

to introduce payments to design truthful mechanisms, especially

in auction settings [12, 15, 24]. In this paper, we focus on the basic

model of fair mechanism design without money. When the goods

are divisible, the authors in [3, 18] prove that no deterministic SP

mechanism (without monetary transfers) is proportional or even

approximately proportional for complete allocation. Since EF is

stronger than proportionality, having an SP mechanism for EF is

also impossible. It is known that there exist randomized SP mecha-

nisms which ensure EF when the goods are divisible [19]. There are

other works like [6, 11, 13] which give SPF mechanisms without

money for divisible goods. In [4], the authors show that sequential

allocation is strategy-proof when agents have identical rankings.

This way of allocation is referred to as Picking Sequences.

SPF Mechanism for Indivisible goods. In Lipton et al. [16], the au-

thors prove that it is impossible to design a truthful mechanism

that achieves minimum envy or EF by providing a counterexample.

When there are two agents (𝑛 = 2) and the number of goods (𝑚) are

greater than 5, there cannot be a deterministic SP mechanism with

complete allocation for EF1 even for additive valuations [1]. There

are impossibility results for MMS in [2], the authors prove that for

2 agents, there is no truthful mechanism that ensures better than

1

𝑚/2 -MMS allocation.

1.2 Our Contribution
Given the above limiting results, we explore the following in this

paper

(1) We study the EFX property for two agents, where it is guaran-

teed to exist. From [1], it is impossible to have SP mechanism

for EF1 with two agents and more than 5 goods. EFX being a

stronger property also follows the same result for the given

setting. This paper provides an example that proves that de-

signing an SP mechanism for EFX is impossible even when

the number of goods is 4.

(2) Aligning with the results of [1], we provide examples to show

that greedy round-robin algorithm and cycle-elimination

algorithm for finding EF1 aremanipulable.When agents have

identical additive allocations, greedy round robin provides

allocations that is EF1 as well as strategy-proof.

(3) Given that the valuations can be very complex to represent

in general, we restrict ourselves to the simpler case of (SM)

single-minded agents. SM bidders is very common in the auc-

tion literature multi-item setting [17, 21]. In such a setting,

we provide (SD) (Serial Dictatorship Mechanism) that again
extends greedy to obtain SP mechanism for EFX, EF1, MMS.

SD also provides proportional allocations when they exist.

In Table 1, we summarize all the results for the existence of an SP

mechanism for various fairness criteria. (Blue ones are the results

in this paper.) When the agents are single-minded, SD is a direct SP

mechanism that also ensures EF1, EFX, MMS and proportionality

when it exists. When the valuations are (additive) identical, RSD

is an SP mechanism that ensures EF1. Additive valuations are the

most well-studied in literature. For EF, proportionality, EFX, there

are counter-examples when there are 2 agents for proving that an

SP mechanism cannot exist when valuations are additive. Even for

MMS and EF1 under additive valuations, the results are for 2 agents.

2 PRELIMINARIES
2.1 Notation
Consider the problem of division of indivisible resources. We repre-

sent each instance by ⟨𝑁,𝑀,𝑉 ⟩ which are formally defined below,

• Finite set of agents 𝑁 = {1, . . . , 𝑛}
• Finite set of indivisible goods𝑀 = {1, . . . ,𝑚}.
• Valuation functions 𝑉 where 𝑣 ∈ 𝑉 denotes a particular profile

and ∀𝑖 ∈ 𝑁 , 𝑣𝑖 : 2
𝑀 → R+. Let 𝑣−𝑖 be the valuation profile of all

agents excluding 𝑖 .

• We assume 𝑣𝑖 is monotonic, ∀𝑖 ∈ 𝑁,∀𝑆 ⊆ 𝑇 ⊆ 𝑀, 𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (𝑇 )
• Additive valuations imply for any 𝑆 ⊆ 𝑀, 𝑣𝑖 (𝑆) =

∑
𝑗 ∈𝑆 𝑣𝑖 ({ 𝑗})

• Identical valuations imply ∀𝑖, 𝑗 ∈ 𝑁,∀𝑆 ∈ 𝑀, 𝑣𝑖 (𝑆) = 𝑣 𝑗 (𝑆). Iden-
tical additive valuations imply 𝑣𝑖 is both identical and additive.

• Single minded agents with desirable bundles 𝐷 = (𝐷1, . . . , 𝐷𝑚).
The valuation of an agent 𝑖 ∈ 𝑁 is given by, for a 𝑐 ∈ R+

∀𝑆 ∈ 𝑀, 𝑣𝑖 (𝑆) =
{
𝑐, if 𝑆 ⊇ 𝐷𝑖

0, otherwise

(1)

• The set of all possible complete allocations, A. Given 𝐴 ∈ A de-

notes a specific allocation and 𝐴𝑖 is allocation per agent. By com-

plete allocation we mean if there are𝑚 goods then ∀𝐴,∑𝑖 |𝐴𝑖 | =
𝑚, assuming each resource can be allocated only to a single agent.

2.2 Important Definitions
We define the relevant fairness notions below with examples,
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Definition 2.1 (Proportionality). Given an instance ⟨𝑁,𝑀,𝑉 ⟩, the
allocation 𝐴 is proportional iff ∀𝑖 ∈ 𝑁 ,

𝑣𝑖 (𝐴𝑖 ) ≥
1

𝑛
𝑣𝑖 (𝑀)

2.2.1 Example. Consider two agents 1 and 2 and three goods 𝑎, 𝑏, 𝑐 .

𝑣𝑖 is given below where (𝑥,𝑦) ∈ {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)}. Possible pro-

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑥,𝑦) 𝑣 (𝑎, 𝑏, 𝑐)
1 10 20 15 30 30

2 10 20 15 30 30

portional allocations are when 1 receives item 𝑏 and 2 receives

goods {𝑎, 𝑐} or vice versa. Also when agent 1 receives 𝑐 and agent

2 receives goods {𝑎, 𝑏} or vice versa.

Definition 2.2 (Envy-freeness (EF)). For ⟨𝑁,𝑀,𝑉 ⟩ an allocation

𝐴 is envy-free iff,

∀𝑖, 𝑗 ∈ 𝑁 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 )

2.2.2 Example. Consider 2 agents 1 and 2, two goods 𝑎,𝑏. For agent

1, 𝑣1 (𝑎) = 20, 𝑣1 (𝑏) = 10 and for agent 2, 𝑣2 (𝑎) = 10, 𝑣2 (𝑏) = 20. It

is envy-free to allocate 𝑎 to agent 1 and 𝑏 to agent 2.

Both the notions of proportionality and EF are too strong in the

case of indivisible goods and are not guaranteed to exist. Consider

the case when there are two agents and only one item, it is impos-

sible to have any allocation that is either EF or even proportional.

When the valuations are sub-additive, every EF allocation is propor-

tional as shown in Figure 1. In [16], the authors define the following

notion weaker than EF.

Definition 2.3 (EF1). For ⟨𝑁,𝑀,𝑉 ⟩ an allocation 𝐴 is EF1 iff
∀𝑖, 𝑗 ∈ 𝑁, ∃𝑎 ∈ 𝐴 𝑗 such that,

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗\{𝑎})

EF1 allocation always exists for general monotone valuations.

Another relaxation of EF stronger than EF1 is defined below,

Definition 2.4 (EFX). For ⟨𝑁,𝑀,𝑉 ⟩ an allocation 𝐴 is EFX iff,
∀𝑖, 𝑗 ∈ 𝑁, ∀𝑎 ∈ 𝐴 𝑗 such that,

𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗\{𝑎})

2.2.3 Example. We saw before in Example 2.2.2 that EF allocation

is not possible when there are two agents and only one item. But

an allocation where the item is assigned to either 1 or 2 is both EF1

and EFX.

Unlike EF1, EFX is guaranteed to exist only for three agents or

when agents have identical valuations. The relations between EF,

EFX and EF1 is represented in Figure 1 for any general monotonic

valuations.

In [7], the author defines another threshold based definition of

fairness where each agent is guaranteed at least as much valuation

as a risk-averse agent would guarantee itself. By risk-averse we

mean an agent who assumes that given a partition of the bundles

it might end up in receiving the bundle with minimum valuation.

Hence, if the agent decides the partition, it would do so to maximize

the value of the minimum bundle. This is in the same spirit of a

cut-and-choose protocol.

Figure 1: Relation between Various Fairness Criteria [5]

Definition 2.5 (Maximin Share (MMS)). For ⟨𝑁,𝑀,𝑉 ⟩ an allo-

cation 𝐴 is MMS iff ∀𝑖 ∈ 𝑁 ,

𝑣𝑖 (𝑆𝑖 ) ≥ 𝜇𝑖

where

𝜇𝑖 = max

𝐴∈Π𝑛 (𝑀)
min

𝐴 𝑗 ∈𝐴
𝑣𝑖 (𝐴 𝑗 )

2.2.4 Example. Consider there are two agents 1 and 2, three goods

𝑎, 𝑏, 𝑐 . We consider additive valuations for both agents. Let the

valuation of each item be given as follows, In this example 𝜇1 =

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐)
1 10 20 40

2 10 40 20

𝜇2 = 30. Agent 1 gets 𝑐 and 2 gets 𝑎, 𝑏 would be an MMS allocation.

There is no straight forward relation between EF1/EFX and MMS

allocations; for two agents MMS implies EFX. Although any allo-

cation which is proportional is also MMS when the valuations are

sub-additive, Figure 1. There exists an MMS allocation for 2 agents

but it may not exist for more than two agents.

2.3 Strategy-Proof Mechanisms
In mechanism design, we assume the agents are self-interested

and strategic. The agents have private information (valuation over

goods) that is indispensable for the desired outcome. The agents

may or may not reveal their private information based on their indi-

vidual utility. Mechanism design deals with the two-fold problem of

i) Preference Elicitation and ii) Preference Aggregation. In the former,

one explores the specific mechanism in which the agents’ best in-

terest lies in revealing their true valuations. The latter, nonetheless

challenging, is the problem of obtaining the desired outcome, once

the true valuations are known. In our case, this would be finding the

fair allocation. There are two kinds of approaches for solving the

problem of preference elicitation. 1)Direct Mechanism 2) Indirect

Mechanism. We focus on direct mechanism which is defined as

follows,

Definition 2.6 (Direct Mechanism). The direct mechanism (M)

maps true valuations of the agents to the desired outcome. It is a

mapping from the valuations of the agents to the space of allocations

M : 𝑉 → A.

A direct mechanism is strategy-proof (SP) if the agents do not

have any incentive to misreport, more formally,
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Definition 2.7 (Deterministic SP Mechanism). A deterministic

mechanismM is strategy-proof (SP), if ∀𝑣 , ∀𝑖 ∈ 𝑁 ,

𝑣𝑖 (M(𝑣𝑖 , 𝑣−𝑖 )) ≥ 𝑣𝑖 (M(𝑣 ′𝑖 , 𝑣−𝑖 )), ∀𝑣
′
𝑖 ∀𝑣−𝑖

where 𝑣 ′
𝑖
is a misreported valuation.

We also look for little weaker mechanism, in the context of

identical valuations.

Definition 2.8 (Deterministic NSP Mechanism). A deterministic

mechanism M is Nash strategy-proof (NSP), if ∀𝑣 , ∀𝑖 ∈ 𝑁 when

other agents report truthfully,

𝑣𝑖 (M(𝑣𝑖 , 𝑣−𝑖 )) ≥ 𝑣𝑖 (M(𝑣 ′𝑖 , 𝑣−𝑖 )), ∀𝑣
′
𝑖

where 𝑣 ′
𝑖
is a misreported valuation.

Note that, in NSP, it is best response to each agent to report

truthfully if others are reporting truthfully. SP is stronger notion

of truthfulness – no matter what others are reporting, it is a best

response for each agent to report truthfully.

Definition 2.9 (strategy-proof Fair Mechanism (SPF)). A mecha-

nismM is SPF iff M is SP or NSP and fair (for the given fairness

condition).

Before we discuss the existence of SPF mechanisms for various

fairness criteria, we would like to state an observation that makes

our search easier. The observation is based on the relationship

between the various fairness criteria given in Figure 1,

Observation 1. For any two fairness criteria 𝑋 and 𝑌 , if 𝑋 =⇒
𝑌 from Figure 1, i.e., every allocation that satisfies 𝑋 also satisfies 𝑌 .
We can conclude that, if there does not exist an SP mechanism for 𝑌 ,
then there will not exist an SP mechanism for 𝑋 .

With this background, we first present impossibilities of SP and

fair mechanisms for additive valuations.

3 IMPOSSIBILITIES OF STRATEGY-PROOF
AND FAIR MECHANISMS FOR ADDITIVE
VALUATIONS.

As we have discussed before, fair allocations may still cause unrest

among agents if some agents choosing to lie benefit when agents

adhering to the rules and revealing their true valuations forgo the

benefits they could have received. In this paper we are concerned

about the existence of truthful mechanisms that can implement the

fairness definitions defined above.

3.1 EF
In [16], the authors raise the question of the existence of truthful

mechanisms that implement EF.

Theorem 3.1. [16] Any mechanism that returns an allocation with
minimum possible envy cannot be truthful. The same is true for any
mechanism that returns an envy-free allocation whenever there exists
one.

As a proof, the authors provide an example consisting of two

agents with additive valuation function, where every possible envy-

free allocation can be manipulated by either of the agents. An SP

mechanism for EF, (M𝐸𝐹
) would select fromA𝐸𝐹

, i.e, a set of all EF

allocations. If there exists a valuation profile 𝑣 , where A𝐸𝐹
𝑣 be all

possible EF allocations for 𝑣 ,∀𝐴𝐸𝐹 ∈ A𝐸𝐹
𝑣 andwith strict inequality

for atleast one 𝐴𝐸𝐹
.

∃𝑖, ∃𝑣 ′𝑖 𝑠 .𝑡 ., 𝑣𝑖 (�̃�𝐸𝐹
𝑖 ) ≥ 𝑣𝑖 (𝐴𝐸𝐹

𝑖 ), ∀�̃�
𝐸𝐹 ∈ A𝐸𝐹

𝑣′ (2)

We know that for any deterministic SP mechanism that ensures

EF,M𝐸𝐹 (𝑣) ⊆ A𝐸𝐹
𝑣 , hence the Equation 2 holds forM𝐸𝐹 (𝑣) which

implies that no matter the mechanism, it is always manipulable by

certain agent 𝑖 under the valuation profile, 𝑣 .

3.2 Proportionality
For sub-additive valuations, proportionality is a stronger property

thanMMS (Figure 1). In [2], the authors prove that for 2 agents there

is no SP mechanism that ensures better than
1

𝑚/2 -MMS allocation.

Hence, it is impossible to have SP mechanism which ensure MMS

and hence proportionality for 2 agents. We prove the same by

constructing an example guided by Equation 2.

Example. Consider 𝑛 = 2,𝑚 = 3, we have agents {1, 2} and goods,

{𝑎, 𝑏, 𝑐}. The true valuations 𝑣 are given by Table 2a. For truthful

reporting, there are 2 possible proportional allocationsA𝑝𝑟𝑜𝑝
𝑣 given

by Table 2b. For the first allocation 𝐴𝐼
, agent 1 obtains a value

of 20. If 1 reports 𝑣 ′
𝑖
as given in Table 2c, then the only possible

proportional allocation is given in Table 2d, the value for which is

30, is strictly better than what she was offered. Similarly for next

allocation 𝐴𝐼 𝐼
, agent 2 has an incentive to misreport.

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐)
1 20 10 5

2 5 10 20

(a) The true values

1 2

𝐴𝐼
a bc

𝐴𝐼 𝐼
ab c

(b) A𝑝𝑟𝑜𝑝
𝑣

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐)
1 10 10 10

2 5 10 20

(c) Agent 1 misreports

1 2

�̃�𝐼
ab c

(d) A𝑝𝑟𝑜𝑝

𝑣′

Table 2: Counter Example for Proportionality

3.3 EFX
In [1], they prove that it is impossible to design SP mechanism for

EF1 for 𝑛 = 2 and𝑚 ≥ 5. Since EFX (Definition 2.4) is a stronger

property the same result holds when𝑚 >= 5. We prove that it is

also impossible to have an SP mechanism for EFX when𝑚 = 4.

Theorem 3.2. Any mechanism that returns an allocation that is
EFX cannot be truthful even in the case of additive valuations.

Proof. Consider an example where 𝑛 = 2, we have agents {1, 2}
and𝑚 = 4, {𝑎, 𝑏, 𝑐, 𝑑}. For truthful reporting 𝑣 as given in Table 3a,

there are 4 possible EFX allocations A𝐸𝐹
𝑣 given by Table 3b. For

the first two allocations 𝐴𝐼 , 𝐴𝐼 𝐼
, agent 1 receives 𝑏 which it values

at 100 or {𝑏, 𝑐} which it values 120. If agent 1 reports 𝑣 ′
𝑖
as given

in Table 3c, where the total valuation is same i.e., 200. Under this

misreport, the only possible EFX allocations are given in Table 3d
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in which agent 1 receives at least 140 which is at least as good as

the value it received for truthful reporting. Similarly for next two

allocations 𝐴𝐼 𝐼 𝐼 , 𝐴𝐼𝑉
agent 2 has an incentive to misreport. Hence

there are only four possible EFX allocations and for each allocation

at least one agent has an incentive to misreport. □

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑑)
1 40 100 20 40

2 100 40 20 40

(a) The true values

1 2

𝐴𝐼
b acd

𝐴𝐼 𝐼
bc ad

𝐴𝐼 𝐼 𝐼
bd ac

𝐴𝐼𝑉
bdc a

(b) A𝐸𝐹𝑋
𝑣

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑑)
1 90 70 15 25

2 100 40 20 40

(c) Agent 1 misreports

1 2

�̃�𝐼
bd ac

�̃�𝐼
bdc a

(d) A𝐸𝐹𝑋
𝑣′

Table 3: Counter Example for EFX

With this we can conclude, that under additive valuations, there

is an instance where no SP mechanism can be EFX.

3.4 EF1
In this subsection, we explore the existing algorithms that find EF1

allocations and prove that these are manipulable. We provide an

instance with 𝑛 = 2 for each case.

3.4.1 Greedy Round-Robin Algorithm. In [8], the authors provide a

simple algorithm for obtaining EF1 allocations when the valuations

are additive. It involves the following steps,

• Fix an arbitrary order on the agents

• Allocate the first agent its most valuable good

• The next agent is allocated its most valuable among the

remaining goods

• The algorithm terminates when all the goods are allocated

The following example shows that the above algorithm can be

manipulated by the agents.

Proposition 3.3. Greedy round-robin algorithm is manipulable
for additive valuations.

Proof. Example. Consider 𝑛 = 2, {1, 2}, 𝑚 = 5 , {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}
where the valuations are additive and given by Table 4a. When

𝑛 = 2, there is only two possible orders among the agents. When

applying greedy algorithm with 1 followed by 2 or 1→ 2, agent 1

gets {𝑎, 𝑐, 𝑑} (Table 4b) with a value of 26. If the agent misreports

its value as given in Table 4c, the allocation that agent 1 gets is

{𝑎, 𝑏, 𝑑} which it values at 28 that is strictly more than when it was

truthful. Similarly agent 2 can misreport to an advantage when the

order is 2 → 1. It improves its allocation from {𝑏, 𝑑, 𝑒} (Table 4b)
that it values at 25 to {𝑏, 𝑐, 𝑒} whose value is 27. □

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑑) 𝑣 (𝑒)
1 12 10 8 6 1

2 1 10 8 6 9

(a) The true values

1 2

1→ 2 acd be

2→ 1 ac bde

(b) EF1 allocations

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑑) 𝑣 (𝑒)
1 10 12 8 6 1

2 1 10 8 6 9

(c) Agent 1 misreports

1 2

1→ 2 abd ce

(d) EF1 allocation

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑑) 𝑣 (𝑒)
1 12 10 8 6 1

2 1 10 8 8 5

(e) Agent 2 misreports

1 2

2→ 1 ad bce

(f) EF1 allocation

Table 4: Greedy round-robin is manipulable

3.4.2 Cycle-elimination Algorithm. Greedymethod fails for general

valuations, instead the cycle-elimination algorithm [16] provides

EF1 solution in polynomial time in general. The algorithm is as

follows,

• Goods are allocated in arbitrary order

• An envy-graph is maintained where the agents are the ver-

tices and a directed edge 𝑖 → 𝑗 represents that agent 𝑖 envies

agent 𝑗 under the current allocation.

• The next item is allocated to the agent with no incoming

edge. If there is a cycle, it can be eliminated by exchanging

the goods of the agents that form the cycle, with the ones

they envy.

We show that the above algorithm is manipulable by the agents.

Proposition 3.4. Cycle-elimination algorithm is manipulable
even for identical valuations.

1 2 graph

d 1← 2

d a 1← 2

d ab 1→ 2

dc ab 1→ 2

(a) Cycle-elimination on 𝑣

1 2 graph

d 1← 2

d a 1⇌ 2

a d no envy

ab d 1← 2

ab dc 1← 2

(b) Cycle-elimination on 𝑣′

1 2 graph

d 1← 2

d a 1⇌ 2

a d no envy

a bd 1→ 2

ac bd 1← 2

(c) Cycle-
elimination on
𝑣′

Table 5: Cycle-elimination is manipulable

Consider 𝑛 = 2, {1, 2}, and 𝑚 = 4, {𝑎, 𝑏, 𝑐, 𝑑}. Let (𝑥,𝑦) ∈
{(𝑎, 𝑏) (𝑏, 𝑐), (𝑎, 𝑐)} where the valuations 𝑣 of the agents are iden-
tical and given below. The value of other subsets not mentioned
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below are additive. When we run the cycle-elimination algorithm,

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐) 𝑣 (𝑑) 𝑣 (𝑥,𝑦)
5 5 5 10 16

the steps are as given in the Table 5a. It is easy to see that the agent

who gets the item 𝑑 (w.l.o.g we assume agent 1 gets 𝑑) always ends

up with a value 15 and can try to increase the utility by gaining

the other bundle whose value is 16. Now consider the following

misreported valuation by the agent who gets item 𝑑 . With the mis-

𝑣 ′(𝑎) 𝑣 ′(𝑏) 𝑣 ′(𝑐) 𝑣 ′(𝑑) 𝑣 ′(𝑥,𝑦)
5 5 5 4 16

reported valuation, we again run the cycle-elimination algorithm

and there can be two possible outcomes as presented in Table 5b,

5c. We see that in these cases the agent 1 receives {𝑎, 𝑏} or {𝑎, 𝑐}
which it values at 16 i.e., strictly more than the previous value for

{𝑑, 𝑐} that is 15. In this example we prove that there is always an

agent that can manipulate to increase its utility.

In the above case, we considered an example for (general) identi-

cal valuations. In fact it also possible tomanipulate cycle-elimination

for (additive) identical valuations.

Example. Consider 𝑛 = 2 and 𝑚 = 3 where the agents have the

following (additive) identical valuation 𝑣 and the agent that does

not receive the good 𝑐 misreports the valuation to 𝑣 ′ also given

below. For many orderings over𝑚 that the algorithm chooses, the

𝑣 (𝑎) 𝑣 (𝑏) 𝑣 (𝑐)
5 5 12

𝑣 ′(𝑎) 𝑣 ′(𝑏) 𝑣 ′(𝑐)
4 5 12

value obtained for 𝑣 ′ is as good as 𝑣 . But when the ordering is

chosen to be 𝑎 then 𝑏 then 𝑐 or (𝑏, 𝑎, 𝑐), the agent manipulating

ensures a value of 17 as opposed to just receiving 5.

4 IDENTICAL ADDITIVE VALUATIONS
When valuations are identically additive, we know that picking

sequences are strategy-proof [4]. Based on picking sequences, we

provide an algorithm, (RSD) (Repeated Serial Dictatorship) to obtain
truthfulness while ensuring EF1.

Repeated Serial Dictatorship is EF1 and (i) SP when 𝑚 ≤ 𝑛

and (ii) NSP when the valuations are identical and additive. Given

that RSD implements greedy round-robin algorithm under additive

valuations, the output allocation 𝐴 is EF1.

(i) Case𝑚 ≤ 𝑛: under this case, the while loop in Algorithm 1 runs

for 𝑚-iterations, given 𝑚 ≤ 𝑛, each agent only gets one chance

to participate and select the item 𝑥 . The ordering chosen by the

algorithm is independent of the agent valuations hence cannot be

manipulated. From the algorithmwe know that given the remaining

goods 𝑅,

𝐴𝑖 = 𝑥 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗 ∈𝑅

𝑣𝑖 ( 𝑗)

Algorithm 1: Repeated Serial Dictatorship Mechanism

(RSD)

Input : ⟨𝑁,𝑀,𝑉 ⟩, 𝑉 is identical additive

Output : (𝐴1, 𝐴2, . . . , 𝐴𝑛) ∈ A𝐸𝐹1

1 Set an arbitrary but fixed order on the agents, w.l.o.g,

(1, 2, . . . , 𝑛) ;
2 𝐴𝑖 = 𝜙, ∀𝑖;
3 𝑅 = 𝑀 (goods remaining after each iteration) ;

4 𝑖 = 0 (agent number);

5 while 𝑅 ≠ 𝜙 do
6 𝑥 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗 ∈𝑅
𝑣𝑖 ( 𝑗) ;

7 𝐴𝑖 = 𝐴𝑖
⋃
𝑥 ;

8 𝑅 = 𝑅 \ 𝑥 ;

9 𝑖 = (𝑖 + 1) mod 𝑛 ;

If the agent misreports s.t. 𝑦 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗 ∈𝑅

𝑣 ′
𝑖
( 𝑗) and 𝑥 ≠ 𝑦. The agent

receives𝑦 s.t. under true valuations, 𝑣𝑖 (𝑦) ≤ 𝑣𝑖 (𝑥) and hence cannot
strictly increase its utility.

(ii) Case 𝑣 is Identical (Additive): Let 𝑣 be the truthful report, we
assume 𝑣1 ≥ 𝑣2 ≥ . . . ≥ 𝑣𝑚 be the value all the agents have for

the𝑚 goods in decreasing order. The Algorithm 1 will continue

for𝑚 rounds and assign the goods in this order itself. The goods

remaining at round 𝑗 is given by 𝑅 𝑗 = {𝑣 𝑗 , . . . , 𝑣𝑚}. Let us assume

an agent 𝑖 gets allocated 𝑘 items before the algorithm terminates,

then it selects from the following subsets and receives the items it

values the most in each of these,

{𝑅𝑖 , 𝑅𝑖+𝑛, . . . , 𝑅𝑖+𝑘𝑛}

Hence 𝐴𝑖 = {𝑣𝑖 , 𝑣𝑖+𝑛, . . . , 𝑣𝑖+𝑘𝑛}. If the agent 𝑖 misreports and the

remaining agents report truthfully, in any of the rounds w.l.o.g, 𝑖𝑡ℎ

round s.t., the relative ordering between the items changes, then

the agent might face the two possible sets in the next round (𝑖 + 𝑛),
• Misreport s.t. agent 𝑖 gets item 𝑝 instead of 𝑖 , 𝑝 ≤ 𝑛 + 𝑖 − 1, then

the set it faces in the next rounds is {𝑅𝑛+𝑖 , . . . , 𝑅𝑖+𝑘𝑛}. Hence the
items allocated are 𝐴′

𝑖
= {𝑣𝑝 , 𝑣𝑖+𝑛, . . . , 𝑣𝑖+𝑘𝑛}. It can be clearly

verified that, 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴′𝑖 ), hence no incentive to misreport.

• Misreport s.t agent 𝑖 gets item 𝑝 where, 𝑘 ′𝑛+𝑖 > 𝑝 ≥ (𝑘 ′−1)𝑛+𝑖 ,
𝑘 ′ ≥ 2 then the sets 𝑖 faces are

{𝑅𝑛+𝑖−1 \ {𝑝}, . . . , 𝑅𝑖+(𝑘′−1)𝑛−1
\ {𝑝}, 𝑅𝑖+𝑘′𝑛, . . . , 𝑅𝑖+𝑘𝑛}

Hence the items allocated are

𝐴′′𝑖 = {𝑣𝑝 , 𝑣𝑛+𝑖−1, . . . , 𝑣𝑖+(𝑘
′−1)𝑛−1, 𝑣𝑖+𝑘

′𝑛, . . . , 𝑣𝑖+𝑘𝑛}

Using the fact that 𝑝 ≥ 𝑖+(𝑘 ′−1)𝑛, we know that 𝑣𝑖+(𝑘
′−1)𝑛 ≥ 𝑣𝑝 .

Hence we compare the sets 𝐴𝑖 and 𝐴′′
𝑖
(⪰ represents element-

wise comparison) as follows to obtain 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴′′𝑖 ),

{𝑣𝑖 , 𝑣𝑖+𝑛, . . . , 𝑣𝑖+(𝑘
′−2)𝑛, 𝑣𝑖+(𝑘

′−1)𝑛, 𝑣𝑖+𝑘
′𝑛, . . . , 𝑣𝑖+𝑘𝑛} ⪰

{𝑣𝑖+𝑛−1, 𝑣𝑖+2𝑛−1, . . . , 𝑣𝑖+(𝑘
′−1)𝑛, 𝑣𝑝 , 𝑣𝑖+𝑘

′𝑛, . . . , 𝑣𝑖+𝑘𝑛}

This completes the proof for truthfulness for RSD under additive

and identical valuations.
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Algorithm 2: Serial Dictatorship Mechanism (SD)

Input : ⟨𝑁,𝑀, 𝐷⟩, 𝐷 = (𝐷1, 𝐷2, . . . , 𝐷𝑛)
Output : (𝐴1, 𝐴2, . . . , 𝐴𝑛)

1 Order the agents s.t. |𝐷1 | ≤ |𝐷2 | ≤ . . . ≤ |𝐷𝑛 | (Ties broken
arbitrarily);

2 𝑖 = 0 (agent number);

3 𝑅 = 𝑀 (goods remaining after each iteration) ;

4 while 𝑅 ≠ 𝜙 do
5 Let 𝐷𝑖 be the preferred set for the current agent 𝑖;

6 if 𝐷𝑖 ⊆ 𝑅 then
7 𝐴𝑖 = 𝐷𝑖 ;

8 𝑅 = 𝑅 \ 𝐷𝑖 , 𝑖 = 𝑖 + 1 ;

9 else
10 if 𝑖 < 𝑛 then
11 𝑖 = 𝑖 + 1;

12 else
13 𝐴𝑖 = 𝑅;

14 𝑅 = 𝜙 ;

5 SINGLE-MINDED AGENTS
In this section, we restrict to a simpler valuation profile. We assume

the agents are (SM) single minded. SM agents are only interested

in a single bundle of goods 𝐷 . Upon receiving the specific bundle

or any super-set they get a positive utility and zero value for any

other bundle (Formally given by Equation 1). The problem instance

is denoted by ⟨𝑁,𝑀, 𝐷⟩.

Observation 2. When all the agents are SM, any allocation is
MMS and EF1. The 𝜇𝑖 in Definition 2.5 is 0 in this setting when 𝑛 > 1.
Hence, allocating all the goods to one agent is also MMS. Similarly,
all possible allocations satisfy EF1. If an agent 𝑖 receives its desired
bundle or super-set then it doesn’t envy any agent. If an agent 𝑗
receives 𝐷𝑖 , then removing any item 𝑥 ∈ 𝐷𝑖 would remove envy. If no
agent receives 𝐷𝑖 as a whole, there is no envy.

Based on the observation, we extend greedy round-robin algo-

rithm to design a SD (Serial Dictatorship) mechanism is SP since it

is also a picking sequence. SD trivially satisfies EF1 and MMS and

we prove that it also satisfies EFX.

We prove certain desirable properties of the Algorithm 2, which

is a modified version of greedy round-robin algorithm.

Theorem 5.1. The Serial DictatorshipMechanism is strategy-proof
(SP) and also satisfies EF1, MMS and EFX when the agents are single-
minded.

Proof. In the Algorithm 2, the while loop can run for a max-

imum of 𝑛 rounds. This means each agent 𝑖 has only one round

in which it can be allocated the preferred bundle 𝐷𝑖 . The order-

ing is according to the increasing cardinality of 𝐷𝑖 . An agent can

manipulate the ordering by reporting its desired bundle as 𝐷 ′
𝑖
s.t.,

|𝐷 ′
𝑖
| < |𝐷𝑖 |. This means the agent will be allocated if at all a bundle

that it does not desire. If |𝐷 ′
𝑖
| > |𝐷𝑖 | then the probability that the

agent gets any allocation is strictly less than when it reports truth-

fully. Hence the agent does not have any incentive to manipulate

the ordering.

Given that the agent cannot manipulate the ordering. At any

round, it is optimal for the agent to report truthfully the desired set

𝐷𝑖 . Now we prove that the allocation 𝐴 obtained from SD satisfy

the following fairness criteria,

• (EF1 and MMS). This is trivially true due to Observation 2 which

states that any allocation is EF1 and MMS when we have SM

agents.

• (EFX). Let us assume 𝑘 agents, denoted by 𝐿 (lucky), are allocated

their desired sets hence do not have any envy. If 𝑘 ≠ 𝑛, then 𝑛−𝑘
agents, denoted by 𝑈 (unlucky), did not receive their desired

subset. From the algorithm we know that for any agent 𝑖 ∈ 𝑈 ,

𝐷𝑖 ⊈ 𝑅𝑖 where 𝑅𝑖 is the set of goods at the beginning of 𝑖𝑡ℎ

round.

– ∀𝑖, 𝑗 ∈ 𝑈 , 𝑖 does not envy 𝑗 , because 𝑗 is allocated empty bundle

unless 𝑗 is the agent appearing at the last 𝑛 and receives the

items remaining. In this case since agent 𝑖 is given the chance

to chose before 𝑗 which clearly shows it cannot envy 𝑗 .

– ∀𝑖 ∈ 𝑈 , ∀𝑖 ∈ 𝐿, if 𝑖 < 𝑖 , then |𝐷𝑖 | < |𝐷𝑖 |, hence agent 𝑖 cannot
envy 𝑖 . If |𝐷𝑖 | = |𝐷𝑖 | then removing any item from the bundle

of 𝑖 will remove envy. Hence it still satisfies EFX.

– ∀𝑖 ∈ 𝑈 , ∀𝑖 ∈ 𝐿, if 𝑖 > 𝑖 , then 𝐷𝑖 ⊆ 𝑅𝑖 hence 𝐷𝑖 ≠ 𝐷𝑖 , hence the

agent 𝑖 does not envy 𝑖

Hence the allocation is EFX.

This concludes the proof for the theorem. Hence SD is SP and

provides allocations that satisfy EF1, MMS and EFX.

Note (Proportionality). When the agents are SM, proportional allo-

cation exists when the following is true,

𝑣𝑖 (𝐴𝑖 ) ≥
1

𝑛
𝑣𝑖 (𝐷𝑖 ) > 0, ∀𝑖 ∈ 𝑁

The above is true only when all the agents get their desired bundle.

If such a solution exists then it easily found by the SD. □

6 FUTUREWORK AND CONCLUSION
In the literature, there are many algorithms for finding fair division

of resources. Yet such algorithms may not be really fair, if one

agent can manipulate it by misreporting its value to obtain higher

utility. We show that greedy round-robin and cycle-elimination

algorithms are manipulable. In general, we study the possibility of

having strategy-proof, deterministic mechanisms without money

which ensure various criteria of fairness like EF, proportionality,

EFX, EF1, MMS. It is known that, such a mechanism does not exist

for EF, proportionality and MMS under additive valuations. It also

does not exist for EF1 under additive valuations when the number

of items are more than 5. We prove that it does not exist for EFX

even when the number of items are 4.

Given these impossibility results, we look into settings where

agents have simpler valuation type like single minded bidders. Un-

der this assumption we provide a strategy-proof algorithm SD. SD

satisfies all fairness criteria except EF. RSD satisfies EF1. The results

are summarized in Table 1. For future work, it would be interesting

to look into mechanisms to settle the unfinished components in the

table. Given the impossibility for general valuations, it would be
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interesting to design mechanisms for more specific valuation types

for e.g., (general) identical etc.
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