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Vision-language pre-training has been an emerging and fast-developing research topic, which transfers multi-
modal knowledge from rich-resource pre-training task to limited-resource downstream tasks. Unlike existing
works that predominantly learn a single generic encoder, we present a pre-trainable Universal Encoder-
DEcoder Network (Uni-EDEN) to facilitate both vision-language perception (e.g., visual question answering)
and generation (e.g., image captioning). Uni-EDEN is a two-stream Transformer based structure, consisting
of three modules: object and sentence encoders that separately learns the representations of each modality,
and sentence decoder that enables both multi-modal reasoning and sentence generation via inter-modal
interaction. Considering that the linguistic representations of each image can span different granularities in
this hierarchy including, from simple to comprehensive, individual label, a phrase, and a natural sentence,
we pre-train Uni-EDEN through multi-granular vision-language proxy tasks: Masked Object Classification
(MOC), Masked Region Phrase Generation (MRPG), Image-Sentence Matching (ISM), and Masked Sentence
Generation (MSG). In this way, Uni-EDEN is endowed with the power of both multi-modal representation
extraction and language modeling. Extensive experiments demonstrate the compelling generalizability of
Uni-EDEN by fine-tuning it to four vision-language perception and generation downstream tasks.
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1 INTRODUCTION
Vision and language are two fundamental capabilities of human intelligence. The interactions
in between support the uniquely human capacity, such as answering open-ended questions w.r.t
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Fig. 1. The linguistic representations of visual content can span different granularities. For example, by
applying object detector over an image, each detected region can be represented as an individual object
label. Going beyond the individual label, we can utilize phrase generator to produce a more comprehensive
phrase to depict that region. Furthermore, the holistic image can be described with a natural sentence that
recapitulates more details. In this work, we exploit such hierarchical multi-granularity to pre-train a universal
encoder-decoder network (Uni-EDEN). The pre-trained Uni-EDEN benefits both vision-language perception
and generation downstream tasks.

the given image (visual question answering [2, 9, 13]), generating multimodal responses based
on user intentions (multimodal task-oriented dialog [25]), or describing what they see with a
natural sentence (image captioning [1, 6, 42, 43, 45, 46]). With the development of deep learning
techniques, there has been a steady momentum of breakthroughs that push the limits of vision-
language tasks [32, 44]. Despite having promising quantitative results, the achievements rely
heavily on the requirement of large quantities of task-specific annotations (e.g., image-question-
answer triplets/image-sentence pairs) for such neural model learning. This severely hinders the
scalability and generalization of vision-language techniques when only limited annotations are
available. To alleviate this problem, recently researchers have strived to focus on Vision-Language
Pre-training (VLP), which first learns contextualized multi-modal encoder representations over
large-scale vision-language benchmarks, and then fine-tunes the pre-learnt multi-modal encoder
on vision-language downstream tasks.
The main inspiration of recent attempts on VLP task [5, 11, 18–20, 23, 24, 26, 38–40] are from

the advances in natural language pre-training (e.g., BERT [8]). The main idea of BERT is to derive
bidirectional encoder representations from a Transformer based language model pre-trained on
a large monolingual corpus. Two proxy tasks, i.e., masked word prediction and next sentence
prediction, are designed to learn generic contextualized word representations, which facilitate
multiple language understanding downstream tasks. Following this philosophy, it is natural to
pre-train a Transformer based structure with the multi-modal inputs (e.g., image-sentence pairs)
instead of the monolingual sentences for vision-language understanding, which acts as multi-modal
encoder to produce joint representations of visual content and natural sentence. Such pre-learnt
multi-modal encoder enables the multi-modal reasoning and thus can be naturally adapted to
vision-language perception tasks (e.g., visual question answering).

While impressive performances are reported, most existing BERT-like VLP approaches are not
applicable to vision-language generation tasks (e.g., image captioning), which needs an additional
language decoder for sentence generation conditioned on multi-modal inputs. It is not feasible
to directly apply such BERT-like VLP methods to vision-language generation, since the sole pre-
training process of encoder ignores the synchronous learning of a coupled decoder for generic
language modeling. This inevitably results in the discrepancy between the pre-trained multi-modal
encoder and the uninitialized language decoder that needs a separate initialization at downstream
task, which might hinder the generalization of pre-training. Therefore, how to simultaneously
pre-train encoder for multi-modal representation extraction and language decoder for sentence
generation is of great potential and importance for VLP.
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In this paper, we propose to mitigate this issue by pre-training a Universal Encoder-DEcoder
Network (Uni-EDEN) to support both vision-language perception and generation tasks. Uni-EDEN
adopts a Transformer based encoder-decoder structure, which consists of object and sentence
encoders to separately encode the inputs of each modality (the set of detected image regions/word
sequence), coupled with a sentence decoder that exploits the inter-modal interaction in between for
both multi-modal reasoning and sentence generation. Moreover, as shown in Figure 1, the linguistic
representations of visual content (image region/entire image) can span different granularities
including, from simple to comprehensive, individual label, a phrase, and a natural sentence. To
better align the visual content to linguistic representations in these different granularities, vision-
language pre-training should take the hierarchical multi-granularity into consideration, which in
turn endows the pre-learnt encoder-decoder with the power of multi-granular vision-language
grounding. Therefore, we present a novel array of multi-granular vision-language proxy tasks to
pre-train Uni-EDEN. Specifically, each vision-language granularity is modeled as a proxy task: 1)
masked object classification, the encoder takes a set of image regions with masked one as inputs and
the decoder predicts the object reflected in this masked region conditioned on multi-modal encoder
representations; 2)masked phrase generation, the decoder should reconstruct the phrase that depicts
the image region which is masked on the encoder side; 3) image-sentence matching, the decoder
discriminates whether the given image and sentence correspond to each other, and thus enforces
the vision-language alignment at sentence level; 4)masked sentence generation, to mimic the process
of sentence generation, the decoder auto-regressively reconstructs each word of the input sentence
depending on the input unmasked image regions and all “past" words by preventing the “future"
words to be attended with an attention mask. In this sense, by equipping pre-training with multi-
granular vision-language proxy tasks, all encoders and decoder in Uni-EDEN are simultaneously
adapted to develop the capability of multi-modal representation extraction and language modeling.
To summarize, the main contributions of this work include: 1) we propose Uni-EDEN, a pre-

trainable universal encoder-decoder network that facilitates both vision-language perception and
generation tasks; 2) the design of multi-granular vision-language proxy tasks enables the alignment
of visual content and linguistic representations at different granularities; 3) we adapt pre-learnt
Uni-EDEN to a variety of downstream tasks (visual question answering, caption-based image
retrieval, visual commonsense reasoning, and image captioning) and achieve new state-of-the-art
performance for each task, which consistently validates the generalizability of Uni-EDEN.

2 RELATEDWORK
Natural Language Pre-training.Recently, research on natural language pre-training has attracted
increasing attention, and obtained impressive performances in multiple language understanding
tasks. One of the early successes for natural language pre-training is GPT [33] that pre-trains
a Transformer based language model to extract general language representations depending on
unidirectional word context. ELMo [30] includes contextualized word representations from pre-
trained language models as additional feature to enhance language understanding downstream
tasks. BERT [8] further upgrades GPT by involving masked language modeling proxy tasks during
pre-training, which enables the learning of bidirectional representations conditioned on both
left and right word contexts. Unlike BERT that is only applicable to language understanding
via one encoder, MASS [37] pre-trains an encoder-decoder model for language generation via
masked sequence to sequence learning proxy tasks. Mostly recently, BART [17] generalizes BERT
for both language understanding and generation by combining bidirectional and auto-regressive
transformers for pre-training. Taking the inspiration fromMASS and BART, our work pursuits their
vision-language counterpart by pre-training a universal encoder-decoder structure and fine-tuning
it to both vision-language perception and generation tasks.
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Fig. 2. An overview of our Uni-EDEN, which is a two-stream Transformer based structure consisting of three
module: object and sentence encoders that separately learns the representations of input region/word tokens,
and sentence decoder that captures inter-modal interaction for both multi-modal reasoning and sentence
generation. We pre-train Uni-EDEN with a series of multi-granular vision-language proxy tasks (MOC, MRPG,
ISM, and MSG), aiming to align visual content to linguistic representations in different granularities, from
individual label, phrase, to natural sentence.

Vision-Language Pre-training. Sparked by natural language pre-training, a new wave of vision-
language pre-training methods have been proposed recently to learn pre-trainable multi-modal
encoders for vision-language perception tasks. VisualBERT [19] directly extends BERT by pre-
training a Transformer based encoder with two visually-grounded language model objectives:
masked language modeling with the image and image-sentence matching. UNITER [5], Unicoder-
VL [18], and VL-BERT [38] further introduce masked region modeling proxy tasks to enhance the
vision-language alignment during pre-training. Unlike the aforementioned approaches that exploit
a single-stream Transformer with multi-modal inputs for vision-language pre-training, ViLBERT
[23] and LXMERT [40] present a two-stream Transformer based encoder structure. The input image
regions and sentences are independently processed through two separate encoders, the outputs of
which are further fused with a cross-modal encoder.

Comparatively few existing works have considered applying pre-training techniques for vision-
language generation task. VideoBERT [39] adapts BERT to learn multi-modal representations in
video domain and addresses both action classification and video captioning tasks. In this work,
rather than pre-training multi-modal encoder solely in VideoBERT, we simultaneously pre-train the
encoders and decoder in Uni-EDEN. Such design fully exploits the merit of pre-training and endows
Uni-EDEN with the capabilities of both multi-modal reasoning and language modeling. Unified VLP
[51] is perhaps the most related work, which learns a pre-trainable single-stream Transformer based
encoder-decoder and also targets for both vision-language perception and generation. Compared to
Unified VLP, our Uni-EDEN differs in multiple ways: we utilize a more detailed two-stream design
for Transformer based encoder-decoder structure, and we utilize a novel array of multi-granular
vision-language proxy tasks to better align visual content to linguistic representations in different
granularities, from individual label, phrase, to natural sentence.

3 APPROACH
In this paper, we design a pre-trainable Universal Encoder-DEcoder Network (Uni-EDEN) that
facilitates both vision-language perception and generation tasks. The overall architecture of our
Uni-EDEN is illustrated in Figure 2. We begin this section by elaborating the notation of VLP,
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followed with the detailed depiction of three components (i.e., object encoder, sentence encoder,
and sentence decoder) in Uni-EDEN. After that, four multi-granular vision-language proxy tasks are
introduced to equip our Uni-EDEN with the abilities of both multi-modal reasoning and language
modeling conditioned on multi-granular vision-language grounding. Finally, the overall objective
of vision-language pre-training are presented.

3.1 Notations
In vision-language pre-training task, we are given a set of image-sentence pairs {I,S} from a
large-scale image captioning benchmark (Conceptual Captions [36]). The goal of this task is to
pre-train an encoder-decoder network over the paired image-sentence data to extract multi-modal
representations and auto-regressively generate sentence. The pre-trained encoder-decoder network
can be further fine-tuned to support vision-language downstream tasks.
For each input image I, we leverage the most common object detector (Faster R-CNN [34]) to

detect objects within it, targeting for generalizing I into a set of salient image regions R𝐼 = {𝒓𝑖 }𝑁𝐼

𝑖=1
containing 𝑁𝐼 detected objects. 𝒓𝑖 ∈ R𝐷𝑟 denotes the 𝐷𝑟 -dimensional visual representation of
the 𝑖-th image region. Moreover, we denote the 2D position information of detected objects as
P𝐼 = {𝒑𝑖 }𝑁𝐼

𝑖=1. Here 𝒑𝑖 ∈ R𝐷𝑝 (𝐷𝑝 = 5) represents the geometric information of each bounding
box consisting of the normalized top-left and bottom-right coordinates plus the proportion of
image area covered. For each corresponding sentence S, we tokenize all words and represent it as
a sequence of word tokensW𝑆 =

{
𝒘 𝑗

}𝑁𝑆

𝑗=1, where𝒘 𝑗 ∈ R
𝐷𝑤 is the one-hot encoding of 𝑗-th word

token and 𝑁𝑆 is sentence length.

3.2 Model Architecture
Inspired by recent progress in designing natural language pre-training models (e.g., Transformer
in BERT), we construct the encoder and decoder modules in our Uni-EDEN with self-attention
and multi-modal attention mechanisms [41]. Specifically, the whole model architecture takes the
paired image regions and word token sequence as inputs and process them in a two-stream manner.
Firstly, object and sentence encoders separately enhances the representations of each modality
by introducing the position information of each region/word token. The object/sentence encoder
additionally refines each region/word token representation through self-attention mechanism that
models intra-modal interactions. After that, a following sentence decoder further strengthens the
representations of each modality via multi-modal attention mechanism that induces the inter-
modal interaction. Meanwhile, the sentence decoder learns to auto-regressively generate each word
conditioned on the multi-modal representations, mimicking the process of sentence generation in
image captioning task.

Object Encoder. Object encoder operates over the input set of image regions and transforms
them into a series of intermediate states, which are enhanced with the 2D position information of
each region and the intra-modal contextual information. Formally, we represent each image region
(object) as a position-aware feature 𝒓𝑖 by fusing the visual feature 𝒓𝑖 and the corresponding 2D
position feature 𝒑𝑖 :

𝒓𝑖 = LayerNorm(𝑾𝑟 𝒓𝑖 +𝑾𝑝𝒑𝑖 ), (1)

where 𝑾𝑟 ∈ R𝐷𝐻×𝐷𝑟 and 𝑾𝑝 ∈ R𝐷𝐻×𝐷𝑝 are embedding matrices. Note that we additionally
include a special object token [IMG] that indicates the beginning of image region sequence, and
its representation 𝒓0 is measured as the mean-pooled object representation (𝒓0 = 1

𝑁𝐼

∑𝑁𝐼

𝑖=1 𝒓𝑖 ). Next,
the whole image region sequence R̂𝐼 = {𝒓𝑖 }𝑁𝐼

𝑖=0 is fed into object encoder, which is implemented
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as 𝐹 stacked Transformer layers [41]. Let H (𝑓 )
𝐼

=

{
𝒉(𝑓 )
𝐼 ,𝑖

}𝑁𝐼

𝑖=0
denote the output intermediate object

representations of 𝑓 -th Transformer layer. Specifically, for each Transformer layer, it takes the
outputs of previous Transformer layer Ĥ (𝑓 )

𝐼
as intra-modal context information to enhance each

input object feature 𝒉(𝑓 )
𝐼 ,𝑖

via self-attention mechanism:

𝒉(𝑓 +1)
𝐼 ,𝑖

= Transformer(𝒉(𝑓 )
𝐼 ,𝑖
, Ĥ (𝑓 )

𝐼
). (2)

Lastly, the object encoder outputs the final enhanced object representations H (𝐹 )
𝐼

=

{
𝒉(𝐹 )
𝐼 ,𝑖

}𝑁𝐼

𝑖=0
,

which reflect the intra-modal interactions among all objects.
Sentence Encoder. Similarly, sentence encoder firstly enhances the input word representations

by introducing the position of each word token. The position-aware word representations are
further strengthened with the intra-modal contextual information. Concretely, given the input
sequence of word tokens, we expand it by including two special word tokens [CLS] and [SEP] that
indicate the beginning and ending of sentence. By denoting the one-hot encodings of [CLS] and
[SEP] as𝒘0 and𝒘𝑁𝑆+1, each word token is represented as a position-aware word feature �̂� 𝑗 , which
is measured as the combination of one-hot encoding𝒘 𝑗 and the corresponding index embedding j:

�̂� 𝑗 = LayerNorm(𝑾𝑤𝒘 𝑗 +𝑾𝑠 j), (3)

where𝑾𝑤 ∈ R𝐷𝐻×𝐷𝑤 and𝑾𝑠 ∈ R𝐷𝐻×𝐷 𝑗 are embedding matrices. After that, the whole word token
sequence Ŵ𝑆 =

{
�̂� 𝑗

}𝑁𝑆+1
𝑖=0 is fed into the𝑀 stacked Transformer layers. Here we denote the output

intermediate word representations of𝑚-th Transformer layer as H (𝑚)
𝑆

=

{
𝒉(𝑚)
𝑆,𝑗

}𝑁𝑆+1

𝑗=0
. In particular,

each transformer layer performs self-attention over the outputs of previous Transformer layer
Ĥ (𝑚)
𝑆

, and thus enhances each word feature 𝒉(𝑚)
𝑆,𝑗

with intra-modal context information from Ĥ (𝑚)
𝑆

:

𝒉(𝑚+1)
𝑆,𝑗

= Transformer(𝒉(𝑚)
𝑆,𝑗
, Ĥ (𝑚)

𝑆
). (4)

Accordingly, the final output word features of sentence encoder is denoted as H (𝑀)
𝑆

=

{
𝒉(𝑀)
𝑆,𝑗

}𝑁𝑆+1

𝑗=0
,

which reflect the intra-modal interactions in between.
Sentence Decoder. The sentence decoder collects the refined object and word token features

(H (𝐹 )
𝐼

, H (𝑀)
𝑆

) from each encoder, and simultaneously feeds them into a stack of 𝐾 multi-modal
Transformer layers. Each multi-modal Transformer layer strengthens the representations of each
modality by exploiting the inter-modal interaction through multi-modal attention mechanism.

Specifically, let H (𝑘)
𝑑𝐼

=

{
𝒉(𝑘)
𝑑𝐼 ,𝑖

}𝑁𝐼

𝑖=0
and H (𝑘)

𝑑𝑆
=

{
𝒉(𝑘)
𝑑𝑆 , 𝑗

}𝑁𝑆+1

𝑗=0
denote the output intermediate object

and word features of 𝑘-th multi-modal Transformer layer. For each multi-modal Transformer
layer, it first concatenates the given object and word intermediate features as multi-modal input
(H (𝑘)

𝑑𝑆𝐼
= [H (𝑘)

𝑑𝑆
,H (𝑘)

𝑑𝐼
]), and then feeds H (𝑘)

𝑑𝑆𝐼
into transformer block. In this way, each region/word

feature (𝒉(𝑘)
𝑑𝐼 ,𝑖

/𝒉(𝑘)
𝑑𝑆 , 𝑗

) is enhanced with inter-modal context information from H (𝑘)
𝑑𝑆𝐼

:

𝒉(𝑘+1)
𝑑𝐼 ,𝑖

= Transformer(𝒉(𝑘)
𝑑𝐼 ,𝑖
,H (𝑘)

𝑑𝑆𝐼
), (5)

𝒉(𝑘+1)
𝑑𝑆 , 𝑗

= Transformer(𝒉(𝑘)
𝑑𝑆 , 𝑗

,H (𝑘)
𝑑𝑆𝐼

). (6)

As such, the final output multi-modal features are denoted as

H (𝐾)
𝑑𝑆𝐼

= [H (𝐾)
𝑑𝑆

,H (𝐾)
𝑑𝐼

] =
[ {
𝒉(𝐾)
𝑑𝐼 ,𝑖

}𝑁𝐼

𝑖=0
,

{
𝒉(𝐾)
𝑑𝑆 , 𝑗

}𝑁𝑆+1

𝑗=0

]
for multi-modal reasoning. Moreover, condi-

tioned on the multi-modal representation of each input word token 𝒉(𝐾)
𝑑𝑆 , 𝑗

, the sentence decoder
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learns to auto-regressively predict the next word, leading to the output sentence word-by-word.
Please note that more details for sentence generation can be referred in masked sentence generation
proxy task (Section 3.3).

3.3 Multi-Granular Vision-Language Proxy Tasks
An image is essentially a rich scenery that can be expressed with multi-granular linguistic repre-
sentations. For instance, the visual content in an image (e.g., image region or entire image) can
be represented by a hierarchical linguistic structure including, from simple to comprehensive,
individual label, a phrase, and a natural sentence. Different granularity depicts distinct capability to
understand visual content. Multi-modal reasoning in vision-language tasks should take this intrinsic
linguistic structure into account. Motivated by the above observations, we design a novel array of
multi-granular vision-language proxy tasks to pre-train our Uni-EDEN by aligning visual content
to linguistic representations in these different granularities. In this sense, the pre-trained Uni-
EDEN is endowed with the power of multi-granular vision-language grounding, which facilitates
multi-modal reasoning for both vision-language perception and generation.

Masked Object Classification (MOC). In analogy to Masked Language Modeling (MLM) in
BERT, we include the MOC proxy task that enforces the sentence decoder to reconstruct the
object reflected in each masked image region conditioned on the unmasked regions and word
tokens. In this way, MOC drives our Uni-EDEN to not only capture the dependencies among image
regions, but also ground each object label to the corresponding region. Formally, we randomly mask
the input image regions (15% probability) and each masked region 𝒓m𝑖 is replaced with a special
token [MASK]. After feeding the word token sequence and image region sequence with masked
ones {𝒓m𝑖 }�̂�𝑖=1 into Uni-EDEN, we can leverage the output multi-modal representation of each
masked region 𝒓m𝑖 to estimate the object label (i.e., object distribution 𝑠𝜃 (𝒓m𝑖 )) through a softmax
layer. To reconstruct the object labels of masked regions, the objective of MOC is thus defined as
the KL divergency loss to measure the mismatch between the estimated object distribution and
ground-truth object distribution:

LMOC (𝜃 ) = 𝐸 (I,S)∼𝐵

�̂�∑︁
𝑖=1

𝐾𝐿(𝑔(𝒓m𝑖 ) | |𝑠𝜃 (𝒓m𝑖 )), (7)

where 𝐵 is the whole dataset. 𝑔(𝒓m𝑖 ) denotes the ground-truth object distribution of 𝒓m𝑖 , which is
directly obtained from the off-the-shelf object detector used in region feature extraction.

Masked Region Phrase Generation (MRPG). Considering that image region usually conveys
more semantics beyond the individual object label (e.g., adjectives of object), MOC that infers the
general object label of masked region will fail to exploit all semantic cues in region for vision-
language pre-training. In MRPG, we go one step further and target at reconstructing a more
comprehensive linguistic representation (i.e., phrase) of masked region. In particular, given the
outputmulti-modal feature of eachmasked region 𝒓m𝑖 , we feed it into a LSTM-based phrase generator
to generate phrase word-by-word. To supervise the process of phrase reconstruction, we adopt
a phrase generator [42] pre-trained on Visual Genome [15] to produce the ground-truth phrase
P(𝒓m𝑖 ) for each masked region 𝒓m𝑖 . The whole model is thus optimized by minimizing the negative
log probability of the ground-truth phrase P(𝒓m𝑖 ) given the unmasked image regions 𝒓\m and the
input sentence S:

LMRPG (𝜃 ) = −𝐸 (I,S)∼𝐵

�̂�∑︁
𝑖=1

log 𝑃𝑟𝑝
𝜃
(P(𝒓m𝑖 ) |𝒓\m,S). (8)
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Image-Sentence Matching (ISM). Some vision-language perception tasks (e.g., visual question
answering and caption-based image retrieval) capitalize on the understanding of holistic image-
sentence relationship, which can not be directly captured via MOC and MRPG that only exploit
the local contextual information. To enforce Uni-EDEN to understand the holistic multi-modal
relationship, we additionally pre-train Uni-EDEN with ISM proxy task that pursues the vision-
language alignment at sentence-level. Specifically, given the inputs of image-sentence pair {I,S},
we feed the multi-modal outputs of object and sentence encoders into an attention-based two-layer
MLP [49] to measure the image-sentence matching score 𝑠𝜃 (I,S), that denotes how well the input
sentence is semantically matched with image. In ISM, Uni-EDEN is optimized with triplet ranking
loss, which enforces the matching score of matched pair {I,S} to be larger than the score of
mismatched pair {I,S−}:

LISM (𝜃 ) = 𝐸 (I,S)∼𝐵 [𝑚𝑎𝑥 (0, ℎ − 𝑠𝜃 (I,S) + 𝑠𝜃 (I,S−))], (9)

where ℎ represents the margin in the triplet ranking loss. Please note that the mismatched image-
sentence pair is generated by replacing the image/sentence in a matched pair with a randomly
sampled one from other pairs.

Masked Sentence Generation (MSG). All the aforementioned three vision-language proxy
tasks focus on developing the capability of multi-modal reasoning, but fail to teach Uni-EDEN how
to auto-regressively decode words for sentence generation. This severely hinders the generalization
of pre-trained Uni-EDEN for vision-language generation downstream task (e.g., image captioning
[1, 22, 42] and video captioning [3, 21, 27]). Hence, in order to mimic the process of sentence
generation during pre-training, the MSG task is involved to enforce the sentence decoder to
reconstruct the whole sentence word-by-word depending on the input image regions. Concretely,
at 𝑗-th decoding time-step, we aim to predict the 𝑗-th word𝒘 𝑗 in sentence S conditioned on the
input image I and all the “past" words S0:𝑗−1. To implement this, we introduce an attention mask
in Transformer and Multi-modal Transformer layers that prevents all the “future" words S𝑗 :𝑁𝑆

to be attended. Thus, given the image region sequence and word token sequence with attention
mask, the output multi-modal representation of𝒘 𝑗−1 is utilized to predict the next word𝒘 𝑗 . Finally,
the objective of MSG can be expressed as the joint negative log probability for reconstructing the
sequential words depending on all the “past" words S0:𝑗−1 and input image I:

LMSG (𝜃 ) = −𝐸 (I,S)∼𝐵

𝑁𝑆+1∑︁
𝑗=1

log 𝑃𝑟𝜃 (𝒘 𝑗 |S0:𝑗−1,I) . (10)

3.4 Connections between Multi-Granular Proxy Tasks and Downstream Tasks
In this section, we conduct a detail discussion to explore the relationship between the multi-
granular vision-language proxy tasks and downstream tasks. Specifically, the proxy task of masked
object classification encourages the grounding of each object label to the corresponding region.
Such capability of region-object alignment supports the fundamental region-level multi-modal
reasoning, and thus facilitates most downstream tasks (e.g., VQA and VCR). The proxy task of
masked phrase generation enforces Uni-EDEN to capture more semantics beyond the individual
object label (e.g., adjectives of object). Such comprehensive semantics will not only boost the
region-level multi-modal reasoning in VQA/VCR downstream tasks, but also enrich the generated
captions for image captioning downstream task. The proxy task of image-sentence matching
exploits the holistic image-sentence relations, and thus facilitates the caption-based image retrieval
downstream task. Finally, the proxy task of masked sentence generation naturally mimics the
process of sentence generation, and enables the generalization of pre-trained encoder-decoder
structure for vision-language generation downstream tasks (e.g., image captioning).
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Fig. 3. The fine-tuning procedures on four vision-language downstream tasks.

3.5 Overall Objective
During pre-training, the overall training objective of Uni-EDEN integrates the loss functions of
four multi-granular vision-language proxy tasks, and the masked language modeling objective
(LMLM (𝜃 )) as in BERT:

L = LMOC (𝜃 )+LMRPG (𝜃 ) + LISM (𝜃 ) + LMSG (𝜃 ) + LMLM (𝜃 ). (11)

4 EXPERIMENTS
We pre-train our Uni-EDEN on an automatically collected large-scale image captioning dataset
(Conceptual Captions [36]), and evaluate the generalization of pre-trained Uni-EDEN by fine-tuning
it on four vision-language downstream tasks, i.e., visual question answering, caption-based image
retrieval, visual commonsense reasoning, and image captioning.

4.1 Pre-training Dataset and Settings
The experiments for pre-training are conducted on the large-scale image captioning benchmark
(Conceptual Captions [36]). Conceptual Captions contains 3.3 million image-sentence pairs, which
are automatically collected from billions of webpages. The caption of each image is programmatically
created based on the original Alt-text from HTML webpages.

During pre-training, the adopted off-the-shelf Faster-RCNN is pre-trained on ImageNet [7] and
Visual Genome [15] as in [1]. At most 100 image regions with detection confidences higher than
0.2 are selected as inputs. Each input image region representation is a 2,048-dimensional vector. For
the proxy task of masked phrase generation, we leverage the LSTM-based phrase generator [42]
pre-trained on region-phrase pairs in Visual Genome [15]. In object/sentence encoder, we stack
𝐹 = 6/𝑀 = 12 Transformer layers. The sentence decoder includes 𝐾 = 6 Multi-modal Transformer
layers. The margin ℎ is set as 0.2 as in [16]. The whole vision-language pre-training architecture
are mainly implemented with PyTorch [29], optimized with Adam [14] on 16 Tesla V100 GPUs. We
set the mini-batch size as 512 and the learning rate as 0.0001. The maximum iteration is 10 epoches.

4.2 Fine-Tuning on Downstream Tasks
This section details the fine-tuning procedure of each vision-language downstream task (as shown
in Figure 3), coupled with the experimental settings.
Visual Question Answering (VQA). In VQA, the model predicts an answer to the given natural
language question with regard to an image. In this task, we adopt the VQA 2.0 dataset [2] for
fine-tuning our Uni-EDEN, which contains 1.1 million questions about images in COCO [4]. During
fine-tuning, we follow the official split [1] and frame this task as a multi-label classification problem.
In particular, by feeding the input image-question pair into Uni-EDEN, we learn the holistic image-
question representation by fusing output multi-modal features of object and sentence encoders via
attention mechanism [49]. A single-layer MLP is further leveraged to predict answer by embedding
the holistic image-question representation into 3,129 possible answers. At fine-tuning stage, as in
[1, 51], we optimize the output answer predictions in Uni-EDEN with regard to the soft answer
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labels via cross-entropy loss. The mini-batch size is 96 and the learning rate is 0.00005. We stop the
fine-tuning procedure after 20 epoches.
Caption-based Image Retrieval (CIR). CIR aims to search an image from a pool given its caption
that depicts the image content. The dataset adopted in this task is Flickr30k [31] consisting of 31k
images from Flickr. Each image is equipped with five human-annotated sentences. We utilize the
commonly adopted split in [16] and formulate this task as a ranking problem that sorts images
according to the learnt image-sentence matching scores. Specifically, for each matched image-
sentence pair, we construct one mismatched pair by hard example mining. During fine-tuning,
we feed each matched/mismatched pair into Uni-EDEN and obtain the matching score 𝑠𝜃 (I,S)
as in image-sentence matching pre-training task. The whole model is thus optimized with triplet
ranking loss, that aims to enforce the matching score of matched pair to be larger than the score of
mismatched pair. We set the mini-batch size as 512 and the learning rate as 0.00002. The maximum
iteration is set as 30 epoches.
Visual Commonsense Reasoning (VCR). VCR tackles two problems: visual question answering
(Q→A) and answer justification (QA→R), that requires the model to predict an answer or judge the
correctness of the chosen rationale respectively. Each problem is framed as multiple choice task. In
addition, VCR includes a holistic setting (Q→AR) that the model should choose the right answer
(from four answer choices) and then select the correct rationale for that answer (from four rationale
choices). The Visual Commonsense Reasoning (VCR) benchmark [50] is utilized for evaluation in
this task. The dataset includes 290k multiple choice QA problems from 110k movie scenes. During
fine-tuning, we concatenate the question and each possible response (answer or rationale) as the
textual input, which is fed into Uni-EDEN along with the image. As in VQA, we measure the holistic
image-sentence feature based on the multi-modal outputs of object and sentence encoders, and
then utilize a linear layer to predict the score for each possible response. The final prediction (i.e.,
all scores of the four response choices) is thus trained with cross-entropy loss (mini-batch size: 64,
learning rate: 0.00002, maximum iteration: 20 epoches).
Image Captioning (IC). In IC, the model aims to auto-regressively generate the natural sentence
that depicts the visual content of input image. We use COCO [4], the most popular image captioning
benchmark, for fine-tuning and evaluating our Uni-EDEN. COCO contains 123,287 images, and
each image is annotated with five sentences. Here we utilize the widely adopted Karpathy split
[12, 28, 47, 48] for evaluation, consisting of 113,287 images for training, 5k images for validation, and
5k images for testing. For fine-tuning, we firstly optimize the whole architecture with cross-entropy
loss. The mini-batch size is 16 and the learning rate is 0.00003. We set the maximum iteration as
10 epoches. The fine-tuned Uni-EDEN is further trained with self-critical training strategy [35],
which enables sequence-level optimization with CIDEr reward. The learning rate is 0.000005 and
the maximum iteration is 30 epoches.

4.3 Performance Comparison
Table 1 summarizes the quantitative results of our Uni-EDEN on all the vision-language perception
(VQA, CIR, and VCR) and generation (IC) downstream tasks. We compare Uni-EDEN with state-of-
the-art task-specific models and vision-language pre-training techniques in each vision-language
downstream task. Please note that we additionally include several variants of our Uni-EDEN:
1) Uni-EDEN− which is directly trained with task-specific training data for each task, without
pre-training on Conceptual Captions dataset, and 2) Uni-EDEN (single-stream) that pre-trains
the single-stream Transformer based encoder-decoder structure (as in Unified VLP [51]) with our
proposed multi-granular vision-language proxy tasks. The SOTA task-specific models include
BUTD [1] and AoANet [10] for IC, BUTD [1], BAN [13] and DFAF [9] for VQA, SCAN [16] for CIR,
and R2C [50] for VCR. The vision-language pre-training baselines are grouped into two directions:
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Table 1. Performance comparison with state-of-the-art (SOTA) task-specific models and vision-language pre-
training techniques (Pre-E: pre-trainable encoder module; Pre-ED: pre-trainable encoder-decoder structure)
on four vision-language downstream tasks. Uni-EDEN− is one variant of our Uni-EDEN which is directly
trained with task-specific training data, without pre-training. For VQA which has private test sets, we report
test results (in parentheses) for our Uni-EDEN. ★ denotes our implementation by using the same pre-training
data/backbone as in Uni-EDEN.

Model Image Captioning VQA CIR VCR
B@4 M C S Overall Yes/No Number Other R1 R5 R10 Q→ A QA→ R Q→ AR

SOTA

BUTD [1] 36.3 27.7 120.1 21.4 65.3 (65.7) 81.8 44.2 56.1 - - - - - -
AoANet [10] 38.9 29.2 129.8 22.4 - - - - - - - - - -
BAN [13] - - - - 70.0 (70.4) 85.4 54.0 60.5 - - - - - -
DFAF [9] - - - - 70.2 (70.3) 86.1 53.3 60.5 - - - - - -
SCAN [16] - - - - - - - - 48.6 77.7 85.2 - - -
R2C [50] - - - - - - - - - - - 63.8 67.2 43.1
Uni-EDEN− (single-stream) 38.2 28.6 126.7 22.3 68.4 85.2 50.2 58.1 54.6 81.4 88.0 72.5 73.9 53.6
Uni-EDEN− 38.8 28.8 128.2 22.8 69.8 86.3 49.5 60.4 55.6 81.8 88.5 73.0 74.4 54.5

Pre-E

VisualBERT [19] - - - - 70.8 (71.0) - - - - - - 70.8 73.2 52.2
ViLBERT [23] - - - - 70.6 (70.9) - - - 58.2 84.9 91.5 72.4 74.5 54.0
VL-BERT [38] - - - - 71.2 - - - - - - 73.8 74.4 55.2
LXMERT★ [40] - - - - 70.6 87.2 52.6 60.4 61.0 86.8 92.1 73.2 73.8 54.4
UNITER★ [5] - - - - 70.7 87.3 54.4 60.2 61.5 87.2 92.2 73.2 75.0 55.3

Pre-ED Unified VLP (ResNet-101)★ [51] 39.1 29.1 129.0 23.0 70.4 87.0 53.8 60.1 60.8 86.7 92.0 73.5 75.2 55.4
Unified VLP (ResNeXt) [51] 39.5 29.3 129.3 23.2 70.5 (70.7) 87.2 52.1 60.3 - - - - - -
Uni-EDEN (single-stream) 39.7 29.4 131.8 23.2 71.3 87.5 54.0 61.3 62.1 87.1 92.2 74.2 76.1 56.8
Uni-EDEN 39.9 29.6 133.2 23.4 72.2 (72.5) 88.1 54.6 62.7 63.2 87.3 92.3 74.9 76.7 57.8

pre-trainable encoder module (i.e., VisualBERT [19], ViLBERT [23], VL-BERT [38], LXMERT [40],
and UNITER [5]) for only vision-language perception tasks, and pre-trainable encoder-decoder
structure (Unified VLP [51]) for both vision-language perception and generation tasks. For fair
comparison with our Uni-EDEN, we re-implement LXMERT and UNITER by pre-training them
over Conceptual Captions. We also include an additional run of Unified VLP, named as Unified
VLP (ResNet-101), by using the same backbone (ResNet-101) as in our Uni-EDEN.
Comparison with SOTA Task-specific Models. In general, under the same task-specific train-
ing setting without vision-language pre-training, our Uni-EDEN− achieves comparable results
with other SOTA baselines on all vision-language tasks. The results basically demonstrate the
effectiveness of the adopted two-stream Transformer based structure with self-attention and multi-
modal attention. Furthermore, when pre-training Uni-EDEN on Conceptual Captions and then
fine-tuning it on task-specific data, our Uni-EDEN consistently exhibits better performances than
other SOTA task-specific baselines across all the evaluation metrics on four tasks. Remarkably, for
vision-language generation task (image captioning), Uni-EDEN can achieve 133.2% with CIDEr
score optimization, which is to-date the best performance without any model ensemble and makes
the absolute improvement over the best competitor AoANet by 3.4%. In addition, for vision-language
perception task (VQA), Uni-EDEN outperforms DFAF by a large margin (2.0% for Overall accuracy).
The performance improvements generally show the key advantage of exploiting vision-language
pre-training via Uni-EDEN, that facilitate both vision-language perception and generation tasks.

To fully verify the generalizability of our proposed multi-granular vision-language proxy tasks,
we include the variants of Uni-EDEN, i.e., Uni-EDEN (single-stream), that adopt the single-stream
Transformer based backbone for VLP. In particular, our Uni-EDEN (single-stream) with additional
vision-language pre-training outperforms Uni-EDEN− (single-stream) without pre-training on each
downstream task. This again demonstrates the effectiveness of our multi-granular vision-language
proxy tasks when equipped with a different single-stream Transformer based backbone.
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Table 2. Ablation study on the use of different vision-language proxy tasks for pre-training. Base: a base
pre-training strategy by integrating masked language modeling, masked object classification, and image-
sentence matching proxy tasks; MSG: Masked Sentence Generation task; MRPG: Masked Region Phrase
Generation task.

BaseMSGMRPG Image Captioning VQA CIR VCR
B@4 M C S Overall Yes/NoNumberOther R1 R5 R10 Q→ AQA → RQ → AR

✓ 39.2 28.9 129.1 22.8 71.5 87.7 53.0 61.8 61.8 87.1 92.2 74.6 75.9 56.9
✓ ✓ 39.7 29.4 132.4 23.2 71.8 88.0 53.6 62.2 62.5 86.7 92.3 74.8 76.1 57.3
✓ ✓ 39.3 29.2 130.6 22.9 72.0 88.0 54.1 62.5 62.2 86.7 92.2 75.0 76.2 57.4
✓ ✓ ✓ 39.9 29.6133.223.4 72.2 88.1 54.6 62.7 63.287.392.3 74.9 76.7 57.8

ComparisonwithVLPTechniques.Overall, the results across all vision-language perception and
generation tasks consistently indicate that our Uni-EDEN obtains better performances against other
state-of-the-art pre-trainable encoder modules (i.e., VisualBERT, ViLBERT, VL-BERT, LXMERT,
and UNITER) and encoder-decoder structure (i.e., Unified VLP (ResNet-101) and Unified VLP
(ResNeXt)). In the IC and VQA tasks, the CIDEr and Overall of Uni-EDEN can achieve 133.2%
and 72.2%, making 3.9% and 1.0% absolute improvements over the best competitors Unified VLP
(ResNeXt) and VL-BERT, respectively. In particular, by capitalizing on a multi-modal encoder
that pre-learns multi-modal reasoning through vision-language pre-training, all the pre-trainable
encoder modules lead to a large performance boost over SOTA task-specific approaches for vision-
language perception tasks. Nevertheless, the pre-trainable encoder modules can not be directly
adapted to vision-language generation task (IC), which needs an additional language decoder for
sentence generation. By enabling the simultaneous pre-training of encoder and decoder, Unified
VLP (ResNeXt) outperforms SOTA task-specific approaches in both vision-language perception
and generation tasks. Furthermore, by pre-training encoder-decoder structure with multi-granular
vision-language proxy tasks, our Uni-EDEN boosts the performances in all the vision-language
downstream tasks. This clearly confirms the effectiveness of multi-granular vision-language proxy
tasks that better align the visual content to linguistic representations in different granularities,
from individual label, phrase, to natural sentence.

4.4 Ablation Study
Here we conduct ablation study to investigate how each design of vision-language proxy task in
our Uni-EDEN influences the performances of downstream tasks. Table 2 details the results on four
vision-language tasks by considering one more proxy task for pre-training Uni-EDEN. We start
from a base pre-training strategy which is a degraded version of our multi-granular vision-language
proxy tasks by integrating the three commonly adopted ones (MLM, MOC, ISM). This ablated base
strategy solely targets for aligning visual contents to each individual label and holistic sentence for
multi-modal reasoning, and obtains similar results to ViLBERT and VL-BERT on vision-language
perception tasks. After that, we extend the base strategy by including MSG proxy task, that aims to
enforce Uni-EDEN to auto-regressively reconstruct input sentence. This way naturally mimics the
process of sentence generation during pre-training, thus significantly improves the generalization of
Uni-EDEN on image captioning task. Meanwhile, the base strategy can be upgraded by additionally
involving the proxy task of MPRG that reconstructs a more comprehensive linguistic representation
(phrase) of masked region. In this way, Base+MPRG achieves higher performances across all
downstream tasks than Base. Furthermore, after integrating base strategy with both MSG and
MPRG, consistent performance boosts are attained over both vision-language perception and
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Question: Where is person sitting?

Q->A:   
    Uni-EDEN: In a fort in his house
    Uni-EDEN  : In a fort in his house

    GT: In a fort in his house

QA->R: 
    Uni-EDEN: He is in his pajamas and seems comfortable
    Uni-EDEN  : He has brought many items into the fort which make him feel at ease

    GT: He is in his pajamas and seems comfortable

Question: What is under the tire?

Uni-EDEN: bird

Uni-EDEN   : dirt

GT: bird

Uni-EDEN: a group of three horses standing next to each other

Uni-EDEN   : a group of goats standing next to each other

GT1: three different horse figurines are placed beside each 

other

GT2: three plastic horse figurines standing next to each other 

on a shelf

GT3: a set of three different plastic horse figurines

Question: What accessory does the bear on the right wear?

Uni-EDEN: scarf

Uni-EDEN   : shirt

GT: scarf

Uni-EDEN: a train on the tracks with a flag on top of it

Uni-EDEN   : two trains parked next to each other on the tracks

GT1: a train with a flag flying near the tracks

GT2: a train going by a flag on an elevated track

GT3: a train passing by the american flag on a clear day

-
-

- -

Query: a female athlete is 

high jumping at the 2010 

barcelona

Query: an adult couple is 

talking with a younger girl, 

and they are all smiling

Uni-EDEN:

Uni-EDEN   :-

GT

GT

Uni-EDEN:

Uni-EDEN   :-

GT

GT

Question: Where is person headed?

Q->A:   
      Uni-EDEN: She is walking into the building for work
      Uni-EDEN  : She's running to the side of the boat

      GT: She is walking into the building for work

QA->R: 
      Uni-EDEN: She looks to be headed for the building in front and dressed for work
      Uni-EDEN  : She looks like she is holding a briefcase and is dressed nicely for work

      GT: She looks to be headed for the building in front and dressed for work

-

- -

-

Image 

Captioning

VQA

CIR

VCR

Fig. 4. Qualitative Results on four vision-language downstream tasks. The output results (e.g., captions,
answers or retrieval results) are generated by 1) Uni-EDEN, 2) Uni-EDEN−, and 3) Ground Truth (GT).

GT Caption: women walking with umbrellas during a 
rainy day

Phrase1: black pole on the sidewalk
Phrase2: a blue umbrella 
Phrase3: two women walking on the street
Phrase4: black umbrella in the hand
Phrase5: the sidewalk is wet

GT Caption: view across an expansive harbor from the 
deck of cruise ship in port

Phrase1: a cruise ship in the water
Phrase2: a white railing 
Phrase3: a small boat in the water
Phrase4: clouds in the sky
Phrase5: the water is blue

Fig. 5. Visualization of region-phase alignment in our Uni-EDEN during pre-training.

generation tasks. The results again demonstrate the merit of simultaneously exploiting the vision-
language alignments at different granularities (i.e., object-label, object-phrase, and image-sentence
alignments) for pre-training.

4.5 Qualitative Analysis
Qualitative Results. Here we show the qualitative results of our Uni-EDEN− (without vision-
language pre-training) and Uni-EDEN (with vision-language pre-training) on each downstream task.
As shown in Figure 4, our Uni-EDEN produces better captions, answers, and retrieval results, than
Uni-EDEN− by exploiting additional pre-training via our proposed multi-granular vision-language
proxy tasks. For example, in the downstream task of image captioning, Uni-EDEN− generates the
phrase of “a group of goats” that is inconsistent with the visual content for the first image, while “a
group of three horses” in our Uni-EDEN depicts the visual content more precise.
Visualization of Region-phase Alignment. In order to better qualitatively evaluate the gener-
ated phrases of each region in our Uni-EDEN during pre-training, we visualize the region-phase
alignment for image examples in Conceptual Captions dataset. As shown in Figure 5, the phrase
generator in Uni-EDEN can produce a more descriptive phrase for each region than the individual
object label by enriching semantics with adjectives of object, thereby boosting vision-language
pre-training with such region-phrase alignment. For example, compared to the individual object
labels (e.g., “pole” and “umbrella”) for the regions of the first image, the generated phrases (e.g.,
“black pole on the sidewalk” and “a blue umbrella”) in our Uni-EDEN depicts the corresponding
regions more comprehensive.

5 CONCLUSIONS
We have presented a pre-trainable Universal Encoder-DEcoder Network (Uni-EDEN) to facilitate
both vision-language perception and generation tasks. Particularly, we study the problem from
the viewpoint of simultaneously pre-training encoder for multi-modal representation extraction
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and decoder for language generation. To materialize our idea, we construct a two-stream Trans-
former based encoder-decoder structure that first learns the representations of each modality via
object/sentence encoder, and further captures inter-modal interactions for multi-modal reasoning
or sentence generation through sentence decoder. Moreover, a novel array of multi-granular vision-
language proxy tasks are presented to pre-train Uni-EDEN, targeting for better aligning the visual
content to linguistic representations in different granularities, from individual label, phrase, to
natural sentence. Extensive experiments demonstrate the compelling generalizability of Uni-EDEN
by fine-tuning it to four vision-language tasks. More remarkably, we obtain new state-of-the-art
performance for each task with Uni-EDEN.
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