
ar
X

iv
:2

20
2.

09
80

5v
5 

 [
m

at
h.

N
T

] 
 7

 M
ay

 2
02

2

MAHLER DISCRETE RESIDUES AND SUMMABILITY FOR RATIONAL

FUNCTIONS

CARLOS E. ARRECHE AND YI ZHANG

Abstract. We construct Mahler discrete residues for rational functions and show that they
comprise a complete obstruction to the Mahler summability problem of deciding whether
a given rational function f(x) is of the form g(xp) − g(x) for some rational function g(x)
and an integer p > 1. This extends to the Mahler case the analogous notions, properties,
and applications of discrete residues (in the shift case) and q-discrete residues (in the q-
difference case) developed by Chen and Singer. Along the way we define several additional
notions that promise to be useful for addressing related questions involving Mahler difference
fields of rational functions, including in particular telescoping problems and problems in the
(differential) Galois theory of Mahler difference equations.

1. Introduction

Continuous residues are fundamental tools in complex analysis, and have extensive and
compelling applications in combinatorics [FS09]. In the last decade, a theory of (q-)discrete
residues was proposed in [CS12] for the study of telescoping problems, which has found
essential applications in several other closely related problems (see [HW15, Arr17, Che18,
AZ22] for some examples). A theory of residues for skew rational functions was developped
in [Car21], which has applications in duals of linearized Reed-Solomon codes [CD21]. The
elliptic orbit residues defined in [HS21] have applications in the combinatorial study of walks
in the quarter plane. We propose here a theory of Mahler discrete residues aimed at bringing
to the Mahler case the successes of these earlier notions of residues.

Let K be a field of characteristic zero and K(x) be the field of rational functions in an
indeterminate x over K. Fix an integer p ≥ 2. We study the Mahler summability problem
for rational functions : given f(x) ∈ K(x), decide effectively whether f(x) = g(xp)− g(x) for
some g(x) ∈ K(x); if so, we say f(x) is Mahler summable.

The motivation to study Mahler equations comes from several directions: they find ap-
plications in automata theory (automatic sequences), transcendence, and number theory, to
name a few. We refer to [CDDM18] for more details, and also for an altogether different
approach to Mahler summability: the algorithm of [CDDM18, §3] computes all the ratio-
nal solutions to any linear Mahler equation. Thus with this one can decide, in particular,
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whether a given f(x) ∈ K(x) is Mahler summable by computing (or showing non-existence
of) a certificate g(x) ∈ K(x) such that f(x) = g(xp)− g(x).

Our goal here is different: we wish to construct a complete obstruction to Mahler summa-
bility. Let us elaborate. The image of the K-linear map ∆ : g(x) 7→ g(xp)−g(x) is the kernel
of some other K-linear map (call it ∇) — but what is it? Determining such a ∇ explicitly is
algorithmically desirable because it allows to decide the Mahler summability of f(x) ∈ K(x)
without computing the certificate g(x) ∈ K(x), whose computation is often in practice both
expensive and not strictly necessary (cf. [BCCL10, §1 & Table 1], [BCC+13, §1 & Table 1],
and [BLS13, §1]). We construct such a ∇ explicitly in Section 4.4, in terms of our new notion
of Mahler discrete residues for rational functions, and prove in Section 4.3:

Main Theorem. f(x) ∈ K(x) is Mahler summable if and only if all of the Mahler discrete
residues of f are zero.

The discrete and q-discrete residues developed in [CS12] comprise complete obstructions
to the analogous summability problems for f(x) ∈ K(x), of deciding whether there exists
g(x) ∈ K(x), such that f(x) = g(x + 1) − g(x), or such that f(x) = g(qx) − g(x), for
q ∈ K neither zero nor a root of unity. This theoretical property of (q-)discrete residues is
precisely what enables their applications to the telescoping problems considered in [CS12]
and their indispensable role in the development of the algorithms in [Arr17, AZ22]. We
envision analogous applications of Mahler discrete residues to telescoping problems and in
the development of algorithms to compute (differential) Galois groups for Mahler difference
equations.

Our strategy is inspired by that of [CS12] (but see Remark 2.19): we utilize the coefficients
in the partial fraction decomposition of f(x) to construct an aspiring certificate g(x) ∈ K(x)
such that

f̄(x) := f(x) +
(

g(xp)− g(x)
)

(1.1)

is Mahler summable if and only if f̄(x) = 0. The Mahler discrete residues of f(x) are (vectors
whose components are) the coefficients occurring in the partial fraction decomposition of
f̄(x). This f̄(x) plays the role of a Mahler remainder of f(x), analogous to the remainder
of Hermite reduction in the context of integration.

2. Preliminaries

Here we define the notation and conventions used throughout this work, and prove some
ancillary results. We fix once and for all an algebraically closed field K of characteristic
zero and an integer p ≥ 2 (not necessarily prime). We denote by K(x) the field of rational
functions in an indeterminate x over K. We often suppress the functional notation and write
simply f ∈ K(x) instead of f(x).

Definition 2.1. We denote by σ : K(x) → K(x) the K-linear endomorphism defined by
σ(x) = xp, called the Mahler operator, so that σ(f(x)) = f(xp) for f(x) ∈ K(x). We write
∆ := σ − id, so that ∆(f(x)) = f(xp)− f(x) for f(x) ∈ K(x).

We say that f ∈ K(x) is Mahler summable if f = ∆(g) for some g ∈ K(x). The Mahler
summability problem for rational functions is: given f ∈ K(x), decide whether f is Mahler
summable.
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LetK× = K\{0} denote the multiplicative group ofK. LetK×
t denote the torsion subgroup

of K×, i.e., the group of roots of unity in K×. For ζ ∈ K×
t , the order of ζ is the smallest

r ∈ N such that ζr = 1. We fix once and for all a compatible system of p-power roots of unity
(ζpn)n≥0 ⊂ K×

t , that is, each ζpn has order pn and ζp
ℓ

pn = ζpn−ℓ for 0 ≤ ℓ ≤ n. We denote by
πn
ℓ : Z/pnZ ։ Z/pℓZ and by πn : Z ։ Z/pnZ the canonical projections.
Each f ∈ K(x) decomposes uniquely as

f = fL + fT , where (2.1)

fL ∈ K[x, x−1] is a Laurent polynomial and fT = a
b
for polynomials a, b ∈ K[x] such that

b 6= 0 and, either a = 0, or else deg(a) < deg(b) and gcd(a, b) = 1 = gcd(x, b). The subscript
L stands for “Laurent”. The subscript T stands for “Tree” (see Definition 2.6).

Lemma 2.2. The decomposition K(x) ≃ K[x, x−1]⊕K(x)T given by f ↔ fL⊕fT as in (2.1)
is σ-stable. For f, g ∈ K(x), f = ∆(g) if and only if fL = ∆(gL) and fT = ∆(gT ).

Proof. We see that σ(fL) ∈ K[x, x−1] for any fL ∈ K[x, x−1]. By the Euclidean algorithm,
gcd(σ(a), σ(b)) = σ(gcd(a, b)) for any 0 6= a, b ∈ K[x]. Thus the K-subspace K(x)T is also
stabilized by σ. It follows that ∆(g) = ∆(f) if and only if ∆(gL) = fL and ∆(gT ) = fT , for
any f, g ∈ K(x) �

2.1. Mahler trajectories, trees, and cycles. We let P := {pn | n ∈ Z≥0} denote the
multiplicative monoid of non-negative powers of p. Then P acts on Z by multiplication, and
the set of maximal trajectories for this action is

Z/P :=
{

{0}
}

∪
{

{ipn | n ∈ Z≥0}
∣

∣ i ∈ Z such that p ∤ i
}

.

Remark 2.3. The usage of trajectory is perhaps unfamiliar to some readers: it is standard
in the context of monoid (and more generally semigroup) actions, and replaces the more
familiar notion of orbit for group actions. As in that more familiar setting, the elements
θ ∈ Z/P are pairwise disjoint sets whose union is all of Z.

Definition 2.4. For a maximal trajectory θ ∈ Z/P, the θ-subspace

K[x, x−1]θ :=

{

∑

j

cjx
j ∈ K[x, x−1]

∣

∣

∣

∣

∣

cj = 0 for all j /∈ θ

}

. (2.2)

The θ-component fθ of f ∈ K(x) is the projection of the component fL of f in (2.1) to the
θ-subspace K[x, x−1]θ in (2.2).

Lemma 2.5. For f, g ∈ K(x), fL = ∆(gL) if and only if fθ = ∆(gθ) for every θ ∈ Z/P.

Proof. This follows by observing that the K-decomposition K[x, x−1] ≃ ⊕

θ∈Z/P K[x, x−1]θ
is σ-stable (cf. [CHLW16, §5]). �

Definition 2.6. We denote by TM the set of equivalence classes in K× for the equivalence
relation α ∼ γ ⇔ αpr = γps for some r, s ∈ Z≥0. For α ∈ K×, we denote by τ(α) ∈ TM the
equivalence class of α under ∼. The elements τ ∈ TM are called Mahler trees.
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Remark 2.7. The usage of tree in Definition 2.6 is motivated by the fact that one can define a
digraph structure D(τ(α)) on the vertex set τ(α) with an edge from ξ to γ whenever ξp = γ,
whose underlying (undirected) graph is connected and acyclic provided that α /∈ K×

t . We find
the terminology useful and suggestive even when α ∈ K×

t , because even in this exceptional
case we do obtain a tree after collapsing the unique cycle in D(τ) defined below.

Definition 2.8. For a Mahler tree τ ∈ TM , the Mahler cycle of τ is

C(τ) := {γ ∈ τ | γ is a root of unity of order coprime to p}.
The cycle length of τ is defined to be e(τ) := |C(τ)|.
Example 2.9. (Cf. [CDDM18, Figures 4 and 5]). Let us illustrate the definitions of Mahler

trees and Mahler cycles with K = C and p = 3. In this example we write ζn := e
2π

√
−1

n ∈ C×,
for concreteness.

The vertices in the digraph D(τ(2)) near α = 2 are:

ζ9
9
√
2

##❋
❋❋

❋❋
❋❋

❋❋
ζ49

9
√
2

��

ζ79
9
√
2

{{①①
①①
①①
①①
①

9
√
2

##❋
❋❋

❋❋
❋❋

❋❋

3
√
2

��

ζ29
9
√
2

{{①①
①①
①①
①①

ζ3
9
√
2 // 3

√
2 // 2

��

ζ23
3
√
2oo ζ59

9
√
2oo

ζ23
9
√
2

;;①①①①①①①①①

8 ζ89
9
√
2

cc❋❋❋❋❋❋❋❋

For α = ζ4, we have C(τ(ζ4)) = {ζ4, ζ34}, so the cycle length e(τ(ζ4)) = 2. The vertices in
the digraph D(τ(ζ4)) near C(τ(ζ4)) are:

ζ36

  ❆
❆❆

❆❆
❆❆

❆
ζ1336

��

ζ2536

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ζ736

  ❆
❆❆

❆❆
❆❆

ζ1936

��

ζ3136

~~⑥⑥
⑥⑥
⑥⑥
⑥

ζ12

  ❆
❆❆

❆❆
❆❆

❆
ζ712

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ζ4
��
ζ34YY

ζ512

>>⑥⑥⑥⑥⑥⑥⑥⑥
ζ1112

``❆❆❆❆❆❆❆❆

ζ536

>>⑦⑦⑦⑦⑦⑦⑦
ζ1736

OO

ζ2936

``❆❆❆❆❆❆❆

ζ1136

>>⑥⑥⑥⑥⑥⑥⑥
ζ2336

OO

ζ3536

``❆❆❆❆❆❆❆
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Remark 2.10. Let us collect some immediate observations about Mahler cycles that we shall
use, and refer to, throughout the sequel.

For a Mahler tree τ ∈ TM it follows from the Definition 2.6 that either τ ⊂ K×
t or else

τ ∩K×
t = ∅. In particular, C(τ) = ∅ ⇔ e(τ) = 0, which occurs precisely when τ 6⊂ K×

t (the
non-torsion case).

On the other hand, K×
t consists of the pre-periodic points for the action of the monoid P on

K× given by α 7→ αpn for n ∈ Z≥0. For τ ⊂ K×
t (the torsion case), the Mahler cycle C(τ) is a

non-empty set endowed with a simply transitive action of the quotient monoid P/Pe ≃ Z/eZ,
where Pe := {pne | n ∈ Z}, and e := e(τ). We emphasize that in general C(τ) is only a set,
and not a group. The Mahler tree τ(1) consists precisely of the roots of unity ζ ∈ K×

t whose
order r is such that gcd(r, pn) = r for some pn ∈ P, or equivalently such that every prime
factor of r divides p. When τ ⊂ K×

t but τ 6= τ(1), the cycle length e(τ) coincides with the
order of p in the group of units (Z/rZ)×, where r > 1 is the common order of the roots of

unity γ ∈ C(τ), and for any given γ ∈ C(τ) we have that C(τ) = {γpℓ | 0 ≤ ℓ ≤ e− 1}.
2.2. Mahler supports and singular supports. Mahler trees allow us to define the fol-
lowing bespoke variants of the singular support sing(f) of a rational function f (i.e., its set
of poles), which are particularly well-suited to the Mahler context.

Definition 2.11. For f ∈ K(x), we define supp(f) ⊂ TM ∪ {∞}, called the Mahler support
of f , as follows:

• ∞ ∈ supp(f) if and only if fL 6= 0; and
• for τ ∈ TM , τ ∈ supp(f) if and only if τ contains a pole of f .

For τ ∈ TM , the singular support of f in τ , denoted by sing(f, τ), is the (possibly empty)
set of poles of f contained in τ .

We omit the straightforward proof of the following lemma.

Lemma 2.12. For f, g ∈ K(x) and 0 6= c ∈ K we have the following:

(1) supp(f) = ∅ ⇔ f = 0;
(2) supp(σ(f)) = supp(f) = supp(c · f); and
(3) supp(f + g) ⊆ supp(f) ∪ supp(g).

Definition 2.13. For a Mahler tree τ ∈ TM , the τ -subspace

K(x)τ :=
{

fT ∈ K(x)T
∣

∣ supp(fT ) ⊆ {τ}
}

. (2.3)

For f ∈ K(x), the τ -component fτ of f is the projection of the component fT of f in (2.1)
to the τ -subspace K(x)τ in (2.3).

Lemma 2.14. For f, g ∈ K(x), fT = ∆(gT ) if and only if fτ = ∆(gτ ) for every τ ∈ TM .

Proof. It follows from Lemma 2.12 that the K-linear decomposition K(x)T ≃⊕τ∈TM
K(x)τ

is σ-stable (cf. [CHLW16, §5]). �

2.3. Mahler dispersion. We now define a Mahler variant of the notion of (polar) dispersion
used in [CS12], following the original definitions in [Abr71,Abr74].
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Definition 2.15. For f ∈ K(x) and τ ∈ supp(f), the Mahler dispersion of f at τ , denoted
by disp(f, τ), is defined as follows.

If τ ∈ TM , disp(f, τ) is the largest d ∈ Z≥0 (if it exists) for which there exists α ∈ sing(f, τ)

such that αpd ∈ sing(f, τ). If there is no such d ∈ Z≥0, then we set disp(f, τ) = ∞.

If τ = ∞, let us write fL =
∑N

i=n cix
i ∈ K[x, x−1] with cncN 6= 0.

• If fL = c0 6= 0 then we set disp(f,∞) = 0; otherwise
• disp(f,∞) is the largest d ∈ Z≥0 for which there exists an index i 6= 0 such that
ci 6= 0 and cipd 6= 0.

For f ∈ K(x) and τ ∈ TM ∪ {∞} such that τ /∈ supp(f), we do not define disp(f, τ) at all
(cf. [Abr71,Abr74,CS12]).

Similarly as in the shift and q-difference cases (cf. [HS08, Lemma 6.3] and [CS12, Lemma 2.4
and Lemma 2.9]), Mahler dispersions will play a crucial role in what follows. As we prove
in Corollary 3.2, they already provide a partial obstruction to summability: if f ∈ K(x) is
Mahler summable then every Mahler dispersion of f is non-zero. Moreover, Mahler disper-
sions also detect whether f has any “bad” poles (i.e., at roots of unity of order coprime to
p) according to:

Lemma 2.16. Let f ∈ K(x) and τ ∈ supp(f). Then disp(f, τ) = ∞ if and only if sing(f, τ)∩
C(τ) 6= ∅.

Proof. (⇒). If disp(f, τ) = ∞, then there exist α, γ ∈ sing(f, τ) such that αpd = γ for
infinitely many d ∈ Z≥0. Thus, both γ and α are roots of unity. Let r be the order of α.

For any d ∈ Z≥0, the order of αpd is rd := r/gcd(pd, r), and we see that for every sufficiently

large d, the order rd of α
pd is coprime to p, and therefore γ is a root of unity of order coprime

to p.

(⇐). For γ ∈ sing(f, τ) ∩ C(τ) we have γpe(τ)·n = γ for every n ∈ Z≥0 (cf. Remark 2.10),
whence disp(f, τ) = ∞ by Definition 2.15. �

2.4. Mahler coefficients for partial fractions. We now study the effect of the Mahler
operator σ on partial fraction decompositions. For α ∈ K×, m ∈ N, and 1 ≤ k ≤ m, we
define the Mahler coefficients V m

k (α) ∈ K implicitly by

σ

(

1

(x− αp)m

)

=
1

(xp − αp)m
=

m
∑

k=1

p−1
∑

i=0

V m
k (ζ ipα)

(x− ζ ipα)
k
. (2.4)

These coefficients are computed explicitly with the following result.

Lemma 2.17. There exist universal coefficients Vm
k ∈ Q such that

V m
k (α) = Vm

k · αk−pm

for every α ∈ K× and 1 ≤ k ≤ m. Moreover, these Vm
k are the first m Taylor coefficients at

x = 1 of

(xp−1 + · · ·+ x+ 1)−m =
m
∑

k=1

Vm
k · (x− 1)m−k +O((x− 1)m). (2.5)



MAHLER DISCRETE RESIDUES AND SUMMABILITY FOR RATIONAL FUNCTIONS 7

Proof. We claim that V m
k (α) = V m

k (1) · αk−pm for every α ∈ K×. To see this, set x = αy for
a new indeterminate y, and note that

m
∑

k=1

p−1
∑

i=0

V m
k (ζ ipα)

(x− ζ ipα)
k
=

1

(xp − αp)m
= α−pm · 1

(yp − 1)m
=

= α−pm

m
∑

k=1

p−1
∑

i=0

V m
k (ζ ip)

(y − ζ ip)
k
= α−pm

m
∑

k=1

p−1
∑

i=0

V m
k (ζ ip)α

k

(x− ζ ipα)
k
.

It follows that V m
k (ζ ipα) = V m

k (ζ ip)α
k−pm for i = 0, . . . , p − 1. In particular for i = 0 we

obtain V m
k (α) = V m

k (1)αk−pm, as claimed. Setting Vm
k := V m

k (1), we see from (2.4) that Vm
k

is the usual continuous residue of order k of f(x) := (xp − 1)−m. The formula (2.5) follows

from [Bro91, Section 2], where it is shown that Vm
k = g(m−k)(1)

(m−k)!
, where g(x) := (x−1)mf(x) =

(xp−1 + · · ·+ 1)−m. �

The following immediate consequence of Lemma 2.17 is obtained by evaluating (2.5) at
x = 1.

Corollary 2.18. For α ∈ K×, V m
m (α) = p−mαm−pm.

Remark 2.19. We see in (2.4) two phenomena that arise in the Mahler context and have no
counterpart in the shift and q-dilation settings considered in [CS12] — the main inspiration
for the present work. Let f ∈ K(x) such that 0 6= fT as in (2.1). Then:

(1) the number of poles of σ(fT ) (counted either with or without multiplicity!) is strictly
larger than that of fT ; and

(2) the (classical/continuous) higher-order residues of fT “leak” into the lower-order
residues of σ(fT ).

These two phenomena are mainly responsible for our need to create new and somewhat
intricate bookkeeping devices in the Mahler setting, which were (invisibly) not necessary
in the shift and q-dilation settings considered in [CS12], in order to develop our proposed
analogous theory of Mahler discrete residues.

Example 2.20. Let us illustrate the definition of Mahler coefficients with p = 3, m = 2,
and α3 = 1. Then (2.4) becomes

σ

(

1

(x− 1)2

)

=
1

(x3 − 1)2
=

2
∑

k=1

2
∑

i=0

V2
k · ζki3

(x− ζ i3)
k
,

since, according to Lemma 2.17, V 2
k (ζ

i
3) = V2

k · (ζ i3)k−6 = V2
k · ζki3 for k = 1, 2. We find in this

case, using (2.5) in Lemma 2.17, that

V2
2 =

(

x2 + x+ 1
)−2
∣

∣

∣

x=1
=

1

9
; and V2

1 =
(

(x2 + x+ 1)−2
)′
∣

∣

∣

x=1
= −2

9
.

One can verify using a computer algebra system (or by hand!) that the partial fraction
decomposition of 9 · (x3 − 1)−2 is indeed

1

(x− 1)2
+

ζ23
(x− ζ3)2

+
ζ3

(x− ζ23)
2
+

−2

x− 1
+

−2ζ3
x− ζ3

+
−2ζ23
x− ζ23

.
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3. Mahler dispersion and summability

The goal of this section is to prove Corollary 3.2: if f ∈ K(x) is Mahler summable
then disp(f, τ) 6= 0 for every τ ∈ supp(f). This is an essential ingredient in our proofs,
following [CS12]. The following result is a Mahler analogue of [CFMS21, Lemma 2.6].

Proposition 3.1. Let f, g ∈ K(x) such that f = ∆(g). Then supp(f) ⊆ supp(g). Moreover,
disp(f, τ) = disp(g, τ) + 1 for every τ ∈ supp(f), with the convention that ∞+ 1 = ∞.

Proof. By Lemma 2.12, τ ∈ supp(f) ⇒ τ ∈ supp(g). We consider separately the two main
cases: (1) τ = ∞; and (2) τ ∈ TM .

(1). For fL, gL ∈ K[x, x−1] as in (2.1), we have 0 6= fL = ∆(gL), since ∞ ∈ supp(f), and
in particular gL /∈ K. Then fθ = ∆(gθ) for each θ ∈ Z/P by Lemma 2.5. Since, for θ = {0},
f{0} = ∆(g{0}) = 0, it follows from Definition 2.15 that

disp(f,∞) = max {disp (fθ,∞) | {0} 6= θ ∈ Z/P, fθ 6= 0} .

We claim disp (∆ (gθ) ,∞) = disp (gθ,∞) + 1 for every gθ ∈ K[x, x−1]θ with {0} 6= θ ∈ Z/P,

which will conclude the proof of (1). To prove the claim, let us write gθ =
∑d

j=0 cipjx
ipj ,

where we assume ci 6= 0 and cipd 6= 0, i.e., disp(gθ,∞) = d. Then

∆(gθ) = cipdx
ipd+1 − cix

i +
d
∑

j=1

(cipj−1 − cipj)x
ipj ,

from which it follows that disp(∆(gθ),∞) = d+ 1, as desired.
(2). By Lemma 2.14, fτ = ∆(gτ ) for each τ ∈ TM , and in particular for each τ ∈ supp(f).

We consider two subcases, depending on whether disp(g, τ) is finite or not.

In the first subcase, disp(g, τ) =: d < ∞. Let α ∈ τ be such that α and αpd are poles
of g. Let γ ∈ τ such that γp = α. Then γ is a pole of σ(g) but not of g (by maximality

of d), whence γ is a pole of f . On the other hand, γpd+1
= αpd is a pole of g but not of

σ(g), for if αpd were a pole of σ(g) then αpd+1
would be a pole of g, again contradicting

maximality of d. Hence γpd+1
is a pole of f . Thus disp(f, τ) ≥ d+1. One can show equality

by contradiction: if α ∈ τ is a pole of f such that αps is also a pole of f for some s > d+ 1,
then each of α and αps is either a pole of g or a pole of σ(g). This implies (after tedious

but straightforward casework) that there exist 0 ≤ i, j ≤ 1 such that αps+i

and αpj are both
poles of g, which contradicts the maximality of d since in any case s + i − j ≥ s − 1 > d.
Hence disp(f, τ) = disp(g, τ) + 1 in this first subcase.

In the last remaining subcase where disp(g, τ) = ∞, there exists γ ∈ sing(g, τ) ∩ C(τ)
by Lemma 2.16. We claim γpℓ ∈ sing(f, τ) for some ℓ ∈ Z/eZ, where e := e(τ) ≥ 1

(cf. Remark 2.10, where we discussed the meaning of γpℓ for ℓ ∈ Z/eZ, rather than ℓ ∈ Z≥0).
This will imply that disp(f, τ) = ∞ = disp(g, τ) + 1, by Lemma 2.16.

Let us prove the claim. Note that the K-subspace S of K(x)τ , consisting of rational
functions none of whose poles belongs to C(τ), or equivalently (by Lemma 2.16), the K-span
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of the elements of K(x)τ having finite dispersion, is σ-stable1. So we may assume

gτ =

m
∑

k=1

∑

ℓ∈Z/eZ

d(k, ℓ)

(x− γpℓ)k
,

where d(k, ℓ) ∈ K such that d(m, ℓ) 6= 0 for some ℓ ∈ Z/eZ, without loss of generality,
because the other possible poles of g in τ cannot contribute to the possible poles of f in C(τ)
(since S is σ-stable). Then

σ(gτ) =
m
∑

k=1

∑

ℓ∈Z/eZ

d(k, ℓ)
(

xp − γpℓ
)k

=

p−1
∑

i=0





∑

ℓ∈Z/eZ

V m
m

(

ζ ipγ
pℓ−1
)

· d(m, ℓ)
(

x− ζ ipγ
pℓ−1
)m



 +

+ (lower-order terms),

where the V m
m are as in (2.4), and therefore2

fτ = ∆(gτ ) =
∑

ℓ∈Z/eZ

V m
m

(

γpℓ
)

· d(m, ℓ+ 1)− d(m, ℓ)
(

x− γpℓ
)m +

+ (lower-order terms) + (elements of S). (3.1)

But the coefficients V m
m (γpℓ) · d(m, ℓ + 1) − d(m, ℓ) cannot be zero for every ℓ ∈ Z/eZ, for

otherwise the computation

d(m, ℓ) = d(m, ℓ)
e−1
∏

j=0

V m
m

(

γpj
)

= d(m, ℓ)
e−1
∏

j=0

γmpj

pmγmpj+1 =
d(m, ℓ)

pem
,

where the middle equality is obtained from Corollary 2.18, would imply that d(m, ℓ) = 0 for
every ℓ ∈ Z/eZ. But this is impossible, concluding the proof of the claim that f has a pole
in C(τ). �

Corollary 3.2. Suppose that f ∈ K(x) is Mahler summable. Then disp(f, τ) 6= 0 for every
τ ∈ supp(f).

4. Mahler discrete residues

In this section we define the Mahler discrete residues of f ∈ K(x), in increasing order of
complexity: first at infinity, and then at Mahler trees τ ∈ TM , separately in the subcase
where τ 6⊂ K×

t , and finally in the subcase where τ ⊂ K×
t (cf. Remark 2.10).

1If a denominator b ∈ K[x] has no roots in C(τ) then neither does σ(b), for if γ ∈ C(τ) were a root of σ(b)
then γp ∈ C(τ) would be a root of b.

2See Remark 4.13, where we systematically elaborate on the details of this computation.
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4.1. Mahler discrete residue at infinity. Here we define the Mahler discrete residue of
f ∈ K(x) at ∞ in terms of the component fL ∈ K[x, x−1] of f in (2.1), and show that it
forms a complete obstruction to the Mahler summability of fL. The proof of Proposition 4.2
below follows the same strategy as that of [CS12, Propositions 2.5 and 2.10]: we add to fL
a sequence of Mahler summable elements to eventually obtain a Mahler reduction f̄L whose
apparent dispersion is 0, and then use Corollary 3.2 to conclude that fL is Mahler summable
if and only if this f̄L = 0.

Definition 4.1. For f ∈ K(x), let fL =
∑

j∈Z cjx
j with cj = 0 for all but finitely many

j ∈ Z. The Mahler discrete residue of f at ∞ is the vector

dres(f,∞) :=

(

∑

j∈θ

cj

)

θ∈Z/P

∈
⊕

θ∈Z/P

K.

Proposition 4.2. For f ∈ K(x), the component fL ∈ K[x, x−1] in (2.1) is Mahler summable
if and only if dres(f,∞) = 0.

Proof. By Lemma 2.5, fL is Mahler summable if and only if fθ is Mahler summable for all θ ∈
Z/P. We shall show fθ is Mahler summable if and only if the component of dres(f,∞)θ = 0.
We prove this separately in two cases: (1). θ = {0}; and (2). θ 6= {0}.

(1). For θ = {0}, f{0} = c0 = dres(f,∞){0} by Definition 4.1. If dres(f,∞){0} = 0, then
f{0} = 0 is Mahler summable. On the other hand, if dres(f,∞){0} 6= 0 then f{0} 6= 0 and
disp(f{0},∞) = 0 by Definition 2.15, so f{0} is not Mahler summable by Corollary 3.2.

(2). Suppose θ 6= {0}. The claim is trivial in case fθ = 0; assume fθ 6= 0. Let us write
fθ =

∑

j∈θ cjx
j ∈ K[x, x−1]θ, where: cj = 0 for all but finitely many j ∈ θ and cj 6= 0 for at

least one j ∈ θ. Let us write θ = {ipn | n ∈ Z≥0} for i ∈ θ such that p ∤ i. Let h ∈ Z≥0 be

maximal such that ciph 6= 0. Let us define recursively: g
(0)
θ := 0; and, if h ≥ 1, then set

g
(n+1)
θ :=

n
∑

k=0

(

k
∑

ℓ=0

cipℓ

)

xipk = g
(n)
θ +

(

n
∑

ℓ=0

cipℓ

)

xipn

for 0 ≤ n ≤ h− 1. A straightforward induction argument shows:

f̄
(n)
θ := fθ +∆

(

g
(n)
θ

)

=

h+1
∑

k=n+1

cipkx
ipk +

(

n
∑

ℓ=0

cipℓ

)

xipn (4.1)

for each 0 ≤ n ≤ h, whence f̄
(h)
θ = (dres(f,∞)θ)·xiph. The harmless summand for k = h+1 in

(4.1) is included so that the sum makes sense for n = h, but cipk = 0 for every k > h. We see

that f̄
(h)
θ is Mahler summable if and only if fθ is Mahler summable. In particular, if f̄

(h)
θ = 0

then fθ is Mahler summable. But if f̄
(h)
θ 6= 0 then disp(f̄

(h)
θ ,∞) = 0, and by Corollary 3.2

f̄
(h)
θ is not Mahler summable, so neither is fθ. Clearly, f̄

(h)
θ = 0 ⇔ dres(f,∞)θ = 0. �

Remark 4.3. For {0} 6= θ ∈ Z/P such that fθ 6= 0, the elements f̄
(h)
θ , g

(h)
θ ∈ K[x, x−1]θ

constructed in the proof of Proposition 4.2 are the θ-components of the f̄ , g ∈ K(x) in (1.1).
If fθ = 0, then we define f̄θ := 0 =: gθ. In any case, we set f̄{0} := f{0} and g{0} := 0.
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4.2. Mahler discrete residues at Mahler trees. Here we define the Mahler discrete
residues of f ∈ K(x) at a Mahler tree τ ∈ TM , in terms of the partial fraction decomposition of
the component fτ ∈ K(x)τ in Definition 2.13, and show they comprise a complete obstruction
to the Mahler summability of fτ . We proceed separately in the non-torsion case τ 6⊂ K×

t and
the torsion case τ ⊂ K×

t (cf. Remark 2.10), depending on which case we represent the poles
of fτ in a particular manner.

Lemma 4.4. For f ∈ K(x) and τ ∈ supp(f) ∩ TM such that τ 6⊂ K×
t , there exists γ ∈

sing(f, τ) and h ∈ Z≥0 such that

sing(f, τ) ⊆ βh(γ) :=
{

ζ ipnγ
ph−n ∣

∣ 0 ≤ n ≤ h; i ∈ Z/pnZ
}

.

Moreover, the elements ζ ipnγ
ph−n ∈ βh(γ) are uniquely determined by 0 ≤ n ≤ h and i ∈

Z/pnZ, relative to the choice of γ ∈ sing(f, τ).

Proof. Note that the set βh(γ) (mnemonic: “bouquet” of height h at γ) is precisely the union

of the sets of roots of the y-polynomials yp
n − γph = 0 for all 0 ≤ n ≤ h. The elements of

βh(γ) are uniquely determined by n and i (relative to the choice of γ), because if we had
ζjpmγ

ph−m

= ζ ipnγ
ph−n

, then this would force m = n, for otherwise γ ∈ K×
t contradicting our

assumptions, and then ζjpn = ζ ipn implies that j = i. Let us now show that for any finite set
S ⊂ τ there exist γ ∈ S and h ∈ Z≥0 such that S ⊆ βh(γ). For α ∈ S, let h(α) ∈ Z≥0 be

minimal such that αph(α) ∈ ξP for every ξ ∈ S, where ξP := {ξpt | t ∈ Z≥0}. Choose γ ∈ S

such that h(γ) =: h is maximal among all elements of S. We claim that αph(α)
= γph for

every α ∈ S, which will conclude the proof, since h(α) ≤ h for every α ∈ S. To prove the

claim, note that in any case there exist t, r ∈ Z≥0 such that αpt = γph and αph(α)
= γpr , and

the minimality of h(α) and h then imply t ≥ h(α) and r ≥ h. But then

γph = αpt =
(

αph(α))pt−h(α)

=
(

γpr
)pt−h(α)

= γpr+t−h(α)

,

and since γ /∈ K×
t we obtain that h + h(α) = r + t, from which it follows that r = h and

t = h(α), as claimed. �

Lemma 4.5. Let τ ∈ TM with τ ⊂ K×
t and e := e(τ). Choose γ ∈ C(τ). Then for α ∈ τ

there are unique n ∈ Z≥0, i ∈ Z/pnZ, and ℓ ∈ Z/eZ, with either n = i = 0 or p ∤ i, such that

α = ζ ipnγ
pℓ−πe(n)

.

Proof. There exist integers n, t ∈ Z≥0 such that αpn = γpt, and we may take this n to be as

small as possible and replace t with ℓ := πe(t). The pn distinct solutions to yp
n

= γpℓ, one

of which is y = α, are all of the form ζ ipnγ
pℓ−πe(n)

for i ∈ Z/pnZ. Since n is minimal, either
n = i = 0 or else 1 ≤ i ≤ pn − 1 with p ∤ i. �

Definition 4.6. For f ∈ K(x) and τ ∈ supp(f) ∩ TM , the height of f at τ , denoted by
h(f, τ), is defined as follows.

• If τ 6⊂ K×
t , h(f, τ) is the smallest h ∈ Z≥0 such that sing(f, τ) is contained in βh(γ)

for some γ ∈ sing(f, τ) as in Lemma 4.4.

• If τ ⊂ K×
t , h(f, τ) is the smallest h ∈ Z≥0 such that αph belongs to C(τ) for every

α ∈ sing(f, τ).
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Remark 4.7. Note that we always have h(f, τ) < ∞. One can show that h(f, τ) ≥ disp(f, τ)
provided that disp(f, τ) < ∞, but even in this case the inequality may be strict.

4.2.1. Mahler discrete residues at Mahler trees: the non-torsion case.

Lemma 4.8. Let f ∈ K(x) and suppose τ ∈ supp(f) ∩ TM such that τ 6⊂ K×
t . Then there

exists γ ∈ sing(f, τ) such that the partial fraction decomposition of fτ is of the form

fτ =
m
∑

k=1

h
∑

n=0





∑

i∈Z/pnZ

cγ(k, n, i)
(

x− ζ ipnγ
ph−n

)k



 , (4.2)

where m ≥ 1 is the highest order of a pole of f in sing(f, τ) and the height h := h(f, τ) is
as in Definition 4.6.

The coefficients cγ(k, n, i) ∈ K are uniquely determined by f and the choice of γ, and

moreover for any γ, γ̃ ∈ τ as above we have γ̃ = ζj
ph
γ for some j ∈ Z/phZ, and

cγ̃(k, n, i) = cγ
(

k, n, i+ πh
n(j)

)

. (4.3)

Proof. We obtain the existence of γ ∈ sing(f, τ) such that sing(f, τ) ⊆ βh(γ) by Lemma 4.4
and Definition 4.6. The existence and uniqueness of the coefficients cγ(k, n, i) ∈ K satisfying
(4.2) follows directly from the existence and uniqueness of partial fraction decompositions,

since in this case the elements ζ ipnγ
ph−n ∈ βh(γ) are uniquely determined by n and i (relative

to the choice of γ), by Lemma 4.4. For any γ̃ ∈ sing(f, τ) such that sing(f, τ) ⊆ βh(γ̃) we

would have that γ̃pñ = γph and γpn = γ̃ph such that 0 ≤ n, ñ ≤ h, which forces ñ = h = n
since γ /∈ K×

t . Hence γ̃ = ζj
ph
γ for some j ∈ Z/phZ, and the computation

cγ̃(k, n, i)
(

x− ζ ipnγ̃
ph−n

)k
=

cγ̃(k, n, i)
(

x− ζ i+j
pn γph−n

)k
=

cγ(k, n, i+ j)
(

x− ζ i+j
pn γph−n

)k

implies the transformation formula (4.3). �

Remark 4.9. Writing fτ as in (4.2), let us compute the effect of σ:

σ





m
∑

k=1





∑

i∈Z/pnZ

cγ(k, n, i) ·
(

x− ζ ipnγ
ph−n

)−k







 (4.4)

=
m
∑

k=1







∑

i∈Z/pn+1Z

∑m
s=k V

s
k

(

ζ ipn+1γph−(n+1)
)

· cγ (s, n, πn+1
n (i))

(

x− ζ ipn+1γph−(n+1)
)k







for each 0 ≤ n ≤ h− 1, where the V s
k are as in (2.4) for k ≤ s ≤ m.

Definition 4.10. For f ∈ K(x) and τ ∈ TM with τ 6⊂ K×
t , the Mahler discrete residue of f

at τ of degree k ∈ N is the vector dres(f, τ, k) ∈ ⊕α∈τ K defined in terms of the cγ(k, n, i)
in the partial fraction decomposition of fτ in Lemma 4.8 as follows.

Set dres(f, τ, k) := 0 if τ /∈ supp(f) or if k > m. For τ ∈ supp(f) and α ∈ τ , the

component dres(f, τ, k)α := 0 whenever αph 6= γph.
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For 1 ≤ k ≤ m and α = ζ iphγ with i ∈ Z/phZ, the component

dres(f, τ, k)α := ĉγ(k, h, i);

where for 0 ≤ n ≤ h and i ∈ Z/pnZ we define recursively (in n):

ĉγ(k, 0, 0) := cγ(k, 0, 0); and, if h ≥ 1, then set (4.5)

ĉγ(k, n, i) := cγ(k, n, i) +
m
∑

s=k

V s
k

(

ζ ipnγ
ph−n

)

· ĉγ
(

s, n− 1, πn
n−1(i)

)

(cf. (4.4)) for 1 ≤ n ≤ h, where the V s
k are as in (2.4) for k ≤ s ≤ m.

Remark 4.11. Note that the definition of dres(f, τ, k) for τ 6⊂ K×
t given above is independent

of the choice of γ ∈ sing(f, τ), because for any possibly different γ̃ = ζj
ph
γ with j ∈ Z/phZ

we obtain ζ i
ph
γ̃ = ζ i+j

ph
γ =: α. The equality of the expressions

ĉγ̃(k, h, i) = dres(f, τ, k)α = ĉγ(k, h, i+ j)

follows from (4.3), since ζ ipn γ̃
ph−n

= ζ i+j
pn γph−n

for all i ∈ Z/pnZ, and therefore ĉγ̃(k, n, i) =

ĉγ(k, n, i+ πh
n(j)) for every 0 ≤ n ≤ h.

4.2.2. Mahler discrete residues at Mahler trees: the torsion case.

Lemma 4.12. Let f ∈ K(x) and suppose τ ∈ supp(f) such that τ ⊂ K×
t . Then for any

γ ∈ C(τ) the partial fraction decomposition of fτ is of the form

fτ =

m
∑

k=1

h
∑

n=0





∑′

i∈Z/pnZ





∑

ℓ∈Z/eZ

dγ(k, n, i, ℓ)
(

x− ζ ipnγ
pℓ−πe(n)

)k







 , (4.6)

where: m ≥ 1 is the highest order of a pole of f in sing(f, τ); the height h := h(f, τ) is as
in Definition 4.6; the restricted sum

∑′ is taken over i ∈ Z/pnZ such that p ∤ i whenever
n 6= 0; and e := e(τ) ≥ 1.

The coefficients dγ(k, n, i, ℓ) ∈ K are uniquely determined by f and γ, and moreover for
any γ, γ̃ ∈ C([α]M) we have γ̃ = γpj for some j ∈ Z/eZ, and

dγ̃(k, n, i, ℓ) = dγ(k, n, i, ℓ+ j). (4.7)

Proof. If τ ⊂ K×
t then e ≥ 1 (cf. Remark 2.10). We then have by Lemma 4.5 that for any

given choice of γ ∈ C(τ) the elements α ∈ τ can be written uniquely as α = ζ ipnγ
pℓ−πe(n)

for some n ∈ Z≥0 and i ∈ Z/pnZ such that either n = i = 0 or else p ∤ i. It follows that
the apparent poles in (4.6) are all distinct, and therefore the coefficients dγ(k, n, i, ℓ) ∈ K

are uniquely determined by f and γ. The set of elements α ∈ τ such that αph ∈ C(τ) are
precisely the α = ζ ipnγ

pℓ−πe(n)
with n ≤ h. It also follows from Lemma 4.5 that for any other

γ̃ ∈ C(τ) there exists j ∈ Z/eZ such that γ̃ = γpj , and therefore the computation

dγ̃(k, n, i, ℓ)
(

x− ζ ipn γ̃
pℓ−πe(n)

)k
=

dγ̃(k, n, i, ℓ)
(

x− ζ ipnγ
pℓ+j−πe(n)

)k
=

dγ(k, n, i, ℓ+ j)
(

x− ζ ipnγ
pℓ+j−πe(n)

)k

implies the transformation formula (4.7). �
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Remark 4.13. Writing fτ as in (4.6), let us compute the effect of σ:

σ





m
∑

k=1

∑

ℓ∈Z/eZ

dγ(k, 0, 0, ℓ) ·
(

x− γpℓ
)−k



 (4.8)

=
m
∑

k=1





∑

ℓ∈Z/eZ

∑m
s=k V

s
k

(

γpℓ
)

· dγ (s, 0, 0, ℓ+ 1)
(

x− γpℓ
)k



+

+

m
∑

k=1

p−1
∑

i=1





∑

ℓ∈Z/eZ

∑m
s=k V

s
k

(

ζ ipγ
pℓ−1
)

· dγ (s, 0, 0, ℓ)
(

x− ζ ipγ
pℓ−1
)k



 ;

and for n ≥ 1 and each ℓ ∈ Z/eZ we have

σ





m
∑

k=1

′
∑

i∈Z/pnZ

dγ(k, n, i, ℓ) ·
(

x− ζ ipnγ
pℓ−πe(n)

)−k



 (4.9)

=

m
∑

k=1







∑′

i∈Z/pn+1Z

∑m
s=k V

s
k

(

ζ ipn+1γpℓ−πe(n+1)
)

· dγ (s, n, πn+1
n (i), ℓ)

(

x− ζ ipn+1γpℓ−πe(n+1)
)k






;

where the V s
k are as in (2.4) for k ≤ s ≤ m.

The following technical lemma is essential for the definition of Mahler discrete residues in

the torsion case. The map D(m)
γ defined below already appeared (anonymously) in (3.1). It

captures the effect of ∆ on the (classical/continuous) residues at poles in the Mahler cycle
C(τ) (see Definition 2.8), according to the computation (4.8).

Lemma 4.14. Let τ ∈ TM with τ ⊂ K×
t and e := e(τ). For γ ∈ C(τ) and m ∈ N, define

D(m)
γ : Km×e → Km×e by

D(m)
γ : (ck,ℓ)1≤k≤m

ℓ∈Z/eZ
7→ (dk,ℓ)1≤k≤m

ℓ∈Z/eZ
, (4.10)

where dk,ℓ := ck,ℓ −
∑m

s=k V
s
k

(

γpℓ
)

· cs,ℓ+1, and where the V s
k are as in (2.4). Then D(m)

γ is
invertible and has no non-trivial fixed points.

Proof. Let 0 6= (ck,ℓ) ∈ Km×e, and write (dk,ℓ) := D(m)
γ (ck,ℓ). Let 1 ≤ r ≤ m be as large as

possible such that cr,ℓ 6= 0 for some ℓ ∈ Z/eZ. To see that (dk,ℓ) 6= 0, note that, for each
ℓ ∈ Z/eZ,

dr,ℓ = cr,ℓ −
m
∑

s=r

V s
r

(

γpℓ
)

· cs,ℓ+1 = cr,ℓ − V r
r

(

γpℓ
)

· cr,ℓ+1

because cs,ℓ+1 = 0 whenever s > r, and we see just as at the end of proof of Proposition 3.1
that the dr,ℓ cannot be zero for all ℓ ∈ Z/eZ because this would imply that every cr,ℓ = 0,
contradicting our choice of r. Moreover, we also cannot have dk,ℓ = ck,ℓ for every 1 ≤ k ≤ m
and ℓ ∈ Z/eZ, for this would also imply that cr,ℓ = 0 for every ℓ ∈ Z/eZ, again contradicting
our choice of r. �
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Definition 4.15. With notation as in Lemma 4.14, the inverse of D(m)
γ is denoted by L(m)

γ .

Definition 4.16. For f ∈ K(x) and τ ∈ TM with τ ⊂ K×
t , the Mahler discrete residue of f

at τ of degree k ∈ N is the vector dres(f, τ, k) ∈⊕α∈τ K defined in terms of the dγ(k, n, i, ℓ)
in the partial fraction decomposition of fτ in Lemma 4.12 as follows.

Set dres(f, τ, k) := 0 if τ /∈ supp(f) or if k > m. For τ ∈ supp(f) and α ∈ τ , the
component dres(f, τ, k)α := 0 whenever the smallest integer r ∈ Z≥0 such that αpr ∈ C(τ) is
different from h.

If h = 0, then for 1 ≤ k ≤ m and α = γpℓ ∈ C(τ) with ℓ ∈ Z/eZ, the component

dres(f, τ, k)
γpℓ := dγ(k, 0, 0, ℓ).

If h ≥ 1, then for 1 ≤ k ≤ m and α = ζ iphγ
pℓ−πe(h)

with i ∈ Z/phZ such that p ∤ i and

ℓ ∈ Z/eZ, the component

dres(f, τ, k)α := d̂γ(k, h, i, ℓ); where we set

d̂γ(k, 0, 0, ℓ) := cγ(k, ℓ), with (4.11)

(

cγ(k, ℓ)
)

1≤k≤m
ℓ∈Z/eZ

:= L(m)
γ

(

(

dγ(k, 0, 0, ℓ)
)

1≤k≤m
ℓ∈Z/eZ

)

(4.12)

for the linear map L(m)
γ in Definition 4.15; and for 1 ≤ n ≤ h and i ∈ Z/pnZ with p ∤ i we

define recursively (in n):

d̂γ(k, n, i, ℓ) := dγ(k, n, i, ℓ) + (4.13)

+
m
∑

s=k

V s
k

(

ζ ipnγ
pℓ−πe(n)) · d̂γ

(

s, n− 1, πn
n−1(i), ℓ

)

,

(cf. (4.9)) where the V s
k are as in (2.4).

Remark 4.17. Note that the definition of dres(f, τ, k) for τ ⊂ K×
t given above is independent

of the choice of γ ∈ C(τ), because for any possibly different γ̃ = γpj with j ∈ Z/eZ we obtain

ζ iph γ̃
pℓ−πe(h)

= ζ iphγ
pℓ+j−πe(h)

=: α. The equality of the expressions

d̂γ̃(k, h, i, ℓ) = dres(f, τ, k)α = d̂γ(k, h, i, ℓ+ j)

follows from (4.7), after observing that D(m)
γ̃ ◦ cycj = D(m)

γ , where cycj : Km×e → Km×e :

(ck,ℓ) 7→ (ck,ℓ+j) for j ∈ Z/eZ. It follows that cycj ◦L(m)
γ̃ = L(m)

γ and therefore d̂γ̃(k, n, i, ℓ) =

d̂γ(k, n, i, ℓ+ j) for every 0 ≤ n ≤ h.

4.3. Proof of the Main Theorem. Our proof of Proposition 4.18 below follows a strategy
similar to that of [CS12, Propositions 2.5 and 2.10]: we add to fτ a sequence of Mahler
summable elements to eventually obtain a Mahler reduction f̄τ whose apparent dispersion
is 0, and then use Corollary 3.2 to conclude that fτ is Mahler summable if and only if this
f̄τ = 0.

There is a wrinkle: in case τ ∈ supp(f)∩K×
t and the height h(f, τ) = 0 (see Definition 4.6),

disp(f, τ) = ∞ by Lemma 2.16. Corollary 3.2 remains silent in this case, for which we provide
a specialized argument that relies on the technical Lemma 4.14.
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Proposition 4.18. For f ∈ K(x) and τ ∈ TM , the component fτ is Mahler summable if and
only if dres(f, τ, k) = 0 for every k ∈ N.

Proof. The Proposition is trivial for τ /∈ supp(f) ⇔ fτ = 0. Assume from now on that
τ ∈ supp(f). The proofs in the different cases τ 6⊂ K×

t versus τ ⊂ K×
t proceed in parallel

below.
Write fτ as in Lemma 4.8 if τ 6⊂ K×

t and as in Lemma 4.12 if τ ⊂ K×
t . Let us define

recursively: g
(0)
τ := 0; and, if h := h(f, τ) ≥ 1 as in Definition 4.6, then for 0 ≤ n ≤ h− 1 set

g(n+1)
τ := g(n)τ +

m
∑

k=1





∑

i∈Z/pnZ

ĉγ(k, n, i)
(

x− ζ ipnγ
ph−n

)k





in case τ 6⊂ K×
t , with ĉγ(k, n, i) as in (4.5); and

g(n+1)
τ := g(n)τ +

m
∑

k=1





∑′

i∈Z/pnZ





∑

ℓ∈Z/eZ

d̂γ(k, n, i, ℓ)
(

x− ζ ipnγ
pℓ−πe(n)

)k









in case τ ⊂ K×
t , with d̂γ(k, n, i, ℓ) as in (4.11) for n = 0 and as in (4.13) for n ≥ 1. Setting

f̄
(n)
τ := fτ +∆

(

g
(n)
τ

)

, an induction argument then shows that, for every 0 ≤ n ≤ h,

f̄ (n)
τ =

m
∑

k=1

h+1
∑

s=n+1





∑

i∈Z/psZ

cγ(k, s, i)
(

x− ζ ipsγ
ph−s

)k



+

m
∑

k=1





∑

i∈Z/pnZ

ĉγ(k, n, i)
(

x− ζ ipnγ
ph−n

)k



 (4.14)

in case τ 6⊂ K×
t ; and

f̄ (n)
τ =

m
∑

k=1

h+1
∑

s=n+1





∑′

i∈Z/psZ





∑

ℓ∈Z/eZ

dγ(k, s, i, ℓ)
(

x− ζ ipsγ
pℓ−πe(s)

)k







+

+
m
∑

k=1





∑′

i∈Z/pnZ





∑

ℓ∈Z/eZ

d̂γ(k, n, i, ℓ)
(

x− ζ ipnγ
pℓ−πe(n)

)k







 (4.15)

in case τ ⊂ K×
t . The harmless summand for s = h + 1 in (4.14) and (4.15) is included so

that the sums make sense for n = h, but we set every cγ(k, h+ 1, i) := 0 in (4.14) and every
dγ(k, h + 1, i, ℓ) := 0 in (4.15). The induction argument is straightforward, requiring only:
the recursive definition of the coefficients ĉγ(k, n, i) in (4.5), and the computation (4.4), in

case τ 6⊂ K×
t ; the recursive definition of the coefficients d̂γ(k, n, i, ℓ) in (4.11) and (4.13),

and the computations (4.8) and (4.9), in case τ ⊂ K×
t ; and a moderate amount of space and

courage to write it down in detail in each case. It then follows from (4.14) and Definition 4.10
(in case τ 6⊂ K×

t ), or from (4.15) and Definition 4.16 (in case τ ⊂ K×
t ), that

f̄ (h)
τ =

m
∑

k=1

∑

α∈ τ

dres(f, τ, k)α
(x− α)k

, (4.16)
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which holds uniformly in both cases τ 6⊂ K×
t and τ ⊂ K×

t . Also in both of these cases we

have that f̄
(h)
τ = fτ + ∆(g

(h)
τ ), and therefore fτ is Mahler summable if and only if f̄

(h)
τ is

Mahler summable.
We claim that f̄

(h)
τ is Mahler summable if and only if f̄

(h)
τ = 0. This will establish the

Proposition, since f̄
(h)
τ = 0 if and only if dres(f, τ, k) = 0 for all k ∈ N by (4.16). The

non-trivial implication: f̄
(h)
τ 6= 0 ⇒ f̄

(h)
τ is not Mahler summable, is proved in two cases: (1)

if either τ 6⊂ K×
t or h 6= 0; and (2) if both τ ⊂ K×

t and h = 0.

(1). In case τ 6⊂ K×
t , by Definition 4.10 f̄

(h)
τ has no poles outside of {ζ iphγ | i ∈ Z/phZ}.

In case τ ⊂ K×
t and h 6= 0, by Definition 4.16 f̄

(h)
τ has no poles outside of {ζ i

ph
γpℓ | ℓ ∈

Z/eZ, i ∈ (Z/phZ)×} (cf. Lemma 4.5). Thus if either τ 6⊂ K×
t or h 6= 0, disp(f̄

(h)
τ , τ) = 0.

By Corollary 3.2, f̄
(h)
τ is not Mahler summable.

(2). Note that fτ = f̄
(h)
τ in (4.16) in this case where h = 0 and τ ⊂ K×

t , and the
Definition 4.16 gives

fτ =
m
∑

k=1

∑

ℓ∈Z/eZ

dγ(k, ℓ)

(x− γpℓ)k
=

m
∑

k=1

∑

ℓ∈Z/eZ

dres(f, τ, k)
γpℓ

(x− γpℓ)k
,

where we write dγ(k, ℓ) in lieu of dγ(k, 0, 0, ℓ), to simplify notation. Since τ ∈ supp(f), we
must have dres(f, τ,m) 6= 0. We claim that fτ cannot be Mahler summable. To prove the
claim, let again

g(1)τ :=

m
∑

k=1

∑

ℓ∈Z/eZ

c(k, ℓ)
(

x− γpℓ
)k

despite having h = 0, where the cγ(k, ℓ) are as in (4.12). By the computation (4.8) and the

Definition 4.15 of the map L(m)
γ ,

f̌τ := fτ +∆
(

g(1)τ

)

=
m
∑

k=1

p−1
∑

i=1

∑

ℓ∈Z/eZ

∑m
s=k V

s
k

(

ζ ipγ
pℓ−1
)

· cγ(k, ℓ)
(

x− ζ ipγ
pℓ−1
)k

.

Hence fτ is Mahler summable if and only if f̌τ is Mahler summable. In particular, if f̌τ = 0,
then fτ is Mahler summable. On the other hand, if f̌τ 6= 0, then disp(f̌τ , τ) = 0, in which
case f̌τ cannot be Mahler summable by Corollary 3.2. Hence fτ is Mahler summable if and
only if f̌τ = 0. Let us show that fτ 6= 0 ⇒ f̌τ 6= 0.

In any case, the partial fraction coefficients of f̌τ satisfy

m
∑

s=k

V s
k

(

ζ ipγ
pℓ
)

· cγ(k, ℓ+ 1) = = ζ ikp ·
m
∑

s=k

V s
k

(

γpℓ
)

· cγ(k, ℓ+ 1) = ζ ikp ·
(

cγ(k, ℓ)− dγ(k, ℓ)
)

,

where the first equality follows from V s
k (ζ

i
pγ

pℓ) = ζ ikp V s
k (γ

pℓ) independently of s by Lemma 2.17,

and the second equality follows from the Definition 4.15 of L(m)
γ . By Lemma 4.14, since the

map D(m)
γ has no non-trivial fixed points, we cannot have cγ(k, ℓ) = dγ(k, ℓ) for every k and

ℓ unless all dγ(k, ℓ) = 0. So indeed fτ 6= 0 ⇒ f̌τ 6= 0. �
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Remark 4.19. For f ∈ K(x), τ ∈ supp(f) ∩ TM , and h := h(f, τ) as in Definition 4.6, the

elements f̄
(h)
τ , g

(h)
τ ∈ K(x)τ constructed in the proof of Proposition 4.18 are the τ -components

of the f̄ , g ∈ K(x) in the Mahler reduction (1.1).

Proof of the Main Theorem. Let f ∈ K(x). By Lemma 2.2, f is Mahler summable if and
only if both fL and fT are Mahler summable. By Proposition 4.2, fL is Mahler summable
if and only if dres(f,∞) = 0. By Lemma 2.14, fT is Mahler summable if and only if fτ is
Mahler summable for all τ ∈ TM . By Proposition 4.18, fτ is Mahler summable if and only
if dres(f, τ, k) = 0 for all k ∈ N. �

4.4. Mahler reduction. We can now define the Mahler reduction (1.1): f̄ = f + ∆(g)
promised in the introduction for any f ∈ K(x), in terms of the decompositions f̄ = f̄L + f̄T
and g = gL + gT as in (2.1), by setting

f̄L :=
∑

θ∈Z/P

f̄θ and gL :=
∑

θ∈Z/P

gθ; and

f̄T :=
∑

τ∈ supp(f)

f̄ (h(f,τ))
τ and gT :=

∑

τ∈ supp(f)

g(h(f,τ))τ

as in Remark 4.3 and Remark 4.19. It is clear from the definitions that c · f = c · f̄ for
c ∈ K. Setting f̄1 +̃ f̄2 := f1 + f2 defines a K-linear structure on {f̄ | f ∈ K(x)} such that
∇ : f 7→ f̄ is K-linear and has the desired property that ker(∇) = im(∆).

5. Examples

Let us illustrate the Mahler discrete residues at Mahler trees in two small examples, with
notation as in Example 2.9. Example 5.1 gives a Mahler summable f in the non-torsion case
τ 6⊂ K×

t . Example 5.2 gives a non-Mahler summable f in the torsion case τ ⊂ K×
t .

Example 5.1. Let τ = τ(2), and consider the following f = fτ with

sing(f, τ) = {2, 3
√
2, ζ3

3
√
2, ζ23

3
√
2}.

By Definition 4.6, h = h(f, τ) = 1.

f =
−x6 + 4x3 + x2 − 4x

(x− 2)2(x3 − 2)2
=

2
∑

k=1

1
∑

n=0

3n−1
∑

i=0

cγ(k, n, i)
(

x− ζ i3n
3
√
2
31−n

)k

=
−1

(x− 2)2
+

1

18 3
√
2
·

2
∑

i=0

ζ2i3
(x− ζ i3

3
√
2)2

− 1

9 3
√
4
·

2
∑

i=0

ζ i3
x− ζ i3

3
√
2
,
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for γ := 3
√
2 as in Lemma 4.8. By Definition 4.10, for 0 ≤ i ≤ 2:

dres(f, τ, 1)ζi3γ =
−ζ i3
9γ2

+ V 2
1 (ζ

i
3γ) · (−1) + V 1

1 (ζ
i
3γ) · 0

=
−ζ i3
9γ2

− 2

9
· (ζ i3γ)−5 = 0; and

dres(f, τ, 2)ζi3γ =
ζ2i3
18γ

+ V 2
2 (ζ

i
3γ) · (−1) =

ζ2i3
18γ

− 3−2(ζ i3γ)
−4) = 0;

by Lemma 2.17 and Example 2.20. Therefore f should be Mahler summable. And indeed,
f = ∆((x− 2)−2).

Example 5.2. Let τ = τ(ζ4), and consider the following f = fτ with

sing(f, τ) = {ζ4, ζ34 , ζ12, ζ512, ζ712, ζ1112}.
By Definition 4.6, h = h(f, τ) = 1.

f =
1

x6 + 1
=

1

6

(

ζ34
x− ζ4

+
ζ4

x− ζ34
+

ζ712
x− ζ12

+
ζ1112

x− ζ512
+

ζ12
x− ζ712

+
ζ512

x− ζ1112

)

.

The map L(1)
ζ4

in Definition 4.15 sends (
ζ34
6
, ζ4

6
) 7→ (

ζ34
4
, ζ4

4
). By Definition 4.16, for 1 ≤ i ≤ 2;

ℓ ≥ 1; with αi,ℓ := ζ i3ζ
3ℓ−1

4 = ζ4i+3ℓ

12 :

dres(f, τ, 1)αi,ℓ
=

1

6
· αi,ℓ+1 + V 1

1 (αi,ℓ) ·
1

4
· ζ3ℓ−1

4

=
1

6
· αi,ℓ+1 +

1

12
· (αi,ℓ)

−2 · ζ3ℓ−1

4 =
1

4
· αi,ℓ+1 6= 0,

by Lemma 2.17. Therefore f is not Mahler summable.
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