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ABSTRACT

The task of video-based commonsense captioning aims to generate
event-wise captions and meanwhile provide multiple commonsense
descriptions (e.g., attribute, effect and intention) about the under-
lying event in the video. Prior works explore the commonsense
captions by using separate networks for different commonsense
types, which is time-consuming and lacks mining the interaction of
different commonsense. In this paper, we propose a Hybrid Reason-
ing Network (HybridNet) to endow the neural networks with the
capability of semantic-level reasoning and word-level reasoning.
Firstly, we develop multi-commonsense learning for semantic-level
reasoning by jointly training different commonsense types in a uni-
fied network, which encourages the interaction between the clues
of multiple commonsense descriptions, event-wise captions and
videos. Then, there are two steps to achieve the word-level reason-
ing: (1) a memory module records the history predicted sequence
from the previous generation processes; (2) a memory-routed multi-
head attention (MMHA) module updates the word-level attention
maps by incorporating the history information from the mem-
ory module into the transformer decoder for word-level reason-
ing. Moreover, the multimodal features are used to make full use
of diverse knowledge for commonsense reasoning. Experiments
and abundant analysis on the large-scale Video-to-Commonsense
benchmark show that our HybridNet achieves state-of-the-art per-
formance compared with other methods.

1 INTRODUCTION

Recently, research on video-based commonsense captioning [11]
has been gaining increasing attention, as it provides a deeper un-
derstanding of the video and language and thus facilitates vari-
ous visual reasoning tasks ranging from fundamental scene un-
derstanding [8, 19, 42] to high-level visual-linguistic reasoning
tasks [13, 18, 44, 46]. The video-based commonsense captioning
task aims to generate captions and three types of commonsense
descriptions (intention, effect, attribute) simultaneously given the
input video. A show case is presented in Figure 1 (a).

The video-based commonsense captioning is a frontier research
topic and the current best performer [11] executes separate net-
works to learn different types of commonsense separately. It is
time-consuming and counterintuitive. When humans infer a spe-
cific event, each commonsense is not identified individually. We
often consider a global perspective to reason the commonsense
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Figure 1: (a) The example of the video-based commonsense
captioning task. It requires the network to not only generate
event-wise captions but also provide visually grounded com-
monsense descriptions about the underlying event in the
video. The task seeks to describe the intentions of the agent,
effects of the action, and the attributes of the agent’s charac-
teristic. (b) Semantic-level reasoning to interplay with differ-
ent commonsense clues. (c) Word-level reasoning generates
the next word, which is guided by the history sequences as
well as using the ground truth words during training.

semantic coherence by interacting with the clues from various com-
monsense types. For example, humans can correctly reason about
the intention in Figure 1 (b) not only benefit from the video input
and event-wise caption but also with the help of accurate predic-
tions of attribute and effect. Such high-level semantic interaction
can facilitate multiple commonsense reasoning.

Besides, humans can remain a logic loop when performing com-
monsense inference. Taking the intention sentence as an example
in Figure 1 (a), when humans see the history token sequence like
“to practice more and more and eventually get very”, we can easily
infer the next word should be positive (e.g., “good"). The “good”
can also be used to reason the accuracy of previously predicted
words and then correct them for contextual logic consistency (i.e.
logic loop). As we can see, such word-level reasoning in the de-
scription can benefit from each predicted word. However, current
methods [11, 34, 45] follow the Transformer [35] training mecha-
nism to predict the next word only with the ground truth words
as context while generating the entire sequence from scratch at



inference, which leads to a gap between the previously predicted
words and the next word.

To address the above issues, we achieve the semantic-level rea-
soning in Figure 1 (b) to jointly learn the multiple commonsense
types. Then we perform the word-level reasoning in Figure 1 (c) in
the network for bridging the gap between the previously predicted
words and the next word. In this paper, we propose a novel Hybrid
Reasoning Network (HybridNet) in Figure 2 (a) to subtly integrate
these two levels of reasoning into a unified framework.

For semantic-level reasoning, we propose multi-commonsense
learning as shown in Figure 2 (a) to achieve semantic-level rea-
soning, in which multiple learning commonsense descriptions are
solved at the same time while exploiting commonalities and differ-
ences across commonsense semantics. Multi-commonsense learn-
ing is a mechanism to inductive transfer that improves generaliza-
tion by using the domain information contained in the training
signals of related commonsense as an inductive bias. It achieves this
by reasoning various types of commonsense descriptions in paral-
lel while using a shared representation. What is learned for each
commonsense semantic can help other commonsense semantics be
learned better. Furthermore, we merge 3D motion features, 1D audio
features and 2D appearance features together via the multimodal
fusion for enforcing our model to learn to reason commonsense
semantics from diverse information.

To utilize the previous context words for predicting the next
word, we propose a memory module to record the history infor-
mation from previous generation processes. Then we introduce
a memory-routed multi-head attention (MMHA) to incorporate
the history information with the ground truth words into the net-
work for next word prediction during the training. Specifically, our
MMHA infers the next word conditioned on history information
and ground truth words by learning a merging attention map. In
Figure 3 (b), the MMHA first predicts the conditional attention map
routed by the previous states from the memory module. Then we
design a triangle convolution to learn the conditional attention map
and meanwhile prevent foreseeing subsequent positions. Next, we
merge the conditional attention map with several attention maps,
including the original attention map from the multi-head attention
and the previous attention maps of the front blocks. The previous
attention maps of different blocks are bridged via our proposed
contextual residual connections to learn the long-range attention
context. Finally, our MMHA updates the word feature (i.e. V) via a
merged attention map to achieve word-level reasoning. In this pa-
per, we utilize these two modules to achieve word-level reasoning.
Their architectures can be seen in Figure 2 (b) and Figure 3 (b).

Contributions. (1) We propose a Hybrid Reasoning Network (Hy-
bridNet) to jointly perform semantic-level reasoning and word-
level reasoning. (2) A multi-commonsense learning is proposed
to achieve the semantic-level reasoning based on the video and
caption inputs. (3) A memory-routed multi-head attention is in-
troduced to cooperate with a novel memory module to execute
the word-level reasoning. (4) Extensive experiments and abundant
analysis have demonstrated the effectiveness and superiority of our
proposed modules.

2 RELATED WORK

Visual Comprehension. More and more researchers pay more
attention to the visual comprehension community by targeting
visual question answering [1], visual dialogue [9], visual ques-
tion generation [20], image captioning [38], visual commonsense
reasoning [44], visual grounding [27], situation recognition [42]
and video captioning [23]. Recently, the visual reasoning tends to
cognition-level reasoning by incorporating the commonsense con-
cepts [4, 5, 16, 31-33] from the natural language processing (NLP).
For example, early works [26, 39] utilized the prior commonsense
knowledge to assist in the prediction of action motivation. Zellers
et al. [44] proposed a visual commonsense reasoning task to not
only provide question answering but also predict the correct ratio-
nale behind the answer based on the question and image. Based
on the cause-effect clues, Wang et al. [40] presented a visual com-
monsense R-CNN on object detection by mining the commonsense
knowledge behind the object categories. Yu et al. [43] proposed
a heterogeneous graph learning method to seamlessly integrate
the intra-graph and inter-graph reasoning in order to bridge multi-
modal domains for visual commonsense reasoning. For video-based
commonsense captioning, Fang et al. [11] used individual trans-
formers for different commonsense captioning, which lacks of the
commonsense interaction. In this work, we propose a hybrid rea-
soning network to jointly learn multiple commonsense descriptions
via semantic-level reasoning and word-level reasoning.

Video Captioning. Visual perception and language expression are
two key capabilities of human intelligence, and video captioning is
an insight example towards learning from humans to bridge vision
and language. There are mainly two aspects for video captioning
development: datasets and methods. For developing the video cap-
tioning, some early works proposed some specific-domain datasets
like movie [28, 30] and cooking [10, 29], which is limited and
small for deep learning. Some researchers tended to open-domain
video captioning datasets such as MSVD [7], MSR-VTT [41] and
TGIF [21]. Recently, video captioning tries to connect with the com-
monsense to explore the commonsense descriptions in the video,
which comes up with a dataset named Video-to-Commonsense [11].
In the method sight, current deep-learning-based video caption-
ing often performs sequence-to-sequence learning in an encoder-
decoder paradigm. In between, an encoder equipped with powerful
deep neural networks is exploited to learn video representation. A
decoder of sentence generation is utilized to translate the learned
representation into a sentence with more flexible structures. Venu-
gopalan et al. [37] applied the sequence-to-sequence model into
the video captioning by end-to-end learning way. To bridge the
sentence semantics and visual content, an attention-based LSTM
named aLSTMs [12] is proposed to better transfer videos to natural
sentences by capturing salient structures of video. For dense video
captioning, Zhou et al. [45] used an end-to-end transformer [35]
architecture to jointly learning the video encoder, proposal decoder,
and captioning decoder. Fang et al. [11] used an encoder-decoder
way to individually model the specific commonsense captioning
without using the commonsense correlations. In this paper, we
propose to generate the commonsense descriptions in the video
from semantic-level and word-level inference.



Video Input

RGB Frames

Tty UIUIRICS PRSP ERPIPR PSP S .
i Add & Norm xN !
{ Feed Forward
i
i

P
!
i-th Attention Map :
P
i

] "
: } i
p :: { Multi-commonsense Learning \I ]
1 io- 3
:| SPaEI;Jti;;oral Sound CNN (1D) || Image CNN (2D) | E: : i i i [ Add & Norm ](—l 4
! :E )| it || Al Eifect . E !( Memory-routed Multi-Head Attention } [ :
! ,L i Decoder Decoder Decoder || livF—VE_KF ar :
| Motion Feature Audio Feature  Appearance :: N D S, S g Add & Norm 1
1 y | Feature " 1 e Sy S i
| i !
C[rcaistv | [Fcaistm | [ CFeglistv | i i I matmul & L Memory-routed 1!
1 i £ A 1
E <) D <) i " i Multi-Head Attention :! Next
i | 3D Positional 1D Positional 2D Positional | ! Concatenation ¥z ! I
1 Encoding Encoding Encoding :: : i : m |: State
: i f , * iom
| !
E 3D Segment 1D Segment 2D Segment H Caption Decoder : : : Pary Fary :!
! Encoding Encoding Encoding H 1 i ~ T IE
! 0" hifted riah 4 1 Triangle Convolution [ ;|| Memory
! Outputs (shifted right 1 I ;
' i ptoutslChittediizb) i : (_matMul & Scale ] A——i|| Module
! i ¥ 1 T ]‘ MatMul & Scale ::
[ s i 1 3
oo Multimodal Features (MF) ——————— e ST ELETEEE G Y — [ previous
- ~ O (-1)th Attention Map __|Outputs (shifted right) —————————— states
t-1
(a) (b)

Figure 2: (a) Overview of our HybridNet. Taking the video as input, a multimodal fusion is shown to merge the motion feature,
audio feature and appearance feature as multimodal features (MF). Then the MF is fed into the decoder stage for captioning,
including the caption decoder and three commonsense decoders. We utilize multi-commonsense learning on three common-
sense decoders. (b) The pipeline of the proposed memory-routed multi-head attention (MMHA) in each decoder block. The
MMHA is guided by the memory module that is illustrated in Figure 3 (b). The ““MatMul & Scale’ indicates the scaled dot-
product operation and the “PL” means the projection layer. The orange lines with arrows denote the contextual residual
connections to bridge contextual attention maps from different blocks. The P means the addition operation in this work.

3 HYBRID REASONING NETWORK

In this section, we explain the architecture and design of our pro-
posed Hybrid Reasoning Network (HybridNet), which can appropri-
ately interact with multiple commonsense semantics and preserve
the connection between contextual predicted sequences. As shown
in Figure 2 (a), our HybridNet is an encoder-decoder architecture,
including a video encoder, a caption decoder and three common-
sense decoders. Given a video input, there are three pre-trained
models to extract multiple features including motion feature, au-
dio feature and appearance feature. Then a multimodal fusion is
utilized to merge the extracted features as multimodal features.
The multimodal features are fed into the caption decoder to obtain
caption encoding as well as predict event-wise captions. Then we
concatenate the multimodal features with caption encoding as the
input of commonsense decoder to generate the commonsense de-
scriptions. Note that the multi-commonsense learning is applied on
the commonsense decoder. And the decoder blocks are enhanced by
our memory-routed multi-head attention (MMHA), memory mod-
ule and contextual residual connections. Our contribution mainly
focuses on the design of the multi-commonsense learning and in-
novative modules (e.g., MMHA and memory module), which are
unveiled and discussed in detail in the following sub-sessions.

There are two settings for the two sub-tasks. Completion task:
the ground truth caption and video are given to generate the com-
monsense descriptions. Generation task: given the video input,
the event-wise captions should be predicted first, and then use both
of them to predict the desired commonsense sentences.

3.1 Encoder

Given a video, we use the pre-trained models including ResNet152 [14],

SoundNet [2] and I3D [6] to extract the appearance feature, audio

feature and motion feature, respectively. Then we use a multimodal
fusion to merge the three types of features. As shown in Figure 2
(a)(left), we use separate linear layers (FC) and LSTM [15] to indi-
vidually encode the different features, and utilize the last hidden
states of the LSTM as the final representations. Finally, the cus-
tomized positional encoding and segment encoding are added to
the final representations, which are concatenated together as the
multimodal features. Taking the motion feature as an example

E’P = SE®P + PEPP + LSTM(FC(V?DP)), (1)

where E3P is the encoded motion feature and V3P means motion
feature. The SEP and PE?P are 3D segment encoding and 3D posi-
tional encoding, respectively. Similarly, we can obtain the encoded
audio feature E'P and encoded appearance feature E°. Then we
concatenate them together to get the multimodal features (MF).

3.2 Decoder

In our decoder, we propose two main innovations: (1) multiple
commonsense learning for semantic-level reasoning; (2) memory-
routed multi-head attention cooperated with memory module for
word-level reasoning. The first one is to improve the high-level
inference ability from various commonsense semantics. The second
one aims to mine the low-level reasoning from different words.

3.3 Semantic-level Reasoning

Multi-commonsense Learning. Multi-commonsense learning is
a training paradigm in which machine learning models are trained
with data from multiple types of commonsense descriptions simul-
taneously, using shared representations to learn the common ideas
between a collection of related commonsense. These shared repre-
sentations increase data efficiency and can potentially yield a faster



learning speed for correlated descriptions. In this paper, we develop
the transformer based language model [35] as three commonsense
decoders for three particular commonsense domains. There are
many different factors to consider when creating a shared archi-
tecture for multi-commonsense learning, such as the portion of
the model’s parameters that will be shared between commonsense,
and how to parameterize and combine commonsense-specific and
shared modules. In our HybridNet, we share the parameters of en-
coder and caption decoder for all commonsense decoders. During
the training, the commonsense decoder takes the video encoding v,
caption encoding § and ground truth of corresponding common-
sense captions (e.g., Catt, Ceff, Cint) as input to iteratively generate
commonsense descriptions, which can be formulated as

Catt = Darr (V. 8, catt), (2
Ceft = Drrr(V, 8, Cefp), (3
éiﬂt = DINT (V) §) Cil’lt)r (4)

where Catt, Coff, Cint are the generated commonsense sequences
decoded by the corresponding commonsense decoders (Darr, Dgpr,
D). The loss function for the Drr can be formulated as

Natl
Lae = ), og p(y1y,—1, [v.8]; Oan), (5)
t=1
where y, denotes the one-hot vector probability of each word at
time t, Nyt denotes the length of the attribute. The attribute de-
coder parameters Oyt are trained to maximize the log-likelihood
over the training set. Similarly, we can obtain the objection func-
tions of effect decoder and intention decoder like £, f and Lin:.
The caption decoder can be optimized by

Ncap
LC“P = Z lOg p(Yt |Yt—1’ \8 ecap)- (6)
t=1
Finally, we train our HybridNet by using £ = Lcap + Lo+ L, Ff+
Lint to jointly optimize our framework.

3.4 Word-level Reasoning

Memory Module. For any relevant videos, they may share similar
patterns in their descriptions that can be used as good references
for each other to help the generation process. Besides, the previous
sequence can be recorded to guide the next word prediction for
contextual consistency. To exploit such characteristics, we propose
to use an extra component named memory module to enhance
Transformer to learn from the previous word information and facil-
itate computing the interactions among previous information and
the generation process.

As shown in Figure 3(b), our memory module uses a matrix
M to transfer its states over generation steps, where the states
record the important word information with each row (namely,
memory slot) representing some word information.! During the
generation, the matrix is updated step-by-step by incorporating
the output from previous steps. Then, at time step t, the matrix
from the previous step, M1, is functionalized as the query and its
concatenations with the previous output serve as the key and value

!Note that the rows (memory slots) and word states do not follow one-to-one mapping,
where the entire matrix serves as a whole unit to deliver the word information.

to feed into the multi-head attention module. Given H heads used in
Transformer, there are H sets of queries, keys and values via three
linear transformations, respectively. For each head, we obtain the
query, key and value in the memory module through Q = M;_1Wg,
K= [M/—1;y:-1]Wand V = [M;_1;y;-1] Wy, respectively, where
y¢-1 is the embedding of the last output (at step ¢ —1); [Mi-1;y¢—1]
is the row-wise concatenation of M;—; and y;—1. The Wy, Wy and
Wy are the trainable weights of linear transformation of the query,
key and value, respectively. Multi-head attention is used to model
Q, K and V so as to depict relations of different patterns. As a result,

Z= softmax(QKT/\/z)V, 7)

where d is the dimension of K, and Z the output of the multi-head
attention module. Consider that the memory module is performed
in a recurrent manner along with the decoding process, it poten-
tially suffers from gradient vanishing and exploding. Therefore, we
introduce residual connections and a series of gate operations. The
former is formulated as

Mlt =fmlp(Z+Ml‘—l) +Z+Mt_1, (8)

where fp,;, (+) refers to the multi-layer perceptron (MLP). Moreover,
we apply the forget and input gates to balance the inputs from M;_1
and y,_1, respectively. To ensure that y;_1 can be used for compu-
tation with M;_y, it is extended to a matrix Y;—; by duplicating it
to multiple rows. Therefore, the forget gate G{ and input gate G
are formalized as

G/ =Y,y W/ + tanh(M,_;)U/, )
Glt = Yt_lwi + tanh(Mt_1)Ui, (10)

where W/ and W' are trainable weights for Y;—; in each gate;
similarly, U/ and U are the trainable weights for M;_1 in each gate.
The final output of the gate mechanism is formalized as

M, = o(G/) © M1 +o(G}) © tanh(M’,), (11)

where O refers to the Hadamard product and ¢ is the sigmoid
function. The M; is the output of the entire memory module at step
t, which is fed into the MMHA for routing the decoder.

Memory-routed Multi-Head Attention (MMHA). We design
the MMHA in each decoder block to bridge the previous word
states and the next predicting word. We think the previous words
can cooperate with the multimodal features to better reason the
generation processes. As shown in Figure 2 (b), given the input
representation X, we get the query Q, key K and value V through
three linear layers. Then a multi-head scale dot-product operation
is utilized to generate the original attention map

A, =Attention(X) = QK /+/d, (12)

where A, denotes the original attention map and dy. is the hidden
dimension size of K. Because of the guidance of the memory module,
we can obtain the memory state M from the memory module that
records the previous sequence state. The M is regarded as another Q
in the MMHA. Then another multi-head scale dot-product operation
is applied to getting the conditional attention map A.. Assume there
are K heads in each layer, then we get K conditional attention maps.
They construct a tensor A, € RNXNXK (N is the sequence length),
which can be viewed as a N X N image with K channels. Taking this
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Figure 3: (a) Our residual connections that are marked as orange propagate the contextual information between different de-
coder blocks. Note that we omit additions and norm in the figure for brevity. (b) Our memory module records the information
from previous generation processes. () denotes the Hadamard product.

as input, we adopt one 2D-convolutional layer with 3 X 3 kernels
to capture the evolution of attention patterns, as this inductive bias
emphasizes local details and produces more precise attention maps
by reasoning on previous ones. The output channel is also set to be
K, so the attention maps of all heads can be generated jointly.

To prevent foreseeing subsequent positions, we improve the
2D-convolutional layer by proposing a triangle convolution. The
triangle convolution can be implemented as follows: (1) executing
standard 3 X 3 convolution with masks in the upper-right corner;
(2) after convolution, shifting the entire attention matrix by one
pixel to the bottom and one pixel to the right. We apply a ReLU
activation after each 2D-convolution layer to provide non-linearity
and sparsity. After the triangle convolution, the result attention
map Aypjgngle is combined with the input conditional attention
map A, original attention map A, and the attention maps from
previous blocks Aprevious- Mathematically,

Acondition = @ - Atriangle +(1-a) A
Aguide = B+ Acondition + (1 =) - Ao, (13)
Amerge =Y Aprevious + (1 - Y) : Aguide >

where a, B,y € [0, 1] are hyper-parameters for linear combination.

In our experiments, the values of «, f and y are chosen empirically
on the validation set for each task. Note that the Aprepious is the
residual attention map of previous blocks via contextual residual
connections, which can be seen in Figure 3 (a). These contextual

residual connections aim to bridge the gap of attention maps be-
tween different blocks for improving the quality of attention maps
globally. Finally, the output of the MMHA can be obtained by

Aour = softmax(MASK(Amerge)), (14)
Xour = FC(Aour V'), (15)

where Ayy; is the attention map of current MMHA and the Xy
means the output representation of the MMHA.

4 EXPERIMENTS
4.1 Datasets and Evaluation

We evaluate our proposed HybridNet and compare it with other
state-of-the-art methods on Video-to-Commonsense (V2C) [11]
benchmark, a representative large-scale video-based commonsense
captioning dataset containing a total of 121,618 captions derived
from 9,721 video scenes. The dataset is officially split into a training
set consisting of 6819 videos with 85,100 captions, a test set contain-
ing 2903 videos with 36,518 captions. We follow this data partition
in all experiments. We have done some statistics on the V2C and
found that there are 5 candidate descriptions per video for intention,
effect, and attribute respectively. And the number of candidate cap-
tions for each video is not fixed. For the training set, there are 766
samples contain 1~4 captions per video. The number of the video
containing 5~14 captions is 3082. The test set also has the same



Table 1: Evaluation of V2C completion task and generation task in terms of the attribute, effect and intention by using CIDER,
BLEU, Rouge, and Meteor metrics. We use only BLEU-1 to evaluate the attribute generation on the completion task since
the average length of the ground truth is just less than 2. “Attribute+C” means the attribute descriptions and the predicted
event-wise captions on the generation task. The best performing results are marked in red.

Relation Model CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
SaVT [37] - 35.9 - - - - -
Attention-Enc-Dec [12] - 38.3 - - - - -
Attribute Dense Captioner [45] - 46.0 - - - - -
Video CMS Transformer [11] - 47.3 - - - - -
-~ Our HybridNet - 58.7+114 - - - - -
[‘_“ S2VT [37] 283 249 18.6 16.2 14.3 15.4 22.1
g Attention-Enc-Dec [12] 29.5 26.5 19.4 18.8 15.1 17.5 23.9
k> Effect Dense Captioner [45] 36.9 337 24.8 21.0 20.2 20.0 29.9
a Video CMS Transformer [11] 37.3 34.8 25.9 22.5 20.4 20.8 30.6
g Our HybridNet 6621589 4907112 42.9%170  40.3*178  3gg+84 30,0772 4157109
o S2VT [37] 51.8 48.4 39.9 343 26.4 233 443
Attention-Enc-Dec [12] 52.1 51.1 42.6 355 28.2 243 48.0
Intention Dense Captioner [45] 60.3 59.3 47.0 37.3 315 28.0 53.1
Video CMS Transformer [11] 62.0 60.8 48.4 39.1 34.1 28.5 54.6
Our HybridNet 9267306 694786 6057121 5547163 5314190 35873 g0,1"5
S2VT [37] 38.5 69.1 53.6 42.0 323 239 59.1
Attention-Enc-Dec [12] 34.0 67.0 51.7 40.7 314 233 58.0
Attribute+C Dense Captioner [45] 36.8 68.4 52.1 39.8 30.0 24.1 57.7
Video CMS Transformer [11] 40.2 70.2 54.8 42.7 32.6 247 59.0
x Our HybridNet 41614 7131 57,0722 456*20  357+31 255408 gpatld
EE S2VT [37] 29.9 69.8 54.1 39.9 29.1 219 55.3
g Attention-Enc-Dec [12] 26.1 70.2 51.8 38.6 28.7 225 53.5
£ Effect+C Dense Captioner [45] 30.6 72.1 54.5 42.3 33.2 25.2 56.0
b Video CMS Transformer [11] 32.1 72.5 56.1 443 35.2 25.6 57.4
g Our HybridNet 34.2%21 739707 574413 46320 379720 96,3707 58.3%0-2
© SIVT [37] 354 713 539 413 312 216 586
Attention-Enc-Dec [12] 33.2 75.4 59.4 45.1 33.5 24.6 59.6
Intention+C Dense Captioner [45] 37.0 76.1 60.2 46.7 35.9 26.5 60.9
Video CMS Transformer [11] 37.8 76.2 61.2 48.1 37.3 26.9 61.9
Our HybridNet 404726 77513 629717 504723 402%°  27.8%0°  62.9%10

challenge. Hence, the V2C is challenging because of the complex
and diverse language, multiple scenes and hard inference types as
mentioned in [11]. Followed other works [11, 12, 37, 45], for two
sub-tasks, we measure the performance of our proposed method
via Meteor [3], Rouge [22], CIDEr [36] and BLEU (n=1-4) [24].

4.2 Implementation Details

We conduct all experiments by using a single NVIDIA 3090 card
on a single server. We implement our proposed HybridNet and
re-implement other state-of-the-art methods via PyTorch [25] and
python3.8 to train and test. The Nvidia CUDA of 11.1 and cuDNN
of 8.0 are utilized for acceleration. In our HybridNet, each decoder
consists of 6 transformer blocks with 8 attention heads. Note that
the traditional multi-head attention is replaced with our memory-
routed multi-head attention in the decoder block of our HybridNet.
Unless otherwise noted, settings are the same for all experiments.
During the training, we set the batch size to be 128 for one GPU
and use the Adam [17] optimizer with 5000 warm-up steps, and
learning rate initialized at 1le-4, and a dropout probability of 0.1

after the residual layer. It takes about 10 hours for the training
set. The number of epoch is 800. We set the hyper-parameters for
linear combination of attention maps in our experiments, including
a=0.1, f=0.4 and y=0.1. During the test time, we validate learning
outcomes after each learning epoch and select the model weights
with the best CIDEr as our final results.

4.3 Results and Comparisons

Quantitative Results. We report our state-of-the-art results of the
test on V2C [11] dataset for two tasks in Table 1. The previous works
individually generate different types of commonsense captions by
using separate networks. They can not predict all commonsense
descriptions in a unified way. However, our HybridNet can generate
all commonsense captions and benefit from their interaction.

On completion task, we used the reported results [11] for a fair
comparison. As we can see, our HybridNet achieves the best per-
formance on all metrics compared with the state-of-the-art meth-
ods [11, 12, 37, 45]. On the attribute part, our HybridNet performs



Caption GT: a young boy with glasses in red shorts
and a t-shirt dribbles and shoots a basket ball

Intention GT: score a point
(0): to score a basket
(1): to play a game
| (2): to be comfortable
B (3): to play a game
(4): to play

):
):
):
):

Effect GT: shoots hoops Attribute GT: athletic

& (0): shoots the ball (0): athletic

P (1): gets hurt by the ball (1): brave
(2): gets hurt by the ball (2): clad
(3): gets exercise (3): fun
(4): gets exercise (4): helpful

Dedric Dukes: 200m

Caption GT: a group of young athletes race around a track
0) a group of people are racing in a race.
1) a group of people are running around a race

3) a group of people are running around a track

(
(
(2) two men are playing tennis
(
(4) a man is running

Effect GT: wins the race

Intention GT: to compete

(0) to compete against others  (0) wins the race

(1) to be on time (1) gets practice

(2) to exercise (2) gets exercise

(3) to be a part of a team (3) gets exercise

(4) to get to the other side (4) gets a ticket for walking

Attribute GT: athletic
(0) athletic  (2) strong (4) carefree
(1) athletic  (3) athletic

Figure 4: Qualitative visual results on completion task (left) and generation task (right). The (0)-(4) denote the prediction results
of our HybridNet, Video CMS Transformer [11], Dense Captioner [45], S2VT [37] and Attention-Enc-Dec [12] respectively.
Compared with the other state-of-the-art methods, our HybridNet can generate more precise and logical descriptions.

11.4% improvement on BLEU-1 better than the video CMS trans-
former [11]. On the effect and intention part, our network tends
to bring better gains on the metrics that is applied for evaluating
long and logical sentences, like the improvements on BLEU-4 (e.g.,
+19.0%, +18.4%) are better than the BLEU-1 (e.g., +8.6%, +14.2%). It
can validate that our network can capture well the long-range con-
text to make the semantics of the generated long sentences more
reasonable and logical. The possible reason is our MMHA can learn
the correlation between history sequence and next word predic-
tion, which is cooperated with our memory module and contextual
residual connections for word-level reasoning.

On the generation task, we re-implement and train the previous
methods by using their official codes. Then we use some evaluation
metrics that are widely used and accepted for language generation
task to objectively estimate the performance of different methods.?
In Table 1, our HybridNet achieves the best performances of 34.2%,
73.2%, 57.4%, 37.2%, 26.3% and 58.3% with respect to 7 metrics (i.e.
CIDEr, BLEU-1 to BLEU-4, Meteor and Rouge-L) compared with 4
state-of-the-art methods on effect+C part. Our method also gets the
best scores on other evaluation metrics. It can further prove that
our network not only can perform well on the completion task but
also can handle the more challenging task like the generation task.

Qualitative Results. Figure 4 shows the comparison results by dif-
ferent methods on completion task on the left and generation task
on the right. On the completion task, our HybridNet can predict
more precise intention results such as “to score a basket” compared
with other methods. As we can see, other methods mainly focus on
the vague intention expression (e.g., play a game) rather than the
specific sports. On the generation task, our network still performs
the best to jointly predict all the correct results. Although some
methods can generate the correct caption (e.g., running around
a race) and attribute (e.g., athletic), they still fail to provide the
right intention and effect. On the contrary, thanks to the correct

2The previous methods only use the human evaluation for the generation task, which
is too subjective.

Ground Truth:

Four girls in different kind of dresses are
singing and dancing in the room [Caption]
To express themselves [Intention]
PersonX sweats from dancing [Effect]
Artsy [Attribute]

HybridNet:

A group of people are singing and dancing
To express their joy

PersonX sweats from dancing

Artsy

HybridNet w/o multimodal fusion:
A man and a woman are talking
To be heard

Dry mouth from speech

Chatty

Figure 5: Visualization to compare the difference between
HybridNet and HybridNet without multimodal fusion. The
multimodal signal like audio in this example is necessary to
distinguish between singing and talking.

parsing into the caption and attribute, our method can also cor-
rectly provide reasonable and logical effect result (e.g., wins the
race) and locate at the accurate intention (e.g., compete against
others). Such semantic-level interaction can be achieved by our
multi-commonsense learning, which can further demonstrate that
our model can successfully learn the constraint and interaction of
the multiple commonsense semantics.

4.4 Ablation Studies

Effect of Multimodal Features. In Table 2, the advantage of mul-
timodal fusion increases BLEU-1 by 0.1% (58.6% vs 58.7%) on at-
tribute completion, 0.7% on effect completion and 0.7% on intention
completion. In Figure 5, we display the effectiveness and importance



Table 2: Ablation studies on two sub-tasks. The “multimodal”, “multi-cms”, “MMHA” and “CRC” means the multimodal fusion,
multi-commonsense learning, memory-routed multi-head attention and contextual residual connections, respectively.

Relation | multimodal multi-cms MMHA CRC|CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
- 473 - - - - -
v - 56.5 - - - - -
. v v - 57.6 - - - - -
Attribute % % % B 579 B B B B B
v v v - 58.6 - - - - -
“ v v /|- ss7 - - . : :
2 373 348 259 225 204 208 306
£ v 60.6 456 39.0 35.9 34.8 28.0 38.9
S Effect v v 63.1 45.8 39.2 36.0 33.9 28.4 40.0
5 v v v 64.8 472 40.9 38.0 36.2 29.2 40.7
) v v v | 658 483 42.3 39.7 38.0 29.4 41.0
S v v v | 662 490 429 403 388 30.0 41.5
620 6038 134 391 341 285 546
v 84.0 667 57.7 515 49.1 33.9 58.1
Intention v v 864  67.3 57.7 51.9 49.2 34.4 58.6
v v v 91.8 687 59.3 53.7 51.1 355 60.1
v v v | 920 687 59.5 53.8 51.1 35.6 60.1
v v v | 926 694 605 554  53.1 35.8 60.1
402 702 54.8 42.7 32.6 24.7 59.0
v 402 700 55.7 44.7 35.2 25.0 59.8
. v v 402 700 56.5 455 354 25.1 60.2
Attribute+C v v v 41.0 71.1 56.9 45.6 35.6 25.2 60.3
v v v 40.6 69.6 55.4 442 34.6 24.9 59.7
» v v v | 416 713 570 456 357 25.5 60.4
“ 321 725 56.1 113 352 256 574
= v 323 724 56.7 45.8 36.0 25.9 57.7
§ EffectsC v v 324 728 57.0 46.1 36.4 26.1 58.1
g v v v 33.1 72.9 57.2 46.2 36.8 26.3 58.2
g v v v | 327 71.9 56.4 45.6 37.1 26.0 57.8
3 v v v | 342 732 574 463 372 26.3 58.3
378 762 612 131 373 26.9 61.9
v 37.7 76.7 62.0 49.7 39.8 27.2 62.0
IntentionsC v v 38.2 77.1 62.2 50.1 40.1 27.4 62.1
v v v 396  77.2 62.4 503 40.2 27.6 62.9
v v v | 389 765 62.3 49.8 39.8 27.2 62.9
v v v | 404 775 629 504 402 27.8 62.9

of multimodal fusion in the video-based commonsense captioning
task. As we can see, the model guided with the audio feature and
motion feature can better recognize the singing and dancing rather
than talking. Based on the assistance of the multimodal fusion, our
network can easily infer the correct commonsense descriptions.

Effect of Multi-Commonsense Learning,. The effect of our multi-
commonsense learning is apparently to boost BLEU-1 by around

9.2% (47.3%—56.5%), 10.8% (34.8%—45.6%) and 5.9% (60.8%—66.7%)

from the baseline on the completion task w.r.t. attribute, effect and

intention in Table 2. The effectiveness of our multi-commonsense

learning can also be generalized to the generation task. It gets great

scores on BLEU-3 and BLEU-4 compared with the baseline (e.g.,

42.7%—44.7%, 44.3%—45.8% and 48.1%—49.7% on the attribute,

effect and intention in terms of BLEU-3). These significant im-
provements can support the advantage and effectiveness of our

multi-commonsense learning for semantic-level reasoning.

Effect of Memory-routed Multi-Head Attention (MMHA). In
Table 2, we observe that our MMHA can bring improvements on

Caption: a woman is showing the foundation and applies it to her face with a brush
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Figure 6: (a) Visualization of the attention map from our
MMHA. (b) Visualization of the attention map from the tra-
ditional multi-head attention.

all metrics in terms of the completion and generation tasks. For
example, our MMHA can promote the network on the intention
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Table 3: Ablation studies on different fusion for multimodal information on completion task.

|MLP Fusion Concat Fusi0n|CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

. v - 58.1 - - - - -
Attribute % i 537 i i i i i
Effect v 65.8 47.6 41.9 38.7 37.2 29.5 40.6

v 66.2 49.0 42.9 40.3 38.8 30.0 41.5
Intention v 91.8 68.9 59.8 54.7 51.9 35.6 60.1
v 92.6 69.4 60.5 55.4 53.1 35.8 60.1
Table 4: Quantitative results of the example in figure 5
|Multim0dal|CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
. v 40.7 69.2 56.9 44.9 35.2 25.2 58.4
Attribute 395 683 556 438 346 248 57.3
Effect v 33.8 72.1 56.2 45.8 36.7 25.4 57.9
32.6 72.0 55.8 44.7 35.9 24.6 56.8
Intention v 40.2 76.8 61.5 49.8 40.1 27.9 61.6
39.8 76.2 61.3 49.4 39.5 27.2 61.2

A APPENDIX

A.1 Speed and Parameter Comparison

We have tested the inference time of [11] and our models by using the FLOPs metric. The CMS Transformer [11] needs 4.55 GFLOPs and our
model only needs 2.93 GFLOPs. It can demonstrate the [11] is more time-consuming compared with our model. Besides, the parameters of
our model are 103.4M, which is smaller than CMS (159.1M).

A.2 Quantitative Analysis of the example in Figure 5

We tested the quantitative results of the example in Figure 5 between our model and [11]. The results are reported in Table 4. The example
comes from the generation task. On attribute part, the [11] achieves 68.3 BLUE-1 and our model performs 69.2. Moreover, our model
outperforms [11] by 1.1% Rough-L (57.9 vs 56.8) on effect part, and by 0.7% Meteor on intention part.

A.3 The Effect of Different Fusion for Multimodal Inputs

For the encoder part, we mainly focus on the multimodal inputs. Hence the three pretrained encoders aim to extract multimodal features
(e.g., 1D, 2D, 3D). In addition, we have done experiments to compare our fusion method in the encoder part with other fusion way. We
replace our concatenation with MLP layers and train the whole network on the completion task. As shown in Table 3, the MLP fusion
method achieves 65.8 Cider on effect and 91.8 on intention. Our concatenation performs 66.2 Cider on effect and 92.6 on intention. We
believe that simply stacking parameters to increase the fusion block (MLP fusion) will not necessarily improve the video captioning. In other
words, the multimodal inputs are the key to improve the final performance.

A.4 Human Evaluation

We follow the human evaluation setting in [11] and hire 5 students for estimate the results for each model. We estimate our model on
generation task with human evaluations and also compare it with the gold annotations from [11]. Our proposed model gets 66.45/78.96/71.78
on Effect/Attribute/Intention by using human evaluation. The Gold Annotations of human evaluation in [11] are 75.19/83.03/80.11 based on
the ground truth.



