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ABSTRACT
Non-Maximum Suppression (NMS) is essential for object detection
and affects the evaluation results by incorporating False Positives
(FP) and False Negatives (FN), especially in crowd occlusion scenes.
In this paper, we raise the problem of weak connection between
the training targets and the evaluation metrics caused by NMS
and propose a novel NMS-Loss making the NMS procedure can
be trained end-to-end without any additional network parameters.
Our NMS-Loss punishes two cases when FP is not suppressed and
FN is wrongly eliminated by NMS. Specifically, we propose a pull
loss to pull predictions with the same target close to each other,
and a push loss to push predictions with different targets away
from each other. Experimental results show that with the help of
NMS-Loss, our detector, namely NMS-Ped, achieves impressive
results with Miss Rate of 5.92% on Caltech dataset and 10.08%
on CityPersons dataset, which are both better than state-of-the-art
competitors.
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1 INTRODUCTION
Pedestrian detection [12] is an essential computer vision task that
has numerous applications such as automatic driving, video surveil-
lance and person re-identification. With the help of deep convo-
lution neural networks (CNNs) [17, 29, 37], the performance of
pedestrian detection has been significantly improved. However,
the False Negatives (FN) in crowd occlusion scenes and False Posi-
tives (FP) generated for the same person are still the fundamental
challenges.

Existing methods for pedestrian detection can mainly be divided
into two categories: hand-crafted feature based [10, 11, 15, 16, 24,
33, 34, 37] and deep learning based [3, 4, 14, 20, 23, 27, 31, 35]. The
first one applies the sliding-window way to get different scales
of patches, then uses human-designed feature extractor such as
Haar [30] and HoG [9] to obtain feature representation, last utilizes
SVM [8] classifier to filter background. These hand-crafted feature
representations could not handle complex scenes. The second one
uses deep convolutional neural networks (CNNs) to obtain high-
level semantic feature representation, which has a discriminative
ability to deal with complex scenes for pedestrian detection. To
alleviate FN issue in high occlusion scenes, different variants of Non-
Maximum Suppression (NMS) [1, 18, 19] are proposed to change
NMS threshold during inference adaptively. To reduce FP, many
works [5, 6] jointly predict pedestrian boxes and parts information
such as head due to that it is less occluded. However, the objective
between training and inference is inconsistent, which may result
in sub-optimal performance for pedestrian detection.

NMS is an essential procedure for object detection tasks. Modern
pedestrian detectors rely on NMS to remove duplicate detections for
both one-stage and two-stage approaches. The nearby detections
around one object will be removed once its interaction over union
(IoU) with the object is larger than the pre-defined threshold. During
the training process, there is no such process, thus resulting in
inconsistency between optimized detection training results and
final inference results. To handle the inconsistency problem, NMS
process should be incorporated into the training process. To this
end, we propose a novel NMS-Loss. There are two components,
pull and push losses, in our NMS-Loss. Pull loss aims to raise the
precision by pulling FP close to the max score prediction, and push
loss focuses on improving recall by pushing predictions away from
each other. With the help of NMS-Loss, false predictions on the
evaluation metric can be directly reflected on loss functions, and
thus be directly optimized.

The main contribution of this work lies in the following aspects.
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• We firstly raise the problem of weak connection between
training targets and evaluation metrics in pedestrian detec-
tion and propose a novel NMS-Loss making the NMS proce-
dure can be trained end-to-end, which does not introduce
any parameters nor runtime cost.
• We propose finely designed pull and push losses helping
the network to boost performance on precision and recall,
respectively, which considering both prediction coordinates
and confidence.
• With the help of NMS-Loss, in pedestrian detection, our pro-
posed NMS-Ped outperforms SOTA methods on the widely
used Caltech and CityPersons datasets.

2 NMS-LOSS
2.1 Overview of NMS-Loss
The traditional NMS procedure is shown in Alg. 1 without consid-
ering the red texts. Starting with a set of detection boxes B with
corresponding scores S, NMS firstly moves the proposal 𝑏𝑚 with
the maximum score from the set B to the set of final kept detections
K . It then removes any box in B and its score in S that has an
overlap with the 𝑏𝑚 higher than a manually set threshold 𝑁𝑡 . This
process is repeated for the remaining B set.

However, no existing approaches take the NMS into the training
process to adjust the detection boxes, making the learning targets
inconsistent with the evaluation metric, which means FP not sup-
pressed by NMS and FN eliminated by NMS can harm the precision
and recall, respectively. To avoid inconsistency, we propose the
NMS-Loss taking the NMS procedure into the training process,
which adaptively selects the false predictions caused by NMS and
uses two well-designed pull and push losses to minimize the FP and
FN, respectively. Specifically, our NMS-Loss is defined as:

𝐿𝑛𝑚𝑠 = 𝜆𝑝𝑢𝑙𝑙𝐿𝑝𝑢𝑙𝑙 + 𝜆𝑝𝑢𝑠ℎ𝐿𝑝𝑢𝑠ℎ, (1)
where 𝐿𝑝𝑢𝑙𝑙 is the pull loss to punish the FP not suppressed by

NMS and 𝐿𝑝𝑢𝑠ℎ is the push loss to punish the FN wrongly elim-
inated by NMS. Coefficients 𝜆𝑝𝑢𝑙𝑙 and 𝜆𝑝𝑢𝑠ℎ are the weights for
balancing losses. Details of our NMS-Loss are present in Algorithm
1 emphasized with red color. Different from the traditional NMS,
we use a set G containing corresponding ground truth indexes of
detection boxes, which is used to identify FP and FN. In the NMS-
Loss calculating procedure,M is an auxiliary dictionary with the
ground truth index as key and corresponding max score detection
as value, which is used to record the max score prediction of each
ground truth. Our NMS-Loss is naturally merged into the NMS pro-
cedure without incorporating any additional training parameters.
The runtime cost of NMS-Loss is zero for testing.

2.2 Pull Loss Definition
With the objective to reduce FP, we need to find out wrongly kept
predictions. To this end, in every iteration, we check whether the
current max score prediction 𝑏𝑚 is the max score prediction for its
corresponding 𝑔𝑚 ground truth. If not, it means 𝑏𝑚 is an FP not
suppressed by NMS, pull loss should be performed between 𝑏𝑚 and
the max score prediction 𝑏𝑚𝑎𝑥 of the 𝑔𝑚 ground truth (see Fig. 1).
Formally, our pull loss is calculated as:

𝐿𝑝𝑢𝑙𝑙 = −𝑙𝑛(1 − 𝑁𝑡 + 𝐼𝑜𝑈 (𝑏𝑚𝑎𝑥 , 𝑏𝑚))𝑠𝑚, (2)

Algorithm 1: NMS-Loss Calculating Procedure
Input:
B = [𝑏1, . . . , 𝑏𝑁 ], S = [𝑠1, . . . , 𝑠𝑁 ], 𝑁𝑡 , G = [𝑔1, . . . , 𝑔𝑁 ]
B is the list of initial detection boxes
S contains corresponding detection scores
𝑁𝑡 is the NMS threshold
G contains corresponding ground truth indexes

Auxiliary Variable:
K ← [ ],M ← 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 () ,
K is the list to keep final detections after NMS
M is a dictionary using the ground truth index as key
and corresponding max score detection as value

begin
while B ≠ 𝑒𝑚𝑝𝑡𝑦 do

𝑚 ← 𝑎𝑟𝑔𝑚𝑎𝑥 S ;
if 𝑔𝑚 𝑛𝑜𝑡 𝑖𝑛 M .𝑘𝑒𝑦𝑠 () then
M[𝑔𝑚 ] ← 𝑏𝑚 ;

else
𝑏𝑚𝑎𝑥 ← M[𝑔𝑚 ];
pull_loss(𝑏𝑚𝑎𝑥 , 𝑏𝑚) ; Eq. (2)

end
K ← K ∪ 𝑏𝑚 ; B ← B − 𝑏𝑚 ;
S ← S − 𝑠𝑚 ; G ← G − 𝑔𝑚 ;
for 𝑏𝑖 𝑖𝑛 B do

if 𝐼𝑜𝑈 (𝑏𝑚, 𝑏𝑖 ) ≥ 𝑁𝑡 then
if 𝑔𝑚 ≠ 𝑔𝑖 then

push_loss(𝑏𝑚, 𝑏𝑖 ) ; Eq. (3)
end
B ← B − 𝑏𝑖 ; S ← S − 𝑠𝑖 ; G ← G − 𝑔𝑖 ;

end
end

end
return K

end
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Figure 1: Illustration of our NMS-Loss. All boxes 𝑏𝑚𝑎𝑥 , 𝑏𝑚
and 𝑏𝑖 are predictions as described in Alg. 1, where boxes
with the same color have the same target and boxes with
the solid line get a higher score than boxes with the dotted
line. In (a), 𝑏𝑚 is a FP not suppressed by 𝑏𝑚𝑎𝑥 . Our 𝐿𝑝𝑢𝑙𝑙 pulls
𝑏𝑚 towards 𝑏𝑚𝑎𝑥 . In (b), 𝑏𝑖 is a FN wrongly eliminated by 𝑏𝑚 .
Our 𝐿𝑝𝑢𝑠ℎ pushes 𝑏𝑖 away from 𝑏𝑚 .

where 𝑁𝑡 is the predefined NMS threshold and 𝑠𝑚 is the prediction
score corresponding to 𝑏𝑚 . We note two properties of the pull
loss: (1) When the IoU between 𝑏𝑚𝑎𝑥 and 𝑏𝑚 is small, pull loss
tends to increase, forcing the network to learn to pull 𝑏𝑚 toward
𝑏𝑚𝑎𝑥 . The NMS threshold 𝑁𝑡 is used to prevent the gradient of
outliers influence too much on model learning. Besides, for the
NMS procedure, we just need to make the IoU between FP and
TP higher than 𝑁𝑡 . Using 𝑁𝑡 in pull loss to reduce the gradient of



outliers canmake the network easy to learn. (2) The prediction score
of FP can also have a strong effect on pull loss. FP with a higher
score has a greater impact on evaluation results and intuitively
needs to be paid more attention. Besides, it makes the network
learn to fix FP not only just conditioning the box coordinates but
also considering lower the prediction scores.

2.3 Push Loss Definition
In NMS, the current max score prediction 𝑏𝑚 eliminates boxes
which get an IoU higher than 𝑁𝑡 with 𝑏𝑚 . If the eliminated box 𝑏𝑖
corresponds to different ground truth index with 𝑏𝑚 , 𝑏𝑖 will be a
FN and reduce recall (see Fig. 1). To avoid 𝑏𝑖 from being wrongly
eliminated, we propose a push loss to penalize FN:

𝐿𝑝𝑢𝑠ℎ = −𝑙𝑛(1 − 𝐼𝑜𝑈 (𝑏𝑖 , 𝑏𝑚))𝑠𝑖 , (3)

where 𝑠𝑖 is the prediction score corresponding to 𝑏𝑖 . Different from
pull loss, as 𝐼𝑜𝑈 (𝑏𝑖 , 𝑏𝑚) → 1, the push loss goes higher and the
model learns to push 𝑏𝑖 away from 𝑏𝑚 . To avoid the model tending
to reduce the push loss by lowering the score of FN, we use the 𝑠𝑖
only for reweighting losses without back propagating gradient.

For crowded scenes, especially in the CityPersons dataset, the
ground truths of bounding boxes are overlapped with each other.
It is unreasonable to push their predictions away from each other
with an IoU equals to zero. To handle this problem, we only cal-
culate 𝐿𝑝𝑢𝑠ℎ on prediction whose IoU is higher than the IoU of its
corresponding ground truth boxes.

Our pull and push loss are performed on predictions. When the
pull/push loss is activated, the network tries to pull/push both pre-
dictions close to/away from each other, respectively. Since high
score predictions generally get a more accurate location, it is unrea-
sonable to move an accurate prediction based on an inaccurate one.
To handle this, we stop the gradient backward propagation of high
score predictions, leading the network to focus on false predictions.

3 EXPERIMENTS
3.1 Experimental Setup
Datasets and Evaluation metrics. We evaluate our method on
two challenging pedestrian datasets: Caltech [12, 13] and CityPer-
sons [36]. We report performance using standard average-log MR
between [10−2, 100] of False Positive per Image (FPPI). A minimum
IoU threshold of 0.5 is required for detected box to match with a
ground truth box. By default, we report the results on Reasonable
subsets is a widely used setup where the pedestrian is at least 65%
visible and 50 pixels tall.
Experimental Settings.As shown in RPN+BF [35], small instances
are hard to be detected in the low-resolution feature maps pro-
vided by RoI-Pooling, which is more severe in pedestrian detection.
Therefore, we used Faster R-CNN [28] as our baseline, but made
two adjustments: (1) Inspired by [35], we use a separate network to
construct the RCNN and put the cropped original image to RCNN
for further refinement. This improves the ability of the network to
detect small instances, but it is not suitable for instances with large
scale changes. (2) There is an additional weak semantic segmenta-
tion loss [3] to boost performance. Note that the baseline has the
same settings as our NMS-Ped except that there is no NMS-Loss in
baseline.
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Figure 2: Comparison between the cases with/without using
pull/push loss. Green bounding boxes are predicted pedestri-
ans whose score is greater than 0.8 and red bounding boxes
are ground truth. Our pull loss effectively suppresses FP in
both sparse scenes and crowded scenes (left three columns),
yielding higher precision. Our push loss robustly handles
occlusions (right two columns), yielding higher recall.

Table 1: Comparison of our NMS-Ped with the baseline on
CityPersons.

Method MR
baseline 11.20%
baseline + pull loss 10.58%
baseline + push loss 10.61%
NMS-Ped 10.08%

Table 2: Comparison on different thresholds𝑁𝑡 of NMS-Loss
on CityPersons.

𝑁𝑡 0.4 0.45 0.5 0.55

MR 10.76% 10.66% 10.08% 10.67%

PyTorch [26] is used to train the NMS-ped for both datasets.
We use 8 NVIDIA GPUs with a mini-batch comprises 1 image per
GPU. SGD with momentum of 0.9 and weight decay of 1 × 10−4
is adopted for training. Both datasets are trained only using the
images with foreground. Random cropping and flipping are used for
data augmentation. Detailed settings on Caltech and CityPersons
are described as follows:

Caltech: The learning rate for Caltech is 5×10−3 and is dropped
by a factor of 10 after 9, 600 iterations and 13, 200 iterations. The
images are resized to 1280 × 960 in our experiments. The weights
for pull loss and push loss are both 0.1 getting from experiments.

CityPersons: The learning rate for CityPersons is 1×10−2 and
dropped by a factor of 10 after 24, 000 iterations and 33, 000 it-
erations. We use the original image resolution of 2048×1024 in
our experiments. The weights for pull and push loss are 0.1 and
0.001 respectively for the reason that CityPersons contains much
more crowded scenes than Caltech and lots of instances are heavily
overlapped with others. Giving a relatively lower weight for push
loss will reduce the gradient of pushing and make multi-tasks work
well.



Table 3: Comparison on CityPersons dataset.

Method Backbone MR
RepLoss [31] ResNet-50 13.20%
OR-CNN [38] ResNet-50 12.80%
Adaptive-NMS [19] VGG-16 11.90%
CSP [21] ResNet-50 11.00%
MGAN [25] VGG-16 11.50%
R2NMS [18] VGG-16 11.10%
EMD-RCNN [7] ResNet-50 10.70%

Our baseline ResNet-50 11.20%
NMS-Ped ResNet-50 10.08%

Table 4: Comparisons on Caltech dataset.

Method Backbone MR
RPN+BF [35] VGG-16 9.58%
F-DNN [14] ResNet-50 8.65%
SDS-RCNN [3] VGG-16 7.36%
MGAN [25] VGG-16 6.83%
AR-Ped [2] VGG-16 6.45%
SSA-CNN [39] VGG-16 6.27%
TFAN+TDEM+PRM [32] ResNet-101 6.50%
W2Net [22] ResNet-50 6.37%
Our baseline ResNet-50 6.61%
NMS-Ped ResNet-50 5.92%

3.2 Ablation Studies
We conduct experiments on CityPersons to evaluate our NMS-Loss
for the reason that pedestrian in CityPersons is more crowded
and challenging. There are enough complicated scenes to review
effectiveness of our approach.
Baseline comparison. Tab. 1 shows the performance of our base-
line with separate components. When only the pull loss is used, MR
can be reduced from 11.20% to 10.58%. Fig. 2 shows some results
corrected for using pull loss. In both sparse scenes (first column)
and crowded scenes (second and third columns), our pull loss will
effectively pull predictions targeting on the same ground truth close
to each other. The same experiments are conducted on push loss.
With the help of push loss, the MR can be reduced from 11.20%
to 10.61%. Some visible results are present in Fig. 2 showing the
corrected predictions for using push loss. In the occlusion scenes
(right two columns), push loss trained model performs more robust,
even detected the unlabeled instance (fourth column). When we
use the complete NMS-Loss, our NMS-Ped can be boosted from
both pull loss and push loss, getting an amazing 10.08%MR.
Experiments on hyperparameters. Tab. 2 shows our results
with different thresholds 𝑁𝑡 on NMS-Loss. When 𝑁𝑡 is lower than
evaluation metric threshold 0.5, push loss will be activated more
frequently and pull loss will not be activated making the network
produce more FPs that harms precision. In contrast, when 𝑁𝑡 is
higher than 0.5, more FNs will be produced and lower recall. Our
NMS-Loss performs robust with various NMS thresholds, gaining
stable improvement. When we use 𝑁𝑡 equivalent to the threshold
0.5, our NMS-Loss yields the best performance.

Table 5: Comparison between RepLoss and NMS-Loss on the
CityPersons. We use 𝑀𝑅𝑏 , 𝑀𝑅, 𝑀𝑅𝑖 , 𝑀𝑅𝑟 to represent the
𝑀𝑅 of baseline model,𝑀𝑅 of complete model,𝑀𝑅 of the im-
provement and relative improvement based on the baseline,
respectively.

Method Backbone 𝑀𝑅𝑏 ↓ 𝑀𝑅 ↓ 𝑀𝑅𝑖 ↑ 𝑀𝑅𝑟 ↑
RepLoss ResNet-50 14.6% 13.2% 1.4% 9.59%

NMS-Ped ResNet-50 11.2% 10.08% 1.12% 10.00%

3.3 Comparisons with SOTA methods
To demonstrate the effectiveness of our NMS-Loss, we compare
NMS-Ped with the SOTA methods on CityPersons and Caltech.
Tab. 3 presents the performance of NMS-Ped and SOTAmethods on
the CityPersons dataset. With the help of NMS-Loss, our method
improve the MR of baseline from 11.20% to 10.08%, better than
the SOTA method EMD-RCNN [7] (MR of 10.70%). Tab. 4 presents
the performance on Caltech, the MR of NMS-Ped is 5.92%, better
than SOTA method W2Net [22] (MR of 6.37%). With the help of
NMS-Loss, we can obtain more than 10% improvement in NMS-
Ped compared with baseline. This demonstrates the effectiveness
of our NMS-Loss.

3.4 Difference to RepLoss
We make a detailed comparison between our NMS-Loss and the
RepLoss [31] for the reason that both methods pull and push pre-
dictions based on their targets. There are three main differences:
(1) RepLoss is performed on all instances, while NMS-Loss is only
performed on instances wrongly processed by NMS, which enables
end-to-end training. (2) RepLoss only considers regression, while
the score is also used in NMS-Loss to reweight instances. (3) In
dense crowd scenarios, RepLoss pushes instances away even if
their targets are originally close to each other, making the repul-
sion loss contradicts with the regression loss. Instead, NMS-Loss
pushes instances whose IoU with others is higher than the IoU of
its corresponding ground truth boxes, which can eliminates the
contradiction of RepLoss. As shown in Tab. 5, our NMS-Loss not
only performs better than RepLoss, but also gains higher relative
improvement on CityPersons. This demonstrates that our NMS-
Loss can achieve stable relative improvement (higher than 10%)
on the widely used datasets.

4 CONCLUSION AND FUTUREWORK
In this work, we raise the problem of weak connection between
training targets and evaluation metrics in the object detection. To
address this, we propose the NMS-Loss which contains two compo-
nents called pull loss and push loss, making the false predictions
can be directly reflected on loss functions. With the help of NMS-
Loss, the model can be trained with NMS end-to-end and pay more
attention to the false predictions caused by NMS. Our NMS-Loss
can be easily incorporated into network, which does not introduce
any parameters nor runtime cost. NMS-Loss is only suitable for
single class object detection, in the future, we will extend our NMS-
Loss to other tasks by further considering object classes in generic
detections.
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