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ABSTRACT
In recent years, researchers attempt to utilize online social infor-
mation to alleviate data sparsity for collaborative filtering, based
on the rationale that social networks offers the insights to under-
stand the behavioral patterns. However, due to the overlook of
inter-dependent knowledge across items (e.g., categories of prod-
ucts), existing social recommender systems are insufficient to distill
the heterogeneous collaborative signals from both user and item
side. In this work, we propose Self-Supervised Metagraph Infor-
max Network (SMIN) which investigates the potential of jointly
incorporating social- and knowledge-aware relational structures
into the user preference representation for recommendation. To
model relation heterogeneity, we design a metapath-guided hetero-
geneous graph neural network to aggregate feature embeddings
from different types of meta-relations across users and items, em-
powering SMIN to maintain dedicated representations for multi-
faceted user- and item-wise dependencies. Additionally, to inject
high-order collaborative signals, we generalize the mutual infor-
mation learning paradigm under the self-supervised graph-based
collaborative filtering. This endows the expressive modeling of user-
item interactive patterns, by exploring global-level collaborative
relations and underlying isomorphic transformation property of
graph topology. Experimental results on several real-world datasets
demonstrate the effectiveness of our SMINmodel over various state-
of-the-art recommendation methods. We release our source code
at https://github.com/SocialRecsys/SMIN.
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1 INTRODUCTION
Recommender systems have become an essential component in on-
line platforms (e.g., E-commerce [16], news portals [43]) to alleviate
the information overload for users [41, 46]. To predict user prefer-
ence over different items from historical behaviors, collaborative
filtering (CF) has served as the key paradigm to make recommenda-
tion based on users’ potential common preferences [5, 38]. However,
conventional CF methods often suffer from data sparsity and cold
start problems. With the prevalence of online social communities
in enabling users to share their opinions with others, many efforts
have been devoted to incorporating online social network informa-
tion into the user-item interaction learning, to alleviate the data
sparsity issue and enhance recommendation performance [2, 8, 44].

These social recommendation models are proposed based on the
social influence theory that socially connected people are likely
to share similar interests [19]. Earlier methods extend the matrix
factorization architecture to integrate social relationships as reg-
ularization term (e.g., SoReg [20]) or project users into latent rep-
resentations with their trust relationships (e.g., TrustMF [52]). In
recent years, several efforts provide deep insights into neural net-
work techniques and design more sophisticated models to learn
precise user and item embeddings, with the joint integration of user-
user and user-item relational structures. In particular, attention-
based mechanisms, such as SAMN [2] and EATNN [4], perform
the attentive operations over relationships between users through
weighted embedding summation. Furthermore, due to the graph-
structured nature of users’ social connections, several recent works
design graph neural social recommendation models to encode the
user relation graph into latent representation space. For instance,
GraphRec [8] and DANSER [45] adopt the graph attention network
to aggregate feature embeddings from neighboring nodes of the tar-
get user. Motivated by the strength of graph convolution network,
DiffNet [44] is built upon the graph-structured message passing
architecture to conduct the layer-wise information diffusion across
users and approximate the social influence propagation process.

Despite the aforementioned solutions have provided promising
recommendation performance, we argue that existing social-aware
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recommender systems are insufficient to yield quality representa-
tions for preserving user’s preference, since their designed embed-
ding functions lack an explicit encoding of semantic relatedness
between items [55]. In real-world recommendation applications,
incorporating the external knowledge from item side is particularly
helpful to better understand user’s interests [37, 50]. For example, in
online retail platforms, products can be correlated with their similar
functionality [51]. External knowledge from online review systems
(e.g., Yelp) may contain fruitful connections between venues in
terms of their categorical similarities or received reviews [57]. These
semantic signals have great potential to characterize knowledge-
aware relationships across different items [58], which can enhance
the collaborative effect encoding for social recommendation.

The joint modeling of social- and knowledge-aware collaborative
signals poses several unique technical challenges that cannot be
easily handled by existing social recommendation methods. First,
the incorporation of both social and knowledge graph information
into user-item interactions, involves diversified inter-dependencies
which are heterogeneous in nature. How to effectively preserve
the heterogeneous relational structure across users and items in a
unified representation framework, remains a significant challenge.
Second, in practical recommendation scenarios, factors that affect
customer’s behavior are often multifaceted from both user and
item domains [35, 45]. For example, there exist multiple relations
between items reflecting multi-dimensional contextual signals, e.g.,
behavior-level co-interact patterns and knowledge graph-based
item-wise dependencies. Hence, it is a necessity to endow the de-
signed embedding function with the capability of capturing item-
item semantic relatedness and knowledge-aware social influence.
Third, existing solutions extend graph neural networks to social-
aware recommendation has the potential to model social connec-
tions between users. However, incorporating the learned social-
and knowledge-aware information still requires a tailored model-
ing to distill the high-order collaborative relations, with the joint
preservation of local and global graph structural information.
The PresentWork. Having realized the importance of integrating
heterogeneous user- and item-wise relations into the recommenda-
tion framework, as well as the corresponding challenges, this work
develops SMIN (Self-SupervisedMetagraph Informax Networks), a
knowledge-aware social recommendation architecture that simul-
taneously captures relational heterogeneity across users and items.
Specifically, in order to handle relation heterogeneity, we propose
a metapath-guided heterogeneous graph neural module to distill
the multifaceted user-user and item-item relationships with the
exploration of social network homophily, item knowledge graph
dependencies as well as behavioral-level co-interactive patterns.
SMIN first designs a meta relation-guided message passing archi-
tecture which maintains the type-specific relation representation
space. Following the metepath-specific graph encoding layer, we
further conduct the cross-metapath aggregation based on attention
mechanism, to learn summarized representation vectors which cap-
ture the comprehensive semantics ingrained in the heterogeneous
relations among users and items.

After encoding the relation heterogeneity (multifaceted social
and knowledge graph dependencies) across users and items, we next
incorporate the user-user and item-item relations into the encoding

process of user-item interactive patterns, with a self-supervised
graph mutual information learning architecture. Different from
most of existing graph neural network-based collaborative filter-
ing models which merely perform information propagation across
local neighbors, we believe it is of critical importance to develop
a relation encoder that investigates both local and global collabo-
rative signals. Inspired by the effectiveness of introducing mutual
dependencemeasurement in feature representation space [1, 26, 34],
SMIN transfers external knowledge from both user and item side
into our interaction encoder under a self-supervised graph learning
paradigm. Our SMIN performs the self-supervised data augmen-
tation from two-folds: i) Inject the substructure awareness into
the graph neural architecture to distill fine-grained semantics of
local and global user-item interactive patterns; ii) Model the user-
item high-order connectivity with the exploration of three different
graph structure views: high-level substructure-aware global con-
text, low-level node feature representation, and transformation
characteristics of user-item interactive relations.

To summarize, our work makes the following contributions:

• General Aspects. We emphasize the importance of jointly mod-
eling social- and knowledge-aware relations from both user and
item domains for better learning user’s preference. We further
incorporate the relation heterogeneity across users and items
under a self-supervised learning paradigm, into the embedding
space by exploring local and global collaborative similarities.
• Methodologies. To handle relation heterogeneity, we propose a
metapath-guided heterogeneous graph neural network to main-
tain the user- and item-specific dependent representations through
embedding propagation across graph layers. After that, an at-
tentive cross-metapath aggregation layer is introduced to fuse
the rich characteristics of multifaceted user- and item-wise inter-
dependencies. In addition, SMIN allows the learned social- and
knowledge-aware dependence to guide the user-item interaction
embedding process from different structure views under a self-
supervised graph learning architecture.
• Experimental Findings. We perform extensive experiments on
three real-world datasets to demonstrate the superiority of our
framework over state-of-the-art recommendation techniques.

2 PRELIMINARY
This section introduces key definitions and notations used in our
work. Suppose we have 𝐼 users (𝑈 = {𝑢1, ..., 𝑢𝑖 , ..., 𝑢𝐼 }) and 𝐽 items
(𝑉 = {𝑣1, ..., 𝑣 𝑗 , ..., 𝑣 𝐽 }) in a typical recommendation scenario, where
𝑖 and 𝑗 are identifier for user and item, respectively. We define the
user-item interaction matrix X = [𝑥𝑖, 𝑗 ] ∈ R𝐼×𝐽 , in which 𝑥𝑖, 𝑗 ∈
{0, 1} indicates whether user 𝑢𝑖 has interacted with (e.g., purchased
or clicked) item 𝑣 𝑗 , i.e., 𝑥𝑖, 𝑗 = 1 if interaction (𝑢𝑖 , 𝑣 𝑗 ) is observed and
𝑥𝑖, 𝑗 = 0 otherwise. In addition to the interaction data, we propose
to consider side information from both users and items, and further
present the relevant definitions which preserve the heterogeneous
relationships across users and items as below.
Definition 2.1. User Social Graph 𝐺𝑢 . We define graph 𝐺𝑢 =

{𝑈 , 𝐸𝑢 } to denote social relations between users, where there exists
an edge between user 𝑢𝑖 and 𝑢𝑖′ if they are socially connected.
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Figure 1: Illustration of multifaceted meta-relations from both user and item domain.

Definition 2.2. ItemRelational Graph𝐺𝑣 . Tomodel the external
knowledge from item side, we represent the item-wise relational
structures in the form of dependency graph 𝐺𝑣 . Specifically, the
item inter-dependent signals are characterized with item-relation-
item triples (ℎ, 𝑟, 𝑡), where ℎ, 𝑡 ∈ V and 𝑟 ∈ R. Here, R denotes the
set of relations in 𝐺𝑣 . For example, the relation 𝑟 can indicate that
item ℎ belongs to the product category of 𝑟 , or the co-interaction
with the same user.

Based on the above notations, we define the collaborative het-
erogeneous graph G to integrate both user behavior as well side
information from both user and item domains.
Definition 2.3.CollaborativeHeterogeneousGraphG. Collab-
orative Heterogeneous Graph is defined as a unified graph G =

{V, E} which is associated with mapping functions for nodes:
V → A and edges E → B. Here, A and B denotes the sets
of node and edge types, respectively, with |A| + |B| > 2. In particu-
lar, the relation heterogeneity among users and items are modeled
in G with the integration operations as:V = 𝑈 ∪ {ℎ, 𝑡} ∈ 𝐺𝑣 and
E = 𝐸𝑢 ∪ R ∪ {𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡}.
Task Formulation. We now formulate our knowledge-aware so-
cial recommendation task as follows:
• Input: collaborative heterogeneous graph G = {V, E} that col-
lectively integrates user-item interaction 𝐺𝑢 , user social graph
𝐺𝑢 and item relational graph 𝐺𝑣 .
• Output: the predictive function that infers the probability of an
unknown behavior for target user 𝑢𝑖 interacting with item 𝑣 𝑗 .

3 METHODOLOGY
This section presents the details of SMIN which consists of three
key modules (shown in Figure 2): i) Metapath-guided heteroge-
neous graph encoder which simultaneously captures the multifac-
eted social effects and item inter-dependent relations. ii) Cross-
metapath aggregation network that integrates the semantic learned
by metapath-specific representations. iii) Self-supervised graph mu-
tual information learning which injects the social- and knowledge-
aware embeddings into the user-item interaction modeling.

3.1 Meta-Relation Heterogeneity Encoding
We first develop a metapath-guided heterogeneous graph neural
encoder to distill semantic information of user-wise relations and
item-wise inter-dependencies, based on themetapath instances over
the collaborative heterogeneous graph G. In our work, a metapath
instance 𝑝 represents a vertex sequence to capture the structural
and semantic relation between objects [6, 9]. In particular, 𝑝 is
formally defined in the form of A1

E1→ A2
E2→ · · · E𝐶→ A𝐶+1, which

characterizes the meta-relations between vertex typeA1 andA𝐶+1
(𝐶 denotes the length of metapath instance 𝑝).
Definition 3.1.Metapath-based Neighbor. Based on the above
present metapath instance 𝑝 , nodes (𝑣 ′ ∈ V) which are connected
with 𝑣 through metapath instances in graph G, are defined as
metapath-based neighbors 𝑁𝑝

𝑣 of 𝑣 under the metapath instance of
𝑝 . Note that two nodes are connected through different metapath
instances are regarded as different neighborhood relations.

3.1.1 MultifacetedMeta-Relations Generation. In our recom-
mendation scenario, we extract different types of metapath in-
stances for user and item domain, respectively, via exploring mul-
tifaceted social- and knowledge-aware dependence effects. Here,
we define 𝑝𝑢 and 𝑝𝑣 to represent the extracted individual meta-
path instance for user and item, respectively. The corresponding
instance sets are denoted as 𝑃𝑢 and 𝑃𝑣 (𝑝𝑢 ∈ 𝑃𝑢 , 𝑝𝑣 ∈ 𝑃𝑣 ). We
present illustrated examples of multifaceted meta-relations from
both user and item domain in Figure 1.
• Social Network Context. Social network homophily represents
the static social relationships across users given their established
social connections (e.g., friendship, community of interest). The
generated user relation instance within the social network con-
text is 𝑢𝑖

𝑒∈𝐸𝑢→ 𝑢𝑖′ (𝑢𝑖 , 𝑢𝑖′ ∈ 𝑈 )
• Behavior-level User Relation. In addition to the static social
network connections, we propose to model the social influence
with the consideration of user behaviors. The corresponding
metapath instance 𝑝𝑢 over graph G for behavior-level influence
is 𝑢𝑖

𝑒∈𝑋→ 𝑣 𝑗
𝑒∈𝑋→ 𝑢𝑖′ (𝑢𝑖 , 𝑢𝑖′ ∈ 𝑈 and 𝑣 𝑗 ∈ 𝑉 ).

• Knowledge-aware User Dependency. With the incorporation
of item relational graph information into our recommendation
framework, we further integrate the external knowledge graph
signals with behavior-level user influence, so as to generate
another type of metapath instance for user dependency, i.e.,
𝑢𝑖

𝑒∈𝑋→ 𝑣 𝑗
𝑒∈R→ 𝑟

𝑒∈R→ 𝑣 𝑗 ′
𝑒∈𝑋→ 𝑢𝑖′ .

For the item domain, we consider two types of metapaths:
• Behavior-level Item Relation. We consider the influence be-
tween items with their attractiveness based on user interaction
behavior. The attractiveness-based item metapath instance 𝑝𝑣 is
generated as 𝑣 𝑗

𝑒∈𝑋→ 𝑢𝑖
𝑒∈𝑋→ 𝑣 𝑗 ′ (𝑣 𝑗 , 𝑣 𝑗 ′ ∈ 𝑉 and 𝑢𝑖 ∈ 𝑈 ).

• Knowledge-aware ItemDependency. Since the relation graph
𝐺𝑣 characterizes semantic relatedness across items, we alsomodel
implicit item-wise dependencies with entity-based metapath in-
stance of 𝑣 𝑗

𝑒∈R→ 𝑟
𝑒∈R→ 𝑣 𝑗 ′ . 𝑟 denotes the intermediate entity

connecting item 𝑣 𝑗 and 𝑣 𝑗 ′ with different relationships.



Figure 2: (a). The integrative framework of metapath-guided heterogeneous neural network and cross-path aggregation net-
work. (b-c) Substructure-aware global context modeling component that injects user-item high-order connectivity into the
embedding space. (d) The topology-aware mutual information learning via capturing transformation property of user/item-
specific characteristics and the underlying interactive patterns.

3.1.2 Metapath-guidedMessagePropagation. After obtaining
the metapath instances 𝑝 ∈ 𝑃 with the preservation of multifaceted
relational structures from both user and item side, we propose to
encode the underlying relation heterogeneity with a graph-based
neural architecture. In our metapath-guided message propagation
framework, the embedding of individual node (i.e., user 𝑢𝑖 ∈ 𝑈 and
item 𝑣 𝑗 ∈ 𝑉 ) is generated with a graph neural layer aggregating
feature information from metapath-based neighbors.

In particular, given the metapath instance of 𝑝𝑢 and 𝑝𝑣 , we define
the propagated message between (𝑢𝑖 ,𝑢𝑖′ ) and (𝑣 𝑗 ,𝑣 𝑗 ′ ) as𝑚

𝑝𝑢

𝑢𝑖←𝑢𝑖′ and
𝑚
𝑝𝑣

𝑣𝑗←𝑣𝑗′ , respectively. The corresponding embedding propagation
process between users and items can be represented as follows:

𝑚
𝑝𝑢

𝑢𝑖←𝑢𝑖′ = 𝜓 (h𝑝
𝑢

𝑢𝑖′ ;𝜏 (𝑖, 𝑖
′, 𝑝𝑢 )); 𝑚𝑝𝑣

𝑣𝑗←𝑣𝑗′ = 𝜓 (h𝑝
𝑣

𝑣𝑗′ , 𝜏 ( 𝑗, 𝑗
′, 𝑝𝑣))

(1)

Our graph-structured message passing paradigm for neighbor-
hood feature aggregation at layer 𝑙 for node 𝑢𝑖 is formalized as:

h𝑝
𝑢 ,(𝑙+1)

𝑢𝑖
= 𝜎 (h𝑝

𝑢 ,(𝑙 )
𝑢𝑖

W(𝑙 )
𝑝𝑢

1
|𝑁𝑝𝑢

𝑢𝑖
|
+

∑︁
𝑢𝑖′∈𝑁

𝑝𝑢

𝑢𝑖

h𝑝
𝑢 ,(𝑙 )

𝑢𝑖′ W(𝑙 )
𝑝𝑢

1√︃
|𝑁𝑝

𝑢𝑖
| |𝑁𝑝

𝑢𝑖′ |
)

The embedding propagation is performed through multiple (𝐿)
graph layers to update embeddings over metagraph neighborhoods
with the 𝑝-th metapath instance. 𝜎 (·) indicates the PReLU function
for dealing with feature non-linearities. We then apply the concate-
nate operation over the cross-layer social- and knowledge-aware
node embeddings (e.g., h𝑝

𝑢 ,(𝑙)
𝑢𝑖 , h𝑝

𝑣 ,(𝑙)
𝑣𝑗 ).W ∈ R𝑑×𝑑 is the transfor-

mation matrix and Y ∈ R(𝐼+𝐽 )×(𝑑) denotes the user/item local-level
embeddings encoded from their graph-based connectivity.

3.2 Cross-metapath Aggregation Network
We develop an aggregation layer, which is built upon the atten-
tion mechanism, to perform the cross-metapath information ag-
gregation. The aggregation network aims to automatically learn a

normalized importance weight 𝜔𝑝 for each metapath instance 𝑝 ,
which is formally represented with the following operation. Here,
we only present the cross-metapath aggregation layer for user-wise
meta-relations. The same aggregation mechanism will be adopted
for encoding relationship heterogeneity between items.

q𝑝𝑢𝑖 = tanh(h̃𝑝
𝑢

𝑢𝑖
·W1

𝑝𝑢 + b
1
𝑝𝑢 ); �̂�𝑝𝑢 = q𝑝𝑢𝑖 ·W

2
𝑝𝑢

𝜔𝑝𝑢 =
𝑒𝑥𝑝 (�̂�𝑝𝑢 )∑

𝑝𝑢 ∈𝑃𝑢 𝑒𝑥𝑝 (�̂�𝑝𝑢 )
; h∗𝑢𝑖 =

∑︁
𝑝𝑢 ∈𝑃𝑢

𝜔𝑝𝑢 · h̃
𝑝𝑢

𝑢𝑖
(2)

where W1
𝑝𝑢
∈ R𝑑×𝑑 and W2

𝑝𝑢
∈ R𝑑×1 are parameterized atten-

tion transformation matrices. b1𝑝𝑢 ∈ R𝑑 is the attentive bias term.
The estimated importance weight 𝜔𝑝𝑢 reflects the importance of
each type of meta-relation between users and items, e.g., social
network homophily, behavior-level user influence and knowledge-
aware item-wise relations. The summarized embeddings h∗𝑢𝑖 , h

∗
𝑣𝑗

aggregate semantics across heterogeneous user-user and item-item
meta-relations.

3.3 Self-Supervised Mutual Information
Learning

After preserving and extracting the heterogeneous relational struc-
tures into the embedding space of users and items, we aim to inject
high-order interactive patterns into our social recommendation
model. Towards this end, we design a self-supervised mutual in-
formation learning architecture to facilitate learning expressive
representations which jointly exhibit the local-level node-specific
user/item characteristics and global-level graph dependencies. Mo-
tivated by the graph learning framework in [26], this component
is built upon the self-supervised learning framework to construct
supervising signals with auxiliary optimization objective.

3.3.1 Node-Level Graph Embedding Layer. In our framework,
we generate the feature representations H ∈ R(𝐼+𝐽 )×𝑑 for graph



nodes which consist of fused user/item embeddings (h∗𝑢𝑖 , h
∗
𝑣𝑗
), with

the preservation of social- and knowledge-aware heterogeneous
relations (encoded from our cross-metapath aggregation network).
In addition, we define 𝚽 ∈ R(𝐼+𝐽 )×(𝐼+𝐽 ) matrix to represent the
node adjacent relations over the user-item interaction graph, in
which each entry 𝜙 = 1 if the corresponding user 𝑢𝑖 adopts item
𝑣 𝑗 (𝑥𝑖, 𝑗 = 1 in interaction matrix X) and 𝜙 = 0 otherwise. The
encoding process is formally given as follows:

Y = 𝑓 (H,𝚽) = 𝜎 (D
−1
2 · 𝚽 · D

−1
2 ·H ·W) (3)

W ∈ R𝑑×𝑑 is the transformation matrix , D ∈ R(𝐼+𝐽 )×(𝐼+𝐽 ) is the
degree matrix which contains information about the degree of each
vertex and Y ∈ R(𝐼+𝐽 )×(𝑑) represents the user/item embeddings
encoded from their graph-based connectivity.

3.3.2 Substructure-awareGlobalContext Injection. It is worth
mentioning that substructure often reflects unique characteris-
tics and relation signals of graph data for network representa-
tion [26, 39], and collaborative user and item similarities could be
captured sufficiently without constructing long-range graph-based
connections across the entire user-item graph. Hence, we incor-
porate the substructure awareness into global context-enhanced
user-item relation modeling from the low-level node and high-level
graph topological information. In particular, we inject the substruc-
ture awareness into the user-item interaction graph by generating
the 𝑘-order substructure-aware adjacent matrix based on the follow-
ing element-wise addition operations across different order-specific
relation adjacent matrices (e.g., 𝚽1, 𝚽(𝑘−1) ):

𝚽
(𝑘) = 𝚽

(𝑘−1) + (𝚽1 · (𝚽1)T) · · · ·𝚽1︸                    ︷︷                    ︸
𝑘 matrix instances

(4)

where 𝚽1 represents the original adjacent matrix of user-item in-
teraction graph by considering 1-hop neighborhood relations as
edges between nodes. 𝚽𝑘 incorporates all 𝑘-hop neighbors into
the adjacent relations. For example, 𝚽2 = 𝚽

1 + 𝚽1 (𝚽1)T and 𝚽
3 =

𝚽
1+𝚽1 (𝚽1)T+(𝚽1 (𝚽1)T)𝚽1. Given the𝑘-order substructure-aware

adjacent matrix 𝚽(𝑘) , we generate the graph-level representations:

Z =
𝚽
(𝑘)

�̂�

(𝑘) · Y; �̂�

(𝑘)
𝑛 =

(𝐼+𝐽 )∑︁
𝑟 ′=1

𝚽
(𝑘)
𝑟,𝑟 ′ ; 𝚽

(𝑘)
𝑛 ∈ R(𝐼+𝐽 ) (5)

where Z ∈ R(𝐼+𝐽 )×𝑑 represents the learned substructure-aware
global embeddings and each row ofwhich represents the substructure-
aware global embedding corresponding to each node (user 𝑢𝑖 or
item 𝑣 𝑗 ) in the interaction graph. It injects the global graph-structured
context into latent representations Y. �̂�(𝑘) ∈ R(𝐼+𝐽 ) is the degree
matrix which contains the node degree of individual node. Next,
we propose to capture both local and global user-item interactive
patterns via encoding the mutual information between node em-
bedding y𝑛 ∈ Z and the corresponding high-level graph represen-
tation z𝑛 ∈ Z. Following the paradigm in [11], we define our global
context-aware discriminatorD𝛼 (y𝑛, z𝑛) = 𝛿 (y𝑛⊗z𝑛) (𝛿 (·) denotes
the sigmoid function) to classify the pairwise relationship between
y𝑛 and z𝑛 from the joint distribution with the aim of maximizing
the mutual information MI(y𝑛 ; z𝑛). In particular, the embedding
pair (y𝑛, z𝑛) is fed into our discriminator as positive instance. We

generate negative instance (ỹ𝑛, z𝑛). We further define the objec-
tive function with the modeling of global context-aware mutual
information MI(y𝑛 ; z𝑛) as follows:

L𝛼 =
−1
𝐼 + 𝐽 (

𝐼+𝐽∑︁
𝑛=1

𝑙𝑜𝑔D𝛼 (y𝑛, z𝑛) +
𝐼+𝐽∑︁
𝑛=1

𝑙𝑜𝑔[1 − D𝛼 (ỹ𝑛, z𝑛)]) (6)

Minimizing the above cross-entropy-based loss contributes to the
mutual informationmaximization and capturing the user-item high-
order collaborative relations from locally to globally.

3.3.3 Topology-AwareMutual InformationEncoding. Wepro-
pose to consider the properties of the topological information over
the user-item interaction graph (motivated by the graph structure
modeling in [24, 26]). Specifically, we define our topology-aware
mutual information as MI(h∗𝑛, y𝑛) and MI(Z ·ZT,𝚽) which reflects
the transformation property of node and edge structural feature,
respectively. To achieve this goal, we design our discriminator
D𝛽 (y𝑛,h𝑛) = 𝛿 (y𝑛 ⊗ h𝑛), to endow our graph embedding layer
𝑓 (H,𝚽) with the ability of preserving characteristics of node dimen-
sion between y𝑛 and h𝑛 . The corresponding optimized objective
function is given:

L𝛽 =
−1
𝐼 + 𝐽 (

𝐼+𝐽∑︁
𝑛=1

𝑙𝑜𝑔D𝛽 (y𝑛,h𝑛) +
𝐼+𝐽∑︁
𝑛=1

𝑙𝑜𝑔[1 − D𝛽 (ỹ𝑛,h𝑛)]) (7)

Additionally, another dimension of transformation lies in the
encoded user-item interactions (relational edges) from our graph
embedding layer. The loss with edge transformation is defined as:

L𝛾 =
1
𝑅

𝑅∑︁
𝑟=1
(1 − �̃�𝑟 )2; �̃� = Z · ZT (Z ∈ R(𝐼+𝐽 )×𝑑 ) (8)

�̃� indicates the re-constructed user-item connections which are
generated with our encoded user and item representations z𝑢𝑖 and
z𝑣𝑗 . 𝑅 (indexed by 𝑟 ) denotes the number of non-zero elements
in �̃�. With the preservation of the transformation of both nodes
and their connections, we augment the representation learning by
incorporating topology-aware user-item interactions.

3.4 The Learning Process of SMIN
3.4.1 Optimization Objective. We define our joint optimized
objection L with the integration of heterogeneous relationship
learning across users and items, and user-item interaction mod-
eling via graph-structured mutual information encoder, based on
Bayesian personalized ranking loss:

L =
−1
𝑁

( ∑︁
𝑢𝑖 ,𝑣

+
𝑗
,𝑣−

𝑗
∈𝑂

𝑙𝑜𝑔[𝛿 (h∗𝑢𝑖 ,h
∗
𝑣+
𝑗

) − 𝛿 (h∗𝑢𝑖 ,h
∗
𝑣−
𝑗
)]

+𝜆0 ∥ Θ ∥2 +𝜆𝛼 · L𝛼 + 𝜆𝛽 · L𝛽 + 𝜆𝛾 · L𝛾
)

(9)

where 𝑂 is the training instance consisting of positive ((𝑢𝑖 , 𝑣+𝑗 ))
and negative ((𝑢𝑖 , 𝑣−𝑗 )) samples corresponding to the observed and
unobserved interactions between user and item. Θ denotes the
trainable parameters for regularization with the strength of 𝜆0. 𝜆𝛼 ,
𝜆𝛽 and 𝜆𝛾 balances the loss functions with mutual information
maximization from different views.



Table 1: Statistical information of the datasets.
Dataset Ciao Epinions Yelp
# of Users 6,776 15,210 161,305
# of Items 101,415 233,929 114,852
# of Interactions 271,573 644,715 1,118,645
Interaction Density 0.0395% 0.0181% 0.0060%

3.4.2 Model Complexity Analysis. In this subsection, we per-
form time complexity analysis of our SMIN method. Particularly,
the cost of cross-layer message propagation in our metapath-guided
heterogeneous graph neural network lies in the𝑂 ( |𝐸 |×𝐿×𝑑), where
|𝐸 | denotes the number of meta-connections, 𝐿 represents the depth
of our graph neural network, and 𝑑 denotes the latent dimensional-
ity. The final prediction layer has the complexity of𝑂 ( |𝐸𝑢−𝑣 |×𝐿×𝑑) .
Given the component-specific complexity analysis, the overall com-
putational complexity of SMIN is𝑂 (( |𝐸 | + |𝐸𝑢−𝑣 |) ×𝐿×𝑑), which is
comparable to most of existing social recommendation approaches.

4 EVALUATION
We evaluate the performance of our SMIN recommendation frame-
work on three public datasets collected from real-life platforms.
This section aims to study the following research questions (RQs):
• RQ1: How does SMIN perform compared with various baselines?
• RQ2: How do different components (e.g., metapath-guided het-
erogeneous graph neural network,mutual information-augmented
learning paradigm) affect the performance of SMIN?
• RQ3: What is the impact of different types of meta-relations
across users and items in the recommendation performance?
• RQ4: How do different settings of key hyperparameters affect
the model prediction performance?
• RQ5: How do the learned latent representations benefit from
the collectively encoding of social- and knowledge-enhanced
user-item interactive patterns?

4.1 Experimental Settings
4.1.1 Data Description. Our SMIN framework is evaluated on
three real-world datasets. We present the data statistics in Table 1
and elaborate details of individual dataset as below:
• Ciao and Epinions Data1. These two datasets serve as bench-
marks for evaluating social recommender systems. Ciao and
Epinions are two popular consumer review platforms in which
users are free to establish their social connections.
• Yelp Data2. This data is collected from Yelp platform and con-
tains users’ online friendships with respect to their similar inter-
ests. In Yelp, customers could provide feedback on local venues
from different business categories.

4.1.2 Evaluation Protocols. In our evaluation, we adopt the
leave-one-out strategy for training and testing set generation, which
has been widely used in recommendation applications [27, 44]. To
follow the similar experimental settings in [2, 33] and enable the re-
sult evaluation in an efficient way, we pair the positive sample of the
target user with 99 negative instances which have no interaction

1https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
2https://www.yelp.com/dataset/download

with this user. Since this work focus on top-N item recommen-
dation scenario, we leverage two representative recommendation
evaluation metrics: Hit Ratio (HR) and Normalized Discounted Cu-
mulative Gain(NDCG). In our experiments, in addition to user-user
dependencies and user-item interactions, we further generate the
knowledge-aware item relations by extracting external knowledge
(i.e., categories of item) from item domain.

4.1.3 Baselines for Comparison. We compare SMIN with vari-
ous state-of-the-art baselines as shown below:
• PMF [23]: it is a probabilistic matrix factorization method to
factorize users and items into latent feature vectors.
• TrustMF [52]: The proposed new matrix factorization-based
framework incorporates the users’ trust relationships into the
embedding process, to augment the user preference modeling.
• EATNN [4]: It is an adaptive transfer learning model with atten-
tion network to capture the interplay between users and items.
• SAMN [2]: A dual-stage attention model is developed to approx-
imate the user-wise relations with their social neighbors.
• DiffNet [44]: It recursively updates users’ embeddings with a in-
fluence diffusion component. The user-item collaborative signals
are captured through a fusion layer.
• GraphRec [8]: In this framework, a graph attention framework
is developed for embedding propagation between users for social
relation aggregation.
• DANSER [45]: It designs a dual-stage graph attention network
to model multifaceted social effects in recommendation.
• DGRec [32]: This social recommender system attempts to model
dynamic user behavioral patterns and social influence by inte-
grating the recurrent neural network with graph attention layer.
• NGCF+ [41]: It is a state-of-the-art graph neural network-based
collaborative filtering model. We extend it to perform message
propagation over our heterogeneous graph G.
• KGAT [40]: It incorporates the knowledge graph information
into the collaborative relation modeling and performs recursively
embedding propagation between connected node instances.
• MKR [37]: MKR is a knowledge-aware recommender system
based on multi-task learning paradigm, which leverages knowl-
edge graph representation task to assist the encoding of user-item
interactions.
• HERec [31]: it is a heterogeneous network embedding approach
with meta-path random walk for node sequence generation.
• MCRec [12]: this recommendation method incorporates the
meta-path based context into the neural co-attention mecha-
nism for recommendation performance improvement.
• HAN [42]: it captures the heterogeneity of graph using the atten-
tive encoder to differentiate relations between users and items.

4.1.4 Parameter Settings. We implement SMIN in PyTorch and
optimize it with Adam optimizer. The learning process is performed
with the batch size tuned amongst [1024, 2048, 4096, 8192] and
learning rate of 5𝑒−2 (with decay rate of 0.95 every epoch). 𝐿2 regu-
larization term with 𝜆0 of 0.05 is adopted over Θ. The number of
hidden state dimensionality 𝑑 is tuned from [8,16,32,64,128]. The
depth 𝐿 of our graph neural layers in our relation heterogeneity



Table 2: Recommendation performance of different methods in terms of HR@10 and NDCG@10.

Dataset Metrics PMF TrustMF DiffNet SAMN DGRec EATNN NGCF+ KGAT MKR GraphRec DANSER HERec MCRec HAN SMIN

Ciao HR 0.6385 0.6560 0.6747 0.6576 0.6653 0.6738 0.6945 0.6601 0.6793 0.6825 0.6730 0.6800 0.6772 0.6589 0.7108
NDCG 0.4420 0.4532 0.4636 0.4561 0.4593 0.4665 0.4894 0.4512 0.4589 0.4730 0.4521 0.4712 0.4708 0.4469 0.5012

Epinions HR 0.7445 0.7502 0.7699 0.7592 0.7603 0.7650 0.7984 0.7510 0.7647 0.7723 0.7714 0.7642 0.7630 0.7505 0.8179
NDCG 0.5491 0.5551 0.5702 0.5614 0.5668 0.5663 0.5945 0.5578 0.5669 0.5751 0.5741 0.5495 0.5326 0.5275 0.6137

Yelp HR 0.7554 0.7791 0.8048 0.7910 0.7950 0.8031 0.8265 0.7881 0.8005 0.8098 0.8077 0.7928 0.7869 0.7731 0.8478
NDCG 0.5165 0.5424 0.5670 0.5516 0.5593 0.5560 0.5854 0.5501 0.5635 0.5679 0.5692 0.5612 0.5590 0.5604 0.5993

Table 3: Ranking performance on Epinions dataset with
varying Top-N value in terms of HR@N and NDCG@N

Model HR@5 NDCG@5 HR@10 NDCG@10 HR@15 NDCG@15
SAMN 0.6492 0.4851 0.7592 0.5614 0.7975 0.5492
EATNN 0.6642 0.5086 0.7650 0.5663 0.7646 0.5491
DGRec 0.6564 0.4970 0.7603 0.5668 0.7947 0.5467
DiffNet 0.6428 0.4819 0.7699 0.5702 0.8009 0.5437

GraphRec 0.6615 0.4941 0.7647 0.5669 0.7900 0.5414
DANSER 0.6704 0.5297 0.7723 0.5751 0.8106 0.5562
NGCF+ 0.7002 0.5619 0.7984 0.5945 0.8419 0.6014
KGAT 0.6538 0.4952 0.7510 0.5578 0.7882 0.5403
MKR 0.6518 0.5056 0.7714 0.5741 0.8257 0.5712
SMIN 0.7245 0.5871 0.8179 0.6137 0.8622 0.6241

encoder is chosen from 1 to 3. The number of neighbors 𝑘 for global-
level context injection in our graph mutual information learning
architecture is set as 2. The sensitivities of those key hyperparame-
ters have been investigated in Section 4.5. The performance of most
neural methods is evaluated based on their source code.

4.2 Performance Comparison (RQ1)
Table 2 summarizes the performance comparison between our de-
veloped SMIN and competing state-of-the-arts on three datasets.
We summarize the following observations:
(1). In terms of both metrics, we can observe that SMIN consis-
tently outperforms other alternatives in all cases, which suggests
the effectiveness of our method by modeling heterogeneous social
and item graph dependencies (based on user- and item-wise meta
relation schema) under a self-supervised graph neural architecture.
(2). Among various baselines, graph neural network social recom-
mendation models (e.g., GraphRec and DANSER) perform better
than others, which suggests that the graph-structured embedding
aggregation paradigm is an effective solution for social-aware rec-
ommender systems. The consistent performance gap between our
SMIN and those GNN-based approaches, implies that encoding
relation heterogeneity from both social and item domain could
enhance graph neural architecture for recommendation. We further
optimize those graph models by stacking more graph layers to fit
the high-order user-item interaction, but have not observed clear
improvement with 𝐿 ≥ 3.
(3). While NGCF+ also considers the cross-user and item dependen-
cies under a graph learning architecture, by comparing with SMIN
and NGCF+, we can observe that our develop mutual information
learning framework results in further performance improvement
compared with other graph-based model for capturing high-order
user-item collaborative relations.
(4). We can notice that recently proposed knowledge-aware rec-
ommendation techniques (i.e., KGAT and MKR) experience perfor-
mance degeneration, which sheds light on the limitation of failing to
comprehensively transfer the knowledge graph semantics into the

users’ behavior modeling. Different from them, SMIN achieves bet-
ter performance by utilizing the multifaceted relationships across
users and items as self-supervised signals to guide the user prefer-
ences representation.
(5). From the presented evaluation results in Table 3, the perfor-
mance superiority of our SMIN can be observed under different
top-𝑁 recommended items. This observation further validates the
effectiveness of our new recommendation framework.

4.3 Ablation Study of SMIN Framework (RQ2)
We conduct experiments to demonstrate the rationality of sub-
components in our SMIN model. To achieve this goal, we implement
five simplified variants to show the influence of each model design.

• Effect of Relation Heterogeneity Modeling. SMIN -h. We re-
move the metapath-guided heterogeneous graph neural network
to fuse multifaceted user- and item-wise relationships.
• Effect of Self-Supervised Information Encoder. SMIN -s. We
do not include the multi-view graph mutual information encoder
into our framework. Instead, we merely utilize graph convolution
network to perform embedding propagation over the collabora-
tive heterogeneous graph G.
• Effect of Global Context Injection. SMIN -g. We remove the
mutual information MI(y𝑛 ; z𝑛) to inject the global-level collabo-
rative signals based on graph substructure.
• Effect of Topology-aware Isomorphic Transformation. SMIN -
t. In this variant, we remove the constrains of the isomorphic
transformation in terms of topological node and edge character-
istics, i.e., MI(h∗𝑛, y𝑛) and MI(Z · ZT,𝚽).
• Effect of Cross-Metapath Aggregation. SMIN -a. We replace
the cross-metapath aggregation layer with the mean pooling
operation without differentiating the importance of metapath-
specific relational feature representations.

The study results are shown in Table 4. We summarize the follow-
ing findings. (1) The performance is improved with our metapath-
guided self-supervised heterogeneous graph network for capturing
diversified social and item-wise relations. (2) The performance gap
between SMIN and SMIN -s verifies the rationality of considering
multi-view mutual relational signals in recommendation under a
self-supervised learning paradigm. (3) Injecting the substructure-
aware graph global context imposes positive effect for encoding
high-order user-item connectivity. (4) The careful consideration of
relational learning gains more insights for modeling graph-based
user-item interaction topological structure. (5) SMIN outperforms
SMIN -a demonstrates the efficacy of encoding the importance of
each metapath instance in an explicit way for generating user and
item embeddings. This is because that each type of user-user and



Table 4: Ablation Study of SMIN Framework.
Variants Ciao Epinions Yelp
Metrics HR NDCG HR NDCG HR NDCG
SMIN -h 0.6864 0.4706 0.8024 0.5934 0.8362 0.5887
SMIN -s 0.6800 0.4669 0.8034 0.5892 0.8422 0.5907
SMIN -g 0.6913 0.4769 0.8155 0.6114 0.8468 0.5903
SMIN -t 0.6833 0.4743 0.8144 0.6069 0.8456 0.5982
SMIN -a 0.6838 0.4645 0.8094 0.5909 0.8425 0.5894
SMIN 0.6919 0.4751 0.8179 0.6137 0.8465 0.5989

item-item relations contribute differently for the learning of user-
item interactive patterns.

4.4 Effect Analyses of Meta-Relations (RQ3)
To study the effect of multifaceted meta-relations incorporated in
our metapath-guided heterogeneous graph neural network, we also
perform ablation studies with the integration of different meta-
relations from user and item domain. In specific, we generate four
contrast variants of SMIN as below for performance comparison:
• SMIN -UU: SMIN without the user-user online social ties to cap-
ture the social network homophily, i.e., 𝑢𝑖

𝑒∈𝐸𝑢→ 𝑢𝑖′ .
• SMIN -UIU&IUI: SMIN without the behavior-level user and item
relationships, i.e., item-specific user influence (𝑢𝑖

𝑒∈𝑋→ 𝑣 𝑗
𝑒∈𝑋→ 𝑢𝑖′ )

and user-specific item dependency (𝑣 𝑗
𝑒∈𝑋→ 𝑢𝑖

𝑒∈𝑋→ 𝑣 𝑗 ′ ).
• SMIN -IKI: SMIN without the item semantic relatedness extracted
from item relation graph 𝐺𝑣 , i.e., 𝑣 𝑗

𝑒∈R→ ℎ
𝑒∈R→ 𝑣 𝑗 ′ .

• SMIN -UIKIU: SMIN without the knowledge-aware dependency
between users, i.e., 𝑢𝑖

𝑒∈𝑋→ 𝑣 𝑗
𝑒∈R→ ℎ

𝑒∈R→ 𝑣 𝑗 ′
𝑒∈𝑋→ 𝑢𝑖′ .

The investigation results are shown in Figure 3, we could observe
that SMIN with the full set of meta-relationships obtains the best
recommendation accuracy as compared to other alternatives. In
particular, i) by competing with SMIN -UU, social context with the
network homophily has positive effects to model user’s influence.
ii) SMIN -UIU&IUI erases the performance gain achieved by our
model. This justifies the importance of capturing item-specific user
influence and user-specific item dependency, in encoding relations
across users and items. iii) When competing with SMIN -IKI, the
results emphasizes the need of latent semantic relatedness between
items in recommendation. iv) Through integrating the relational
graph signals with item-specific user preference into our metapath
generation phase, our scheme could further improve the recom-
mendation accuracy as compared to SMIN -UIKIU.

4.5 Hyperparameter Study (RQ4)
To gain further insights into our SMIN architecture, we now study
the impact of hyperparameter settings from the following aspects.
Figure 4 shows the results on different datasets. We integrate eval-
uation results (with different value scales) of two datasets into the
same figure by presenting the performance increase/decrease per-
centage (compared with the first data point) in y-axis.
Hidden Unit Dimensionality 𝑑 . We vary the hidden dimension-
ality 𝑑 of our latent representations from 8 to 128. The model per-
formance saturates as the number of hidden units reaches around
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Figure 3: Effect analyses of meta-relation (𝑝 ∈ 𝑃 ) incorpora-
tion in SMIN in terms of HR@10.
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Figure 4: Hyperparameter study. y-axis shows the perfor-
mance increase/decrease compared to the first data point.

64, since the larger embedding dimensionality may bring stronger
representation ability. However, the further increase of 𝑑 leads to
the slightly performance degradation due to the overfitting issue.
Depth of Graph Neural Encoder 𝐿. We analyze the influence of
the number of GNN layers by varying 𝐿 from 1 to 3 while keeping
other parameters as default settings. The best performance of our
SMIN is achieved when 𝐿 = 2. Further stacking more information
propagation layers (e.g., 𝐿 = 3) leads to the worse performance,
which suggests that two-order connections in our heterogeneous
graph architecture is sufficient to capture the multifaceted relations
across users and items.
Substructure-aware𝑘-HopsNeighbors. We further examine the
impact of incorporating 𝑘-hop neighboring relations into our global
context injection with the awareness of graph substructure. We
could notice that the performance is boosted with the increase of 𝑘
as 2 at the beginning stage. By modeling the global-level collabora-
tive relations with the higher-order (𝑘 = 3), it may introduce some
noise and irrelevant dependence signals.

4.6 User/Item Embedding Visualizations (RQ5)
We perform the qualitative study on the user and item latent rep-
resentations learned by SMIN. In particular, we project the dense
embedding vectors to 2-D space with the t-SNE algorithm [21]. As
shown in Figure 5, we can observe that embeddings learned by
SMIN present a better clustering phenomenon (denoted with the
same color) comparedwith the embeddings of GraphRec andHERec.
This suggests the effectiveness of our method in well preserving the
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Figure 5: Embedding visualization of users (stars) and inter-
acted items (circles) based on different encoding methods.

user-item interactive relationships. Additionally, a better embed-
ding separation phenomenon can be observed for differentiating
users who interact with different items. These observations fur-
ther verify the rationality of our graph-structured main embedding
space which bridges the semantics between user and item domain,
such that the external knowledge can be utilized to guide the het-
erogeneous relation representation.

5 RELATEDWORK
5.1 Social Recommendation Techniques
In recent years, many efforts have been devoted to developing
social-aware recommendation techniques with various neural net-
work architectures. In particular, attention networks has been used
for social influence modeling between different users [2, 4]. Further-
more, due to the graph-structured nature of social relations, several
social recommendation methods have been proposed to handle
social network information with graph neural networks [17]. For
instance, DiffNet [44] leverages the graph convolution network
to approximate the influence diffusion across users. Additionally,
graph-based attentive aggregation models (e.g., DANSER [45] and
GraphRec [8]) adapt attention mechanism to the user-user relation
graph, capturing social signals for recommendation. However, most
of those methods fail to incorporate the knowledge-aware informa-
tion from item domain into the social-aware user-item interaction
encoding. To fill this gap, this work develops a metagraph informax
network, to enhance the social recommendation with the explicitly
modeling of item-wise dependency information–containing fruitful
facts and semantic relatedness about items.

5.2 GNNs for Recommendation
The objective of graph neural networks is to project nodes in a
generated graph into a low-dimensional vector space [42, 56]. The
rationality which motivates the development of graph neural net-
work, is that nodes are naturally characterized by their own features
and neighbors [7, 14, 28, 48]. Following this idea, many recent ef-
forts aim to explore the user-item interaction graph structure for
recommendation scenarios [47]. For example, based on the graph
convolution operation, several studies propose to capture the collab-
orative relationships between users and items over their interaction
graph, such as PinSage [53] andNGCF [41]. Later on, LightGCN [10]
optimizes the GCN-based user-item relation encoder by only keep-
ing the most essential module–neighborhood aggregation in the
graph-structured message passing paradigm. This work develops a
hierarchical learning framework by integrating a metapath-guided

graph neural module and a substructure-aware mutual information
modeling paradigm for social-aware recommender system.

5.3 Self-Supervised Learning
Self-supervised learning has shown its effectiveness in learning
representations from limited labeled data, such as natural language
processing [18, 29, 30] and image data analysis [22, 25]. The gen-
eral idea of self-supervised learning is to design pretext training
tasks, so as to offer additional supervision signals. There exists
one line of recent trend aims to propose self-supervised learning
paradigms over graph-structured data [13, 15, 54]. For example,
Hu et al. [13] proposes a pre-trained graph neural network based
on the graph reconstruction task in terms of the attributed and
structural information. Additionally, a hypergraph convolutional
network is augmented with a self-supervised learning framework
with respect to the mutual information exploration [54]. Different
from the above methods, this work is the first to inject the relational
knowledge from user and item side as the self-supervised informa-
tion into social recommendation. This will enhance the user/item
representation paradigm to learn a knowledge-aware global infor-
mation, which leads to better recommendation performance.

5.4 Knowledge-aware Recommender Systems
Another relevant research line of recommendation methods lies in
incorporating the external knowledge information as the side in-
formation of items [47, 59]. These knowledge-aware recommender
systems transfer structural knowledge among items to the user-
item interaction modeling to improve the recommendation perfor-
mance [3, 49]. With the promising results of graph neural networks
in relation learning, researchers have recently attempted to inves-
tigate the structural knowledge with the embedding propagation
paradigm, such as KGAT [40] and KGNN-LS [36]. Different from
these knowledge-aware recommendation methods, this paper em-
power recommender systems with the ability of utilizing not only
the knowledge information from item domain, but also exploring
the multifaceted social signals, in order to boost the performance.

6 CONCLUSION
In this paper, we propose the Self-Supervised Metagraph Infomax
Networks (SMIN) architecture for knowledge-aware social recom-
mendation. Our model learns social and knowledge graph depen-
dent relationships for users and items via a metapath-guided het-
erogeneous graph neural network. Furthermore, a self-supervised
learning framework is introduced to augment themodeling of graph
structural information, so as to preserve the complex relationships
among users and items. Extensive experimental results on several
real-life datasets demonstrate the advantage of our framework as
compared to various state-of-the-art recommendation models.
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