
HAL Id: hal-03014435
https://hal.science/hal-03014435v1

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collapsible Pushdown Parity Games
Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, Andrzej S.

Murawski, C. -H. Luke Ong, Olivier Serre

To cite this version:
Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, Andrzej S. Murawski, C. -H. Luke Ong,
et al.. Collapsible Pushdown Parity Games. ACM Transactions on Computational Logic, 2021, 22
(3), pp.16:1-16:51. �hal-03014435�

https://hal.science/hal-03014435v1
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Collapsible Pushdown Parity Games

CHRISTOPHER H. BROADBENT, Department of Computer Science, University of Oxford, UK

ARNAUD CARAYOL, CNRS, LIGM (Université Paris Est & CNRS), France

MATTHEW HAGUE, Royal Holloway, University of London, UK

ANDRZEJ S. MURAWSKI, Department of Computer Science, University of Oxford, UK

C.-H. LUKE ONG, Department of Computer Science, University of Oxford, UK

OLIVIER SERRE, Université de Paris, IRIF, CNRS, France

This paper studies a large class of two-player perfect-information turn-based parity games on in�nite graphs,
namely those generated by collapsible pushdown automata. The main motivation for studying these games
comes from the connections from collapsible pushdown automata and higher-order recursion schemes, both
models being equi-expressive for generating in�nite trees. Our main result is to establish the decidability of
such games and to provide an e�ective representation of the winning region as well as of a winning strategy.
Thus, the results obtained here provide all necessary tools for an in-depth study of logical properties of trees
generated by collapsible pushdown automata/recursion schemes.

CCS Concepts: • Theory of computation→ Formal languages and automata theory; Veri�cation by

model checking.

Additional Key Words and Phrases: Higher-Order (Collapsible) Pushdown Automata, Two-Player Perfect-

Information Trun-Based Parity Games, Logic

ACM Reference Format:

ChristopherH. Broadbent, ArnaudCarayol,MatthewHague, Andrzej S.Murawski, C.-H. LukeOng, andOlivier
Serre. 2021. Collapsible PushdownParity Games. 1, 1 (April 2021), 51 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

This paper studies a large class of two-player perfect-information turn-based parity games on
in�nite graphs, namely those generated by collapsible pushdown automata (CPDA).

Parity Games on Infinite Graphs

A two-player perfect-information turn-based parity game on a graph (or simply a parity game)
is played by two players, Éloïse and Abelard, who move a pebble along edges of a graph whose
vertices have been partitioned between the two players and coloured by a function assigning to
every vertex a colour chosen in a �nite subset ofN. The player owning the current vertex, chooses

Authors’ addresses: Christopher H. Broadbent, Department of Computer Science, University of Oxford, Oxford, UK,
chbroadbent@gmail.com; Arnaud Carayol, CNRS, LIGM (Université Paris Est & CNRS), 5 boulevard Descartes — Champs
sur Marne, Marne-la-Vallée Cedex 2, 77454, France, Arnaud.Carayol@univ-mlv.fr; Matthew Hague, Royal Holloway, Uni-
versity of London, London, UK, Matthew.Hague@rhul.ac.uk; Andrzej S. Murawski, Department of Computer Science, Uni-
versity of Oxford, Oxford, UK, Andrzej.Murawski@cs.ox.ac.uk; C.-H. Luke Ong, Department of Computer Science, Univer-
sity of Oxford, Oxford, UK, Luke.Ong@cs.ox.ac.uk; Olivier Serre, Université de Paris, IRIF, CNRS, Bâtiment Sophie Germain,
Case courrier 7014, 8 Place Aurélie Nemours, Paris Cedex 13, 75205, France, Olivier.Serre@cnrs.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Broadbent et al.

where to move the pebble next and so on forever. Hence, a play is an in�nite path in the graph,
and the winner is determined thanks to the colouring function by declaring Éloïse to win if and
only if the smallest colour appearing in�nitely often is even.
Parity games have been widely studied since the 80s because of their close links to important

problems arising from logic. A fundamental result of Rabin is that ω-regular tree languages, equiv-
alently tree languages de�nable in monadic second-order (MSO) logic, form a Boolean algebra [31].
The di�cult part of the proof is complementation, and since the publication of this result in 1969, it
has been a challenging problem to simplify it. A much simpler one was obtained by Gurevich and
Harrington in [21] making use of Muller games for checkingmembership of a tree in the language
accepted by an automaton: Éloïse builds a run on the input tree while Abelard tries to exhibit a
rejecting branch in the run. The proof of Gurevich and Harrington was followed by many others
trying to simplify the original proof of Rabin (in particular Emerson and Jutla who introduced
the connection with parity games in [19]), and beyond this historical result, the tight connection
between automata and games is one of the main tools in the areas of automata theory and logic
(see e.g. [35, 39, 40]).

The above-mentioned result of Rabin is equivalent to the fact that, given a formula from MSO
logic, one can decide whether it holds in the complete in�nite binary tree. Whether this result can
be extended to more and more complex classes of trees is an active line of research since then.
While decidability of MSO logic on the complete binary tree is equivalent to deciding whether
Éloïse has a winning strategy in a parity game played on a �nite graph, extensions tomore complex
trees require one to consider games played on in�nite graphs (and the more general the trees, the
more general the graphs to be considered).
Since the late 1990s, another important motivation for considering games played on in�nite

graphs emerged because of their connections with program veri�cation. Here, there is a trade-
o� between richness of the graph describing the program to verify and decidability of the logic
used to express the property to check. Regarding logic, most of the logics considered in program
veri�cation are captured by the µ-calculus (an extension of modal logic with �xpoint operators)
and therefore the model-checking problem is reduced again to solving a parity game played on
a graph that is a synchronised product between the graph describing the system to verify and a
�nite graph describing the dynamic of the formula. Hence, the quest here is to look for graphs that
model programs using natural features in programming languages (e.g. recursion, higher-order
arguments, rich data domains, etc.) and whose associated parity games remain decidable.
Both objectives — extending Rabin’s result to richer trees and verifying programs with natural

features in programming languages — games played on graphs generated by pushdown automata
and their extensions, in particular collapsible pushdown automata, have proven to be fruitful. In a
nutshell, collapsible pushdown automata extend usual pushdown automata by replacing the (order-
1) stack by an order-n stack that is de�ned as a stack whose elements are order-(n − 1) stacks and
whose base symbols are equipped with links pointing deeper in the stack and that can later be
used to collapse the stack.

Main Results

Collapsible pushdown automata are equi-expressive with higher-order recursion schemes — these
are essentially �nite typed deterministic term rewriting systems that generate an in�nite treewhen
one applies the rewriting rules ad in�nitum — for generating trees [23, 24], this class of trees
subsumes all known classes of trees with decidable MSO theories. Regarding programs, collapsible
pushdown automata permit to capture higher-order procedure calls — a central feature in modern
day programming and supported by many languages such as C ++, Haskell, OCaML, Javascript,
Python, or Scala.

, Vol. 1, No. 1, Article . Publication date: April 2021.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Collapsible Pushdown Parity Games 3

Hence, considering parity games played on transition graphs of (collapsible) pushdown au-
tomata is a central problem for both extending Rabin’s seminal result and verifying real-life pro-
grams. The study of such games raises three questions of increasing di�culty.

(1) Decide, for a given initial position, whether Éloïse has a winning strategy, i.e. whether she
has a way to play that guarantees she wins regardless of the choices of Abelard. In the con-
text of program veri�cation, the counterpart of this question is the (local) model-checking
problem.

(2) Finitely describe Éloïse’s winning region, i.e. the set of all positions from which she has a
winning strategy. While in the setting of games on �nite graphs this is equivalent to the
previous question, when considering an in�nite graph it is unclear whether a �nite presen-
tation of the winning region exists and, when it does, speci�c tools must be used to describe
such an object. In the context of program veri�cation, the counterpart of this question is the
global model-checking problem.

(3) Finitely describe, for a given initial position, a winning strategy for Éloïse. Note that a clas-
sical result (positional determinacy [19]) on parity games states that winning strategies can
always be chosen to be positional, i.e. to depend only on the current vertex; however, when
describing a winning strategy in a game played on an in�nite graph, the purpose is to �nd
a suitable machine model of implementing a winning strategy rather than focusing on cap-
turing a special (simple) form of winning strategies. In the context of program veri�cation,
the counterpart of this question is the synthesis problem.

In this paper we positively answer those questions. More speci�cally, our main Theorem implies
the following.

(1) One can decide, for a given initial position, whether Éloïse has a winning strategy and this
is an n-ExpTime-complete problem, where n is the order of the underlying collapsible push-
down automaton.

(2) We introduce a model of �nite-state automata de�ning regular sets of con�gurations of col-
lapsible pushdown automata and prove that the winning region is always such an (e�ective)
regular set.

(3) We introduce amodel of collapsible pushdown automata tailored to describing strategies and
prove that, for any game, we can compute a winning strategy described by such a machine.

Note that the above-mentioned results were presented by the authors in a series of papers in the
LiCS conference [8, 15, 23] and that the current paper gives a unifying and complete presentation
of their proofs.

Related Work

We brie�y review the known results on collapsible pushdown parity games (and subclasses). See
Table 1 for a summary.

The �rst paper explicitly considering pushdown games (i.e. order-1 CPDA games) is [37, 38]: an
optimal algorithm for deciding the winner is given (ExpTime-complete) as well as a construction
of a strategy realised by a synchronised pushdown automaton. However, decidability can be de-
rived from the MSO decidability of pushdown graphs [30] in combination with the existence of
positional winning strategies in parity games on in�nite graphs [19]: indeed one canwrite anMSO
formula stating the existence of a positional winning strategy for Éloïse (see e.g. [10] for such a
formula). A construction similar to the one in [37, 38] was given by Serre in his Ph. D. [33], and
we partly build upon it in the present paper. Another approach, using two-way alternating parity
tree automata, was developed by Vardi in [36]. The winning region was characterised in [9, 32]
and later in [22, 26] using saturation techniques.

, Vol. 1, No. 1, Article . Publication date: April 2021.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Broadbent et al.

Cachat �rst considered parity games played on transition graphs of higher-order pushdown au-
tomata (HOPDA, a strict subclass of collapsible pushdown automata) in [11] providing an optimal
algorithm for deciding the winner (n-ExpTime-complete, where n is the order). As for pushdown
games, decidability can be derived from the MSO decidability of higher-order pushdown graphs
[17] in combination with the existence of positional winning strategies in parity games on in�nite
graphs [19]. An alternative simpler proof was given in [14] that permits moreover to characterise
the winning region and to construct a synchronised order-n higher-order pushdown automaton
realising a winning strategy. Also see [16] for an approach extending the techniques of [36] to
higher-order, and [3, 25] for saturation techniques (for the reachability winning condition only).
Order-2 collapsible pushdown parity games were considered in [28] (under the name of panic

automata), where an optimal algorithm for deciding the winner (2-ExpTime-complete) was given.
The general case was later solved in [23]. Winning regions were characterised in [8] and the win-
ning strategies in [15] (even if the results are somehow implicit in [23]). Finally, in [5], for the case
of the reachability winning condition, the approach of [25] was extended, leading to an algorithm
based on the saturation method to compute the winning region, and on top of this algorithm the
C-SHORe tool was developed [6].

Consequences

The consequences of the results presented here, together with the equi-expressivity result [15, 23,
24] between higher-order recursion schemes and collapsible pushdown automata for generating
trees, are mainly for the study of logical properties of the in�nite trees generated by recursion
schemes. In particular, they imply the decidability of the MSO model-checking problem, both its
local [23] and global version (also known as re�ection) [8], and the MSO selection problem (a
synthesis-like problem) [15].
Due to space constraints, these results are discussed in full detail in a companion paper [7].

Structure of This Paper

The article is organised as follows. Section 2 introduces the main concepts and some intermediate
results. In Section 3 we state our main result. Its proof is by induction and each induction step is di-
vided into three sub-steps, which are respectively described in Section 4 (providing a normal form
for CPDA), Section 5 (getting rid of the outmost links in the stack structure) and Section 6 (reduc-
ing the order of the CPDA). Section 7 summarises the proof and establishes matching upper and
lower complexity bounds. Finally, Section 8 discusses some logical consequences for collapsible
pushdown graphs.

2 PRELIMINARIES

2.1 Basic Objects

An alphabetA is a (possibly in�nite) set of letters. In the sequelA∗ denotes the set of�nite words
over A, and Aω the set of in�nite words over A. The empty word is written ε and the length of a
word u is denoted by |u |. Let u be a �nite word and v be a (possibly in�nite) word. Then u · v (or
simply uv) denotes the concatenation of u and v ; the word u is a pre�x of v i� there exists a word
w such that v = u ·w .

A graph is a pair G = (V , E), where V is a (possibly in�nite) set of vertices and E ⊆ V ×V is a
(possibly in�nite) set of edges. For every vertex v we let E (v ) = {w | (v,w ) ∈ E}. We assume that
for each vertex v ofG E (v ) is not empty.
When τ is a (partial) mapping, we let dom(τ ) denote its domain.

, Vol. 1, No. 1, Article . Publication date: April 2021.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Collapsible Pushdown Parity Games 5

Pushdown n-HOPDA n-CPDA

S
o
lv
in
g

W
in
n
in
g
re
g
io
n

W
in
n
in
g
st
ra
te
g
y

Decidable
[30] + [19]

ExpTime-complete
[33, 36, 37]

Decidable
[17] + [19]

n-ExpTime-complete
[11, 14]

n-ExpTime-complete
[23]

See also [28] for
a previous study

at order-2

Regular [9, 22, 26, 32]

Regular
[14, 16]

See also [3, 25] for
reachability using
saturation methods

Regular
[8]

See also [5] for
reachability using
saturation methods

Realised by a syn-
chronised push-
down automaton

[33, 37]

Realised by a syn-
chronised n-HOPDA

[14, 16]

Realised by a syn-
chronised n-CPDA

[15, 23]

Table 1. Known results on collapsible pushdown parity games and subclasses.

2.2 Two-Player Perfect-Information Parity Games

An arena is a triple G = (G,VE,VA), whereG = (V , E) is a graph andV = VE ⊎VA is a partition of
the vertices among two players, Éloïse and Abelard.
Éloïse and Abelard play in G by moving a pebble along edges. A play from an initial vertex

v0 proceeds as follows: the player owning v0 (i.e. Éloïse if v0 ∈ VE, Abelard otherwise) moves the
pebble to a vertex v1 ∈ E (v0). Then the player owning v1 chooses a successor v2 ∈ E (v1) and
so on. As we assumed that there is no dead-end, a play is an in�nite word v0v1v2 · · · ∈ Vω such
that for all 0 ≤ i one has vi+1 ∈ E (vi ). A partial play is a pre�x of a play, i.e. it is a �nite word
v0v1 · · ·vℓ ∈ V

∗ such that for all 0 ≤ i < ℓ one has vi+1 ∈ E (vi ).
A strategy for Éloïse is a functionφE : V ∗VE → V assigning, to every partial play ending in some

vertex v ∈ VE, a vertex v ′ ∈ E (v ). Strategies of Abelard are de�ned likewise, and usually denoted
φA. In a given play λ = v0v1 · · · we say that Éloïse (resp. Abelard) respects a strategy φE (resp. φA)
if whenever vi ∈ VE (resp. vi ∈ VA) one has vi+1 = φE (v0 · · ·vi ) (resp. vi+1 = φA (v0 · · ·vi )).

, Vol. 1, No. 1, Article . Publication date: April 2021.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Broadbent et al.

A winning condition is a subset Ω ⊆ Vω and a (two-player perfect information) game is a
pair G = (G,Ω) consisting of an arena and a winning condition. A game is �nite if it is played on
a �nite arena.
A play λ is won by Éloïse if and only if λ ∈ Ω; otherwise λ is won by Abelard. A strategy φ is

winning for player X in G from a vertex v0 if any play starting fromv0 where X respects φ is won
by X . Finally a vertex v0 is winning for X in G if X has a winning strategy φ from v0.
A parity winning condition is de�ned by a colouring function ρ, i.e. a mapping ρ : V →

C ⊂ N, whereC is a �nite set of colours. The parity winning condition associated with ρ is the set
Ωρ = {v0v1 · · · ∈ V

ω | lim inf (ρ (vi ))i≥0 is even}, i.e. a play is winning if and only if the smallest
colour visited in�nitely often is even. A parity game is a game of the form G = (G,Ωρ ) for some
colouring function.

2.3 Stacks with Links and Their Operations

Fix an alphabet Γ of stack symbols and a distinguished bo�om-of-stack symbol⊥ ∈ Γ. An order-
0 stack (or simply 0-stack) is just a stack symbol. An order-(n + 1) stack (or simply (n + 1)-

stack) s is a non-null sequence, written [s1 · · · sl], of n-stacks such that every non-⊥ Γ-symbol γ
that occurs in s has a link to a stack of some order e (say, where 0 ≤ e ≤ n) situated below it in
s; we call the link an (e + 1)-link. The order of a stack s is written ord (s ). The height of a stack
[s1 · · · sl] is de�ned as l .
As usual, the bottom-of-stack symbol ⊥ cannot be popped from or pushed onto a stack. Thus

we require an order-1 stack to be a non-null sequence [γ1 · · ·γl] of elements of Γ such that for all
1 ≤ i ≤ l , γi = ⊥ i� i = 1. We inductively de�ne ⊥k , the empty k-stack, as follows: ⊥0 = ⊥ and
⊥k+1 = [⊥k].
We �rst de�ne the operations popi and topi with i ≥ 1: topi (s ) returns the top (i − 1)-stack of

s , and popi (s ) returns s with its top (i − 1)-stack removed. Precisely let s = [s1 · · · sl+1] be a stack
with 1 ≤ i ≤ ord (s ):

topi ([s1 · · · sl+1]︸        ︷︷        ︸
s

) =

{
sl+1 if i = ord (s )
topi (sl+1) if i < ord (s )

popi ([s1 · · · sl+1]︸        ︷︷        ︸
s

) =

{
[s1 · · · sl] if i = ord (s ) and l ≥ 1
[s1 · · · sl popi (sl+1)] if i < ord (s )

By abuse of notation, we set topord (s )+1(s ) = s . Note that popi (s ) is unde�ned if topi+1 (s ) is a
one-element i-stack. For example pop2 ([[⊥α β]]) and pop1 ([[⊥α β][⊥]]) are both unde�ned.
There are two kinds of push operations. We start with the order-1 push. Let γ be a non-⊥ stack

symbol and 1 ≤ e ≤ ord (s ), we de�ne a new stack operation push
γ ,e
1 that, when applied to s , �rst

attaches a link from γ to the (e−1)-stack immediately below the top (e−1)-stack of s , then pushes
γ (with its link) onto the top 1-stack of s . Formally, for 1 ≤ e ≤ ord (s ) and γ ∈ (Γ \ { ⊥ }), we de�ne

push
γ ,e
1 ([s1 · · · sl+1]︸        ︷︷        ︸

s

) =





[s1 · · · sl push
γ ,e
1 (sl+1)] if e < ord (s )

[s1 · · · sl sl+1 γ
†] if e = ord (s ) = 1

[s1 · · · sl push
γ̂
1 (sl+1)] if e = ord (s ) ≥ 2 and l ≥ 1

where

• γ † denotes the symbol γ with a link to the 0-stack sl+1
• γ̂ denotes the symbol γ with a link to the (e − 1)-stack sl ; and we de�ne

push
γ̂
1 ([t1 · · · tr+1]︸        ︷︷        ︸

t

) =

{
[t1 · · · tr push

γ̂
1 (tr+1)] if ord (t ) > 1

[t1 · · · tr+1 γ̂] if ord (t ) = 1

, Vol. 1, No. 1, Article . Publication date: April 2021.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Collapsible Pushdown Parity Games 7

The higher-order pushj , where j ≥ 2, simply duplicates the top (j − 1)-stack of s . Precisely, let
s = [s1 · · · sl+1] be a stack with 2 ≤ j ≤ ord (s ):

pushj ([s1 · · · sl+1]︸        ︷︷        ︸
s

) =

{
[s1 · · · sl+1 sl+1] if j = ord (s )
[s1 · · · sl pushj (sl+1)] if j < ord (s )

Note that in case j = ord (s ) above, the link structure of sl+1 is preserved by the copy that is pushed
on top by pushj .
We also de�ne, for any stack symbol γ , an operation on stacks that rewrites the topmost stack

symbol without modifying its link. Formally:

rew
γ
1 [s1 · · · sl+1]︸        ︷︷        ︸

s

=

{
[s1 · · · sl rew

γ
1 sl+1] if ord (s ) > 1

[s1 · · · sl γ̂] if ord (s ) = 1 and l ≥ 1

where γ̂ denotes the symbolγ with a link to the same target as the link from sl+1. Note that rew
γ
1 (s )

is unde�ned if top2 (s ) is the empty 1-stack.
Finally, there is an important operation called collapse . We say that the n-stack s0 is a pre�x

of an n-stack s , written s0 ≤ s , just in case s0 can be obtained from s by a sequence of (possibly
higher-order) pop operations. Take an n-stack s where s0 ≤ s , for some n-stack s0, and top1 s has a
link to tope (s0). Then collapse s is de�ned to be s0.

Example 2.1. To avoid clutter, when displaying n-stacks in examples, we shall omit 1-links (in-
deed by construction they can only point to the symbol directly below), writing e.g. [[⊥][⊥α β]]
instead of [[⊥][⊥ α β]].
Take the 3-stack s = [[[⊥α]] [[⊥][⊥α]]]. We have

push
γ ,2
1 (s ) = [[[⊥α]] [[⊥][⊥α γ]]]

collapse (pushγ ,21 (s )) = [[[⊥α]] [[⊥]]]

pushγ ,31 (rewβ
1 (push

γ ,2
1 (s )))︸                             ︷︷                             ︸

θ

= [[[⊥α]] [[⊥][⊥α β γ]]].

Then push2 (θ ) and rewα
1 (push3 (θ )) are respectively

[[[⊥α]] [[⊥][⊥α β γ][⊥α β γ]]] and

[[[⊥α]] [[⊥][⊥α β γ]] [[][⊥α β α]]].

We have collapse (push2 (θ )) = collapse (rewα
1 (push3 (θ ))) = collapse (θ ) = [[[⊥α]]].

The set OpΓn of order-n CPDA stack operations over stack alphabet Γ (or simply Opn if Γ is
clear from the context) comprises six types of operations:

(1) popk for each 1 ≤ k ≤ n,
(2) pushj for each 2 ≤ j ≤ n,

(3) pushγ ,e1 for each 1 ≤ e ≤ n and each γ ∈ (Γ \ { ⊥ }),
(4) rew

γ
1 for each γ ∈ (Γ \ { ⊥ }),

(5) collapse , and
(6) id for the identity operation (i.e. id (s ) = s for all stack s).

Remark 2.2. One way to give a formal semantics of the stack operations is to work with appro-
priate numeric representations of the links as explained in [24, Section 3.2]. We believe that the

, Vol. 1, No. 1, Article . Publication date: April 2021.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Broadbent et al.

informal presentation should be su�cient for this work and hence refer the reader to [24] for a
formal de�nition of stacks.

2.4 Collapsible Pushdown Automata (CPDA) and their Transition Graphs

Collapsible pushdown automata are a generalisation (to all �nite orders) of pushdown automata with
links [1]. They are de�ned as automata with a �nite control and a stack asmemory. In this work, we
are interested in CPDA as generators for in�nite graphs rather than word acceptors or generators
of an in�nite tree (see [24] for corresponding de�nitions), hence we consider a non-deterministic
version of them but do not equip them with an input alphabet.

An order-n collapsible pushdown automaton (n-CPDA) is a 4-tupleA = (Γ,Q,∆,q0), where
Γ is the stack alphabet,Q is the �nite set of control states,q0 ∈ Q is the initial state, and∆ : Q×Γ →

2Q×Op
Γ
n×Op

Γ
n is the transition function and satis�es the following constraint. For any q,γ ∈ Q × Γ,

for any (q′,op1,op2) ∈ ∆(q,γ ) one has that op1 ∈ {rewα
1 | α ∈ Γ} ∪ {id } and op2 < {rewα

1 | α ∈ Γ}:
hence a transition will always act on the stack by (possibly) rewriting the top symbol and then
(possibly) performing another kind of operation on the stack. In the following, we will use notation
(q′,op1;op2) instead of (q′,op1,op2) (to stress that one performs op1 followed by op2).

Remark 2.3. Obviously allowing a top-rewriting operation followed by another stack operation
does not add expressive power to the model. However, for technical reasons, this choice simpli�es
the presentation.

Con�gurations of an n-CPDA are pairs of the form (q, s ) where q ∈ Q and s is an n-stack over
Γ; we call (q0,⊥n ) the initial con�guration.
An n-CPDA A = (Γ,Q,∆,q0) naturally de�nes a transition graph Graph(A) := (V , E) whose

verticesV are the con�gurations ofA andwhose edge relation E ⊆ V×V is given by: ((q, s ), (q′, s ′)) ∈
E i� ∃(q′,op1;op2) ∈ ∆(q, top1 (s )) such that s ′ = op2 (op1 (s )). Such a graph is called an n-CPDA

graph.

Example 2.4. Consider the following 2-CPDA (that actually does not make use of links) A =
({⊥,α }, {qa ,qb ,qc ,q♯, q̃a , q̃b , q̃c },∆, q̃a ) with ∆ as follows (we only give those transitions that may
happen):

• ∆(q̃a,⊥) = {(qa , id; push
α
1 )}

• ∆(qa,α ) = {(qa , id; push
α
1 ), (q̃b , id; push2)};

• ∆(q̃b ,α ) = ∆(qb ,α ) = {(qb , id; pop1)};
• ∆(qb ,⊥) = {(q̃c , id; pop2)};
• ∆(q̃c ,α ) = ∆(qc ,α ) = {(qc , id; pop1)};
• ∆(qc ,⊥) = {(q♯, id; id)};
• ∆(q♯,⊥, _) = ∅.

Then Graph(A) is given in Figure 1.

2.5 CPDA Parity Games

We now explain how CPDA can be used to de�ne parity games. LetA = (Γ,Q,∆,q0) be an order-
n CPDA and let Graph(A) = (V , E) be its transition graph. Let QE ⊎ QA be a partition of Q and
let ρ : Q −→ C ⊂ N be a colouring function (over states). Altogether they de�ne a partition
VE ⊎ VA of V , whereby a vertex belongs to VE i� its control state belongs to QE, and a colouring
function ρ : V −→ C , where a vertex is assigned the colour of its control state. The structure
G = (Graph(A),VE,VA) de�nes an arena and the pair G = (G,Ωρ ) de�nes a parity game that we
call an n-CPDA parity game.
Given an n-CPDA parity game, there are three main algorithmic questions:

, Vol. 1, No. 1, Article . Publication date: April 2021.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Collapsible Pushdown Parity Games 9

(q̃a, [[⊥]]) (qa, [[⊥α]]) (qa, [[⊥αα]]) (qa, [[⊥ααα]])

(q̃b , [[⊥α][⊥α]])

(qb , [[⊥α][⊥]])

(q̃c , [[⊥α]])

(qc , [[⊥]])(q♯, [[⊥]])

(q̃b , [[⊥αα][⊥αα]])

(qb , [[⊥αα][⊥α]])

(qb , [[⊥αα][⊥]])

(q̃c , [[⊥αα]])

(qc , [[⊥α]])

(q̃b , [[⊥ααα][⊥ααα]])

(qb , [[⊥ααα][⊥αα]])

(qb , [[⊥ααα][⊥α]])

(qb , [[⊥ααα][⊥]])

(q̃c , [[⊥ααα]])

(qc , [[⊥αα]])

Fig. 1. Transition graph of the CPDA of Example 2.4.

(1) Decide whether (q0,⊥n ) is winning for Éloïse.
(2) Provide a description of the winning region for Éloïse.
(3) If (q0,⊥n ) is winning for Éloïse, provide a description of a winning strategy for Éloïse from

(q0,⊥n ).

Remark 2.5. Note that the �rst question is equivalent to the following one: given a vertex v ∈ V
decide whetherv is winning for Éloïse. Indeed, one can always design a new n-CPDA parity game
that simulates the original one except that from the initial con�guration the players are �rst forced
to go to v , from where the simulation really starts.

To answer the second question, we will introduce the notion of regular sets of stacks, and to
answer the third one we will consider strategies realised by n-CPDA transducers.

2.6 Regular Sets of Stacks with Links

We start by introducing a class of automata with a �nite state-set that can be used to recognize
sets of stacks. Let s be an order-n stack. We �rst associate with s = s1, · · · , sℓ a well-bracketed
word of depth n, s̃ ∈ (Σ ∪ {[, ]})∗:

s̃ :=




[s̃1 · · · s̃ℓ] if n ≥ 1

s if n = 0 (i.e. s ∈ Σ)

, Vol. 1, No. 1, Article . Publication date: April 2021.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Broadbent et al.

In order to re�ect the link structure, we de�ne a partial function target (s ) : {1, · · · , |̃s |} → {1, · · · , |̃s |}
that assigns to every position in {1, · · · , |̃s |} the index of the end of the stack targeted by the corre-
sponding link (if exists; indeed this is unde�ned for ⊥, [ and ]). Thus with s is associated the pair
(̃s, target (s )); and with a set S of stacks is associated the set S̃ = { (̃s, target (s )) | s ∈ S }.

Example 2.6. Consider the stack s = [[[⊥α]] [[⊥][⊥a β γ]]]. Then

s̃ = [[[⊥α]] [[⊥][⊥α β γ]]]

and target (s ) = τ where τ (5) = 4, τ (14) = 13, τ (15) = 11 and τ (16) = 7.

We consider deterministic �nite automata working on such representations of stacks. The au-
tomaton reads the word s̃ from left to right (that is, from bottom to top). On reading a letter that
does not have a link (i.e. target is unde�ned on its index) the automaton updates its state accord-
ing to the current state and the letter; on reading a letter that has a link, the automaton updates
its state according to the current state, the letter and the state it was in after processing the tar-
geted position. A run is accepting if it ends in a �nal state. One can think of these automata as a
deterministic version of Stirling’s dependency tree automata [34] restricted to words.
Formally, an automaton is a tuple (R,A, rin, F , δ ) where R is a �nite set of states, A is a �nite

input alphabet, rin ∈ R is the initial state, F ⊆ R is a set of �nal states and δ : (R×A)∪(R×A×R) → R

is a transition function. With a pair (u, τ ) where u = a1 · · ·an ∈ A
∗ and τ is a partial map from

{1, · · ·n} → {1, · · ·n}, we associate a unique run r0 · · · rn as follows:

• r0 = rin;
• for all 0 ≤ i < n, ri+1 = δ (ri ,ai+1) if i + 1 < Dom(τ );
• for all 0 ≤ i < n, ri+1 = δ (ri ,ai+1, rτ (i+1)) if i + 1 ∈ Dom(τ ).

The run is accepting just if rn ∈ F , and the pair (u, τ ) is accepted just if the associated run is
accepting.
To recognise con�gurations instead of stacks, we use the same machinery but now add the

control state at the end of the coding of the stack. We code a con�guration (q, s ) as the pair (̃s ·
q, target (s )) (hence the input alphabet of the automaton also contains a copy of the control state
of the corresponding CPDA).
Finally, we say that a set L of n-stacks over alphabet Γ is regular just if there is an automaton B

such that for every n-stack s over Γ,B accepts (̃s, target (s )) i� s ∈ L. Regular sets of con�gurations
are de�ned in the same way.
Regular sets of stacks (resp. con�gurations) form an e�ective Boolean algebra.

Property 2.7. Let L1, L2 be regular sets of n-stacks over an alphabet Γ. Then L1 ∪ L2, L1 ∩ L2 and
Stacks (Γ) \L1 are also regular (here Stacks (Γ) denotes the set of all stacks over Γ). The same holds
for regular sets of con�gurations.

Proof. Closure under complement comes from the fact that we consider deterministic automata.
Closure under union or intersection is achieved by considering a Cartesian product, as in the case
of �nite automata on �nite words. �

The following result shows that the notion of regular sets of n-stacks is robust with respect
to the computational model of CPDA. The result is used only when discussing consequences in
Section 8.1 and therefore its proof can safely be skipped by the reader.

Theorem 2.8. Let A be an order-n CPDA with a state-set Q and a stack alphabet Γ, and let L be
a regular set of con�gurations.

, Vol. 1, No. 1, Article . Publication date: April 2021.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Collapsible Pushdown Parity Games 11

Then, one can build an order-n CPDA A′ with a state-set Q ′, a subset F ⊆ Q ′ and a mapping
χ : Q ′ → Q such that the following holds.

(1) Restricted to the reachable con�gurations from their respective initial con�guration, the transi-
tion graph of A and A′ are isomorphic.

(2) For every con�guration (q, s ) of A that is reachable from the initial con�guration, the corre-
sponding con�guration (q′, s ′) of A is such that q = χ (q′) and belongs (q, s ) belongs to L if
and only if q′ ∈ F .

Proof. Fix an order-n CPDAA and an automaton B = (R, Γ ∪ {[, ]}, rin, F , δ ) accepting L.
Let s be an order-n stack. Let 0 ≤ k ≤ n and let t be the topmost k-stack of s , i.e. t = topk+1 (s ).

We are interested in describing how B behaves when reading popk (t ) (for some technical reason
we do not care of the topmost (k − 1)-stack in t as we will later compose those behaviours), with
the convention that pop0 (t ) = t . If there was no link, this behaviour could simply be described as
a function from R into R. However, as we extracted t from s , there may be some “dangling link” of
order greater than k .
We refer to Figure 2 for an illustration of the concepts below for the case wheren = 4. To retrieve

the states attached to the respective targets of the links (of order n, · · · ,k + 1 respectively) in s ,
we will use as a parameter n − k states rn, · · · , rk+1 in R. For n-links, we consider the run induced
by reading s starting from rn and this gives the values for the respective targets of the n-links. For
(n − 1)-links, we consider the run induced by reading topn (s ) starting from rn−1 (note that states
in dangling n-links are known thanks to rn from the previous step) and this gives the values for
the respective targets of the (n − 1)-links. And so on until we consider, for (k + 1)-links, the run
induced by reading topk+2 (s ) starting from rk+1 (note that states in dangling i-links for i > k are
known thanks to ri ) and this gives the values for the respectives targets of the (k + 1)-links.
Hence, we associate with t a function τk : Rn−k → (R → R) such that τk (rn, . . . , rk+1) de�nes a

function from R into R that maps every state r ∈ R to the state τk (rn, . . . , rk+1) (r ) that is reached
by B when reading popk (t ) starting from r and where the states attached to the respective targets
of the links are determined by rn, · · · , rk+1 as explained above.
A stack symbol of the CPDAA′, is a pair, consisting of a stack symbol ofA, and an (n+1)-tuple

of the form (τn, · · · , τ0) where the τi s are as above.
As the function τk describes the behaviour of popk (topk+1 (s )), if we want to reconstruct the

behaviour of topk+1 (s ) we need to compose, in the appropriate way, the various τi function for
i ≤ k which leads the following de�nition. We de�ne τ+0 (rn · · · r1) to be the same function as
τ0 (rn · · · , r1); and for each 1 ≤ k ≤ n,

τ+k (rn · · · rk+1) :




R → R

r 7→ τ+
k−1 (rn · · · rk ) (τk (rn · · · rk+1) (r ))

.
Hence, each τ+

k
is a function from R to R induced by reading (the segment of) s starting from

topk+1 (s ). As each τ
+

k
can be obtained from the τi s, we safely assume that we can access them

directly inA′ when reading the top1 element of the stack. Note that, considering τ+n applied to the
initial state rin of B we deduce whether the current stack is accepted by B: hence this information
will be maintained, together with a state fromQ , in the control state ofA′ and is used to de�ne F .
The function χ is the one erasing all auxiliary informations used byA′ in its control state.

We now explain howA′ behaves. Assume that the topmost stack symbol is (a, (τn, · · · , τ0)) and
that theA-state stored is q. Then, the possible transitions ofA′ mimic the ones ofA when being
in state q with topmost stack symbol a. For each order-n stack operation op of A, we de�ne the
corresponding stack operation of A′:

, Vol. 1, No. 1, Article . Publication date: April 2021.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Broadbent et al.

r4

τ 4

r3

τ3

· · · · · ·

r2

τ 2

τ1

a0 · · · aℓ b

τ0
...

...

...

...

?

?

?

?

?

Fig. 2. Illustration for the proof of Theorem 2.8 when n = 4. Missing states (?) in k-link’s target are retrieve
by reading topk+1 (s ) from rk . For every k , τ

+

k
is obtained by composing the τi s for i ≤ k .

• If op = pushk thenA′ performs pushk followed by rewa, (τn, · · · ,τk+1,τ ,τk−1, · · · ,τ0)
1 , where for ev-

ery r ∈ R, τ (rn, · · · , rk+1) (r ) = δ (τ+k−1 (rn, · · · , rk+1, r ) (r
′), ]k ) with r ′ = τk (rn, · · · , rk+1) (r ).

Indeed, after performing a pushk operation the only topi stack that is di�erent from the one
before, is for i = k . Hence, one only needs to update τk , which now maps a state r to the
state r ′ obtained by �rst applying the previous τk followed by the transformation induced by
the former top k − 1-stack (with the missing k-links being retrieve starting from r ) together
with the missing closing parenthesis ]k .

• If op = pushb,k1 then A′ performs push (b, (τn, · · · ,τ2,τ ,τb )),k1 where τ and τb are de�ned as
follows. The function τ is equal to τ+1 while the function τb (rn, . . . , r1) maps a state r to
δ (r ,b, τk (rn, . . . , rk+1) (rk )). Indeed, one simply has to update τ1 and τ0. Regarding τ1 one
needs now to take into the former topmost symbol which is exactly what does τ+1 . For τ0 one
simulates the behaviour of B when reading a b and uses τk with the appropriate parameters
to retrieve the state in the target of the newly created link.
• If op = popk (resp. collapse following a k-link) then A′ performs popk (resp. collapse), con-

siders the new topmost stack symbol (a′, (τ ′n, · · · , τ
′
0 )) and does a rew

(a′, (τn, · · · ,τk+1,τ
′
k
, ...τ ′0 )

1 .
Indeed, for any stack s and any i > k , popi (topi+1(s )) = popi (topi+1(popk (s ))) and therefore
τn , · · · , τk+1 are inherited from the previous con�guration while the other components are
preserved from the last time where (possibly a copy of) the topmost symbol was on top of
the stack (being inductively assumed to be correct).

Correctness of the construction follows inductively from the above de�nition. �

, Vol. 1, No. 1, Article . Publication date: April 2021.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Collapsible Pushdown Parity Games 13

2.7 CPDA strategies

Let A = (Γ,Q,∆,q0) be an order-n CPDA, let Graph(A) = (V , E) be its transition graph, let
G = (Graph(A),VE,VA) be an arena associated with A and let G = (G,Ωρ ) be a corresponding
n-CPDA parity game.

We aim at de�ning a notion of n-CPDA transducers that provide a description for strategies in
G, that is the transducer describes a function from partial plays in G into V .
Consider a partial play λ = v0v1 · · ·vℓ in G where v0 = (q0,⊥n ). An alternative description of

λ is by a sequence (q1, rew1;op1) · · · (qℓ, rewℓ ;opℓ ) ∈ (Q × OpΓn × Op
Γ
n )
∗ such that vi = (qi , si ) for

all 1 ≤ i ≤ ℓ and si = opi (rewi (si−1)) (with the convention that s0 = ⊥n ). We may in the following
use implicitly this representation of λ when needed. Similarly, one can represent a strategy as a
(partial) function

φ : (Q × OpΓn × Op
Γ
n )
∗ → Q × OpΓn × Op

Γ
n

the meaning being that in a partial play λ ending in some vertex (q, s ) if φ (λ) = (q′, rew ;op) then
the player moves to (q′,op (rew (s ))).
An n-CPDA transducer realising a strategy in G is a tuple S = (Σ,R, δ , τ , r0) where Σ is a

stack alphabet, R is a �nite set of states, r0 ∈ R is the initial state,

δ : R × Σ × (Q × OpΓn × Op
Γ
n ) → R × OpΣn × Op

Σ
n

is a deterministic transition function and

τ : R × Σ→ Q × OpΓn × Op
Γ
n

is a deterministic choice function (note that we do not require τ to be total). For both δ and τ we
have the same requirement as for the transition function for CPDAs, namely that the �rst stack
operation should be a top-rewriting (or the identity) and that the second one should not be a
top-rewriting.
A con�guration of S is a pair (r , t ) where r is a state and t is an n-stack over Σ; the initial

con�guration of S is (r0,⊥n ). With a con�guration (r , t ) is associated, when de�ned, a (unique)
move in G given by τ (r , top1 (t )). A partial play λ = (q1, rew1;op1) · · · (qℓ, rewℓ ;opℓ ) in G induces
a (unique, when de�ned) run of S which is the sequence

(r0, t0) (r1, t1) · · · (rℓ, tℓ )

where (r0, t0) = (r0,⊥n ) is the initial con�guration of S and for all 0 ≤ i ≤ ℓ − 1 one has
δ (ri , top1 (ti ), (qi+1, rewi+1;opi+1)) = (ri+1, rew

′
i+1;op

′
i+1) with ti+1 = op ′i+1(rew

′
i+1(ti )). In other

words, the control state and the stack of S are updated accordingly to δ .
We say that S is synchronised with A i� for all (r ,α , (q, rew ;op)) ∈ R × Σ × (Q × OpΓn × Op

Γ
n )

such that δ (r ,α , (q, rew ;op)) = (r ′, rew ′;op ′) is de�ned one has that op and op ′ are of the same
kind, i.e. either they are both a popk (for the same k) or both a pushk (for the same k) or both a
push_,e1 (the symbol pushed being possibly di�erent but the order of the link being the same) or
both collapse or both id. In particular, if one de�nes the shape of a stack s as the stack obtained
by replacing all symbols appearing in s by a fresh symbol ♯ (but keeping the links) one has the
following.

Proposition 2.9. Assume that S is synchronised withA. Then, for any partial play λ inG ending
in a con�guration with stack s , the run of S on λ, when exists, ends in a con�guration with stack t
such that s and t have the same shape.

The strategy realised byS is the (partial) functionφS de�ned by letting φS (λ) = τ ((r , top1 (t )))
where (r , t ) is the last con�guration of the run of S on λ.

, Vol. 1, No. 1, Article . Publication date: April 2021.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Broadbent et al.

We say that φS is well-de�ned i� for any partial play λ = (q1, rew1;op1) · · · (qℓ, rewℓ ;opℓ )
where Éloïse respects φS whenever the last vertex (qℓ, sℓ ) in λ belongs to VE one has φS (λ) ∈
∆(q, top1 (sℓ )), i.e. the move given by φS is a valid one.

3 MAIN RESULT

The following theorem is the central result of this paper.

Theorem 3.1. Let A = (Γ,Q, δ ,q0) be an n-CPDA and let G be an n-CPDA parity game de�ned
from A. Then one has the following results.

(1) Deciding whether (q0,⊥n ) is winning for Éloïse is an n-ExpTime-complete problem.
(2) The winning region for Éloïse (resp. for Abelard) is regular. Moreover, one can compute an

automaton that recognises it.
(3) If (q0,⊥n ) is winning for Éloïse then one can e�ectively construct an n-CPDA transducer S

synchronisedwithA realising a well-de�ned winning strategy S for Éloïse inG from (q0,⊥n ).

The proof is by induction on the order and each induction step is itself divided into three steps:
the �rst one is a normalisation result (Section 4), the second one removes the outermost links
(Section 5) while the third one lowers the order (Section 6). Finally Section 7 combines the previous
constructions and provides the proof of Theorem 3.1.

4 RANK-AWARE CPDA

Intuitively, a CPDA is “rank-aware” whenever, during any run of the CPDA, one can easily deter-
mine the smallest colour seen since the creation of the link on the topmost symbol. In particular,
one only needs to inspect the current control state and topmost stack symbol. This information
will be crucial in the next section when we show how to remove the outermost links from a CPDA.
In this section, we show that any CPDA can be transformed into an equivalent rank-aware CPDA.
The notion of equivalence is formalised in the statement of Theorem 4.8.

Fix, for the whole section, an n-CPDAA = (Γ,Q,∆,q0), a partitionQE⊎QA ofQ and a colouring
function ρ : Q → C ⊂ N. Denote by G its transition graph, by G the arena induced by G and the
partition QE ⊎QA and by G the parity game (G,Ωρ ).

4.1 Definitions

Our main goal in this sub-section is to de�ne the notion of rank-awareness. To do this we will
de�ne the notion of link-rank. Assume that in con�gurationvm the top1-element has a link (that is
possibly a copy of a link) that was created in con�guration vj : then the link-rank in vm is de�ned
as the smallest colour since the creation of the link, i.e. min{ρ (vj ), · · · ρ (vm )}. Ultimately, we will
show how to enrich the stack alphabet to be able to compute the link-rank. In order to maintain
this information, we need to de�ne several other concepts. First we will de�ne indexed stacks,
from which, we can then de�ne the collapse-rank (for updating after performing a collapse) and
the pop-rank for k (for updating after performing a popk ).
A �nite path in G is a non-empty sequence of con�gurations v0v1 · · ·vm such that for all

0 ≤ i ≤ m − 1, there is an edge in G from vi to vi+1. An in�nite path is an in�nite sequence of
con�gurations v0v1 · · · such that for all i ≥ 0, there is an edge in G from vi to vi+1. Note that we
do not require v0 to be the initial con�guration.
We now de�ne a generalisation ofn-stacks called indexed n-stacks. Following the same notations

as in Section 2.6, a stack s is equivalently described as a pair (̃s, target (s )) (recall that s̃ is a well-
bracketed word description of s and that target (s ) gives the link structure). An indexed n-stack

is described by a triple (̃s, target (s ), ind (s )) where s̃ = s̃1 · · · s̃ |s̃ | and target (s ) are as previously and
where ind (s ) : {1, . . . , |̃s |} → N is a partial function that is de�ned in any position j < |̃s | − n such

, Vol. 1, No. 1, Article . Publication date: April 2021.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Collapsible Pushdown Parity Games 15

that s̃j < {[, ]}. The previous conditions on the domain of ind (s ) ensure that any stack symbol in
s which is not the topmost one has a value by ind (s ) that we refer to as its index. An indexed

con�guration is a pair formed by a control state and an indexed stack.
The erasure of an indexed n-stack (̃s, target (s ), ind (s )) is the n-stack (̃s, target (s )). We extend

the notion of erasure to indexed con�gurations in the obvious way.
The intended meaning of the index of some symbol in the stack is the following. The index is

equal to the largest integer i such that since vi the symbol no longer appears as a top1-element.
Hence, if one uses the stack to store (and maintain) some information, the index is the moment
from which this information was no longer updated. Therefore when some symbol appears again
as the top1-element, one has to update the information by taking into account all that happened
since vi (included).
With any path λ = v0v1 · · · , with vi = (pi , si ) for all i ≥ 0, we inductively associate a sequence

of indexed con�gurations λ′ = v ′0v
′
1 · · · such that the following holds.

• The erasure of λ′ equals λ (the erasure of a sequence of indexed con�gurations being de�ned
as the sequence of the respective erasures).
• For any indexed con�gurationv ′m = (qm, s

′
m ) the following holds. Let s ′m = (s̃ ′m, target (s

′
m ), ind (s ′m)),

let s̃ ′m = x1 · · · xh , and let j be in the domain of ind (s ′m) and such that x j+1 = ]. Then let j ′ > j
be the largest integer such that xk = ] for all j + 1 ≤ k ≤ j ′ and let i be the unique integer
such that xi · · · x j′ is well-bracketed. Then, for any i < k < j ′, if ind (s ′m) (k ) is de�ned, one
has ind (s ′m) (k ) ≤ ind (s

′
m) (j ), and this inequality is strict if ind (s ′m) (j ) , 0. Intuitively, posi-

tion j is the topmost symbol of some (j ′− j )-stack, and any symbol in this stack has an index
smaller than the topmost symbol.

The intuitive idea behind the forthcomingde�nition ofλ′ is rather simple. The indices are always
preserved, so one only cares about new positions in the stack. On doing a pushk the indices of the
copied stack are inherited from the original copy. Then when new indices are needed (because a
position is no longer the top1 one, it gets indexm + 1 if the current con�guration is vm+1).
Before going to the formal de�nition, we start with an example.

Example 4.1. In Figure 3, we give an example (at order 3) that illustrates the previous intuitive
idea as well as the formal description below (ignore the information on colours for this example).
We only describe the indexed stacked (omitting the control states), and indicate the stack operation
(but omit the id operation). Indices are written as superscripts.

Now, we formally give the construction of λ′ (the previously mentioned properties easily fol-
low from the de�nition). The initial con�guration v ′0 = (p0, s

′
0), is obtained by letting ind (s ′0) be

the constant (partial) function equal to 0. Assume now that v ′1 · · ·v
′
m has been constructed, let

v ′m = (pm, s
′
m ) with s ′m = (̃sm, target (sm ), ind (s ′m)) and let vm+1 = (pm+1, sm+1) with sm+1 =

(̃sm+1, target (sm+1)). We letv ′m+1 = (pm+1, s
′
m+1) with s

′
m+1 = (̃sm+1, target (sm+1), ind (s ′m+1)) where

ind (s ′m+1) is de�ned thanks to the following case distinction on which stack oprations have been
applied to go from vm to vm+1.

• A top-rewriting operation (possibly equal to id) followed by a push
γ ,k
1 operation is applied in

con�guration vm . Then all previous indices are inherited and the former top1-element gets
indexm+ 1. Formally, ind (s ′m+1) (j ) = ind (s

′
m) (j ) whenever j < |̃sm | −n and ind (s

′
m+1) ( |̃sm | −

n) =m + 1.
• A top-rewriting operation (possibly equal to id) followed by a pushk operation is applied.First,
all existing indices are preserved, i.e. ind (s ′m+1) (j ) = ind (s ′m) (j ) whenever j belongs to the
domain of ind (s ′m). Then one writes s̃m as [ · · · [t]]n−k+1 with t being well-bracketed; hence,

, Vol. 1, No. 1, Article . Publication date: April 2021.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Broadbent et al.

s ′0 =[[[⊥
0α0

]][[⊥]]] colour : 3

push
β ,1
1

−−−−−−→ s ′1 =[[[⊥
0α0

]][[⊥1β]]] colour : 0
rewα

1 ;push2
−−−−−−−−−→ s ′2 =[[[⊥

0α0
]][[⊥1α2

][⊥1α]]] colour : 1
pop1
−−−→ s ′3 =[[[⊥

0α0
]][[⊥1α2

][⊥]]] colour : 5

pushα ,11
−−−−−−→ s ′4 =[[[⊥

0α0
]][[⊥1α2

][⊥4α]]] colour : 3

push
β ,2
1

−−−−−−→ s ′5 =[[[⊥
0α0]][[⊥1α2][⊥4α5β]]] colour : 2

push3
−−−−−→ s ′6 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β]]] colour : 4

push
γ ,3
1

−−−−−−→ s ′7 =[[[⊥
0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β7γ]]] colour : 6

push2
−−−−−→ s ′8 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β7γ 8][⊥4α5β7γ]]] colour : 5

pop1
−−−→ s ′9 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β7γ 8][⊥4α5β]]] colour : 6

col lapse
−−−−−−−→ s ′10 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α]]] colour : 4
pop3
−−−→ s ′11 =[[[⊥

0α0]][[⊥1α2][⊥4α5β]]] colour : 3

push
γ ,1
1

−−−−−−→ s ′12 =[[[⊥
0α0]][[⊥1α2][⊥4α5β12γ]]] colour : 2

Fig. 3. Example of a sequence of indexed stacks.

s̃m+1 = [ · · · [t ′][t ′]]n−k+1 where t ′ is obtained from t by (possibly )changing its last sym-
bol to re�ect the top-rewriting operation. Then we let ind (s ′m+1) ( |s̃

′
m | − (n − k + 1) + j ) =

ind (s ′m) ( |s̃
′
m | − (n − k + 1) − ( |t | + 2) + j ) for all j ≥ 1 such that the second member of the

equality is de�ned: the indices are simply copied from the former top (k − 1)-stack. Finally,
the former top1-element gets indexm + 1: ind (s ′m+1) ( |̃sm | − n + k − 3) =m + 1.
• A top-rewriting operation (possibly equal to id) followed by either a popk operation or a
collapse or id is applied in con�gurationvm in λ. Then all indices are inherited from the pre-
vious indexed stack. Formally, ind (s ′m+1) (j ) = ind (s

′
m) (j ) whenever j belongs to the domain

of ind (s ′m+1).

The following straightforward proposition is crucial. In particular, it means that if we stored
some information on the stack, the index gives the “expiration date” of the stored information, that
is the step in the computation starting from which the information has no longer been updated.

Proposition 4.2. Let Λ = v0v1 · · · be a path and Λ′ = v ′0v
′
1 · · · be as above. Let m ≥ 0, let

s ′m = (̃sm, target (sm ), ind (s ′m)) be the indexed stack inv
′
m . Let j be such that i = ind (s

′
m) (j ) is de�ned.

If i > 0, then (i − 1) is the largest integer such that the j-th letter of s̃m is a copy of top1 (si−1). If i = 0,
there is no i ′ such that the j-th letter of s̃m is a copy of top1 (si ′ ).

, Vol. 1, No. 1, Article . Publication date: April 2021.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Collapsible Pushdown Parity Games 17

Proof. Immediate by induction onm and from the de�nition of λ′ from λ. �

Consider a �nite path λ = v0v1 · · ·vm in G ending in a con�guration vm = (q, s ) such that
top1 (s ) has an n-link (if the link is a k-link for some k < n the following concepts are not relevant).
The link-ancestor of vm is the con�guration vj where the original copy of the n-link in top1 (s )
was created1, or v0 if the link was present in the stack of the con�guration v0. The link-rank of
vm is the minimum colour of a state occurring in λ since its link-ancestor vj (inclusive) i.e. it is
min{ρ (vj ), · · · ρ (vm )}.

Example 4.3. Consider the sequence of indexed stacks given in Figure 3. The link-ancestor of
con�guration v8 is con�guration v7 and its link-rank is 5. The link-ancestor of con�guration v11
is con�guration v5 and its link-rank is 2.

De�nition 4.4. An n-CPDAA = (Γ,Q,∆,q0) equipped with a colouring function is rank-aware
from a con�guration v0 if there exists a function LinkRk : Q × Γ → N such that for any �-
nite path λ = v0v1 · · ·vℓ , the link-rank (if de�ned) of the con�guration vℓ = (q, s ) is equal to
LinkRk (q, top1 (s )). In other words, the link rank can be retrieved from the control state together
with the top1-element of the stack.

To show that any CPDA can be transformed into a rank-aware CPDA, we need to de�ne the
collapse-rank and the pop-rank. First, we introduce the notion of ancestor. Fix a �nite path Λ =

v0v1 · · ·vm , letvm = (q, s ) be some con�guration in Λ and let x be a symbol in s . Then the ancestor
of x is the con�guration vi where i is the index of x in v ′m (the indexed version of vm).
We now introduce the notion of collapse-rank. Fix a �nite path Λ = v0v1 · · ·vm and assume

that the top1-element of vm has a (k + 1)-link for some k . Then the collapse-ancestor in vm is
the ancestor of the top1-element of the target k-stack and the collapse-rank in vm is the smallest
colour visited since the collapse-ancestor (included).

Example 4.5. Consider the sequence of indexed stacks given in Figure 3 (the colours of the cor-
responding con�gurations are indicated on the right part of the �gure).
In v ′8 the collapse-ancestor is v

′
6 and the collapse-rank is therefore 4. In v

′
9 the collapse-ancestor

is v ′2 and the collapse-rank is therefore 1.

Next, we give a notion of pop-rank. Fix a partial play Λ = v0v1 · · ·vm and a con�guration
vm = (q, s ) in Λ. Then, for any 1 ≤ k ≤ n, the pop-ancestor for k , when de�ned, is the ancestor of
the top1-element of popk (s ) and the pop-rank for k , when de�ned, is the smallest colour visited
since the pop-ancestor for k (included). In particular, the pop-rank for n is the smallest colour
visited since the stack has height at least the height of s .

Example 4.6. Again, consider the sequence of indexed stacks given in Figure 3.
In con�guration v ′9 the pop-ancestor (resp. pop-rank) for 3 is v

′
6 (resp. 4), the pop-ancestor (resp.

pop-rank) for 2 is v ′8 (resp. 5) and the pop-ancestor (resp. pop-rank) for 1 is v ′5 (resp. 2).
In con�gurationv ′12 the pop-ancestor (resp. pop-rank) for 3 is v

′
0 (resp. 0), the pop-ancestor (resp.

pop-rank) for 2 is v ′2 (resp. 1) and the pop-ancestor (resp. pop-rank) for 1 is v ′12 (resp. 2).

Remark 4.7. To permit that the construction remains uniform if the ancestor of the pointed stack
(resp the ancestor of the top1-element of popk (s ) / the link-ancestor) is v0, the collapse-rank (resp
the pop-rank / the link-rank) is simply the smallest colour seen since the beginning of the play.

1Formally, one could index links as well: whenever performing, in con�guration vj , a push
γ ,e
1 , one attaches to the newly

created link the index j + 1. Later, if the link is copied (by doing a pushk operation) then the index is copied as well.

, Vol. 1, No. 1, Article . Publication date: April 2021.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Broadbent et al.

4.2 Main Result

The next theorem shows that we can restrict our attention to CPDA games where the underlying
CPDA is rank-aware.

Theorem 4.8. For any n-CPDA A = 〈Γ,Q,∆,q0〉 and any associated parity game G, one can
construct an n-CPDAArk and an associated parity game Grk such that the following holds.

• There exists a mapping ν from the con�gurations of A to that of Ark such that:
– for any con�guration v0 of A, Ark is rank-aware from ν (v0);
– Éloïse has a winning strategy in G from a con�guration v0 i� she has a winning strategy in
Grk from ν (v0);

– both ν and ν−1 preserve regularity of sets of con�gurations.
• If there is an n-CPDA transducer Srk synchronised with Ark realising a well-de�ned winning
strategy for Éloïse in Grk from ν (q0,⊥n ), then one can e�ectively construct an n-CPDA trans-
ducer S synchronised withA realising a well-de�ned winning strategy for Éloïse in G from the
initial con�guration (q0,⊥n ).

4.3 Proof of Theorem 4.8

The proof of Theorem 4.8 is a non-trivial generalisation of [28, Lemma 6.3] (which concerns 2-
CPDA) to the general setting of n-CPDA and starting from an arbitrary con�guration.
Fix an n-CPDA A = (Γ,Q,∆,q0), a partition QE ⊎ QA of Q and a colouring function ρ : Q →

C ⊂ N. Denote by G the induced parity game. We de�ne a rank-aware (to be proven) n-CPDA
Ark = (Γrk,Qrk,∆rk,q0,rk) such that Qrk = Q ×C and

Γrk = Γ × (C ∪ {	}) × (C ∪ {	, †}) × (C {1, ...,n } ∪ {	})

We de�ne a map ν that associates with any con�guration ofA a con�guration ofArk. Let (q, s )
be a con�guration in A. Then ν (q, s ) = ((q, ρ (q)), s ′) where s ′ is obtained by:

• Replacing every internal (i.e. that is not the top1-element) symbol γ by (γ ,	,	,	) if it has
an n-link and by (γ ,	, †,	) otherwise.
• Replacing the top1-element γ by (γ , ρ (q), ρ (q), τρ (q ) if it has an n-link and otherwise by
(γ , ρ (q), †, τρ (q )), where τρ (q ) is the constant function assigning to any 1 ≤ i ≤ n the value
ρ (q).

We equip Ark with a colouring function ρrk by letting ρrk(q, θ ) = ρ (q). Our construction will
satisfy the following invariant. Let Λ be a �nite path in Graph(Ark) starting in some con�guration
ν (q, s ) ending in some con�guration ((p, θ ), s ) then the following holds. First, θ is the minimal
colour visited from the beginning of the path. Second, if top1 (s ) = (α ,mc ,ml , τ ) then

• mc is the collapse-rank;
• ml is the link-rank if it makes sense (i.e. if there is an n-link in the current top1-symbol) or
is † otherwise;
• τ is the pop-rank: τ (i ) is the pop-rank for i for every 1 ≤ i ≤ n.

Trivially, from the de�nition of ν , the invariant holds at the beginning of the path.
The transition function ofArk mimics that ofA and updates the ranks as explained below. First,

let us explain the meaning of symbols	. Such symbols will never been created using a push_,k1

or a rew	1 action: hence they can only be duplicated (using pushk ) from symbols originally in the
stack. The meaning of a symbol 	 is that the corresponding object (collapse-rank, link-rank or
pop-rank) has not yet been settled. However, when a 	 symbol appears in the top1-element the
various ranks can be easily retrieved as they necessarily equal the smallest colour visited so far (as

, Vol. 1, No. 1, Article . Publication date: April 2021.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Collapsible Pushdown Parity Games 19

noted in Remark 4.7): this is why we will compute the minimal colour visited so far in the control
state ofArk.
In order to make the construction more readable, we do not formally describe ∆rk but rather

explain howArk behaves. It should be clear that ∆rk can be formally described to �t this informal
description (and that some extra control states are actually needed as we will allow to do several
stack operation per transition); technical issues about this construction are discussed in Remark 4.9.
Note that the description below also contains the inductive proof of its validity, namely thatmc ,
ml and τ are as stated above. To avoid case distinction on whether the link-rank is de�ned or not,
we take the following convention that min(†, i ) = † for every i ∈ N.

The intuitive idea is the following. One stores in the stack information on the various ranks,
and after performing a popk or a collapse , one needs to update the information stored in the new
top1-element. Indeed this information has no longer been updated since the ancestor con�guration
(this was the last time it was on top of the stack). To update it, one uses either the collapse-rank /
pop-rank in the previous con�guration, which is exactly what is needed for this update.
Assume Ark is in con�guration vℓ = ((q, θ ), s ) with top1 (s ) = (α ,mc ,ml , τ ) and let v0v1 · · ·vℓ

be the beginning of the path of Graph(Ark) where we denote vi = ((qi , θi ), si ) (hence qℓ = q and
sℓ = s). For any (q′, rew

γ
1 ;op) ∈ ∆(q,α ) (note that the casewhere no rew1 is performed corresponds

to the case where γ = α ) the following behaviours are those allowed in ((q, θ ), s ).

(1) Assume op = popk for some 1 ≤ k ≤ n, let popk (s ) = s
′ and let top1 (s

′) = (α ′,m′c ,m
′
l
, τ ′).

Then Ark can go to the con�guration ((q′, θ ′), s ′′) where θ ′ = min(θ , ρ (q′)) and s ′′ is ob-
tained from s ′ by replacing top1 (s

′) by
(a) (α ′, θ ′, θ ′, (θ ′, . . . , θ ′)) ifm′c =	,m′

l
=	 and τ ′ 	;

(b) (α ′, θ ′, †, (θ ′, . . . , θ ′)) ifm′c =	,m′
l
= † and τ ′ 	;

(c) (α ′,min(m′c , τ (k ), ρ (q
′)),min(m′

l
, τ (k ), ρ (q′)), τ ′′) otherwise, with

τ ′′ (i ) =




min(τ ′(i ), τ (k ), ρ (q′)) if i ≤ k

min(τ (i ), ρ (q′)) if i > k .

Cases (a) and (b) correspond to the case where one reaches (possibly a copy) of a symbol
that was in the stack from the very beginning and that never appeared as a top1-element:
then the value of the collapse-rank, link-rank — if de�ned this is case (a) otherwise it is case
(b) — and pop-ranks are all equal to θ ′.
We now explain case (c ). Let vx be the ancestor of top1 (popk (s )). Then x > 0 as otherwise
we would be in case (a) or (b). By Proposition 4.2, it follows that top1 (popk (s )) = top1 (sx−1),
and by induction hypothesis, at step (x − 1),m′c ,m

′
l
and τ ′ had the expected meaning. Let y

be the index of the top1-element of the pointed stack in s ′: y is also the top1-element of the
pointed stack in sx−1, and moreover y < x . Hence, the collapse-rank in vℓ+1 is

min{ρ (qy ), . . . , ρ (qx−1), ρ (qx ), . . . , ρ (qℓ ), ρ (q
′)}

=min{min{ρ (qy ), . . . , ρ (qx−1)},min{ρ (qx ), . . . , ρ (qℓ )}, ρ (q
′)}

=min{m′c , τ (k ), ρ (q
′)}

Similarly, when de�ned, the link-ancestor of s ′ is the same as the one in sx−1: hence the
pop-rank in vℓ+1 is min{m′

l
, τ (k ), ρ (q′)}.

For any i ≤ k , top1 (popi (s
′)) = top1 (sx−1) and therefore the pop-rank for i invℓ+1 is obtained

by updating τ ′ (i ) to take care of the minimum colour seen sincevx which, as for the collapse-
rank, is min{τ (k ), ρ (q′)}: therefore the pop-rank for i in vℓ+1 equals min{τ ′(i ), τ (k ), ρ (q′)}.

, Vol. 1, No. 1, Article . Publication date: April 2021.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Broadbent et al.

For any i > k , popi (s
′) = popi (s ) and thus top1 (popi (s

′)) = top1 (popi (s )). Therefore the
pop-rank for i in vℓ+1 is obtained by updating the one in vℓ to take care of the new visited
colour ρ (q′): hence the pop-rank for i in vℓ+1 equals min{τ (i ), ρ (q′)}.

(2) Assume op = collapse , let k be the order of the link in top1 (s ), let collapse (s ) = s ′ and let
top1 (s

′) = (α ′,m′c ,m
′
l
, τ ′). Then Ark can go to the con�guration ((q′, θ ′), s ′′) where θ ′ =

min(θ , ρ (q′)) and s ′′ is obtained from s ′ by replacing top1 (s
′) by

(a) (α ′, θ ′, θ ′, (θ ′, . . . , θ ′)) ifm′c =	,m′
l
=	 and τ ′ =	;

(b) (α ′, θ ′, †, (θ ′, . . . , θ ′)) ifm′c =	,m′
l
= † and τ ′ =	;

(c) (α ′,min(m′c ,mc , ρ (q
′)),min(m′

l
,mc , ρ (q

′)), τ ′′) otherwise with

τ ′′ (i ) =




min(τ ′(i ),mc , ρ (q
′)) if i ≤ k

min(τ (i ), ρ (q′)) if i > k .

The proof follows the same line as for the previous case. Cases (a) and (b) correspond to the
case where one reaches (possibly a copy) of a symbol that was in the stack from the very
beginning and that never appeared as a top1-element: then the value of the collapse-rank,
link-rank — if de�ned this is case (a) otherwise it is case (b) — and pop-ranks are all equal
to θ ′.
We now explain case (c ). Let vx be the collapse-ancestor of vℓ . Then x > 0 as otherwise we
would be in case (a) or (b). By induction hypothesis,m′c ,m

′
l
and τ ′ give the collapse-rank /

link-rank / pop-ranks invx−1. Moreover the ancestor of the top1-element of the target of the
top link in s ′ is the same as the one invx−1. Therefore, the collapse-rank is obtained by taking
theminimumof the collapse-rank invx−1withmin{ρ (qx ), . . . ρ (qℓ ), ρ (q′)} = min{mc , ρ (q

′)}.
Similarly (if de�ned) the link-ancestor in s ′ being the same as the one in vx−1, the link-rank
is obtained by taking the minimum of the one in vx−1 with min{ρ (qx ), . . . , ρ (qℓ ), ρ (q′)} =
min{mc , ρ (q

′)}.
Let i ≤ k . The ancestor of top1 (popi (s

′)) is the same as the ancestor of top1 (popi (sx−1)).
Therefore the pop-rank for i in vℓ+1 is obtained by taking the minimum of the one in vx−1
with min{ρ (qx ), . . . ρ (qℓ ), ρ (q′)} = min{mc , ρ (q

′)}.
Let i > k . Then the ancestor of top1 (popi (s

′)) is the same as the ancestor of top1 (popi (sℓ )):
indeed the collapse only modi�es the topk stack, in other words popi (collapse (s )) = popi (s ).
Therefore the pop-rank for i invℓ+1 is obtained by taking the minimum of the one invℓ with
the new visited colour ρ (q′).

(3) Assume op = pushj for some 2 ≤ j ≤ n, let pushj (rew
(γ ,mc,ml ,τ )
1 (s )) = s ′ and let top1 (s

′) =

(γ ,mc ,ml , τ ) (note that	 does not appear in top1 (s
′)). Then,Ark can go to the con�guration

((q′, θ ′), s ′′) where θ ′ = min(θ , ρ (q′)) and s ′′ is obtained from s ′ when replacing top1 (s
′) by

(γ ,min(mc , ρ (q
′)),min(ml , ρ (q

′)), τ ′) with

τ ′(i ) =




min(τ (i ), ρ (q′)) if i , j

ρ (q′) if i = j

Indeed, the collapse-ancestor in the new con�guration is the same as the one in s . As by
induction hypothesis mc is the collapse-rank in vℓ , the collapse-rank in vℓ+1 is obtained
by updating mc to take care of the new visited colour, namely by taking min{mc , ρ (q

′)}.
Similarly, if de�ned, the link-ancestors in vℓ and vℓ+1 are identical and then the link-rank in
vℓ+1 is min{mc , ρ (q

′)}.
For any i , j , the ancestor of top1 (popi (s )

′) and the ancestor of top1 (popi (s
′)) are the same.

Again using the induction hypothesis one directly gets that the pop-rank for i invℓ+1 equals
min{τ (i ), ρ (q′)}.

, Vol. 1, No. 1, Article . Publication date: April 2021.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Collapsible Pushdown Parity Games 21

The index of the ancestor of top1 (popj (s ′)) is by de�nition ℓ + 1. Hence, as the only colour
visited since vℓ+1 is ρ (q′) it equals the pop-rank for j .

(4) Assume op = push
β,k
1 with 1 ≤ k ≤ n, and β ∈ (Γ \ {⊥}). ThenArk can go to (q′, θ ′), where

θ ′ = min(θ , ρ ′(q′)), and apply successively rew
(γ ,mc,ml ,τ )
1 and push

(β,m′c,m
′
l
,τ ′),k

1 wherem′c =
min(τ (k ), ρ (q′)),m′

l
= ρ (q′) if k = n andm′

l
= † otherwise, and τ ′(i ) = min(τ (i ), ρ (q′)) for

every i ≥ 2 and τ (1) = ρ (q′).
Indeed, the pointed stack in s ′ is topk (popk (s )) and therefore the collapse-rank in vℓ+1 is the
minimumof the pop-rank fork in s and of the new visited colour ρ (q′), that is min{τ (k ), ρ (q′)}.
If k = n, the link-ancestor of vℓ+1 is vℓ+1 itself and hence the link-rank is the colour of the
current con�guration, namely ρ (q′).
For any i ≥ 2, as popi (s ) = popi (s

′) one also has that top1 (popi (s
′)) = top1 (popi (s )) and

therefore the pop-rank for i in vℓ+1 equals the minimum of the one in vℓ with the new
visited colour ρ (q′), that is min{τ (i ), ρ (q′)}. Finally as the ancestor of pop1 (s

′) is vℓ+1 then
the pop-rank for 1 is the current colour, namely ρ (q′).

From the previous description (and the included inductive proof) we conclude that, for any
con�gurationv0 ofA,Ark is rank-aware from ν (v0), where we let LinkRk ((q, (γ ,mc ,ml , τ ))) =ml .

Remark 4.9. One may object that Ark does not �t the de�nition of n-CPDA. Indeed, in a single
transition it can do a top-rewriting followed by another stack operation and followed again by a
top-rewriting (which itself depends on the new top1-element). One could add intermediate states
and simply decompose such a transition into two transitions, but this would be problematic later
when de�ning an n-CPDA transducer realising a winning strategy.

Fortunately, one can de�ne a variant A′rk of Ark that has the same properties as Ark and addi-
tionally �ts the de�nition of n-CPDA. The idea is simply to postpone the �nal top-rewriting to the
next transition. Indeed, it su�ces to add a new component on the control state where one encodes
the top-rewriting that should be performed next: this top-rewriting is then performed in the next
transition (note that this �ts the de�nition as performing two top-rewriting is the same as doing
only the last one). However, there is still an issue as the top-rewriting was actually depending on
the top1-symbol (one updates the various ranks) hence, one cannot save the next top-rewriting
in the control state without �rst observing the symbol to be rewritten. Again this is not a real
problem, as it su�ces to remember which kind of update should be done (one concerning a popk
or one concerning a collapse) and to store in the control state the various objects needed for this
update (for this, one can simply store the former top1-element).
One also needs to slightly modify the LinkRk function so that it returns the link-rank of the

top1-symbol after it is rewritten. This can easily be done as the domain of LinkRk is Qrk × Γrk.
Note thatA′rk andArk use the same stack alphabet, but that the state space ofA′rk uses an extra

component of size linear in the one of the stack alphabet.
In conclusion building a rank-aware (valid) n-CPDA from a non-aware one increases (by a mul-

tiplicative factor) the stack alphabet by |C |n+3 and the state set by O ( |C |n+3).
For now on, we usesArk to mean A′rk.

We are now ready to conclude the proof of Theorem 4.8. First recall that we de�ned ρrk by
letting ρrk(q, θ ) = ρ (q). Then, we de�ne a partition Qrk,E ⊎ Qrk,A of Qrk by letting the states in
Qrk,E be those states with their �rst component in QE, and those states in Qrk,A be those states
with their �rst component in QA. Let Grk be the corresponding arena and let Grk = (Grk,Ωρrk ) be
the corresponding n-CPDA parity game.
Consider the projection ζ de�ned from con�gurations ofArk into con�gurations ofA by only

keeping the �rst component of the control state, and by only keeping the Γ part of the symbols in

, Vol. 1, No. 1, Article . Publication date: April 2021.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Broadbent et al.

the stack. Note that, on the domain of ν−1, ζ and ν−1 coincide. Also note that ζ preserves the shape
of stacks2, i.e. for any con�guration vrk, the stack in vrk has the same shape as the stack in ν (vrk).
We extend ζ as a function from (possibly partial) plays in Grk into (possibly partial) plays in
G by letting ζ (v ′0v

′
1 · · · ) = ζ (v ′0)ζ (v

′
1) · · · . It is obvious that for any play λ′ in Grk starting from

ν (v0), its image ζ (λ′) is a play in G starting from v0; moreover these two plays induce the same
sequence of colours and at any round the player that controls the current con�guration is the same
in both plays. Conversely, from the de�nition ofArk it is also clear that there is, for any play λ in
G starting from v0, a unique play λ′ in Grk starting from ν (v0) such that ζ (λ′) = λ.
In particular, ζ can be used to construct a strategy in G from a strategy in Grk. Indeed, let φrk

be a strategy for Éloïse from ν (v0) in Grk. We de�ne a strategy φ in G from ν (v0). This strategy
maintains as a memory a partial play λrk in Grk such that, if Éloïse respects φ, in G starting from
v0 after having played λ one has ζ (λrk) = λ and moreover λrk is a play in Grk starting from ν (v0)

where Éloïse respects φrk. Initially, we let λrk = ν (v0). Assume that we have been playing λ and
that Éloïse has to play next. Then she considersvrk = φrk (λrk) and she plays tov wherev = ζ (vrk).
Finally one updates λrk to be λrk ·vrk. If it is Abelard that has to play next and if he moves to some
v , then Éloïse updates λrk to be λrk · vrk where vrk is the unique con�guration such that λrk · vrk
is a valid play and such that ζ (vrk) = v . A similar construction can be done to build a strategy of
Abelard in G from one in Grk.

Now, assume that ν (v0) is winning for Éloïse (resp. Abelard) and call φrk an associated winning
strategy. Let φ be the strategy in G obtained as explained above. Then φ is winning for Éloïse (resp.
Abelard) in G from v0 (this follows directly from the fact that φrk is winning and that we have
the property that ζ (λrk) = λ for any partial play λ in G consistent with φ). Hence this proves that
Éloïse has a winning strategy in G from v0 i� she has a winning strategy in Grk from ν (v0).
The fact that both ν and ν−1 preserve regular sets of con�gurations is obvious: for this one

basically needs to simulate an automaton on the image by ν (or ν−1) that can be computed on-the-
�y (except for the very last steps of ν where one needs to know the control state before deducing
the top1 stack element as it has information on the colour of the control state. However, this is not
a problem to have a slight — �nite — delay in the �nal steps of the simulation).
Finally, from the previous construction of a strategy φ from a strategy φrk we prove that if there

is an n-CPDA transducer Srk synchronised with Ark realising a well-de�ned winning strategy
φrk for Éloïse in Grk from ν (q0,⊥n ), then one can e�ectively construct an n-CPDA transducer S
synchronised with A realising a well-de�ned winning strategy φ for Éloïse in G from the initial
con�guration (q0,⊥n ). Indeed, in our previous construction of φ, we maintained a partial play λrk
in Grk and used the value of φrk (λrk) to de�ne φ (λ). But if φrk is realised by an n-CPDA transducer
Srk, it su�ces to remember the con�guration of this transducer after playing λrk (as this su�ces
to compute φrk (λrk)). Hence, to obtain S from Srk one needs to “embed” the transition function of
Ark into it, so thatS can read/output elements inQ×OpΓn ×Op

Γ
n instead ofQrk×Op

Γrk
n ×Op

Γrk
n . This

can easily (but writing the formal construction would be quite heavy) be achieved by noting that
the shape of stacks is preserved by ζ : hence if Srk is synchronised withArk then S is synchronised
with A (asArk andA are “synchronised”, and Srk and S are “synchronised” as well).

4.4 Complexity

If we summarise, the overall blowup in the transformation from G to Grk given by Theorem 4.8 is
as follows.

2 Recall that the shape of a stack is the stack obtained by replacing all non-⊥ symbols appearing in s by a fresh dummy
symbol ♯ (but keeping the links).

, Vol. 1, No. 1, Article . Publication date: April 2021.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Collapsible Pushdown Parity Games 23

Proposition 4.10. Let A and Ark be as in Theorem 4.8. Then the set of states of Ark has size
O ( |Q |( |C | + 1)n+3) and the stack alphabet of Ark has size O ( |Γ |( |C | + 1)2n+5). Moreover the set of
colours used in G and Grk are the same.

Proof. By construction together with Remark 4.9. �

5 REMOVING THE n-LINKS

5.1 Main Result

In this section, we show how one can remove the outmost (i.e. order-n) links. In the following lf
intended to mean link-free.

Theorem 5.1. For any rank-aware n-CPDAArk = (Γrk,Qrk,∆rk,q0,rk) and any associated parity
gameGrk, one can construct ann-CPDAAlf and an associated parity gameGlf such that the following
holds.

• Alf does not create n-links.
• There exists a mapping ν from the con�gurations of Ark to that of Alf such that:
– Éloïse has a winning strategy in Grk from a con�guration v0 i� she has a winning strategy
in Glf from ν (v0);

– If the set of winning con�gurations for Éloïse in Glf is regular, then the set of winning con�g-
urations for Éloïse in Grk is regular as well.

• If there is an n-CPDA transducer Slf synchronised with Alf realising a well-de�ned winning
strategy for Éloïse in Glf from ν (q0,rk,⊥n ), then one can e�ectively construct an n-CPDA trans-
ducer Srk synchronised with Ark realising a well-de�ned winning strategy for Éloïse in Grk

from the initial con�guration (q0,rk,⊥n ).

The whole section is devoted to the proof of Theorem 5.1 and we thus �x from now on, a rank-
aware n-CPDAArk = (Γrk,Qrk,∆rk,q0,rk) (togetherwith a function LinkRk), a partitionQrk,E⊎Qrk,A

of Qrk, a colouring function ρ : Qrk → C ⊂ N and we let C = {0, . . . ,d }. Denote by Grk the
transition graph of Ark, by Grk the arena induced by Grk and the partition Qrk,E ⊎ Qrk,A, and by
Grk the parity game (Grk,Ωρ ).
There are now two tasks. The �rst one is to prove that the previous simulation game can be

generated by an n-CPDA with the extra property that it never creates n-links. The second one
is to prove that this game correctly simulates the original one (i.e. Éloïse wins in Grk from some
vertex v i� she wins in the Glf from the con�guration ν (v ) for some mapping ν — to be de�ned —
transforming vertices of the �rst game into vertices of the second one). The �rst task (see Section
5.2) is simple as the initial n-CPDA de�ningGrk is rank aware and therefore comes with a function
LinkRk as in Lemma 4.8. The second task (see Section 5.3) is more involved because we have to
de�ne ν and to prove that it preserves (arbitrary) winning con�gurations.

5.2 The Simulation Game: Glf

We now de�ne Alf and the associated game Glf . We start with an informal description ofAlf and
then formally describe its structure.
The n-CPDAAlf simulates Ark as follows. Assume that the play is in some con�guration (q, s )

and that the player that controls it wants to simulate a transition (p, rewα
1 ;op) ∈ ∆rk(q, top1 (s )).

In case op is neither of the form push
β,n
1 nor of the form collapse with top1 (s ) having an n-link

then the same transition (p, rewα
1 ;op) is available inArk and is performed. The interesting case is

when op = push
β,n
1 , and it is simulated byAlf as follows.

• The control state of Alf is updated to be pβ and one performs rewα
1 .

, Vol. 1, No. 1, Article . Publication date: April 2021.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Broadbent et al.

• From pβ , Éloïse has to move to a new control state p? and can push any symbol of the form

(α ,
−→
R ) where

−→
R = (R0, · · ·Rd ) ∈ (2Q )d+1. A dummy 1-link is attached (and will never be

used for a collapse).
• From p?, Abelard has to play and choose between one of the following two options:
– either go to state p and perform no action on the stack,
– or pick a state r in some Ri , go to an intermediate new state r i (of colour i) without chang-
ing the stack and from this new con�guration go to state r and perform a popn action.

The intended meaning of such a decomposition of the push
β,n
1 operation is the following: when

choosing the sets in
−→
R , Éloïse is claiming that she has a strategy such that if the n-link (or a later

copy of it) created by pushing β is eventually used for collapsing the stack then the control state
after collapsing will belong to Ri where i is meant to be the smallest colour from the creation of
the link to the collapse of the stack (equivalently it will be the link rank — as computed in Ark —
just before collapsing). Note that the Ri are arbitrary sets because Éloïse does not have full control
over the play (and in general cannot force Ri to be a singleton). Then Abelard can either choose
to simulate the collapse (here state r i is only used for going through a state of colour i). If he does

not want to simulate a collapse then one stores
−→
R since its truth may be checked later in the play.

Assume that later, in con�guration (p ′, t ) one of the two players wants to simulate a transition

(r , rewβ
1 ; collapse) involving an n-link. By construction, top1 (t ) is necessarily of the form (γ ,

−→
R ).

Then the simulation is done by going to a sink con�guration that is winning for Éloïse i� r ∈

RLinkRk (p,γ ) , i.e. Éloïse wins i� her former claim on
−→
R was correct.

Formally we let Alf = (Γlf ,Qlf ,∆lf ,q0, lf ) with

• Γlf = Γrk ∪ Γrk × (2Qrk )d+1

• Qlf = Qrk ∪ {p
β | p ∈ Qrk, β ∈ Γrk} ∪ {p

? | p ∈ Qrk} ∪ {r
i | r ∈ Qrk, 0 ≤ i ≤ d } ∪ {qt,qf}

• ∆lf is de�ned as follows, wherep,q, r range overQrk,α , β,γ range over Γrk and
−→
R = (R0, . . . ,Rd )

ranges over (2Qrk )d+1.

– If (p, rewα
1 ;op) ∈ ∆rk(q,γ ) and if op is neither of the form pushβ,n1 nor collapse , then

(p, rewα
1 ;op) ∈ ∆lf (q,γ ) and (p, rew (α ,

−→
R )

1 ;op) ∈ ∆lf (q, (γ ,
−→
R )).

– If (p, rewα
1 ; push

β,n
1 ) ∈ ∆rk(q,γ ), then (pβ , rewα

1 ; id ) ∈ ∆lf (q,γ ) and (pβ , rew (α ,
−→
R )

1 ; id ) ∈

∆lf (q, (γ ,
−→
R )).

– For all pβ ∈ Qlf , ∆(pβ ,γ ) = ∆(pβ , (γ ,
−→
R )) = {(p?, push

(β,
−→
S ),1

1 ) |
−→
S ∈ (2Qrk )d+1)}.

– For all p? ∈ Qlf , ∆(p?, (γ ,
−→
R )) = {(p, id )} ∪ {(r i , id ) | 0 ≤ i ≤ d and r ∈ Ri }.

– For all r i ∈ Qlf , ∆(r i , (γ ,
−→
R )) = {(r , popn )}.

– If (p, rewα
1 ; collapse ) ∈ ∆rk(q,γ ), then (p, rewα

1 ; collapse ) ∈ ∆lf (q,γ ).

– If (r , rewα
1 ; collapse ) ∈ ∆rk(q,γ ), then (qt, id ) ∈ ∆lf (q, (γ ,

−→
R )) if r ∈ RLinkRk (q,γ ) and

(qf, id ) ∈ ∆lf (q, (γ ,
−→
R )) if r < RLinkRk (q,γ ) .

– ∆lf (qt, (γ ,
−→
R )) = {(qt, id )} and ∆lf (qf, (γ ,

−→
R )) = {(qf, id )}.

We let Glf be the transition graph of Alf . Now, in order to de�ne a game graph Glf out of Glf

we let Qlf,E = Qrk,E ∪ {p
β | p ∈ Qrk, β ∈ Γrk}. Finally to de�ne a corresponding n-CPDA parity

game Glf we extend ρ by letting, ∀p, r ∈ Qrk and β ∈ Γrk, ρ (pβ ) = ρ (p?) = d (as one cannot loop
forever in such states, it means that they have no in�uence on whether a play will be winning or
not), ρ (r i ) = i for every 0 ≤ i ≤ d , ρ (qt) = 0 and ρ (qf) = 1 (hence a play that visits qt is winning
for Éloïse and a play that visits qf is winning for Abelard, as these states are sinks).

, Vol. 1, No. 1, Article . Publication date: April 2021.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Collapsible Pushdown Parity Games 25

Note that Alf never creates an n-link.

5.3 Correctness of the Simulation

Consider some con�guration v0 = (p0, s0) in Grk. We explain now how to de�ne an “equivalent”
con�guration ν (v0) in Glf (here equivalent is in the sense of Lemma 5.3 below). The transfor-
mation consists in replacing any occurrence of a stack letter (call it γ ) with an n-link in s0 by

another letter of the form (γ ,
−→
R ) and replacing the n-link by a 1-link. The vector

−→
R is de�ned

as follows. Let s ′ be the stack obtained by popping every symbol and stack above γ , and let

R = {q | Éloïse wins in Grk from (q, collapse (s ′))}. Then one sets
−→
R = (R, · · · ,R).

Example 5.2. Assume we are playing a two-colour parity game and let

s0 = [[[a]] [[][a b c]] [[][a b c d]]],

R1 = {r | (r , [[[a]]]) is winning for Éloïse in Grk}

R2 = {r | (r , [[[a]] [[][a b c]]]) is winning for Éloïse in Grk}

Then
ν (s0) = [[[a]] [[][a b (c, (R1,R1))]] [[][a b (c, (R1,R1)) (d, (R2,R2))]]].

The rest of this section is devoted to the proof of the following result.

Lemma 5.3. Éloïse wins inGrk from some con�gurationv0 if and only if she wins inGlf from ν (v0).

Assume that the con�gurationv0 = (p0, s0) is winning for Éloïse inGrk, and let φrk be a winning
strategy for her. Using φrk, we de�ne a strategy φlf for Éloïse in Glf from ν (v0). The strategy φlf
maintains as a memory a partial play λrk in Grk, that is an element in V ∗rk (where Vrk denotes the
set of vertices ofGrk). At the beginning λrk is initialised to be (p0, s0). The play λrk will satisfy the
following invariant: assume that the play ends in a con�guration (q, s ), then the last con�guration

in λrk has control state q and its top1-element is either top1 (s ) or (top1 (s ),
−→
R ) for some

−→
R (and in

this case there is an n-link from the top1-symbol of s).
We �rst describe φlf , and then we explain how λrk is updated.

Choice of the move. Assume that the play is in some vertex (q, s ) with q ∈ Qlf,E \ {p
β | q ∈

Qrk, β ∈ Γrk}. The move given by φlf depends on φrk (λrk) = (p, rewα
1 ;op) (we shall later argue that

φlf is well de�ned whilst proving that it is winning).

• If op is neither of the form pushβ,n1 nor collapse then Éloïse plays (p, rewα
1 ;op) if top1 (s ) = γ

and she plays (p, rew (α ,
−→
R )

1 ;op) if top1 (s ) = (γ ,
−→
R ).

• If op = collapse and top1 (s ) = γ ∈ Γrk then Éloïse plays (p, rewα
1 ; collapse ).

• If op = collapse and top1 (s ) = (γ ,
−→
R ) then Éloïse plays (qt, id ). We shall later see that this

move is always valid.

• If op = push
β,n
1 then Éloïse plays (pβ , rewα

1 ; id ) if top1 (s ) = γ and she plays (pβ , rew (α ,
−→
R )

1 ; id )

if top1 (s ) = (γ ,
−→
R ).

In this last case, or in the case where q ∈ QA and Abelard plays some (pβ , rewα
1 ; id ) (resp. some

(pβ , rew (α ,
−→
R )

1 ; id )),we also have to explain howÉloïse behaves from (pβ , rewα
1 (s )) (resp. (p

β , rew (α ,
−→
R )

1 (s ))).

Éloïse has to play (p?, push
(β,
−→
S ),1

1 ) where
−→
S ∈ (2Qrk )d+1 describes which states can be reached

if the n-link created by pushing β (or a copy of it) is used for collapsing the stack, depending

, Vol. 1, No. 1, Article . Publication date: April 2021.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Broadbent et al.

on the smallest visited colour in the meantime. In order to de�ne
−→
S , she considers the set of all

possible continuations of λrk · (p, push
β,n
1 (t )) (where (q, t ) denotes the last vertex of λrk) where she

respects her strategy φrk. For each such play, she checks whether some con�guration of the form

(r , popn (t )) is eventually reached by collapsing (possibly a copy of the) n-link created by push
β,n
1 .

If such an r exists, she considers the smallest colour i visited from the moment where the link was
created to the moment a collapse is performed (i.e. the link rank just before collapsing). For every
i ∈ {0, . . . d }, the set Si is de�ned to be the set of states r ∈ Q such that the preceding case happens.
Formally,

Si = {r | ∃ λrk · v0 · · ·vk · vk+1 · · · play in Grk where Éloïse respects φrk and s.t.

v0 = (p, pushβ,n1 (t )), vk+1 = (r ,popn (t )) is obtained by applying collapse from vk ,

v0 is the link ancestor of vk and i is the link rank in vk }

Finally, we set
−→
S = (S0, . . . , Sd ) and Éloïse plays (p?, push

(β,
−→
S ),1

1 ).

Update of λrk. The memory λrk is updated after each visit to a con�guration with a control state
in Qrk ∪ {qt,qf}. We have several cases depending on the transition.

• If the last transition is of the form (p, rewα
1 ;op) or (p, rew

(α ,
−→
R )

1 ;op) with op being neither of

the form push
β,n
1 nor collapse , then we extend λrk by applying transition (p, rewα

1 ;op), i.e. if
(q, t ) denotes the last con�guration in λrk, then the updated memory is λrk · (p,op (rew

α
1 (t ))).

• If the last transition is of the form (qt, id ) or (qf, id ), the play is in a sink con�guration.
Therefore we do not update λrk as the play will loop forever.

• If the last transitions form a sequence of the form (pβ , rewα
1 ; id ) · (p

?, push (β,
−→
S ),1

1 ) · (p, id )

or of the form (pβ , rew (α ,
−→
R )

1 ; id ) · (p?, push(β,
−→
S ),1

1 ) · (p, id ), then the updated memory is λrk ·

(p, push
β,n
1 (t )), where (q, t ) denotes the last con�guration in λrk.

• If the last transitions form a sequence of the form (pβ , rewα
1 ; id ) · (p

?, push
(β,
−→
S ),1

1 ) · (r i , id ) ·

(r , popn ) or of the form (pβ , rew (α ,
−→
R )

1 ; id ) · (p?, push(β,
−→
S ),1

1 ) · (r i , id ) · (r , popn ), then we ex-
tend λrk by a sequence of actions (consistent with φrk) that starts by performing transition

(p, pushβ,n1 ) and ends up by collapsing (possibly a copy of) the link created at this �rst step

and goes to state r whilst visiting i as a minimal colour in the meantime. By de�nition of
−→
S

such a sequence always exists. More formally, if (q, t ) denotes the last con�guration in λrk,
then the updated memory is a play in Grk, λrk ·v0 · · ·vk ·vk+1, where Éloïse respects φrk and

such that v0 = (p, pushβ,n1 (t )), vk+1 = (r ,popn (t )) is obtained by applying collapse from vk ,
v0 is the link ancestor of vk and i is the link rank in vk .

Therefore, with any partial play λlf in Glf starting from v0 in which Éloïse respects her strategy
φlf , is associated a partial play λrk in Grk. An immediate induction shows that λrk is a play where
Éloïse respects φrk. The same argument works for any in�nite play λlf that does not contain a state
in {qt,qf}, and the corresponding play λrk is therefore in�nite, starts from ν (v0) and Éloïse respects
φrk in that play. Therefore it is a winning play.

Moreover, if λlf is an in�nite play that does not contain a state in {qt,qf}, it easily follows from
the de�nitions of φlf and λrk that the smallest in�nitely visited colour in λlf is the same as the one
in λrk. Hence, any in�nite play in Glf starting from ν (v0) where Éloïse respects φlf and that does
not contain a state in {qt,qf} is won by Éloïse.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Collapsible Pushdown Parity Games 27

Now, consider a play that contains a state in {qt,qf} (hence loops on it forever). Reaching a
con�guration with state in {qt,qf} is necessarily by simulating a collapse from some con�guration

with a top1-element of the form (α ,
−→
R ). We should distinguish between those elements (α ,

−→
R ) that

are “created” before (i.e. by the ν function) or during the play (by Éloïse). For the second ones,
note that whenever Éloïse wants to simulate a collapse, she can safely go to state qt (meaning

φlf is well de�ned): indeed, if this was not the case, it would contradict the way
−→
S was de�ned

when simulating the original creation of the link. For the same reason, Abelard can never reach

state qf provided Éloïse respects her strategy φlf . Now consider an element (α ,
−→
R ) created by ν

and assume that one player wants to simulate a collapse from some con�guration with such a
top1-element. Call λlf the partial play just before and call λrk the associated play in Grk. Then in
λrk, Éloïse respects her winning strategy φrk. If she has to play next in λrk, strategy φrk indicates to
play collapse; if it is Abelard’s turn to move he can play collapse . In both cases, the con�guration
that is reached after collapsing is winning for Éloïse (it is a con�guration visited in a winning play).

Hence, by de�nition of ν , its control state belongs to R where
−→
R = (R, · · · ,R), and therefore from

the current vertex in Glf there is no transition to qf and there is at least one to qt . Therefore plays
where Éloïse respects φlf and that contain a state in {qt,qf} necessarily contain state qt hence are
won by Éloïse.

Altogether, it proves that φlf is a winning strategy for Éloïse in Glf from ν (v0).

Let us now prove the converse implication. Assume that the con�guration ν (v0) is winning
for Éloïse in Glf , and let φlf be a winning strategy for her. Using φlf , we de�ne a strategy φrk for
Éloïse in Grk from v0 = (p0, s0). First, recall how ν (v0) is de�ned: every symbol γ in s0 with an
n-link is replaced by a pair (γ , (R, . . . ,R)) where R is the set of states r such that Éloïse wins from
(r , s ′) where s ′ is the stack obtained by �rst removing every symbol (and stack) above γ and then
performing a collapse . We can therefore assume that we have a collection of winning strategies,

one for each such con�guration (r , s ′); call such a strategy φr ,s
′

rk . Then, during a play where Éloïse
respects φrk, if one eventually visits such a con�guration (r , s ′), the strategy φrk will mimic the

winning strategy φr ,s
′

rk from that point and therefore the resulting play will be winning for Éloïse.
Then in the rest of this description we mostly focus on the case of plays where this situation does
not occur.
The strategy φrk maintains as a memory a partial play λlf in Glf , that is an element inV ∗lf (where

Vlf denotes the set of vertices of Glf ). At the beginning λlf is initialised to the con�guration ν (v0).
After having played λrk, the play λlf will satisfy the following invariant. Assume that the play λlf
ends in a con�guration (q, s ) then the following holds.

• If top1 (s ) = α , the last con�guration of λrk has control state q and its top1-element is α and
it has a k-link for some k < n.
• If top1 (s ) = (α ,

−→
R ), the last con�guration of λrk has control state q, its top1-element is α and

it has an n-link. Moreover, if Éloïse keeps respecting φrk in the rest of the play, if (possibly
a copy of) this link is eventually used in a collapse , then the state that will be reached just
after doing the collapse will belong to Ri where i will be the link rank just before collapsing.

We �rst describe φrk and we then explain how λlf is updated. Recall that we switch to a known
winning strategy in case we do a collapse from (possibly a copy of) an n-link that was already in
s0.

Choice of the move. Assume that the play is in some vertex (q, s ) with q ∈ Qrk,E. The move
given by φrk depends on φlf (λlf ) = (q′, rew ;op) (we shall later argue that φrk is well de�ned whilst
proving that it is winning).

, Vol. 1, No. 1, Article . Publication date: April 2021.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Broadbent et al.

• If q′ ∈ Qrk then Éloïse plays (q′, rewα
1 ;op) where α is such that either rew = rewα

1 or

rew = rew (α ,
−→
R )

1 . Note that in this case, op is neither a collapse involving an n-link nor of the

form push
β,n
1 .

• If q′ = pβ then Éloïse plays to (p, rewα
1 ; push

β,n
1 ) where α is such that either rew = rewα

1 or

rew = rew (α ,
−→
R )

1 .

• If q′ = qt then Éloïse plays (r , collapse) for some arbitrary r ∈ RLinkRk (p, top1 (s ))
where (α ,

−→
R )

denotes the top1-element of the last vertex of λlf . Note that in this case, the collapse involves
an n-link.

Update of λlf . The memory λlf is updated after each move (played by any of the two players). We
have several cases depending on the last transition.

• If the last transition is of the form (q′, rewα
1 ;op) and op is neither a collapse involving an

n-link nor of the form push
β,n
1 , then λlf is extended by mimicking the same transition, i.e. if

(q, t ) denotes the last con�guration in λlf , then the updated memory is λlf · (q
′,op (rewα

1 (t ))

if top1 (t ) = γ for some γ ∈ Γrk, and is λlf · (q′,op (rew
(α ,
−→
R )

1 (t )) if top1 (t ) = (γ ,
−→
R ) for some

(γ ,
−→
R ) ∈ Γlf .

• If the last transition is of the form (p, rewα
1 ; push

β,n
1 ) then, we let (q, t ) denote the last con�g-

uration in λlf . If top1 (t ) = γ for some γ ∈ Γrk then the updated memory is λlf · (pβ , rewα
1 (t )) ·

(p?, push(β,
−→
R ),1

1 (rewα
1 (t ))) · (p, id ) where φlf (λlf · (p

β , rewα
1 (t ))) = (p?, push(β,

−→
R ),1

1 (rewα
1 (t ))).

If top1 (t ) = (γ ,
−→
S ) for some (γ ,

−→
S ) ∈ Γlf then the updated memory is λlf · (pβ , rew

(α ,
−→
S )

1 (t )) ·

(p?, push
(β,
−→
R ),1

1 (rew (α ,
−→
S )

1 (t )))·(p, id )whereφlf (λlf ·(pβ , rew
(α ,
−→
S )

1 (t ))) = (p?, push
(β,
−→
R ),1

1 (rew (α ,
−→
S )

1 (t ))).
• If the last transition is of the form (r , collapse) and the collapse follows an n-link, then we
have two cases. In the �rst case, the collapse follows (possibly a copy of) an n-link that was
already in s0 and we claim (and prove later) that one ends up in a winning con�guration
and thus one switches to a corresponding winning strategy as already explained. In the
other case, it follows an n-link that was created during the play, in which case we let λlf =
v0 · · ·vm and denote by vi the link ancestor of vm3. Then the updated memory is obtained
by backtracking inside λlf until reaching the con�guration where the (simulation of the)
collapsed n-link was created (this con�guration is vi , the link ancestor) and then extending
it by a choice of Abelard consistent with the collapse . That is the updatedmemory isv0 · · ·vi ·
(r ℓ, t ) · (r , popn (t )) where vi = (p?, t ) and ℓ denotes the link rank in the con�guration λrk
was just before doing the collapse .

Therefore, with any partial play λrk inGrk in which Éloïse respects her strategyφrk, is associated
a partial play λlf in Glf . Note that if we end up in a con�guration that is known to be winning, λlf
becomes useless and is no longer extended. This also implies that when collapsing an n-link that
was already in s0 one necessarily ends up in a winning con�guration. Indeed, assume the contrary
and let λlf be the constructed play before collapsing: then either Éloïse has to play and therefore
moves to qt (and therefore the con�guration in λrk after collapsing is winning by de�nition of
ν , leading a contradiction) or Abelard could move to qf (leading a contradiction with φlf being

3Here we implicitly extend the notion of link ancestor as follows. In Glf instead of creating n-link one pushes symbol of

the form (β,
−→
R ): hence whenever doing a push (β ,

−→
R ),1

1 one attaches to the vector
−→
R the index of the current con�guration.

Then if the top1 element of vn is some (β,
−→
R ) then the link ancestor of vm is de�ned to be vi where i is the indexed

attached with
−→
R . Note in particular that the control state in the link ancestor is necessarily of the form p? .

, Vol. 1, No. 1, Article . Publication date: April 2021.



1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Collapsible Pushdown Parity Games 29

winning). Therefore, from now on, we restrict our attention to the case where the n-links (and
their copies) originally in s0 are never used to do a collapse .
An easy induction shows that Éloïse respects φlf in λlf . The same argument works for an in�nite

play λrk, and the corresponding play λlf is therefore in�nite (one simply considers the limit of the
λlf in the usual way4), starts from ν (v0), never visits a state in {qt,qf} and Éloïse respects φlf in
that play. Therefore it is a winning play.
Now, in order to conclude that any play λrk in Grk in which Éloïse respects strategy φrk is

winning for her, one needs to relate the sequence of colours in λrk with the one in λlf . For this,
we introduce a notion of factorisation of a partial play λrk = v0v1 · · ·vm in Grk (we should later
note that it directly extends to in�nite plays). A factor is a nonempty sequence of vertices of the
following kind:

(1) it is a sequencevh · · ·vk such that the stack operation fromvh−1 tovh is of the form rewα
1 ; push

n,β
1 ,

the stack operation from vk−1 to vk is a collapse involving an n-link, and vh is the link an-
cestor of vk .

(2) or it is a single vertex;

Then the factorisation of λrk denoted Fact (λrk) is a sequence of factors inductively de�ned as fol-
lows (we underline factors to make them explicit): Fact (λrk) = v0 · · ·vk , Fact (vk+1 · · ·vn ) if there
exists some k such that v0 · · ·vk is as in (1) above, and Fact (λrk) = v0, Fact (v1 · · ·vn ) otherwise.
In the following, we refer to the colour of a factor as the minimal colour of its elements.
Note that the previous de�nition is also valid for in�nite plays. Now we easily get the following

proposition (the result is obtained by reasoning on partial play using a simple induction combined
with a case analysis. Then it directly extends to in�nite plays).

Proposition 5.4. Let λrk be some in�nite play in Grk starting from v0 where Éloïse respects φrk
and assume that there is no collapse that follows (possibly a copy of) an n-link already in s0. Let λlf
be the associated in�nite play in Glf constructed from φrk. Let λrk,0, λrk,1, · · · be the factorisation of
λrk and, for every i ≥ 0, let ci be the colour of λrk,i .

Then the sequence (ci )i≥0 and the sequence of colours visited in λlf have the same lim inf .

The previous proposition directly implies that φrk is a winning strategy for Éloïse from v0 in
Grk.

5.4 Regularity of the Winning Region is Preserved

We established in Lemma 5.3 that Éloïse wins in Grk from some con�guration v0 if and only if
she wins in Glf from ν (v0). We now prove that regular sets of winning positions are preserved by
inverse image by ν .

Proposition 5.5. Assume that we have an automaton Blf that recognises the set of winning con-
�gurations in Glf . Then, one can compute an automaton Brk that recognises the set of winning con-
�gurations in Grk.

Proof. We can safely assume that any control state of Blf is of the form (ξ ,R) with R ⊆ Qlf and
such that, after reading some input stack s (possibly with some pending open brackets) Blf is in a

4 Let (um )m≥0 be a sequence of �nite words. For anym ≥ 0 let um = um,0 · · ·um,km . Then the limit of the sequence
(um )m≥0 is the (possibly in�nite) word α = α0α1 · · · such that α is maximal for the pre�x ordering and for all 0 ≤ i < |α |

there is some Ni such that um,i = αi for allm ≥ Ni .
In our setting, the play λlf associated with an in�nite play λrk is de�ned as the limit of the sequence of partial plays

(λm
lf
)m≥0 where λm

lf
is the partial play associated with λrk truncated to itsm + 1 �rst vertices. From the de�nitions of the

λm
lf

it is easily veri�ed that the limit λlf is in�nite.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Broadbent et al.

state of the form (ξ ,R) with R = {r | Blf accepts (r , s ′)} where s ′ is the stack obtained from s by
closing all the pending open brackets (i.e. s ′ = s]k for some well chosen k ≤ n).
On an input (p0, s0) the automaton Brk computes on-the-�y the image of (p0, s0) by ν and simu-

lates Blf on it. In order to compute ν ((p0, s0)), Brk needs to retrieve, when reading a stack symbol
with an n-link, the states that are winning for the stack obtained by collapsing the n-link. This is
simple as it is given by the 2Qlf component of Blf (recall that Brk simulates Blf , hence keeps track
of this information) and hence the automaton can access it by de�nition of the model of automata.
Indeed, the information (i.e. the states winning when doing a collapse) is correct before reading
the �rst stack symbol coming with an n-link, and by induction on the number of n-links, if it is
correct after processing the k �rst symbols with an n-link, on reading the (k + 1)-th symbol with
an n-link, the information is still correct as it was correct for the pre�x read so far and therefore
Brk correctly simulated Blf on this pre�x.
We do not formally describe Brk as it is rather straightforward but we note that the size of Brk

is linear in the size of Blf . �

5.5 Strategies

In order to complete the proof of Theorem 5.1 it remains to establish the following proposition.

Proposition 5.6. If there is an n-CPDA transducer Slf synchronised with Alf realising a well-
de�ned winning strategy for Éloïse in Glf from ν ((q0,rk,⊥n )), then one can e�ectively construct an
n-CPDA transducer Srk synchronised withArk realising a well-de�ned winning strategy for Éloïse in
Grk from the initial con�guration (q0,rk,⊥n ).

Proof. The result follows from a carefully analysis of how we de�ned φrk from φlf in the proof
of Lemma 5.3. As we now only focus on the initial con�guration (q0,rk,⊥n ) we will not have to
deal with the special case of doing a collapse following (possibly a copy of) an n-link originally in
the initial con�guration. Also note that ν ((q0,rk,⊥n )) = (q0,rk,⊥n ).
Recall that φrk uses as a memory a partial play λlf in Glf and considers the value of φlf (λlf ) to

determine the next move to play. Now assume that φlf is realised by an n-CPDA transducer Slf
synchronised with Alf . Hence, instead of storing λlf it su�ces to store the con�guration Slf is in
after reading λlf .
One can also notice that the stack srk in the last con�guration of some partial play λrk and the

stack slf in the last con�guration of the associated λlf have the same shapes provided one replaces
in slf every 1-link from a symbol in Γrk × (2Qrk )d+1 by an n-link. Recall that these 1-links are never
used to perform a collapse: hence replacing those 1-links by n-links does not change the issue of
the game, and if one does a similar transformation on Slf it still realises a winning strategy, and it
is synchronised with the transformed version of λlf .
Now, it follows from the way one de�ned φrk (both the choice of the move and the memory

update) that one can design an n-CPDA transducer Srk synchronised with Ark realising a well-
de�ned winning strategy for Éloïse in Grk from the initial con�guration (q0,rk,⊥n ). In all cases but
one Srk simulates Slf . The only problematic case is when the move to play is some (r , collapse)
involving an n-link. Indeed, one needs to backtrack in λlf (namely retrieve the con�guration of
Slf right after the link ancestor) and extend it by doing (r ℓ, id ) (where ℓ is the link rank) and
then (r , popn ); one needs to retrieve the con�guration of Slf right after this. If one performs a
collapse in Srk, one directly retrieves the stack content, but the control state of Slf is still missing.
However, one can modify Slf so that after the simulation of the creation of an n-link, i.e. after a

symbol of the form (β,
−→
R ) is pushed, it stores in its top1-element the control state it will be in

after doing the transitions (r ℓ, id ) (r , popn ), for each 0 ≤ ℓ ≤ d and each r ∈ Rℓ (this can easily be
computed). As this information is then propagated when copying the symbol/link, it is available in

, Vol. 1, No. 1, Article . Publication date: April 2021.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Collapsible Pushdown Parity Games 31

the top1-element before doing a collapse involving an n-link, hence Srk can also correctly retrieve
the control state of Slf .
From this (somehow informal) description of Srk the reader should be convinced that Srk cor-

rectly simulates Slf on λlf and hence, realises a winning strategy in Grk. The fact that Srk is syn-
chronised with Ark follows from the fact that it is synchronised with the variant of Slf that itself
is synchronised with the variant of λlf which is synchronised with λrk. �

5.6 Optimising the Construction

The set Qlf has size O ( |Qrk |( |Γrk | + |C | + 3)), which is not very satisfactory for complexity reasons.
Actually, one would prefer a variant of the construction where |Γrk | does not appear in the blowup
concerning states. This factor actually comes from states {qγ | q ∈ Qrk, γ ∈ Γrk}, and one can easily

get rid of them by doing the following modi�cation on Alf . When simulating a pushβ,n1 , instead
of going to qβ , one stores the information on β (thanks to a rew1 operation) in the top1 element of
the stack (hence, the stack alphabet increases by a linear factor in |Γrk |) and goes to a special state
q!. State q! is controlled by Éloïse and the transition function is the same as from qβ where β is the
symbol stored on the top1-element of the stack.
It is straightforward that this modi�cation does not change the validity of Proposition 5.5 nor

Proposition 5.6.

5.7 Complexity

If we summarise, the overall blowup in the transformation from Grk to Glf given by Theorem 5.1
is as follows.

Proposition 5.7. Let Ark and Alf be as in Theorem 5.1. Then the set of states of Alf has size
O ( |Qrk |( |C | + 3)) and the stack alphabet ofAlf has size O ( |Γrk |

2 · 2 |Qrk | |C | ). Finally, the set of colours
used in Grk and Glf are the same.

Proof. By construction together with the optimisation discussed in Section 5.6. �

6 REDUCING THE ORDER

In the previous section, given a game played on a rank-aware n-CPDA, we have constructed an-
other game played on an n-CPDA that does not createn-links. The winning region (resp. a winning
strategy realised by an n-CPDA transducer) in the original game can then be recovered from the
winning region (resp. a winning strategy realised by n-CPDA transducer) in the latter game.

In this section, we prove a result of a similar �avour. Namely, starting from a game played on
an n-CPDA that does not create n-links, we construct a game played on an (n − 1)-CPDA, and we
show that the winning region (resp. a winning strategy realised by an n-CPDA transducer) in the
original game can be recovered from the winning region (resp. a winning strategy realised by an
(n − 1)-CPDA transducer) in the latter game.
We situate the techniques developed here in a general and abstract framework of (order-1) push-

down automata whose stack alphabet is a possibly in�nite set: abstract pushdown automata. We
start by introducing this concept and show how n-CPDA that do not create n-links �t into it. Then,
we introduce a model of automata, automata with oracles, that accept con�gurations of abstract
pushdown automata and we relate this model with automata accepting con�gurations of n-CPDA
as de�ned in Section 2.6. Then, we introduce the notion of conditional games and show that it is the
notion that captures the winning region in the original game. Finally, we show how such games
can be solved by reduction to an (n − 1)-CPDA parity game, and from the proof we also get the
expected result on the regularity of the winning region and on the existence of a winning strategy
realised by a CPDA transducer.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Broadbent et al.

6.1 Abstract Pushdown Automata

An abstract pushdownautomaton is a tupleA = (A,Q,∆,q0) whereA is a (possibly in�nite) set
called an abstract pushdown alphabet and containing a bottom-of-stack symbol denoted⊥ ∈ A,
Q is a �nite set of states, q0 ∈ Q is an initial state and

∆ : Q ×A→ 2Q×A
≤2

is the transition relation (here A≤2 = {ε } ∪A∪A ·A are the words over A of length at most 2). We
additionally require that for all a , ⊥, ∆(q,a) ⊆ Q× (A\{⊥})≤2 and that ∆(q,⊥) ⊆ Q× ({⊥}∪{⊥b |
b , ⊥}), i.e. the bottom-of-stack symbol can only occur at the bottom of the stack, and is never
popped nor rewritten.
An abstract pushdown content is a word in St = ⊥(A \ {⊥})∗. A con�guration of A is a pair

(q, s ) with q ∈ Q and s ∈ St .

Remark 6.1. In general an abstract pushdown automaton is not �nitely describable, as the do-
main of ∆ is in�nite and no further assumption is made on ∆.

A abstract pushdown automaton A induces a possibly in�nite graph G = (V , E), called an
abstract pushdown graph, whose vertices are the con�gurations of A and edges are de�ned
by the transition relation ∆, i.e. , from a vertex (q, s · a) one has an edge to (q′, s · u) whenever
(q′,u) ∈ ∆(q,a).

Example 6.2. An order-1 pushdown automaton is an abstract pushdown automaton whose stack
alphabet is �nite.

Example 6.3. Order-n CPDA that do not create n-links are special cases of abstract pushdown
automata. Indeed, let n > 1 and consider such an order-n CPDA A = (Γ,Q,∆,q0). Let A be the
set of all order-(n − 1) stacks over Γ, and for every p ∈ Q and a ∈ A with γ = top1 (a), we de�ne
∆′(p,a) by

• (q, ε ) ∈ ∆′(p,a) i� (q, rewα
1 ; popn ) ∈ ∆(q,γ );

• (q,a′ · a′) ∈ ∆′(p,a) with a′ = rewα
1 (a) i� (q, rewα

1 ; pushn ) ∈ ∆(q,γ );
• (q,a′) ∈ ∆′(p,a) with a′ = op (rewα

1 (a)) i� (q, rewα
1 ;op) ∈ ∆(q,γ ) and op < {popn, pushn }.

It follows from the de�nitions that A and the abstract pushdown automaton (A,Q,∆′,q0) have
isomorphic transition graphs.

Consider now a partitionQE∪QA ofQ between Éloïse and Abelard. It induces a natural partition
VE ∪ VA of V by setting VE = QE × St and VA = QA × St . The resulting arena Gabs = (VE,VA, E) is
called an abstract pushdown arena. Let ρ be a colouring function fromQ to a �nite set of colours
C ⊂ N. This function is easily extended to a function fromV toC by setting ρ ((q, t )) = ρ (q). Finally,
an abstract pushdown parity game is a parity game played on such an abstract pushdown arena
where the colouring function is de�ned as above.

6.2 Automata with Oracles

An automaton with oracles is a tuple B = (P,Q,A, δ ,p0,O1 · · · Ok ,Acc ) where P is a �nite set of
control states,Q is a set of input states, A is a (possibly in�nite) input alphabet, p0 ∈ P is the initial
state, Oi are subsets of A (called oracles) and δ : P × {0, 1}k → S is the transition function. Finally
Acc is a function from P to 2Q . Such an automaton is designed to accept in a deterministic way
con�gurations of an abstract pushdown automaton whose abstract pushdown content alphabet is
A and whose set of control states is Q .

, Vol. 1, No. 1, Article . Publication date: April 2021.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Collapsible Pushdown Parity Games 33

Let B = (P,Q,A, δ ,p0,O1 · · · Ok ,Acc ) be such an automaton. With every a ∈ A we associate a
Boolean vector π (a) = (b1, · · ·bk ) where

bi =




1 if a ∈ Oi
0 otherwise.

The automaton reads a con�gurationC = (q,a1a2 · · ·aℓ ) from left to right. A run over C is the
sequence r0, · · · , rℓ+1 such that r0 = p0 and ri+1 = δ (ri , π (ai )) for every i = 0, · · · , ℓ. Finally the
run is accepting if and only if q ∈ Acc (rℓ+1).

Remark 6.4. When the input alphabet is �nite, it is easily seen that automata with oracles have
the same expressive power as usual deterministic �nite automata.

We are going to use automata with oracles to accept sets of con�gurations of n-CPDA that do
not have n-links. As seen in Example 6.3 for an order-n CPDA that does not have n-links, we take
A to be the set of all order-(n − 1) stacks. The sets of con�gurations of an order-n CPDA without
n-links accepted by automata that use as oracles regular sets of order-(n−1) stacks are easily seen
to be regular.

Proposition 6.5. LetA be an order-n CPDAA that never creates n-links. Let B be an automaton
with oracles O1, . . . ,Ok and assume that each Oi is a regular set of (n − 1)-stacks (and denote by
Ci an associated automaton). Let C be the set of con�gurations of A accepted by B. Then C is reg-
ular and we can construct an automaton C (now working on order-n stacks without n-links) of size
O (n |B||C1 | · · · |Ck |) accepting it.

Proof. It su�ces to mimic the behaviour of B and to run in parallel the Cis to compute the
value of the oracles. Hence, the automaton C is obtained by taking a synchronised product of B
together with the automata C1, · · · , Ck . An extra component, coding a counter taking its values
in {0, 1, . . . ,n}, is needed to keep track of the bracketing depth (initially the counter equals 0;
on reading an opening bracket [ the counter is incremented, on reading a closing bracket ] it is
decremented). When the counter is equal to 0 or 1 one simulates B. When the counter goes to 2
(and as long as it di�ers from 1) one simulates in parallel the Cis. When the counter returns to 1
the components corresponding to the Cis give the value of the oracles on the last (n − 1)-stack
(i.e. bi = 1 if and only if the control state of the Cis component is �nal). Hence the B component
can be updated. Then the control states of the Cis are put back to the initial state and the next
(n−1)-stack is processed. Finally, when the counter is again equal to 0 (i.e. the last closing bracket
has been read), the control state q of the input con�guration is read and C goes to a �nal state if
and only if the current state p in the B component is such that q ∈ Acc (p). �

6.3 Conditional Games and Winning Regions of Abstract Pushdown Parity Games

We �x an abstract pushdown automatonA = (A,Q,∆,q0) together with a partition QE ∪QA ofQ
and a colouring function ρ using a �nite set of coloursC . We denote respectively by Gabs = (V , E)

and Gabs the associated abstract pushdown arena and abstract pushdown parity game.
We show in Lemma 6.6 below how to de�ne an automaton with oracles that accepts Éloïse’s

winning region in the game Gabs. The oracles of this automaton are de�ned using the concept of
conditional game. For every subset R ⊆ Q we de�ne the conditional game induced by R over

Gabs, denoted Gabs (R), as the game played over Gabs where a play λ is winning for Éloïse i� one of
the following happens:

• In λ no con�guration with an empty stack, i.e. of the form (q,⊥), is visited, and λ satis�es
the parity condition.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Broadbent et al.

• In λ a con�guration with an empty stack is visited and the control state in the �rst such
con�guration belongs to R.

More formally, the set of winning plays Ω(R) in Gabs(R) is de�ned as follows:

Ω(R) = [Ωρ \V
∗ (Q × {⊥})Vω ] ∪ V ∗ (R × {⊥})Vω

For any state q, any stack letter a , ⊥, and any subset R ⊆ Q it follows from Martin’s Deter-
minacy theorem [29] that either Éloïse or Abelard has a winning strategy from (q,⊥a) in Gabs(R).
We denote by R (q,a) the set of subsets R for which Éloïse wins in Gabs(R) from (q,⊥a):

R (q,a) = {R ⊆ Q | (q,⊥a) is winning for Éloïse in Gabs (R)}

Then one has the following characterisation of the set of winning positions in Gabs in terms of
automaton with oracles.

Lemma 6.6. Let Gabs be an abstract pushdown parity game induced by an abstract pushdown au-
tomaton A = (A,Q,∆,q0). Then the set of winning positions in Gabs for Éloïse is accepted by an
automaton with oracles A = (P,Q,A, δ ,p0,O1 · · · Ok ,Acc ) such that

• P = 2Q

• p0 = ∅

• There is an oracle Oq,R for every q ∈ Q and R ⊆ Q , and a ∈ Oq,R i� R ∈ R (q,a) and a , ⊥
• There is an oracle O⊥ and a ∈ O⊥ i� a = ⊥
• Using the oracles, δ is designed so that:
– From state ∅ on reading ⊥, A goes to {q | (q,⊥) is winning for Éloïse in Gabs}

– From state R on reading a, A goes to {q | R ∈ R (q,a)}
• Acc is the identity function

The proof of Lemma 6.6 is a direct consequence of the following proposition.

Proposition 6.7. Let s ∈ (A\ {⊥})∗, q ∈ Q and a ∈ A\ {⊥}. Then Éloïse has a winning strategy in
Gabs from (q,⊥sa) if and only if there exists some R ∈ R (q,a) such that (r ,⊥s ) is winning for Éloïse
in Gabs for every r ∈ R.

Proof. Assume Éloïse has a winning strategy from (q,⊥sa) in Gabs and call it φ. Consider the
set L of all plays in Gabs that start from (q,⊥sa) and where Éloïse respects φ. De�ne R to be
the (possibly empty) set that consists of all r ∈ Q such that there is a play in L of the form
v0 · · ·vk (r ,⊥s )vk+1 · · · where each vi for 0 ≤ i ≤ k is of the form (pi ,⊥sti ) for some ti , ε . In
other words, R consists of all states that can be reached on popping (possibly a rewriting of) a for
the �rst time in a play where Éloïse respects φ. De�ne a (partial) function τ : V → V by letting
τ (p,⊥st ) = (p,⊥t ) for every p ∈ Q . De�ne a function τ−1 : V → V by letting τ−1 (p,⊥t ) = (p,⊥st )

for all t ∈ A∗. We extend τ−1 as a morphism over V ∗.
It is easily shown that R ∈ R (q,a). Indeed a winning strategy for Éloïse in Gabs(R) is de�ned as

follows:

• if some empty stack con�guration has already been visited, play any legal move,
• otherwise go to τ (φ (τ−1 (λ)), where λ is the partial play seen so far.

By de�nition ofL andR, it easily follows that the previous strategy is winning for Éloïse inGabs (R),
and therefore R ∈ R (q,a).
Finally, for every r ∈ R there is, by de�nition of L, a partial play λr that starts from (q,⊥sa),

where Éloïse respects φ and that ends in (r ,⊥s ). A winning strategy for Éloïse in Gabs from (r ,⊥s )

is given by ψ (λ) = φ (λ′r · λ), where λ
′
r denotes the partial play obtained from λr by removing its

last vertex (r ,⊥s ).

, Vol. 1, No. 1, Article . Publication date: April 2021.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Collapsible Pushdown Parity Games 35

Conversely, let us assume that there is some R ∈ R (q,a) such that (r ,⊥s ) is winning for Éloïse
in Gabs for every r ∈ R. and denote by φr a winning strategy for Éloïse from (r ,⊥s ) in Gabs. Let
φR be a winning strategy for Éloïse in Gabs(R) from (q,⊥a). We de�ne τ and τ−1 as in the direct
implication and extend them as (partial) morphism over V ∗. We now de�ne a strategy φ for Éloïse
in Gabs for plays starting from (q,⊥sa). For any partial play λ,

• if λ does not contain a con�guration of the form (p,⊥s ) then φ (λ) = τ−1 (φR (τ (λ)));
• otherwise let λ = λ′ · (r ,⊥s ) · λ′′ where λ′ does not contain any con�guration of the form
(p,⊥s ). From how φ is de�ned in the previous case, it is follows that r ∈ R. One �nally sets
φ (λ) = φr ((r ,⊥s ) · λ

′′).

It is then easy to check that φ is a winning strategy for Éloïse in Gabs from (q,⊥sa). �

6.4 Reducing the Conditional Game

The main purpose of this section is to build a new parity game G̃ whose winning region provides
all the information needed to compute the sets R (q,a). Moreover, in the underlying arena the
vertices no longer encode stacks.

To help readability, we will use standard letters, e.g. λ orφ, to denote objects (plays, strategies. . . )
in Gabs, and letters with tilde, e.g. λ̃ or φ̃, to denote objects in G̃.
For an in�nite play λ = v0v1 · · · in Gabs, let Stepsλ be the set of indices of positions where no

con�guration of strictly smaller stack height is visited later in the play. More formally, Stepsλ =
{i ∈ N | ∀j ≥ i sh(vj ) ≥ sh(vi )}, where sh((q,⊥a1 · · · an )) = n + 1 is the stack height. Note that
Stepsλ is always in�nite and hence induces a decomposition of the play λ into in�nitely many
�nite pieces.
In the decomposition induced by Stepsλ , a factor vi · · ·vj is called a bump if sh(vj ) = sh(vi ),

called a Stair otherwise (that is, if sh(vj ) = sh(vi ) + 1 and j = i + 1).
For any play λ with Stepsλ = {n0 < n1 < · · · }, we can de�ne the sequence (mcolλi )i≥0 ∈ N

N

by lettingmcolλi = min{ρ (vk ) | ni ≤ k ≤ ni+1}. Obviously, this sequence fully characterises the
parity condition.

Proposition 6.8. For every play λ, one has λ ∈ Ωρ i� lim inf ((mcolλi )i≥0) is even.

In the sequel, we build a new parity game G̃ over a new arena G̃ = (Ṽ , Ẽ). This game simulates
the abstract pushdown game, in the sense that the sequence of visited colours during a correct
simulation of a play λ in Gabs is exactly the sequence (mcolλi )i≥0. Moreover, a play in which a
player does not correctly simulate the abstract pushdown game is losing for that player. We will
then show how the winning region in G̃ permits to compute the sets {a ∈ A | R ∈ R (q,a)}.
Before providing a description of the arena G̃, let us consider the following informal description

of this simulation game.We aim at simulating a play in the abstract pushdown game from its initial
con�guration (q0,⊥). In G̃ we keep track of only the control state and the top stack symbol of the
simulated con�guration.
The interesting case is when the simulated play is in a con�guration with control state p and

top stack symbol a, and the player owning p wants to perform transition (q,a′b), i.e. go to state
q, rewrite a into a′ and push b on top of it. For every strategy of Éloïse, there is a certain set of
possible (�nite) prolongations of the play (consistent with her strategy) that will end with popping
b (or actually a symbol into which b was rewritten in the meantime) from the stack. We require

Éloïse to declare a vector
−→
R = (R0, . . . ,Rd ) of (d + 1) subsets of Q , where Ri is the set of all states

the game can be in after popping (possibly a rewriting of) b along those plays where in addition
the smallest visited colour whilst (possibly a rewriting of) b was on the stack is i .

, Vol. 1, No. 1, Article . Publication date: April 2021.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Broadbent et al.

Abelard has two choices. He can continue the game by pushing b onto the stack and updating
the state; we call this a pursue move. Otherwise, he can select a set Ri and pick a state r ∈ Ri ,
and continue the simulation from that state r ; we call this a jumpmove. If he does a pursue move,

then he remembers the vector
−→
R claimed by Éloïse; if later on, a transition of the form (r , ε ) is

simulated, the play goes into a sink state (either qt or qf) that is winning for Éloïse if and only if
the resulting state is in Rθ where θ is the smallest colour seen in the current level (this information
will be encoded in the control state, reseted after each pursue move and updated after each jump
move). If Abelard does a jump move to a state r in Ri , the currently stored value for θ is updated
to min(θ , i, ρ (r )), which is the smallest colour seen since the current stack level was reached.

(p,a,
−→
R , θ )

(p,a′,
−→
R , θ ,q,b)

∀(q,a′b) ∈ ∆(p,a)

∀(q,a′) ∈ ∆(p,a)

(q,a′,
−→
R ,min(θ , ρ (q)))

(qt,a)

If ∃(r , ε ) ∈ ∆(p,a) s.t. r ∈ Rθ

(qf,a)

If ∃(r , ε ) ∈ ∆(p,a) s.t. r < Rθ

(p,a′,
−→
R , θ ,q,b,

−→
R′)

∀
−→
R′ ∈ (2Q )d+1

(q,b,
−→
R′, ρ (q)) (s,a′,

−→
R ,min(θ , i, ρ (r )), i ) (s,a′,

−→
R ,min(θ , i, ρ (r )))

∀s ∈ R′i

Fig. 4. Local structure of G̃.

Let us now precisely describe the arena G̃. We refer the reader to Figure 4.

• The main vertices of G̃ are those of the form (p,a,
−→
R , θ ), where p ∈ Q , a ∈ A,

−→
R =

(R0, . . . ,Rd ) ∈ (2Q )d+1 and θ ∈ {0, . . . ,d }. A vertex (p,a,
−→
R , θ ) is reached when simulat-

ing a partial play λ in Gabs such that:
– The last vertex in λ is (p, sa) for some s ∈ A∗.
– Éloïse claims that she has a strategy to continue λ in such a way that if a (or a rewriting
of it) is eventually popped, the control state reached after popping belongs to Ri , where i
is the smallest colour visited since the stack height was at least |sa |.

– The colour θ is the smallest one since the current stack level was reached from a lower
stack level.

A vertex (p,a,
−→
R , θ ) is controlled by Éloïse if and only if p ∈ QE.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Collapsible Pushdown Parity Games 37

• The vertices (qt,a) and (qf,a) are here to ensure that the vectors
−→
R encoded in the main

vertices are correct. Both are sink vertices and are controlled by Éloïse. Vertex (qt,a) gets
colour 0 and vertex (qf,a) gets colour 1. As these vertices are sinks, a play reaching (qt,a) is
won by Éloïse whereas a play reaching (qf,a) is won by Abelard.

There is a transition from some vertex (p,a,
−→
R , θ ) to (qt,a), if and only if there exists a

transition rule (r , ε ) ∈ ∆(p,a), such that r ∈ Rθ (this means that
−→
R is correct with respect

to this transition rule). Dually, there is a transition from a vertex (p,a,
−→
R , θ ) to (qf,a) if and

only if there exists a transition rule (r , ε ) ∈ ∆(p,a) such that r < Rθ (this means that
−→
R is

not correct with respect to this transition rule).

• To simulate a transition rule (q,a′) ∈ ∆(p,a), the player that controls (p,a,
−→
R , θ ) moves to

(q,a′,
−→
R ,min(θ , ρ (q))). Note that the last component has to be updated as the smallest colour

seen since the current stack level was reached is now min(θ , ρ (q)).

• To simulate a transition rule (q,a′b) ∈ ∆(p,a), the player that controls (p,a,
−→
R , θ ) moves to

(p,a′,
−→
R , θ ,q,b). This vertex is controlled by Éloïse whohas to give a vector

−→
R′ = (R′0, . . . ,R

′
d
) ∈

(2Q )d+1 that describes the control states that can be reached if b (or a symbol that rewrites
it later) is eventually popped. To describe this vector, she goes to the corresponding vertex

(p,a′,
−→
R , θ ,q,b,

−→
R′).

Any vertex (p,a′,
−→
R , θ ,q,b,

−→
R′) is controlled by Abelard who chooses either to simulate a

bump or a stair. In the �rst case, he additionally has to pick the minimal colour of the bump.

To simulate a bump with minimal colour i , he goes to a vertex (r ′,a′,
−→
R ,min(θ , i, ρ (s ))), for

some r ′ ∈ R′i , through an intermediate vertex (r ′,a′,
−→
R ,min(θ , i, ρ (s )), i ) coloured by i .

To simulate a stair, Abelard goes to the vertex (q,b,
−→
R′, ρ (q)).

The last component of the vertex (that stores the smallest colour seen since the currently
simulated stack level was reached) has to be updated in all those cases. After simulating a
bump of minimal colour i , the minimal colour is min(θ , i, ρ (r ′)). After simulating a stair, this
colour has to be initialised (since a new stack level is simulated). Its value, is therefore ρ (q),
which is the unique colour since the (new) stack level was reached.

The vertices of the form (p,a,
−→
R , θ ) get colour ρ (p). Intermediate vertices of the form (p,a′,

−→
R , θ ,q,b)

or (p,a′,
−→
R , θ ,q,b,

−→
R′) get colour d and hence, will be neutral with respect to the parity condition.

The following lemma relates the winning region in G̃ with Gabs and the conditional games
induced over Gabs.

Lemma 6.9. For every p0,q ∈ Q and a ∈ A the following holds.

(1) Con�guration (p0,⊥) is winning for Éloïse in Gabs if and only if (p0,⊥, (∅, . . . , ∅), ρ (p0)) is
winning for Éloïse in G̃.

(2) For every R ⊆ Q , R ∈ R (q,a) if and only if (q,a, (R, . . . ,R), ρ (q)) is winning for Éloïse in G̃.

Remark 6.10. Note that the above lemma is proved in [33, Theorem 5.1] in the case of usual push-
down automata, i.e. when A is �nite as remarked in Example 6.2. A careful analysis of that proof
shows that it does not make use of the fact that A is �nite and therefore the proof of Lemma 6.9
could be skipped. Nevertheless, we give it below for completeness and also because we need a
careful analysis later when dealing with the regularity of the winning con�guration and when
constructing a (n − 1)-transducer realising a winning strategy (in Theorem 6.15 below).

, Vol. 1, No. 1, Article . Publication date: April 2021.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Broadbent et al.

The rest of the section is devoted to the proof of Lemma 6.9. We mainly focus on the proof of the
�rst item, the proof of the second one being a subpart of it. We start by introducing some useful
concept and then prove both implications.

6.4.1 Factorisation of plays in Gabs and in G̃. .

Recall that for an in�nite play λ = v0v1 · · · in Gabs, Stepsλ denotes the set of indices of positions
where no con�guration of strictly smaller stack height is visited later in the play. Recall that for
any play λ with Stepsλ = {n0 < n1 < · · · }, we de�ne the sequence (mcolλi )i≥0 ∈ N

N by letting
mcolλi = min{ρ (vk ) | ni ≤ k ≤ ni+1}.

Indeed, for any play λ with Stepsλ = {n0 < n1 < · · · }, one can de�ne the sequence (λi )i≥0
by letting λi = vni · · ·vni+1 . Note that each of the λi is either a bump or a stair. In the later we
designate (λi )i≥0 as the rounds factorisation of λ.

For any play λ̃ in G̃, a round is a factor between two visits through vertices of the form

(p,a,
−→
R , θ ). We have the following possible forms for a round.

• The round is of the form (p,a,
−→
R , θ ) (q,a′,

−→
R , θ ) and corresponds therefore to the simulation

of a transition (q,a′). We designate it as a trivial bump.

• The round is of the form (p,a,
−→
R , θ ) (p,a′,

−→
R , θ ,q,b) (p,a′,

−→
R , θ ,q,b,

−→
R′) (s,a′,

−→
R ,min(θ , i,

ρ (s )), i ) (s,a′,
−→
R ,min(θ , i, ρ (s ))) and corresponds therefore to the simulation of a transition

(q,a′b) pushing b followed by a sequence of moves that ends by popping b (or a rewriting of
it). Moreover, i is the smallest colour encountered whilst b (or other stack symbol obtained
by successively rewriting it) was on the stack. We designate it as a (non-trivial) bump.

• The round is of the form (p,a,
−→
R , θ ) (p,a′,

−→
R , θ ,q,b) (p,a′,

−→
R , θ ,q,b,

−→
R′) (q,b,

−→
R′, ρ (q)) and cor-

responds therefore to the simulation of a transition (q,a′b) pushing a symbol b leading to a
new stack level below which the play will never go. We designate it as a stair.

We de�ne the colour of a round as the smallest colour of the vertices in the round.
For any play λ̃ = v0v1v2 · · · in G̃, we consider the subset of indices corresponding to vertices of

the form (p,a,
−→
R , θ ). More precisely:

Rounds
λ̃
= {n | vn = (p,a,

−→
R , θ ), p ∈ Q, a ∈ A,

−→
R ∈ (2Q )d+1, 0 ≤ θ ≤ d }

The set Rounds
λ̃
induces a natural factorisation of λ̃ into rounds. Indeed, let Rounds

λ̃
= {n0 <

n1 < n2 < · · · }, then for all i ≥ 0, we let λ̃i = vni · · ·vni+1 . We call the sequence (λ̃i )i≥0 the round

factorisation of λ̃. For every i ≥ 0, λ̃i is a round and the �rst vertex in λ̃i+1 equals the last one in

λ̃i . Moreover, λ̃ = λ̃0 ⊙ λ̃1 ⊙ λ̃2 ⊙ · · · , where λ̃i ⊙ λ̃i+1 denotes the concatenation of λ̃i with λ̃i+1
without its �rst vertex.

In order to prove both implications of Lemma 6.9, we build from a winning strategy for Éloïse
in one game a winning strategy for her in the other game. The main argument to prove that the
new strategy is winning is to prove a correspondence between the factorisations of plays in both
games.

6.4.2 Direct implication. .

Assume that the con�guration (p0,⊥) is winning for Éloïse in Gabs, and let φ be a corresponding
winning strategy for her.

Using φ, we de�ne a strategy φ̃ for Éloïse in G̃ from (p0,⊥, (∅, . . . , ∅), ρ (p0)). The strategy φ̃
maintains as a memory a partial play λ in Gabs. At the beginning λ is initialised to the vertex

, Vol. 1, No. 1, Article . Publication date: April 2021.



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Collapsible Pushdown Parity Games 39

(p0,⊥). We �rst describe φ̃, and then we explain how λ is updated. Both the strategy φ̃ and the
update of λ, are described for a round.

Choice of the move. Assume that the play is in some vertex (p,a,
−→
R , θ ) for p ∈ QE. The move

given by φ̃ depends on φ (λ):

• If φ (λ) = (r , ε ), then Éloïse goes to (qt,a) (Proposition 6.11 will prove that this move is
always possible).

• If φ (λ) = (q,a′), then Éloïse goes to (q,a′,
−→
R ,min(θ , ρ (q))).

• If φ (λ) = (q,a′b), then Éloïse goes to (p,a′,
−→
R , θ ,q,b).

In this last case, or in the case where p ∈ QA and Abelard goes to (p,a′,
−→
R , θ ,q,b), we also have

to explain how Éloïse behaves from (p,a′,
−→
R , θ ,q,b). She has to provide a vector

−→
R′ ∈ (2Q )d+1 that

describes which states can be reached if b (or its successors by top rewriting) is eventually popped,

depending on the smallest visited colour in the meantime. In order to de�ne
−→
R′, Éloïse considers

the set of all possible continuations of λ · (q, sa′b) (where (p, sa) denotes the last vertex of λ) where
she respects her strategyφ. For each such play, she checkswhether some con�guration of the form
(r ′, sa′) is visited after λ · (q, sa′b), that is if the stack level of b is eventually left. If it is the case,
she considers the �rst con�guration (r ′, sa′) appearing after λ · (q, sa′b) and the smallest colour i
since b and (possibly) its successors by top-rewriting were on the stack. For every i ∈ {0, . . . ,d },
R′i is exactly the set of states r ′ ∈ Q such that the preceding case happens. More formally,

R′i = {r
′ | ∃ λ · (q, sa′b)v0 · · ·vk (r

′, sa′) · · · play in Gabs where Éloïse respects φ and

s.t. |vj | ≥ |sa
′b |, ∀j = 0, . . . ,k and min({ρ (vj ) | j = 0, . . . ,k} ∪ {ρ (q)}) = i}

Finally, we let
−→
R′ = (R′0, . . . ,R

′
d
) and Éloïse moves to (p,a′,

−→
R , θ ,q,b,

−→
R′).

Update of λ. The memory λ is updated after each visit to a vertex of the form (p,a,
−→
R , θ ). We

have three cases depending on the kind of the last round:

• The round is a trivial bump and therefore a (q,a′) transition was simulated. Let (p, sa) be
the last vertex in λ, then the updated memory is λ · (q, sa′).
• The round is a bump, and therefore a bump of colour i (where i is the colour of the round)
starting with some transition (q,a′b) and ending in a state r ′ ∈ R′i was simulated. Let (p, sa)
be the last vertex in λ. Then the memory becomes λ extended by (q, sa′b) followed by a
sequence of moves, where Éloïse respects φ, that ends by popping b and reaches (r ′, sa′)
whilst visiting i as smallest colour. By de�nition of R′i such a sequence of moves always
exists.
• The round is a stair and therefore we have simulated a (q,a′b) transition. If (p, sa) denotes
the last vertex in λ, then the updated memory is λ · (q, sa′b).

Therefore, with any partial play λ̃ in G̃ in which Éloïse respects her strategy φ̃, is associated
a partial play λ in Gabs. An immediate induction shows that Éloïse respects φ in λ. The same
arguments work for an in�nite play λ̃, and the corresponding play λ is therefore in�nite, starts
from (p0,⊥) and Éloïse respects φ in that play. Therefore it is a winning play.
The following proposition is a direct consequence of how φ̃ was de�ned.

Proposition 6.11. Let λ̃ be a partial play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)), ends in

a vertex of the form (p,a,
−→
R , θ ), and where Éloïse respects φ̃. Let λ be the partial play associated with

λ̃ built by the strategy φ̃. Then the following holds:

(1) λ ends in a vertex of the form (p, sa) for some s ∈ A∗.

, Vol. 1, No. 1, Article . Publication date: April 2021.



1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Broadbent et al.

(2) θ is the smallest visited colour in λ since a (or a symbol that was later rewritten as a) has been
pushed.

(3) Assume that λ is extended, that Éloïse keeps respecting φ and that the next move after (p, sa) is
to some vertex (r , s ). Then r ∈ Rθ .

Proposition 6.11 implies that the strategy φ̃ is well de�ned when it provides a move to some
(qt,a). Moreover, one can deduce that, if Éloïse respects φ̃, no vertex of the form (qf,a) is reached.

For plays that never reach a sink vertex (qt,a), using the de�nitions of G̃ and φ̃, we easily deduce
the following proposition.

Proposition 6.12. Let λ̃ be a play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)), and where Éloïse
respects φ̃. Assume that λ̃ never visits qt , let λ be the associated play built by the strategy φ̃, and let

(λi )i≥0 be its rounds factorisation. Let (λ̃i )i≥0 be the rounds factorisation of λ̃. Then, for every i ≥ 0
the following hold:

(1) λ̃i is a bump if and only if λi is a bump

(2) λ̃i has colourmcolλi .

Now consider a play λ̃ in G̃ starting from (p0,⊥, (∅, . . . , ∅), ρ (p0)) where Éloïse respects φ̃. Either

λ̃ loops in some (qt,a) (hence, is won by Éloïse). Or, thanks to Proposition 6.12 the sequence of
visited colours in λ̃ is (mcolλi )i≥0 for the corresponding play λ inGabs. Hence, using Proposition 6.8

we conclude that λ̃ is winning if and only if λ is winning; as λ is winning for Éloïse, it follows that

λ̃ is winning for her as well.

6.4.3 Converse implication. .

First note that in order to prove the converse implication one could follow the same approach
as for the direct implication by considering now the point of view of Abelard. Nevertheless the
proof we give here starts from a winning strategy for Éloïse in G̃ and constructs a strategy for
her in Gabs: this induces a more involved proof but has the advantage of leading to an e�ective
construction of a winning strategy for Éloïse in Gabs if one has an e�ective winning strategy for
her in G̃.
Assume now that Éloïse has a winning strategy φ̃ in G̃ from (p0,⊥, (∅, . . . , ∅), ρ (p0)). Using φ̃,

we build a strategy φ for Éloïse in Gabs for plays starting from (p0,⊥).

The strategy φ maintains as a memory a partial play λ̃ in G̃, that is an element in Ṽ ∗. At the
beginning λ̃ is initialised to (p0,⊥, (∅, . . . , ∅), ρ (p0)).
For any play λ where Éloïse respects φ the following will hold.

• λ̃ is a play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)) and where Éloïse respects her win-
ning strategy φ̃.

• The last vertex of λ̃ is some (p,a,
−→
R , θ ) if and only if the current con�guration in λ is of the

form (p, sa).
• If Éloïse keeps respecting φ, and if a (or a symbol that rewrites it later) is eventually popped
the con�guration reached will be of the form (r , s ) for some r ∈ Ri , where i is the smallest
visited colour since a (or some symbol that was later rewritten as a) was on the stack.

Note that initially the previous invariants trivially hold.
In order to describe φ, we assume that we are in some con�guration (p, sa) and that the last

vertex of λ̃ is some (p,a,
−→
R , θ ). We �rst describe how Éloïse plays if p ∈ QE, and then we explain

how λ̃ is updated.
Choice of the move. Assume that p ∈ QE. Then the move given by φ depends on φ̃ (λ̃).

, Vol. 1, No. 1, Article . Publication date: April 2021.



1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Collapsible Pushdown Parity Games 41

• If φ̃ (λ̃) = (q,a′,
−→
R ,min(θ , ρ (q))), Éloïse plays transition (q,a′).

• If φ̃ (λ̃) = (p,a′,
−→
R , θ ,q,b), then Éloïse applies plays transition (q,a′b).

• If φ̃ (λ̃) = (qt,a), Éloïse plays transition (r , ε ) for some state r ∈ Rθ . Lemma 6.13 will prove
that such an r always exists.

Update of λ̃. The memory λ̃ is updated after each move (played by any of the two players). We
have several cases depending on the last transition.

• If the last movewas from (p, sa) to (q, sa′) then the updatedmemory is λ̃·(q,a′,
−→
R ,min(θ , ρ (q))).

• If the last move was from (p, sa) to (q, sa′b), let (p,a′,
−→
R , θ ,q,b,

−→
R′) = φ̃ (λ̃ · (p,a′,

−→
R , θ ,q,b)).

Then the updated memory is λ̃ · (p,a′,
−→
R , θ ,q,b) · (p,a′,

−→
R , θ ,q,b,

−→
R′) · (q,b,

−→
R′, ρ (q)).

• If the last move was from (p, sa) to (r , s ) the update of λ̃ is as follows. One backtracks in λ̃

until one �nds a con�guration of the form (p ′,a′,
−→
R′, θ ′,p ′′,a′′,

−→
R ) that is not immediately fol-

lowed by a vertex of the form (s,a′′,
−→
R , θ ′′, i ). This con�guration is therefore in the stair that

simulates the pushing of a′′ onto the stack (here if a′′ , a it simply means that a′′ was later
rewritten asa). Call λ̃′ the pre�x of λ̃ ending in this con�guration. The updatedmemory is λ̃′·

(r ,a′,
−→
R′,min(θ ′, θ , ρ (r )), θ ) · (r ,a′,

−→
R′,min(θ ′, θ , ρ (r ))). Formally, write λ̃ = λ̃0⊙ λ̃1⊙ · · ·⊙ λ̃k

where (λ̃i )0≤i≤k is the round factorisation of λ̃. Leth ≤ k be the largest integer such that λ̃h is

a stair and let λ̃h = (p ′,a′,
−→
R′, θ ′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′,

−→
R ) (p ′′,a′′,

−→
R , ρ (p ′′)).

De�ne λ̃′
h
= (p ′,a′,

−→
R′, θ ′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′,

−→
R ) (r ,a′,

−→
R′,min(θ ′, θ , ρ (r )), θ )·

(r ,a′,
−→
R′,min(θ ′, θ , ρ (r ))). Then the updated memory is λ̃1 ⊙ λ̃2 ⊙ · · · ⊙ λ̃h−1 ⊙ λ̃′h .

The following lemma gives the meaning of the information stored in λ̃.

Lemma 6.13. Let λ be a partial play in Gabs, where Éloïse respects φ, that starts from (p0,⊥) and
ends in a con�guration (p, sa). We have the following facts:

(1) The last vertex of λ̃ is of the form (p,a,
−→
R , θ ) with

−→
R ∈ (2Q )d+1 and 0 ≤ θ ≤ d .

(2) λ̃ is a partial play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)), that ends with (p,a,
−→
R , θ ) and

where Éloïse respects φ̃.
(3) θ is the smallest colour visited since a (or some symbol that was later rewritten as a) was pushed.
(4) If λ is extended by some move that pops a, the con�guration (r , s ) that is reached is such that

r ∈ Rθ .

Proof. We �rst note that the last point is a consequence of the second and third points. Indeed,
assume that the next move after (p, sa) is to play a transition (r , ε ) ∈ ∆(p,a). The second point

implies that (p,a,
−→
R , θ ) is winning for Éloïse in G̃. If p ∈ QE, by de�nition of φ, there is some edge

from that vertex to (qt,a), which means that r ∈ Rθ and allows us to conclude. If p ∈ QA, note that

there is no edge from (p,a,
−→
R , θ ) (winning position for Éloïse) to the losing vertex (qf,a). Hence

we conclude the same way.
Let us now prove the other points by induction on λ. Initially, they trivially hold. Now assume

that the result is proved for some play λ, and let λ′ be an extension of λ. We have two cases,
depending on how λ′ extends λ:

• λ′ is obtained by applying a transition of the form (q,a′) or (q,a′b). The result is trivial in
that case.
• λ′ is obtained by applying a transition of the form (r , ε ). Let (p, sa) be the last con�guration

in λ, and let
−→
R be the last vector component in the last vertex of λ̃ when in con�guration

, Vol. 1, No. 1, Article . Publication date: April 2021.



2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Broadbent et al.

(p, sa). By the induction hypothesis, it follows that λ′ = λ · (r , s ) with r ∈ Rθ . Considering
how λ̃ is updated, and using the fourth point, we easily deduce that the new memory λ̃ is as
desired.

�

Actually, we easily deduce a more precise result.

Lemma 6.14. Let λ be a partial play inGabs starting from (p0,⊥) and where Éloïse respectsφ and let

(λi )i≥0 be its rounds factorisation. Let (λ̃i )i=0, ...,k be the rounds factorisation of λ̃. Then the following
holds for every i ≥ 0.

• λ̃i is a bump if and only if λi is a bump.
• λ̃i has colourmcolλi .

Both lemmas 6.13 and 6.14 are for partial plays. A version for in�nite plays would allow us to

conclude. Let λ be an in�nite play in Gabs. We de�ne an in�nite version of λ̃ by considering the
limit of the (λ̃i )i≥0 where λ̃i is thememory after the i �rst moves in λ. See Footnote 4 on page 29 for
a similar construction. It is easily seen that such a limit always exists, is in�nite and corresponds
to a play won by Éloïse in G̃. Moreover the results of Lemma 6.14 remain true.
Let λ be a play in Gabs with initial vertex (p0,⊥), and where Éloïse respects φ, and let λ̃ be the

associated play in G̃. Therefore λ̃ is won by Éloïse. Using Lemma 6.14 and Proposition 6.8, we
conclude, as in the direct implication that λ is winning.

6.5 Main Result

Following Example 6.3 we see an n-CPDA that does not create n-links as an abstract pushdown
automaton and we apply the construction of Section 6.4. We argue that the resulting game G̃ is
associated with an (n − 1)-CPDA, which leads the following result.

Theorem 6.15. For any n-CPDA Alf = (Γlf ,Qlf ,∆lf ,q0, lf ) that does not create n-links and any
associated parity game Glf , one can construct an (n − 1)-CPDA Ã = (Γ̃, Q̃, ∆̃, q̃0) and an associated
parity game G̃ such that the following holds.

• (q0, lf ,⊥n ) is winning for Éloïse in Glf if and only if (q̃0,⊥n−1) is winning for Éloïse in G̃ .

• If the set of winning con�gurations for Éloïse in G̃ is regular, then the set of winning con�gura-
tions for Éloïse in Glf is regular as well.

• If there is an (n−1)-CPDA transducer S̃ synchronised with Ã realising a well-de�ned winning
strategy for Éloïse in G̃ from (q̃0,⊥n−1), then one can e�ectively construct ann-CPDA transducer
Slf synchronised with Alf realising a well-de�ned winning strategy for Éloïse in Glf from the
initial con�guration (q0, lf ,⊥n ).

Proof. Following Example 6.3,Alf can be seen as an abstract pushdown automaton hence, we
can apply the construction of Section 6.4. We claim that the resulting game G̃ is associated with
an (n − 1)-CPDA.
Indeed, one simply needs to consider how the graph G̃ is de�ned and make the following obser-

vations concerning the local structure given in Figure 4 when G is played on the transition graph
of an n-CPDA that does not create links.

(1) For every vertex of the form (p,a,
−→
R , θ ), (qt,a),(qf,a),(p,a,

−→
R , θ ,q,b), (p,a,

−→
R , θ ,q,b,

−→
R′) or

(s,a, ~R, θ ′, i ), a and b are (n − 1)-stacks.

(2) For every vertex of the form (p,a,
−→
R , θ ,q,b) or (p,a,

−→
R , θ ,q,b,

−→
S ), one has a = b.

, Vol. 1, No. 1, Article . Publication date: April 2021.



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Collapsible Pushdown Parity Games 43

This implies that any vertex in G̃ can be seen as a pair formed by a state in a �nite set and an
(n − 1)-stack. Then one concludes the proof by checking that the edge relation is the one of an
(n − 1)-CPDA.
Therefore, the �rst point follows from Lemma 6.9 and the second one follows by combining

Lemma 6.6 with Proposition 6.5 and Lemma 6.9.

We now turn to the third point and therefore assume that there is an (n−1)-CPDA transducer S̃
synchronised with Ã realising a well-de�ned winning strategy φ̃ for Éloïse in G̃ from (q̃0,⊥n−1).
We argue that the strategy φ constructed in the proof of Lemma 6.9 can be realised, when Gabs is
obtained from an n-CPDAAlf that does not create n-links, by an n-CPDA transducer Slf synchro-
nised with Alf .
For this, let us �rst have a closer look at φ. The key ingredient in φ is the play λ̃ in G̃, and the

value of φ uniquely depends on φ̃ (λ̃). In particular, if φ̃ is realised by an (n − 1)-CPDA transducer

S̃, it su�ces to know the con�guration of S̃ after reading λ̃ in order to de�ne φ. We claim that
it can be computed by an n-CPDA transducer Slf (synchronised with Alf ); the hard part being to
establish that such a device can update correctly its memory.

Let λ̃ = v0v1 · · ·vℓ and let r
λ̃
= (p0, s0) (p1, s1) · · · (pℓ, sℓ ) be the run of S̃ associated with λ̃,

i.e. after having playedv0 · · ·vk , S̃ is in con�guration (pk , sk ). Denote by Last (r λ̃ ) the last con�gu-
ration of r

λ̃
, i.e. (pℓ, sℓ ). To de�ne φ, Last (r λ̃ ) su�ces but of course, in order to update Last (r

λ̃
), we

need to recall some more con�gurations from r
λ̃
. In the case where the last transition applies an

order-k stack operation with k < n (i.e. it is neither popn nor pushn), then the update is simple, as

it consists in simulating one step of S̃. If the last stack operation is pushn then the update of λ̃ con-
sists in adding three vertices and the corresponding update of r

λ̃
is simple (as the only operation

on the (n − 1)-stack is to rewrite the top1-element). If the last stack operation is popn one needs

to backtrack in λ̃ (hence in r
λ̃
): the backtrack is to some vk with k maximal such that vk is of the

form (p ′,a′,
−→
R′, θ ′,p ′′,a′′,

−→
R ) andvk+1 = (p ′′,a′′,

−→
R , ρ (p ′′)). Oncevk has been found, the update is

fairly simple for both λ̃ and r
λ̃
(one simply extends the remaining pre�x of λ̃ by two extra vertices

whose stack content is unchanged compared with the one in vk ).
De�ne the following set of indices where λ̃ = v0v1 · · ·vℓ

Ext (λ̃) = {h | vh is of the form (p ′,a′,
−→
R′, θ ′,p ′′,a′′,

−→
R ) and vh+1 = (p ′′,a′′,

−→
R , ρ (p ′′))} ∪ {ℓ}

Note that after a partial play λ the cardinality of Ext (λ̃) is equal to the height of the stack in the
last con�guration of λ.
For any partial play λ in Glf de�ne the following n-stack (note that it does not contain any

n-link)

Mem(λ) = [s ′k1s
′
k2
· · · s ′kh]

where we let

• Ext (λ̃) = {k1 < · · · < kh }, λ̃ being thememory associatedwith λ as in the proof of Lemma 6.9;
• s ′j is the (n − 1)-stack obtained from sj (recall that (pj , sj ) denotes the j-th con�guration of
r
λ̃
) by appending pj to its top1-symbol (i.e. we work on an enriched stack alphabet).

Note that Last (r
λ̃
) is essentially top1 (Mem(λ)) as the only di�erence is that now the control

state is stored in the stack. Moreover Mem(λ) can easily be updated by an n-CPDA transducer:

for the case of a transition involving an order-k stack operation with k < n one simulates S̃ on

top1 (Mem(λ)); for the case of a transition involving a pushn one �rst simulates S̃ on top1 (Mem(λ))

(as one may do a rew1 before pushn ) and then makes a pushn to duplicate the topmost (n−1)-stack

, Vol. 1, No. 1, Article . Publication date: April 2021.



2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Broadbent et al.

in Mem(λ); �nally, for the case of a popn , one simply needs to do a popn in Mem(λ) to backtrack
and then update the control state. This is how we de�ne Slf 5.
The fact that Slf is synchronised with Alf comes from the de�nition of how Slf behaves when

the transition in Alf involves a popn or a pushn , and for the other cases it follows from the initial

assumption of S̃ being synchronised with Ã. �

Remark 6.16. When applying the general construction of Section 6.4 to an n-CPDA Alf that

does not create links, we can safely enforce the following extra constraint on the vectors
−→
R and

−→
S :

they should be element in (2Q
popn
lf )d+1 where we let Q

popn
lf denote the set of control states of Alf

from which a popn operation can be performed. Indeed, the various component of such vectors
aims at representing set of states reachable by doing a popn . This is important later in the overall
complexity for Theorem 3.1.

6.6 Complexity

If we summarise, the overall blowup in the transformation from Glf to G̃ given by Theorem 6.15
is as follows.

Proposition 6.17. Let Alf and Ã be as in Theorem 6.15. Then the set of states of Ã has size
O (22 |C | |Qlf | ) and the stack alphabet of Ã has size O ( |Γlf |). Finally, the set of colours used in Glf and
G̃ are the same.

Proof. By construction. �

7 PROOF OF THEOREM 3.1 AND COMPLEXITY

The proof of Theorem 3.1 consists in combining theorems 4.8, 5.1 and 6.15. Indeed, starting from an
n-CPDA, we apply Theorem 4.8 to obtain a rank-aware n-CPDA, then Theorem 5.1 to remove the
order-n links, and �nally Theorem 6.15 to obtain an (n−1)-CPDA.By (n−1) successive applications
of these three results, we end-up with a 1-CPDA parity game. If we apply to this latter (pushdown)
game the construction of Section 6.4 we end up with a game on a �nite graph. Solving this game
and following the chain of equivalences provided by theorems 4.8, 5.1 and 6.15 concludes the proof.
Concerning complexity, one step of successive application of the construction in theorems 4.8,

5.1 and 6.15 results in an (n − 1)-CPDA with a state set of size O (22 |Q |( |C |+3)
n+5

), a stack alphabet
of size O ( |Γ |2 · 2 |Q |( |C |+1)

n+5
) and an unchanged number of colours. Indeed,

• by Proposition 4.10 one has |Qrk | = O ( |Q | · ( |C | + 1)n+3) and |Γrk | = O ( |Γ | · ( |C | + 1)2n+5);
• by Proposition 5.7 one has |Qlf | = O ( |Qrk | · ( |C | + 3)) = O ( |Q | · ( |C | + 3)n+4) and
|Γlf | = O ( |Γrk |

2 · 2 |Qrk | |C | ) = O ( |Γ |2 · ( |C | + 1)4n+10 · 2 |Q |( |C |+1)
n+4

) = O ( |Γ |2 · 2 |Q |( |C |+1)
n+5

);
• and �nally, by Proposition 6.17, one has |Q̃ | = O (22 |C | |Qlf | ) = O (22 |Q |( |C |+3)

n+5
) and

|Γ̃ | = O ( |Γlf |) = O ( |Γ |
2 · 2 |Q |( |C |+1)

n+5
).

If one lets, for a constant K , ExpK
h

be the function de�ned by ExpK0 (x ) = x for all x and

ExpK
h+1(x ) = 2KExpK

h
(x ) , we conclude that the 1-CPDA obtained after (n − 1) successive applica-

tions of the three reductions has

• a state set of size O (Exp2( |C |+3)
n+5

n−1 ( |Q |)) and

• a stack alphabet of size O ( |Γ |2(n−1) · Exp( |C |+1)
n+5

n−1 ( |Q |)).

5Technically speaking, if we impose that a transition of Slf does a rew1 (or id) followed by another stack operation, we
may not be able to do the update of the stack after doing a popn . However, we can use the same trick as the one used to
de�ne Ark, i.e. we postpone the rew1 action to the next transition (see Remark 4.9).

, Vol. 1, No. 1, Article . Publication date: April 2021.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Collapsible Pushdown Parity Games 45

Solving this latter game can be done by reducing it using the construction of Section 6.4 which

leads to solve a parity gameon a �nite graphwithO (Exp2( |C |+3)
n+5

n ( |Q |)·( |Γ |2(n−1)·Exp( |C |+1)
n+5

n−1 ( |Q |))2)

vertices. Solving this game can be achieved in time O (N |C | ) where N denotes the number of ver-
tices. Hence, the overall complexity of deciding the winner in an n-CPDA parity game is:

• n-times exponential in the number of states of the CPDA;
• n-times exponential in the number of colours;
• polynomial in the size of the stack alphabet of the CPDA.

Regarding lower bound, the problem is n-ExpTime-hard. In fact, hardness already holds when
one considers reachability condition (i.e. does the play eventually visit a con�guration with a �nal
control state?) for games generated by higher-order pushdown automata (i.e. CPDA that never use
collapse). A self-contained proof of this result was established by Cachat and Walukiewicz, but is
fairly technical [12].
Here we sketch a much simpler proof of this result that relies on the following well-known

result: checking emptiness of a nondeterministic order-n higher-order pushdown automaton is an
(n − 1)-ExpTime-complete problem [20] (here one uses higher-order pushdown automata as word
acceptors)6. Trivially, this result is still true if we assume that the input alphabet is reduced to a
single letter. Now consider an order-(n + 1) nondeterministic higher-order pushdown automaton
A whose input alphabet is reduced to a single letter. The language accepted by A is non-empty
if and only if there is a path from the initial con�guration of A to a �nal con�guration of A in
the transition graph G of A. Equivalently, the language accepted by A is non-empty if and only
if Éloïse wins the reachability game G over G where she controls all vertices (and where the play
starts from the initial con�guration ofA and where �nal vertices are those corresponding to �nal
con�gurations ofA). Now, consider the reduction used to prove Theorem 3.1 and apply it toG. As
A does not use links, we only need to do the third step, which leads to an equivalent reachability
game G̃ that is nowplayed on the transition graph of an order-n higher order pushdown automaton.

In the new arena, themain vertices are of the form (p, s,
−→
R , θ ): here s is ann-stack (without links),

−→
R

is actually a pair (R0,R1) (we consider a reachability condition) and θ is either 0 or 1. The important
fact is that R0 and R1 can be forced to be singletons: this follows from the fact that all vertices in
G are controlled by Éloïse (and thus she can precisely force in which state the play goes if some
popn+1 is eventually done). Therefore, one concludes that the size of the arena associated with G̃ is
polynomial in the size ofA. Hence, one has shown the following: checking emptiness for an order-
(n + 1) nondeterministic higher-order pushdown automaton whose input alphabet is reduced to
a single letter can be polynomially reduced to solve a reachability game over the transition graph
of an order-n higher-order pushdown automaton. In conclusion, this latter problem is n-ExpTime-
hard.

8 CONSEQUENCES

8.1 Marking The Winning Region

If one combines the fact that the winning region in a CPDA parity game is regular (Theorem 3.1)
together with the fact that the model of CPDA can perform regular test (Theorem 2.8) one directly
gets the following result.

6 The following result is also proved in [20]: checking emptiness of an alternating order-n higher-order pushdown automa-
ton is an n-EXPTIME complete problem. Nevertheless, note that this result does not directly imply hardness for games on
higher-order pushdown graphs. Indeed, in general it is more di�cult to check emptiness for an alternating device than to
solve a reachability game on the corresponding class of graphs: for instance, solving a reachability game on a �nite graph
is in P while checking emptiness for an alternating automata on �nite word (even if one considers a 1-letter alphabet) is
PSPACE-complete; the problems are trivially equivalent only when considering in�nite words on a single letter alphabet.

, Vol. 1, No. 1, Article . Publication date: April 2021.



2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Broadbent et al.

Corollary 8.1. LetA = (Γ,Q, δ ,q0) be an n-CPDA and let G be an n-CPDA parity game de�ned
fromA. Then, one can build an order-n CPDAA′ with a state-setQ ′, a subset F ⊆ Q ′ and a mapping
χ : Q ′ → Q such that the following holds.

(1) Restricted to the reachable con�gurations from their respective initial con�guration, the transi-
tion graph of A and A′ are isomorphic.

(2) For every con�guration (q, s ) of A that is reachable from the initial con�guration, the corre-
sponding con�guration (q′, s ′) of A′ is such that q = χ (q′), and (q, s ) is winning for Éloïse in
G if and only if q′ ∈ F .

In other words, it means that fromG one can build a new game that behaves the same but where
the winning region is explicitly marked (thanks to the subset F ).

8.2 Logical Consequences

We now discuss the consequences of our main result regarding logical properties of structures
generated by CPDA. Due to its strong connections with parity games, we obtain positive results
regarding the µ-calculus. Before discussing them, we will start with some consideration regarding
monadic second-order (MSO) logic.
For both µ-calculus and MSO logic, it is usual to consider structures given by an edge-labelled

graphs coming with a labelling function that maps each vertex to a set of properties that hold in
it.
In the setting of CPDA, a natural way to de�ne such a structure is by adding an input alphabet

to the CPDA and de�ning the transition relation as a partial function depending on the current
control state, the current top stack symbol and the input letter; the labelling function mapping
vertices (i.e. con�gurations) to properties can simply depend on the current control state (as we
did when de�ning the colour in CPDA parity games). Rather than giving a formal de�nition we
give an example that illustrates how to generate an edge-labelled graph using a CPDA with an
input alphabet.

Example 8.2. LetA = (Γ,Q,∆,q0) be an order-2 CPDA over the input alphabetA = {a,b, c, 1, 2}

where Γ = {α , β,⊥}, Q = {q0,q1,q2} and ∆ : Q × Γ ×A→ 2Q×Op
Γ
2×Op

Γ
2 is de�ned by

• ∆(q0,⊥, 2) = ∆(q0,α , 2) = {(q1, id ; push2)};
• ∆(q1,⊥,a) = ∆(q1,α ,a) = {(q0, id ; push

α ,2
1 )};

• ∆(q1,⊥,b) = ∆(q1,α ,b) = {(q2, id ; push
β,2
1 )};

• ∆(q2,α , 1) = ∆(q2, β, 1) = {(q2, id ; pop1)};
• ∆(q2,α , c ) = ∆(q2, β, c ) = {(q0, id ; collapse)};

ThenA generates the edge labelled graph from Figure 5.

8.3 Monadic Second-Order Logic

We refer the reader to [35] for classical de�nitions regarding MSO logic over graphs seen as rela-
tional structures.
If one restricts its attention to higher-order pushdown automata, i.e. CPDA that do not use the

collapse operation, MSO logic is known to be decidable.

Theorem 8.3. [17] The structures generated by higher-order pushdown automata have decidable
MSO theories.

The next theorem shows that this is no longer the case for collapsible pushdown automata. In
the statement below, FO(TC) is the transitive closure �rst-order logic which is de�ned by extending

, Vol. 1, No. 1, Article . Publication date: April 2021.



2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Collapsible Pushdown Parity Games 47

(q0, [[⊥]]) (q1, [[⊥][⊥]])
2

(q2, [[⊥][⊥b]])

b

c

(q2, [[⊥][⊥]])

1

(q0, [[⊥][⊥a]])
a

(q1, [[⊥][⊥a][⊥a]])
2

(q2, [[⊥][⊥a][⊥ab]])

b

c

(q2, [[⊥][⊥a][⊥a]])

c

1

(q2, [[⊥][⊥a][⊥]])

1

(q0, [[⊥][⊥a][⊥aa]])
a

(q0, [[⊥][⊥a][⊥aa][⊥aa]])
2

(q2, [[⊥][⊥a][⊥aa][⊥aab]])

b
c

(q2, [[⊥][⊥a][⊥aa][⊥aa]])

(q2, [[⊥][⊥a][⊥aa][⊥a]])

(q2, [[⊥][⊥a][⊥aa][⊥]])

1

1

1

c

c

. . .

. . .

. . .

. . .

. . .

Fig. 5. The edge labelled graph generated from the CPDA with input from Example 8.2.

the �rst-order logic with a transitive closure operator (see e.g. [41]); in particular it subsumes the
extension of �rst-order logic with a reachability predicate.

Theorem 8.4. There exists a structure generated by a collapsible pushdown automata that has an
undecidable MSO theory (actually even an undecidable FO(TC) theory).

Proof. Consider the following MSO interpretation I7 (see e.g. [18]) applied to the structure
de�ned by the order-2 CPDA from Example 8.2.

φA (x ,y) = x
C
−→ y ∧ x

R
−→ y

φB (x ,y) = x
1
−→ y

with C = 1
∗
b a 2b 1∗ and R = c 2a c ∨ 1 c 2a c 1 where a bar-version of an edge label refers to

an edge which is taken in the other direction. Hence,C is used to enforce that A-edges occur only
between vertices from consecutive columns in the original structure while R is used to enforce
that A-edges occurs only between vertices from consecutive rows in the original structure.
We observe that the image of the structure generated by A by the interpretation I, when re-

stricted to its non-isolated vertices, is the “in�nite half-grid” (see Figure 6).
As the in�nite (half-) grid has an undecidable MSO theory and as MSO interpretations preserve

MSO decidability we conclude that theMSO theory of the structure generated byA is undecidable.
To re�ne the result to FO(TC), we simply remark that the interpretation I is FO(TC) de�nable

and that the in�nite (half) grid has an undecidable FO(TC) theory [41]. �

Remark 8.5. One can wonder about fragments of MSO weaker than FO(TC), e.g. FO(Reach) (the
extension of �rst-order logic with the reachability predicate) or the classical �rst-order logic (FO).
On a positive side, Kartzow proved in [27] that the structures generated by order-2- CPDA have
decidable FO(Reach) theories. But moving to order-3 leads to undecidability, even if one restricts
to FO, as proved by Broadbent in [4].

The following is a direct consequence of Theorem 8.3 and Theorem 8.4.

7In this proof think of an interpretation as a collection of formulas of the form φA (x, y ). Applying such an interpretation
to a structure leads to a new structure with the same domain but di�erent transitions: there is an A-labelled edge from x

to y in the new structure if and only if φA (x, y ) holds in the original structure.

, Vol. 1, No. 1, Article . Publication date: April 2021.



2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Broadbent et al.

• • • •
A A A

• • • •
A A A

B B B B

• • •
A A

B B B

• •
A

B B

•

B

. . .

. . .

. . .

. . .

. . .

Fig. 6. The “infinite half-grid”.

Corollary 8.6. The class of graphs generated by collapsible pushdown automata strictly contains
the class of graphs generated by higher-order pushdown automata.

8.4 µ-Calculus

We refer the reader to [2] for classical de�nitions regarding µ-calculus as well as its connections
with games.

Due to the tight connection between µ-calculus model-checking and solving parity games, and
the fact that the class of structures generated by CPDA is trivially closed by taking a synchronised
product with a �nite graph, Theorem 3.1 directly leads the following result.

Corollary 8.7. The following holds.

(1) The µ-calculus model-checking problem against structures generated by collapsible pushdown
automata is decidable and its complexity (where n denotes the order of the CPDA) is n-times
exponential in the number of states of the CPDA, n-times exponential in the alternation depth
of greatest and smallest �xpoints in the µ-calculus formula and polynomial in the size of the
stack alphabet of the CPDA.

(2) The sets of con�gurations de�nable by a µ-calculus formula over a graph generated by a col-
lapsible pushdown automata are regular.

Remark 8.8. In the case of higher-order pushdown automata, links are useless and therefore
stacks can be seen as �nite words over the alphabet Γ ∪ {[, ]} (where Γ denotes the stack alphabet)
and regular sets of con�gurations are regular languages in the traditional sense of �nite words.
Hence, Corollary 8.7 permits to retrieve the main result in [14, Theorem 6] where the µ-calculus
global model-checking problem against higher-order pushdown automata was tackled.
Also note that in this setting, a stronger notion of regularity was introduced in [13] and shown

to exactly capture MSO-de�nable subsets of con�gurations.

Aswe did in Section 8.1 tomarkwinning regions, combining item (2) fromCorollary 8.7 together
with the fact that the model of CPDA can perform regular test (Theorem 2.8) one directly gets the
following result about marking a µ-calculus de�ned subset of vertices in the transition graph of a
CPDA.

Corollary 8.9. Let A = (Γ,Q, δ ,q0) be an n-CPDA and let φ be a µ-calculus formula de�ning
a subset of vertices in the transition graph of A. Then, one can build an order-n CPDA A′ with a
state-set Q ′, a subset F ⊆ Q ′ and a mapping χ : Q ′ → Q such that the following holds.

, Vol. 1, No. 1, Article . Publication date: April 2021.



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Collapsible Pushdown Parity Games 49

(1) Restricted to the reachable con�gurations from their respective initial con�guration, the transi-
tion graph of A and A′ are isomorphic.

(2) For every con�guration (q, s ) of A that is reachable from the initial con�guration, the corre-
sponding con�guration (q′, s ′) of A′ is such that q = χ (q′), and φ holds in (q, s ) if and only if
q′ ∈ F .

8.5 Perspectives

A natural perspective is to combine the results presented here with the equi-expressivity result [15,
23, 24] between higher-order recursion schemes and collapsible pushdown automaton for gener-
ating trees. In particular they imply the decidability of the MSO model-checking problem, both
its local [23] and global version (also known as re�ection) [8], and the MSO selection problem (a
synthesis-like problem) [15].
These results and other consequences are discussed in full detail in a companion paper [7].

REFERENCES

[1] Klaus Aehlig, Jolie de Miranda, and C.-H. Luke Ong. 2005. Safety is not a Restriction at Level 2 for String Languages.
In Proceedings of the 8th International Conference on Foundations of Software Science and Computational Structures
(FoSSaCS 2005) (Lecture Notes in Computer Science), Vol. 3411. Springer-Verlag, 490–501.

[2] André Arnold and Damian Niwiński. 2001. Rudiments of mu-Calculus. Studies in Logic and the Foundations of Math-
ematics, Vol. 146. Elsevier.

[3] Ahmed Bouajjani and Antoine Meyer. 2004. Symbolic Reachability Analysis of Higher-Order Context-Free Processes.
In Proceedings of the 24th International Conference on Foundations of Software Technology and Theoretical Computer
Science (FST&TCS 2004) (Lecture Notes in Computer Science), Vol. 3328. Springer-Verlag, 135–147.

[4] Christopher H. Broadbent. 2012. The Limits of Decidability for First Order Logic on CPDA Graphs. In Proceedings
of the 29th Symposium on Theoretical Aspects of Computer Science (STACS 2012) (LIPIcs), Vol. 14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 589–600.

[5] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre. 2012. A Saturation Method for Col-
lapsible Pushdown Systems. In Proceedings of the 39th International Colloquium onAutomata, Languages, and Program-
ming (ICALP 2012) (Lecture Notes in Computer Science), Vol. 7392. Springer-Verlag, 165–176.

[6] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre. 2013. C-SHORe: a Collapsible Ap-
proach to Higher-Order Veri�cation. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2013). ACM, 13–24.

[7] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre. 2020. Higher-
Order Recursion Schemes and Collapsible Pushdown Automata: Logical Properties. (2020).
https://www.irif.fr/~serre//PublisMisc/BCOS20.pdf

[8] Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. 2010. Recursion Schemes and Logical
Re�exion. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LiCS 2010). IEEE Computer
Society, 120–129.

[9] ThierryCachat. 2002. Uniform Solution of Parity Games on Pre�x-Recognizable Graphs. In 4th International Workshop
on Veri�cation of In�nite-State Systems, In�nity 2002 (Electronic Notes in Theoretical Computer Science), Vol. 68. Elsevier
Science Publishers. Issue 6.

[10] Thierry Cachat. 2003. Games on Pushdown Graphs and Extensions. Ph.D. Dissertation. RWTH Aachen.
[11] Thierry Cachat. 2003. Higher Order Pushdown Automata, the Caucal Hierarchy of Graphs and Parity Games. In

Proceedings of the 30th International Colloquium on Automata, Languages, and Programming (ICALP 2003) (Lecture
Notes in Computer Science), Vol. 2719. Springer-Verlag, 556–569.

[12] Thierry Cachat and Igor Walukiewicz. 2007. The Complexity of Games on Higher Order Pushdown Automata. CoRR
abs/0705.0262 (2007).

[13] Arnaud Carayol. 2005. Regular Sets of Higher-Order Pushdown Stacks. In Proceedings of the 30th Symposium, Mathe-
matical Foundations of Computer Science (MFCS 2005) (Lecture Notes in Computer Science), Vol. 3618. Springer-Verlag,
168–179.

[14] Arnaud Carayol, Antoine Meyer, Matthew Hague, C.-H. Luke Ong, and Olivier Serre. 2008. Winning Regions of
Higher-Order Pushdown Games. In Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science
(LiCS 2008). IEEE Computer Society, 193–204.

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://www.irif.fr/~serre//PublisMisc/BCOS20.pdf


2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 Broadbent et al.

[15] Arnaud Carayol and Olivier Serre. 2012. Collapsible Pushdown Automata and Labeled Recursion Schemes: Equiva-
lence, Safety and E�ective Selection. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science
(LiCS 2012). IEEE Computer Society, 165–174.

[16] Arnaud Carayol and Michaela Slaats. 2008. Positional Strategies for Higher-Order Pushdown Parity Games. In Pro-
ceedings of the 33rd Symposium, Mathematical Foundations of Computer Science (MFCS 2008) (Lecture Notes in Computer
Science), Vol. 5162. Springer-Verlag, 217–228.

[17] Didier Caucal. 2002. On In�nite Terms Having a Decidable Monadic Theory. In Proceedings of the 27th Symposium,
Mathematical Foundations of Computer Science (MFCS 2002) (Lecture Notes in Computer Science), Vol. 2420. Springer-
Verlag, 165–176.

[18] Bruno Courcelle. 1994. Monadic Second-Order De�nable Graph Transductions: A Survey. Theoretical Computer
Science 126, 1 (1994), 53–75.

[19] E. Allen Emerson and Charanjit S. Jutla. 1991. Tree Automata, mu-Calculus and Determinacy (Extended Abstract). In
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FoCS 1991). IEEE Computer Society,
368–377.

[20] Joost Engelfriet. 1991. Iterated Stack Automata and Complexity Classes. Information and Computation 95, 1 (1991),
21–75.

[21] Yuri Gurevich and Leo Harrington. 1982. Trees, Automata, and Games. In Proceedings of the Fourteenth Annual ACM
Symposium on the Theory of Computing (STOC’82). ACM, 60–65.

[22] Matthew Hague. 2008. Global Model Checking of Higher-Order Pushdown Systems. Ph.D. Dissertation. University of
Oxford.

[23] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. 2008. Collapsible Pushdown Automata and
Recursion Schemes. In Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science (LiCS 2008). IEEE
Computer Society, 452–461.

[24] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. 2017. Collapsible Pushdown Automata and
Recursion Schemes. ACM Transactions on Computational Logic 18, 3 (2017), 25:1–25:42.

[25] Matthew Hague and C.-H. Luke Ong. 2008. Symbolic Backwards-Reachability Analysis for Higher-Order Pushdown
Systems. Logical Methods in Computer Science 4, 4 (2008).

[26] Matthew Hague and C.-H. Luke Ong. 2011. A Saturation Method for the Modal µ-Calculus over Pushdown systems.
Information and Computation 209, 5 (2011), 799–821.

[27] Alexander Kartzow. 2010. Collapsible PushdownGraphs of Level 2 are Tree-Automatic. In Proceedings of the 27th Sym-
posium on Theoretical Aspects of Computer Science (STACS 2010) (LIPIcs), Vol. 5. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 501–512.

[28] Teodor Knapik, Damian Niwiński, Pawel Urzyczyn, and Igor Walukiewicz. 2005. Unsafe Grammars and Panic Au-
tomata. In Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming (ICALP 2005)
(Lecture Notes in Computer Science), Vol. 3580. Springer-Verlag, 1450–1461.

[29] Donald A. Martin. 1975. Borel Determinacy. Ann. Math. 102, 2 (1975), 363–371.
[30] David. E. Muller and Paul. E. Schupp. 1985. The Theory of Ends, Pushdown Automata, and Second-Order Logic.

Theoretical Computer Science 37 (1985), 51–75.
[31] Michael O. Rabin. 1969. Decidability of Second-Order Theories and Automata on In�nite Trees. Trans. Amer. Math.

Soc. 141 (1969), 1–35.
[32] Olivier Serre. 2003. Note onWinning Positions on PushdownGameswithω-RegularWinning Conditions. Information

Processing Letters 85 (2003), 285–291.
[33] Olivier Serre. 2004. Contribution à l’étude des jeux sur des graphes de processus à pile. Ph.D. Dissertation. Université

Paris 7.
[34] Colin Stirling. 2009. Dependency Tree Automata. In Proceedings of the 12th International Conference on Foundations of

Software Science and Computational Structures (FoSSaCS 2009) (Lecture Notes in Computer Science), Vol. 5504. Springer-
Verlag, 92–106.

[35] Wolfgang Thomas. 1997. Languages, Automata, and Logic. In Handbook of Formal Language Theory, G. Rozenberg
and A. Salomaa (Eds.). Vol. III. Springer-Verlag, 389–455.

[36] Moshe Y. Vardi. 1998. Reasoning about The Past with Two-Way Automata. In Proceedings of the 25th International
Colloquium on Automata, Languages, and Programming (ICALP 1998) (Lecture Notes in Computer Science), Vol. 1443.
Springer-Verlag, 628–641.

[37] Igor Walukiewicz. 1996. Pushdown Processes: Games and Model Checking. In Proceeding of the 8th International
Conference on Computer Aided Veri�cation (CAV 1996) (Lecture Notes in Computer Science), Vol. 1102. Springer-Verlag,
62–74.

[38] Igor Walukiewicz. 2001. Pushdown Processes: Games and Model-Checking. Information and Computation 157 (2001),
234–263.

, Vol. 1, No. 1, Article . Publication date: April 2021.



2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Collapsible Pushdown Parity Games 51

[39] Igor Walukiewicz. 2004. A Landscape with Games in the Background. In Proceedings of the 19th Annual IEEE Sympo-
sium on Logic in Computer Science (LiCS 2004). Computer Society Press, 356–366.

[40] Thomas Wilke. 2001. Alternating Tree Automata, Parity Games and Modal µ-Calculus. Bulletin of the Belgian Math-
ematical Society 8, 2 (2001), 359–391.

[41] Stefan Wöhrle and Wolfgang Thomas. 2007. Model Checking Synchronized Products of In�nite Transition Systems.
Logical Methods in Computer Science 3, 4 (2007).

, Vol. 1, No. 1, Article . Publication date: April 2021.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Objects
	2.2 Two-Player Perfect-Information Parity Games
	2.3 Stacks with Links and Their Operations
	2.4 Collapsible Pushdown Automata (CPDA) and their Transition Graphs
	2.5 CPDA Parity Games
	2.6 Regular Sets of Stacks with Links
	2.7 CPDA strategies

	3 Main Result
	4 Rank-aware CPDA
	4.1 Definitions
	4.2 Main Result
	4.3 Proof of Theorem 4.8
	4.4 Complexity

	5 Removing the n-links
	5.1 Main Result
	5.2 The Simulation Game: Glf
	5.3 Correctness of the Simulation
	5.4 Regularity of the Winning Region is Preserved
	5.5 Strategies
	5.6 Optimising the Construction
	5.7 Complexity

	6 Reducing the Order
	6.1 Abstract Pushdown Automata
	6.2 Automata with Oracles
	6.3 Conditional Games and Winning Regions of Abstract Pushdown Parity Games
	6.4 Reducing the Conditional Game
	6.5 Main Result
	6.6 Complexity

	7 Proof of Theorem 3.1 and Complexity
	8 Consequences
	8.1 Marking The Winning Region
	8.2 Logical Consequences
	8.3 Monadic Second-Order Logic
	8.4 -Calculus
	8.5 Perspectives

	References

