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This paper studies a large class of two-player perfect-information turn-based parity games on in�nite graphs,
namely those generated by collapsible pushdown automata. The main motivation for studying these games
comes from the connections from collapsible pushdown automata and higher-order recursion schemes, both
models being equi-expressive for generating in�nite trees. Our main result is to establish the decidability of
such games and to provide an e�ective representation of the winning region as well as of a winning strategy.
Thus, the results obtained here provide all necessary tools for an in-depth study of logical properties of trees
generated by collapsible pushdown automata/recursion schemes.
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1 INTRODUCTION

This paper studies a large class of two-player perfect-information turn-based parity games on
in�nite graphs, namely those generated by collapsible pushdown automata (CPDA).

Parity Games on Infinite Graphs

A two-player perfect-information turn-based parity game on a graph (or simply a parity game)
is played by two players, Éloïse and Abelard, who move a pebble along edges of a graph whose
vertices have been partitioned between the two players and coloured by a function assigning to
every vertex a colour chosen in a �nite subset ofN. The player owning the current vertex, chooses
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2 Broadbent et al.

where to move the pebble next and so on forever. Hence, a play is an in�nite path in the graph,
and the winner is determined thanks to the colouring function by declaring Éloïse to win if and
only if the smallest colour appearing in�nitely often is even.
Parity games have been widely studied since the 80s because of their close links to important

problems arising from logic. A fundamental result of Rabin is that ω-regular tree languages, equiv-
alently tree languages de�nable in monadic second-order (MSO) logic, form a Boolean algebra [31].
The di�cult part of the proof is complementation, and since the publication of this result in 1969, it
has been a challenging problem to simplify it. A much simpler one was obtained by Gurevich and
Harrington in [21] making use of Muller games for checkingmembership of a tree in the language
accepted by an automaton: Éloïse builds a run on the input tree while Abelard tries to exhibit a
rejecting branch in the run. The proof of Gurevich and Harrington was followed by many others
trying to simplify the original proof of Rabin (in particular Emerson and Jutla who introduced
the connection with parity games in [19]), and beyond this historical result, the tight connection
between automata and games is one of the main tools in the areas of automata theory and logic
(see e.g. [35, 39, 40]).

The above-mentioned result of Rabin is equivalent to the fact that, given a formula from MSO
logic, one can decide whether it holds in the complete in�nite binary tree. Whether this result can
be extended to more and more complex classes of trees is an active line of research since then.
While decidability of MSO logic on the complete binary tree is equivalent to deciding whether
Éloïse has a winning strategy in a parity game played on a �nite graph, extensions tomore complex
trees require one to consider games played on in�nite graphs (and the more general the trees, the
more general the graphs to be considered).
Since the late 1990s, another important motivation for considering games played on in�nite

graphs emerged because of their connections with program veri�cation. Here, there is a trade-
o� between richness of the graph describing the program to verify and decidability of the logic
used to express the property to check. Regarding logic, most of the logics considered in program
veri�cation are captured by the µ-calculus (an extension of modal logic with �xpoint operators)
and therefore the model-checking problem is reduced again to solving a parity game played on
a graph that is a synchronised product between the graph describing the system to verify and a
�nite graph describing the dynamic of the formula. Hence, the quest here is to look for graphs that
model programs using natural features in programming languages (e.g. recursion, higher-order
arguments, rich data domains, etc.) and whose associated parity games remain decidable.
Both objectives — extending Rabin’s result to richer trees and verifying programs with natural

features in programming languages — games played on graphs generated by pushdown automata
and their extensions, in particular collapsible pushdown automata, have proven to be fruitful. In a
nutshell, collapsible pushdown automata extend usual pushdown automata by replacing the (order-
1) stack by an order-n stack that is de�ned as a stack whose elements are order-(n − 1) stacks and
whose base symbols are equipped with links pointing deeper in the stack and that can later be
used to collapse the stack.

Main Results

Collapsible pushdown automata are equi-expressive with higher-order recursion schemes — these
are essentially �nite typed deterministic term rewriting systems that generate an in�nite treewhen
one applies the rewriting rules ad in�nitum — for generating trees [23, 24], this class of trees
subsumes all known classes of trees with decidable MSO theories. Regarding programs, collapsible
pushdown automata permit to capture higher-order procedure calls — a central feature in modern
day programming and supported by many languages such as C ++, Haskell, OCaML, Javascript,
Python, or Scala.
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Collapsible Pushdown Parity Games 3

Hence, considering parity games played on transition graphs of (collapsible) pushdown au-
tomata is a central problem for both extending Rabin’s seminal result and verifying real-life pro-
grams. The study of such games raises three questions of increasing di�culty.

(1) Decide, for a given initial position, whether Éloïse has a winning strategy, i.e. whether she
has a way to play that guarantees she wins regardless of the choices of Abelard. In the con-
text of program veri�cation, the counterpart of this question is the (local) model-checking
problem.

(2) Finitely describe Éloïse’s winning region, i.e. the set of all positions from which she has a
winning strategy. While in the setting of games on �nite graphs this is equivalent to the
previous question, when considering an in�nite graph it is unclear whether a �nite presen-
tation of the winning region exists and, when it does, speci�c tools must be used to describe
such an object. In the context of program veri�cation, the counterpart of this question is the
global model-checking problem.

(3) Finitely describe, for a given initial position, a winning strategy for Éloïse. Note that a clas-
sical result (positional determinacy [19]) on parity games states that winning strategies can
always be chosen to be positional, i.e. to depend only on the current vertex; however, when
describing a winning strategy in a game played on an in�nite graph, the purpose is to �nd
a suitable machine model of implementing a winning strategy rather than focusing on cap-
turing a special (simple) form of winning strategies. In the context of program veri�cation,
the counterpart of this question is the synthesis problem.

In this paper we positively answer those questions. More speci�cally, our main Theorem implies
the following.

(1) One can decide, for a given initial position, whether Éloïse has a winning strategy and this
is an n-ExpTime-complete problem, where n is the order of the underlying collapsible push-
down automaton.

(2) We introduce a model of �nite-state automata de�ning regular sets of con�gurations of col-
lapsible pushdown automata and prove that the winning region is always such an (e�ective)
regular set.

(3) We introduce amodel of collapsible pushdown automata tailored to describing strategies and
prove that, for any game, we can compute a winning strategy described by such a machine.

Note that the above-mentioned results were presented by the authors in a series of papers in the
LiCS conference [8, 15, 23] and that the current paper gives a unifying and complete presentation
of their proofs.

Related Work

We brie�y review the known results on collapsible pushdown parity games (and subclasses). See
Table 1 for a summary.

The �rst paper explicitly considering pushdown games (i.e. order-1 CPDA games) is [37, 38]: an
optimal algorithm for deciding the winner is given (ExpTime-complete) as well as a construction
of a strategy realised by a synchronised pushdown automaton. However, decidability can be de-
rived from the MSO decidability of pushdown graphs [30] in combination with the existence of
positional winning strategies in parity games on in�nite graphs [19]: indeed one canwrite anMSO
formula stating the existence of a positional winning strategy for Éloïse (see e.g. [10] for such a
formula). A construction similar to the one in [37, 38] was given by Serre in his Ph. D. [33], and
we partly build upon it in the present paper. Another approach, using two-way alternating parity
tree automata, was developed by Vardi in [36]. The winning region was characterised in [9, 32]
and later in [22, 26] using saturation techniques.

, Vol. 1, No. 1, Article . Publication date: April 2021.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Broadbent et al.

Cachat �rst considered parity games played on transition graphs of higher-order pushdown au-
tomata (HOPDA, a strict subclass of collapsible pushdown automata) in [11] providing an optimal
algorithm for deciding the winner (n-ExpTime-complete, where n is the order). As for pushdown
games, decidability can be derived from the MSO decidability of higher-order pushdown graphs
[17] in combination with the existence of positional winning strategies in parity games on in�nite
graphs [19]. An alternative simpler proof was given in [14] that permits moreover to characterise
the winning region and to construct a synchronised order-n higher-order pushdown automaton
realising a winning strategy. Also see [16] for an approach extending the techniques of [36] to
higher-order, and [3, 25] for saturation techniques (for the reachability winning condition only).
Order-2 collapsible pushdown parity games were considered in [28] (under the name of panic

automata), where an optimal algorithm for deciding the winner (2-ExpTime-complete) was given.
The general case was later solved in [23]. Winning regions were characterised in [8] and the win-
ning strategies in [15] (even if the results are somehow implicit in [23]). Finally, in [5], for the case
of the reachability winning condition, the approach of [25] was extended, leading to an algorithm
based on the saturation method to compute the winning region, and on top of this algorithm the
C-SHORe tool was developed [6].

Consequences

The consequences of the results presented here, together with the equi-expressivity result [15, 23,
24] between higher-order recursion schemes and collapsible pushdown automata for generating
trees, are mainly for the study of logical properties of the in�nite trees generated by recursion
schemes. In particular, they imply the decidability of the MSO model-checking problem, both its
local [23] and global version (also known as re�ection) [8], and the MSO selection problem (a
synthesis-like problem) [15].
Due to space constraints, these results are discussed in full detail in a companion paper [7].

Structure of This Paper

The article is organised as follows. Section 2 introduces the main concepts and some intermediate
results. In Section 3 we state our main result. Its proof is by induction and each induction step is di-
vided into three sub-steps, which are respectively described in Section 4 (providing a normal form
for CPDA), Section 5 (getting rid of the outmost links in the stack structure) and Section 6 (reduc-
ing the order of the CPDA). Section 7 summarises the proof and establishes matching upper and
lower complexity bounds. Finally, Section 8 discusses some logical consequences for collapsible
pushdown graphs.

2 PRELIMINARIES

2.1 Basic Objects

An alphabetA is a (possibly in�nite) set of letters. In the sequelA∗ denotes the set of�nite words
over A, and Aω the set of in�nite words over A. The empty word is written ε and the length of a
word u is denoted by |u |. Let u be a �nite word and v be a (possibly in�nite) word. Then u · v (or
simply uv) denotes the concatenation of u and v ; the word u is a pre�x of v i� there exists a word
w such that v = u ·w .

A graph is a pair G = (V , E), where V is a (possibly in�nite) set of vertices and E ⊆ V ×V is a
(possibly in�nite) set of edges. For every vertex v we let E (v ) = {w | (v,w ) ∈ E}. We assume that
for each vertex v ofG E (v ) is not empty.
When τ is a (partial) mapping, we let dom(τ ) denote its domain.
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Collapsible Pushdown Parity Games 5

Pushdown n-HOPDA n-CPDA

S
o
lv
in
g

W
in
n
in
g
re
g
io
n

W
in
n
in
g
st
ra
te
g
y

Decidable
[30] + [19]

ExpTime-complete
[33, 36, 37]

Decidable
[17] + [19]

n-ExpTime-complete
[11, 14]

n-ExpTime-complete
[23]

See also [28] for
a previous study

at order-2

Regular [9, 22, 26, 32]

Regular
[14, 16]

See also [3, 25] for
reachability using
saturation methods

Regular
[8]

See also [5] for
reachability using
saturation methods

Realised by a syn-
chronised push-
down automaton

[33, 37]

Realised by a syn-
chronised n-HOPDA

[14, 16]

Realised by a syn-
chronised n-CPDA

[15, 23]

Table 1. Known results on collapsible pushdown parity games and subclasses.

2.2 Two-Player Perfect-Information Parity Games

An arena is a triple G = (G,VE,VA), whereG = (V , E) is a graph andV = VE ⊎VA is a partition of
the vertices among two players, Éloïse and Abelard.
Éloïse and Abelard play in G by moving a pebble along edges. A play from an initial vertex

v0 proceeds as follows: the player owning v0 (i.e. Éloïse if v0 ∈ VE, Abelard otherwise) moves the
pebble to a vertex v1 ∈ E (v0). Then the player owning v1 chooses a successor v2 ∈ E (v1) and
so on. As we assumed that there is no dead-end, a play is an in�nite word v0v1v2 · · · ∈ Vω such
that for all 0 ≤ i one has vi+1 ∈ E (vi ). A partial play is a pre�x of a play, i.e. it is a �nite word
v0v1 · · ·vℓ ∈ V

∗ such that for all 0 ≤ i < ℓ one has vi+1 ∈ E (vi ).
A strategy for Éloïse is a functionφE : V ∗VE → V assigning, to every partial play ending in some

vertex v ∈ VE, a vertex v ′ ∈ E (v ). Strategies of Abelard are de�ned likewise, and usually denoted
φA. In a given play λ = v0v1 · · · we say that Éloïse (resp. Abelard) respects a strategy φE (resp. φA)
if whenever vi ∈ VE (resp. vi ∈ VA) one has vi+1 = φE (v0 · · ·vi ) (resp. vi+1 = φA (v0 · · ·vi )).

, Vol. 1, No. 1, Article . Publication date: April 2021.
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6 Broadbent et al.

A winning condition is a subset Ω ⊆ Vω and a (two-player perfect information) game is a
pair G = (G,Ω) consisting of an arena and a winning condition. A game is �nite if it is played on
a �nite arena.
A play λ is won by Éloïse if and only if λ ∈ Ω; otherwise λ is won by Abelard. A strategy φ is

winning for player X in G from a vertex v0 if any play starting fromv0 where X respects φ is won
by X . Finally a vertex v0 is winning for X in G if X has a winning strategy φ from v0.
A parity winning condition is de�ned by a colouring function ρ, i.e. a mapping ρ : V →

C ⊂ N, whereC is a �nite set of colours. The parity winning condition associated with ρ is the set
Ωρ = {v0v1 · · · ∈ V

ω | lim inf (ρ (vi ))i≥0 is even}, i.e. a play is winning if and only if the smallest
colour visited in�nitely often is even. A parity game is a game of the form G = (G,Ωρ ) for some
colouring function.

2.3 Stacks with Links and Their Operations

Fix an alphabet Γ of stack symbols and a distinguished bo�om-of-stack symbol⊥ ∈ Γ. An order-
0 stack (or simply 0-stack) is just a stack symbol. An order-(n + 1) stack (or simply (n + 1)-

stack) s is a non-null sequence, written [s1 · · · sl], of n-stacks such that every non-⊥ Γ-symbol γ
that occurs in s has a link to a stack of some order e (say, where 0 ≤ e ≤ n) situated below it in
s; we call the link an (e + 1)-link. The order of a stack s is written ord (s ). The height of a stack
[s1 · · · sl] is de�ned as l .
As usual, the bottom-of-stack symbol ⊥ cannot be popped from or pushed onto a stack. Thus

we require an order-1 stack to be a non-null sequence [γ1 · · ·γl] of elements of Γ such that for all
1 ≤ i ≤ l , γi = ⊥ i� i = 1. We inductively de�ne ⊥k , the empty k-stack, as follows: ⊥0 = ⊥ and
⊥k+1 = [⊥k].
We �rst de�ne the operations popi and topi with i ≥ 1: topi (s ) returns the top (i − 1)-stack of

s , and popi (s ) returns s with its top (i − 1)-stack removed. Precisely let s = [s1 · · · sl+1] be a stack
with 1 ≤ i ≤ ord (s ):

topi ([s1 · · · sl+1]︸        ︷︷        ︸
s

) =

{
sl+1 if i = ord (s )
topi (sl+1) if i < ord (s )

popi ([s1 · · · sl+1]︸        ︷︷        ︸
s

) =

{
[s1 · · · sl] if i = ord (s ) and l ≥ 1
[s1 · · · sl popi (sl+1)] if i < ord (s )

By abuse of notation, we set topord (s )+1(s ) = s . Note that popi (s ) is unde�ned if topi+1 (s ) is a
one-element i-stack. For example pop2 ([[⊥α β]]) and pop1 ([[⊥α β][⊥]]) are both unde�ned.
There are two kinds of push operations. We start with the order-1 push. Let γ be a non-⊥ stack

symbol and 1 ≤ e ≤ ord (s ), we de�ne a new stack operation push
γ ,e
1 that, when applied to s , �rst

attaches a link from γ to the (e−1)-stack immediately below the top (e−1)-stack of s , then pushes
γ (with its link) onto the top 1-stack of s . Formally, for 1 ≤ e ≤ ord (s ) and γ ∈ (Γ \ { ⊥ }), we de�ne

push
γ ,e
1 ([s1 · · · sl+1]︸        ︷︷        ︸

s

) =





[s1 · · · sl push
γ ,e
1 (sl+1)] if e < ord (s )

[s1 · · · sl sl+1 γ
†] if e = ord (s ) = 1

[s1 · · · sl push
γ̂
1 (sl+1)] if e = ord (s ) ≥ 2 and l ≥ 1

where

• γ † denotes the symbol γ with a link to the 0-stack sl+1
• γ̂ denotes the symbol γ with a link to the (e − 1)-stack sl ; and we de�ne

push
γ̂
1 ([t1 · · · tr+1]︸        ︷︷        ︸

t

) =

{
[t1 · · · tr push

γ̂
1 (tr+1)] if ord (t ) > 1

[t1 · · · tr+1 γ̂] if ord (t ) = 1

, Vol. 1, No. 1, Article . Publication date: April 2021.
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Collapsible Pushdown Parity Games 7

The higher-order pushj , where j ≥ 2, simply duplicates the top (j − 1)-stack of s . Precisely, let
s = [s1 · · · sl+1] be a stack with 2 ≤ j ≤ ord (s ):

pushj ([s1 · · · sl+1]︸        ︷︷        ︸
s

) =

{
[s1 · · · sl+1 sl+1] if j = ord (s )
[s1 · · · sl pushj (sl+1)] if j < ord (s )

Note that in case j = ord (s ) above, the link structure of sl+1 is preserved by the copy that is pushed
on top by pushj .
We also de�ne, for any stack symbol γ , an operation on stacks that rewrites the topmost stack

symbol without modifying its link. Formally:

rew
γ
1 [s1 · · · sl+1]︸        ︷︷        ︸

s

=

{
[s1 · · · sl rew

γ
1 sl+1] if ord (s ) > 1

[s1 · · · sl γ̂] if ord (s ) = 1 and l ≥ 1

where γ̂ denotes the symbolγ with a link to the same target as the link from sl+1. Note that rew
γ
1 (s )

is unde�ned if top2 (s ) is the empty 1-stack.
Finally, there is an important operation called collapse . We say that the n-stack s0 is a pre�x

of an n-stack s , written s0 ≤ s , just in case s0 can be obtained from s by a sequence of (possibly
higher-order) pop operations. Take an n-stack s where s0 ≤ s , for some n-stack s0, and top1 s has a
link to tope (s0). Then collapse s is de�ned to be s0.

Example 2.1. To avoid clutter, when displaying n-stacks in examples, we shall omit 1-links (in-
deed by construction they can only point to the symbol directly below), writing e.g. [[⊥][⊥α β]]
instead of [[⊥][⊥ α β]].
Take the 3-stack s = [[[⊥α]] [[⊥][⊥α]]]. We have

push
γ ,2
1 (s ) = [[[⊥α]] [[⊥][⊥α γ]]]

collapse (pushγ ,21 (s )) = [[[⊥α]] [[⊥]]]

pushγ ,31 (rewβ
1 (push

γ ,2
1 (s )))︸                             ︷︷                             ︸

θ

= [[[⊥α]] [[⊥][⊥α β γ]]].

Then push2 (θ ) and rewα
1 (push3 (θ )) are respectively

[[[⊥α]] [[⊥][⊥α β γ][⊥α β γ]]] and

[[[⊥α]] [[⊥][⊥α β γ]] [[][⊥α β α]]].

We have collapse (push2 (θ )) = collapse (rewα
1 (push3 (θ ))) = collapse (θ ) = [[[⊥α]]].

The set OpΓn of order-n CPDA stack operations over stack alphabet Γ (or simply Opn if Γ is
clear from the context) comprises six types of operations:

(1) popk for each 1 ≤ k ≤ n,
(2) pushj for each 2 ≤ j ≤ n,

(3) pushγ ,e1 for each 1 ≤ e ≤ n and each γ ∈ (Γ \ { ⊥ }),
(4) rew

γ
1 for each γ ∈ (Γ \ { ⊥ }),

(5) collapse , and
(6) id for the identity operation (i.e. id (s ) = s for all stack s).

Remark 2.2. One way to give a formal semantics of the stack operations is to work with appro-
priate numeric representations of the links as explained in [24, Section 3.2]. We believe that the
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8 Broadbent et al.

informal presentation should be su�cient for this work and hence refer the reader to [24] for a
formal de�nition of stacks.

2.4 Collapsible Pushdown Automata (CPDA) and their Transition Graphs

Collapsible pushdown automata are a generalisation (to all �nite orders) of pushdown automata with
links [1]. They are de�ned as automata with a �nite control and a stack asmemory. In this work, we
are interested in CPDA as generators for in�nite graphs rather than word acceptors or generators
of an in�nite tree (see [24] for corresponding de�nitions), hence we consider a non-deterministic
version of them but do not equip them with an input alphabet.

An order-n collapsible pushdown automaton (n-CPDA) is a 4-tupleA = (Γ,Q,∆,q0), where
Γ is the stack alphabet,Q is the �nite set of control states,q0 ∈ Q is the initial state, and∆ : Q×Γ →

2Q×Op
Γ
n×Op

Γ
n is the transition function and satis�es the following constraint. For any q,γ ∈ Q × Γ,

for any (q′,op1,op2) ∈ ∆(q,γ ) one has that op1 ∈ {rewα
1 | α ∈ Γ} ∪ {id } and op2 < {rewα

1 | α ∈ Γ}:
hence a transition will always act on the stack by (possibly) rewriting the top symbol and then
(possibly) performing another kind of operation on the stack. In the following, we will use notation
(q′,op1;op2) instead of (q′,op1,op2) (to stress that one performs op1 followed by op2).

Remark 2.3. Obviously allowing a top-rewriting operation followed by another stack operation
does not add expressive power to the model. However, for technical reasons, this choice simpli�es
the presentation.

Con�gurations of an n-CPDA are pairs of the form (q, s ) where q ∈ Q and s is an n-stack over
Γ; we call (q0,⊥n ) the initial con�guration.
An n-CPDA A = (Γ,Q,∆,q0) naturally de�nes a transition graph Graph(A) := (V , E) whose

verticesV are the con�gurations ofA andwhose edge relation E ⊆ V×V is given by: ((q, s ), (q′, s ′)) ∈
E i� ∃(q′,op1;op2) ∈ ∆(q, top1 (s )) such that s ′ = op2 (op1 (s )). Such a graph is called an n-CPDA

graph.

Example 2.4. Consider the following 2-CPDA (that actually does not make use of links) A =
({⊥,α }, {qa ,qb ,qc ,q♯, q̃a , q̃b , q̃c },∆, q̃a ) with ∆ as follows (we only give those transitions that may
happen):

• ∆(q̃a,⊥) = {(qa , id; push
α
1 )}

• ∆(qa,α ) = {(qa , id; push
α
1 ), (q̃b , id; push2)};

• ∆(q̃b ,α ) = ∆(qb ,α ) = {(qb , id; pop1)};
• ∆(qb ,⊥) = {(q̃c , id; pop2)};
• ∆(q̃c ,α ) = ∆(qc ,α ) = {(qc , id; pop1)};
• ∆(qc ,⊥) = {(q♯, id; id)};
• ∆(q♯,⊥, _) = ∅.

Then Graph(A) is given in Figure 1.

2.5 CPDA Parity Games

We now explain how CPDA can be used to de�ne parity games. LetA = (Γ,Q,∆,q0) be an order-
n CPDA and let Graph(A) = (V , E) be its transition graph. Let QE ⊎ QA be a partition of Q and
let ρ : Q −→ C ⊂ N be a colouring function (over states). Altogether they de�ne a partition
VE ⊎ VA of V , whereby a vertex belongs to VE i� its control state belongs to QE, and a colouring
function ρ : V −→ C , where a vertex is assigned the colour of its control state. The structure
G = (Graph(A),VE,VA) de�nes an arena and the pair G = (G,Ωρ ) de�nes a parity game that we
call an n-CPDA parity game.
Given an n-CPDA parity game, there are three main algorithmic questions:
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(q̃a, [[⊥]]) (qa, [[⊥α]]) (qa, [[⊥αα]]) (qa, [[⊥ααα]])

(q̃b , [[⊥α][⊥α]])

(qb , [[⊥α][⊥]])

(q̃c , [[⊥α]])

(qc , [[⊥]])(q♯, [[⊥]])

(q̃b , [[⊥αα][⊥αα]])

(qb , [[⊥αα][⊥α]])

(qb , [[⊥αα][⊥]])

(q̃c , [[⊥αα]])

(qc , [[⊥α]])

(q̃b , [[⊥ααα][⊥ααα]])

(qb , [[⊥ααα][⊥αα]])

(qb , [[⊥ααα][⊥α]])

(qb , [[⊥ααα][⊥]])

(q̃c , [[⊥ααα]])

(qc , [[⊥αα]])

Fig. 1. Transition graph of the CPDA of Example 2.4.

(1) Decide whether (q0,⊥n ) is winning for Éloïse.
(2) Provide a description of the winning region for Éloïse.
(3) If (q0,⊥n ) is winning for Éloïse, provide a description of a winning strategy for Éloïse from

(q0,⊥n ).

Remark 2.5. Note that the �rst question is equivalent to the following one: given a vertex v ∈ V
decide whetherv is winning for Éloïse. Indeed, one can always design a new n-CPDA parity game
that simulates the original one except that from the initial con�guration the players are �rst forced
to go to v , from where the simulation really starts.

To answer the second question, we will introduce the notion of regular sets of stacks, and to
answer the third one we will consider strategies realised by n-CPDA transducers.

2.6 Regular Sets of Stacks with Links

We start by introducing a class of automata with a �nite state-set that can be used to recognize
sets of stacks. Let s be an order-n stack. We �rst associate with s = s1, · · · , sℓ a well-bracketed
word of depth n, s̃ ∈ (Σ ∪ {[, ]})∗:

s̃ :=




[s̃1 · · · s̃ℓ] if n ≥ 1

s if n = 0 (i.e. s ∈ Σ)
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In order to re�ect the link structure, we de�ne a partial function target (s ) : {1, · · · , |̃s |} → {1, · · · , |̃s |}
that assigns to every position in {1, · · · , |̃s |} the index of the end of the stack targeted by the corre-
sponding link (if exists; indeed this is unde�ned for ⊥, [ and ]). Thus with s is associated the pair
(̃s, target (s )); and with a set S of stacks is associated the set S̃ = { (̃s, target (s )) | s ∈ S }.

Example 2.6. Consider the stack s = [[[⊥α]] [[⊥][⊥a β γ]]]. Then

s̃ = [[[⊥α]] [[⊥][⊥α β γ]]]

and target (s ) = τ where τ (5) = 4, τ (14) = 13, τ (15) = 11 and τ (16) = 7.

We consider deterministic �nite automata working on such representations of stacks. The au-
tomaton reads the word s̃ from left to right (that is, from bottom to top). On reading a letter that
does not have a link (i.e. target is unde�ned on its index) the automaton updates its state accord-
ing to the current state and the letter; on reading a letter that has a link, the automaton updates
its state according to the current state, the letter and the state it was in after processing the tar-
geted position. A run is accepting if it ends in a �nal state. One can think of these automata as a
deterministic version of Stirling’s dependency tree automata [34] restricted to words.
Formally, an automaton is a tuple (R,A, rin, F , δ ) where R is a �nite set of states, A is a �nite

input alphabet, rin ∈ R is the initial state, F ⊆ R is a set of �nal states and δ : (R×A)∪(R×A×R) → R

is a transition function. With a pair (u, τ ) where u = a1 · · ·an ∈ A
∗ and τ is a partial map from

{1, · · ·n} → {1, · · ·n}, we associate a unique run r0 · · · rn as follows:

• r0 = rin;
• for all 0 ≤ i < n, ri+1 = δ (ri ,ai+1) if i + 1 < Dom(τ );
• for all 0 ≤ i < n, ri+1 = δ (ri ,ai+1, rτ (i+1)) if i + 1 ∈ Dom(τ ).

The run is accepting just if rn ∈ F , and the pair (u, τ ) is accepted just if the associated run is
accepting.
To recognise con�gurations instead of stacks, we use the same machinery but now add the

control state at the end of the coding of the stack. We code a con�guration (q, s ) as the pair (̃s ·
q, target (s )) (hence the input alphabet of the automaton also contains a copy of the control state
of the corresponding CPDA).
Finally, we say that a set L of n-stacks over alphabet Γ is regular just if there is an automaton B

such that for every n-stack s over Γ,B accepts (̃s, target (s )) i� s ∈ L. Regular sets of con�gurations
are de�ned in the same way.
Regular sets of stacks (resp. con�gurations) form an e�ective Boolean algebra.

Property 2.7. Let L1, L2 be regular sets of n-stacks over an alphabet Γ. Then L1 ∪ L2, L1 ∩ L2 and
Stacks (Γ) \L1 are also regular (here Stacks (Γ) denotes the set of all stacks over Γ). The same holds
for regular sets of con�gurations.

Proof. Closure under complement comes from the fact that we consider deterministic automata.
Closure under union or intersection is achieved by considering a Cartesian product, as in the case
of �nite automata on �nite words. �

The following result shows that the notion of regular sets of n-stacks is robust with respect
to the computational model of CPDA. The result is used only when discussing consequences in
Section 8.1 and therefore its proof can safely be skipped by the reader.

Theorem 2.8. Let A be an order-n CPDA with a state-set Q and a stack alphabet Γ, and let L be
a regular set of con�gurations.
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Collapsible Pushdown Parity Games 11

Then, one can build an order-n CPDA A′ with a state-set Q ′, a subset F ⊆ Q ′ and a mapping
χ : Q ′ → Q such that the following holds.

(1) Restricted to the reachable con�gurations from their respective initial con�guration, the transi-
tion graph of A and A′ are isomorphic.

(2) For every con�guration (q, s ) of A that is reachable from the initial con�guration, the corre-
sponding con�guration (q′, s ′) of A is such that q = χ (q′) and belongs (q, s ) belongs to L if
and only if q′ ∈ F .

Proof. Fix an order-n CPDAA and an automaton B = (R, Γ ∪ {[, ]}, rin, F , δ ) accepting L.
Let s be an order-n stack. Let 0 ≤ k ≤ n and let t be the topmost k-stack of s , i.e. t = topk+1 (s ).

We are interested in describing how B behaves when reading popk (t ) (for some technical reason
we do not care of the topmost (k − 1)-stack in t as we will later compose those behaviours), with
the convention that pop0 (t ) = t . If there was no link, this behaviour could simply be described as
a function from R into R. However, as we extracted t from s , there may be some “dangling link” of
order greater than k .
We refer to Figure 2 for an illustration of the concepts below for the case wheren = 4. To retrieve

the states attached to the respective targets of the links (of order n, · · · ,k + 1 respectively) in s ,
we will use as a parameter n − k states rn, · · · , rk+1 in R. For n-links, we consider the run induced
by reading s starting from rn and this gives the values for the respective targets of the n-links. For
(n − 1)-links, we consider the run induced by reading topn (s ) starting from rn−1 (note that states
in dangling n-links are known thanks to rn from the previous step) and this gives the values for
the respective targets of the (n − 1)-links. And so on until we consider, for (k + 1)-links, the run
induced by reading topk+2 (s ) starting from rk+1 (note that states in dangling i-links for i > k are
known thanks to ri ) and this gives the values for the respectives targets of the (k + 1)-links.
Hence, we associate with t a function τk : Rn−k → (R → R) such that τk (rn, . . . , rk+1) de�nes a

function from R into R that maps every state r ∈ R to the state τk (rn, . . . , rk+1) (r ) that is reached
by B when reading popk (t ) starting from r and where the states attached to the respective targets
of the links are determined by rn, · · · , rk+1 as explained above.
A stack symbol of the CPDAA′, is a pair, consisting of a stack symbol ofA, and an (n+1)-tuple

of the form (τn, · · · , τ0) where the τi s are as above.
As the function τk describes the behaviour of popk (topk+1 (s )), if we want to reconstruct the

behaviour of topk+1 (s ) we need to compose, in the appropriate way, the various τi function for
i ≤ k which leads the following de�nition. We de�ne τ+0 (rn · · · r1) to be the same function as
τ0 (rn · · · , r1); and for each 1 ≤ k ≤ n,

τ+k (rn · · · rk+1) :




R → R

r 7→ τ+
k−1 (rn · · · rk ) (τk (rn · · · rk+1) (r ))

.
Hence, each τ+

k
is a function from R to R induced by reading (the segment of) s starting from

topk+1 (s ). As each τ
+

k
can be obtained from the τi s, we safely assume that we can access them

directly inA′ when reading the top1 element of the stack. Note that, considering τ+n applied to the
initial state rin of B we deduce whether the current stack is accepted by B: hence this information
will be maintained, together with a state fromQ , in the control state ofA′ and is used to de�ne F .
The function χ is the one erasing all auxiliary informations used byA′ in its control state.

We now explain howA′ behaves. Assume that the topmost stack symbol is (a, (τn, · · · , τ0)) and
that theA-state stored is q. Then, the possible transitions ofA′ mimic the ones ofA when being
in state q with topmost stack symbol a. For each order-n stack operation op of A, we de�ne the
corresponding stack operation of A′:
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r4

τ 4

r3

τ3

· · · · · ·

r2

τ 2

τ1

a0 · · · aℓ b

τ0
...

...

...

...

?

?

?

?

?

Fig. 2. Illustration for the proof of Theorem 2.8 when n = 4. Missing states (?) in k-link’s target are retrieve
by reading topk+1 (s ) from rk . For every k , τ

+

k
is obtained by composing the τi s for i ≤ k .

• If op = pushk thenA′ performs pushk followed by rewa, (τn, · · · ,τk+1,τ ,τk−1, · · · ,τ0)
1 , where for ev-

ery r ∈ R, τ (rn, · · · , rk+1) (r ) = δ (τ+k−1 (rn, · · · , rk+1, r ) (r
′), ]k ) with r ′ = τk (rn, · · · , rk+1) (r ).

Indeed, after performing a pushk operation the only topi stack that is di�erent from the one
before, is for i = k . Hence, one only needs to update τk , which now maps a state r to the
state r ′ obtained by �rst applying the previous τk followed by the transformation induced by
the former top k − 1-stack (with the missing k-links being retrieve starting from r ) together
with the missing closing parenthesis ]k .

• If op = pushb,k1 then A′ performs push (b, (τn, · · · ,τ2,τ ,τb )),k1 where τ and τb are de�ned as
follows. The function τ is equal to τ+1 while the function τb (rn, . . . , r1) maps a state r to
δ (r ,b, τk (rn, . . . , rk+1) (rk )). Indeed, one simply has to update τ1 and τ0. Regarding τ1 one
needs now to take into the former topmost symbol which is exactly what does τ+1 . For τ0 one
simulates the behaviour of B when reading a b and uses τk with the appropriate parameters
to retrieve the state in the target of the newly created link.
• If op = popk (resp. collapse following a k-link) then A′ performs popk (resp. collapse), con-

siders the new topmost stack symbol (a′, (τ ′n, · · · , τ
′
0 )) and does a rew

(a′, (τn, · · · ,τk+1,τ
′
k
, ...τ ′0 )

1 .
Indeed, for any stack s and any i > k , popi (topi+1(s )) = popi (topi+1(popk (s ))) and therefore
τn , · · · , τk+1 are inherited from the previous con�guration while the other components are
preserved from the last time where (possibly a copy of) the topmost symbol was on top of
the stack (being inductively assumed to be correct).

Correctness of the construction follows inductively from the above de�nition. �
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2.7 CPDA strategies

Let A = (Γ,Q,∆,q0) be an order-n CPDA, let Graph(A) = (V , E) be its transition graph, let
G = (Graph(A),VE,VA) be an arena associated with A and let G = (G,Ωρ ) be a corresponding
n-CPDA parity game.

We aim at de�ning a notion of n-CPDA transducers that provide a description for strategies in
G, that is the transducer describes a function from partial plays in G into V .
Consider a partial play λ = v0v1 · · ·vℓ in G where v0 = (q0,⊥n ). An alternative description of

λ is by a sequence (q1, rew1;op1) · · · (qℓ, rewℓ ;opℓ ) ∈ (Q × OpΓn × Op
Γ
n )
∗ such that vi = (qi , si ) for

all 1 ≤ i ≤ ℓ and si = opi (rewi (si−1)) (with the convention that s0 = ⊥n ). We may in the following
use implicitly this representation of λ when needed. Similarly, one can represent a strategy as a
(partial) function

φ : (Q × OpΓn × Op
Γ
n )
∗ → Q × OpΓn × Op

Γ
n

the meaning being that in a partial play λ ending in some vertex (q, s ) if φ (λ) = (q′, rew ;op) then
the player moves to (q′,op (rew (s ))).
An n-CPDA transducer realising a strategy in G is a tuple S = (Σ,R, δ , τ , r0) where Σ is a

stack alphabet, R is a �nite set of states, r0 ∈ R is the initial state,

δ : R × Σ × (Q × OpΓn × Op
Γ
n ) → R × OpΣn × Op

Σ
n

is a deterministic transition function and

τ : R × Σ→ Q × OpΓn × Op
Γ
n

is a deterministic choice function (note that we do not require τ to be total). For both δ and τ we
have the same requirement as for the transition function for CPDAs, namely that the �rst stack
operation should be a top-rewriting (or the identity) and that the second one should not be a
top-rewriting.
A con�guration of S is a pair (r , t ) where r is a state and t is an n-stack over Σ; the initial

con�guration of S is (r0,⊥n ). With a con�guration (r , t ) is associated, when de�ned, a (unique)
move in G given by τ (r , top1 (t )). A partial play λ = (q1, rew1;op1) · · · (qℓ, rewℓ ;opℓ ) in G induces
a (unique, when de�ned) run of S which is the sequence

(r0, t0) (r1, t1) · · · (rℓ, tℓ )

where (r0, t0) = (r0,⊥n ) is the initial con�guration of S and for all 0 ≤ i ≤ ℓ − 1 one has
δ (ri , top1 (ti ), (qi+1, rewi+1;opi+1)) = (ri+1, rew

′
i+1;op

′
i+1) with ti+1 = op ′i+1(rew

′
i+1(ti )). In other

words, the control state and the stack of S are updated accordingly to δ .
We say that S is synchronised with A i� for all (r ,α , (q, rew ;op)) ∈ R × Σ × (Q × OpΓn × Op

Γ
n )

such that δ (r ,α , (q, rew ;op)) = (r ′, rew ′;op ′) is de�ned one has that op and op ′ are of the same
kind, i.e. either they are both a popk (for the same k) or both a pushk (for the same k) or both a
push_,e1 (the symbol pushed being possibly di�erent but the order of the link being the same) or
both collapse or both id. In particular, if one de�nes the shape of a stack s as the stack obtained
by replacing all symbols appearing in s by a fresh symbol ♯ (but keeping the links) one has the
following.

Proposition 2.9. Assume that S is synchronised withA. Then, for any partial play λ inG ending
in a con�guration with stack s , the run of S on λ, when exists, ends in a con�guration with stack t
such that s and t have the same shape.

The strategy realised byS is the (partial) functionφS de�ned by letting φS (λ) = τ ((r , top1 (t )))
where (r , t ) is the last con�guration of the run of S on λ.
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We say that φS is well-de�ned i� for any partial play λ = (q1, rew1;op1) · · · (qℓ, rewℓ ;opℓ )
where Éloïse respects φS whenever the last vertex (qℓ, sℓ ) in λ belongs to VE one has φS (λ) ∈
∆(q, top1 (sℓ )), i.e. the move given by φS is a valid one.

3 MAIN RESULT

The following theorem is the central result of this paper.

Theorem 3.1. Let A = (Γ,Q, δ ,q0) be an n-CPDA and let G be an n-CPDA parity game de�ned
from A. Then one has the following results.

(1) Deciding whether (q0,⊥n ) is winning for Éloïse is an n-ExpTime-complete problem.
(2) The winning region for Éloïse (resp. for Abelard) is regular. Moreover, one can compute an

automaton that recognises it.
(3) If (q0,⊥n ) is winning for Éloïse then one can e�ectively construct an n-CPDA transducer S

synchronisedwithA realising a well-de�ned winning strategy S for Éloïse inG from (q0,⊥n ).

The proof is by induction on the order and each induction step is itself divided into three steps:
the �rst one is a normalisation result (Section 4), the second one removes the outermost links
(Section 5) while the third one lowers the order (Section 6). Finally Section 7 combines the previous
constructions and provides the proof of Theorem 3.1.

4 RANK-AWARE CPDA

Intuitively, a CPDA is “rank-aware” whenever, during any run of the CPDA, one can easily deter-
mine the smallest colour seen since the creation of the link on the topmost symbol. In particular,
one only needs to inspect the current control state and topmost stack symbol. This information
will be crucial in the next section when we show how to remove the outermost links from a CPDA.
In this section, we show that any CPDA can be transformed into an equivalent rank-aware CPDA.
The notion of equivalence is formalised in the statement of Theorem 4.8.

Fix, for the whole section, an n-CPDAA = (Γ,Q,∆,q0), a partitionQE⊎QA ofQ and a colouring
function ρ : Q → C ⊂ N. Denote by G its transition graph, by G the arena induced by G and the
partition QE ⊎QA and by G the parity game (G,Ωρ ).

4.1 Definitions

Our main goal in this sub-section is to de�ne the notion of rank-awareness. To do this we will
de�ne the notion of link-rank. Assume that in con�gurationvm the top1-element has a link (that is
possibly a copy of a link) that was created in con�guration vj : then the link-rank in vm is de�ned
as the smallest colour since the creation of the link, i.e. min{ρ (vj ), · · · ρ (vm )}. Ultimately, we will
show how to enrich the stack alphabet to be able to compute the link-rank. In order to maintain
this information, we need to de�ne several other concepts. First we will de�ne indexed stacks,
from which, we can then de�ne the collapse-rank (for updating after performing a collapse) and
the pop-rank for k (for updating after performing a popk ).
A �nite path in G is a non-empty sequence of con�gurations v0v1 · · ·vm such that for all

0 ≤ i ≤ m − 1, there is an edge in G from vi to vi+1. An in�nite path is an in�nite sequence of
con�gurations v0v1 · · · such that for all i ≥ 0, there is an edge in G from vi to vi+1. Note that we
do not require v0 to be the initial con�guration.
We now de�ne a generalisation ofn-stacks called indexed n-stacks. Following the same notations

as in Section 2.6, a stack s is equivalently described as a pair (̃s, target (s )) (recall that s̃ is a well-
bracketed word description of s and that target (s ) gives the link structure). An indexed n-stack

is described by a triple (̃s, target (s ), ind (s )) where s̃ = s̃1 · · · s̃ |s̃ | and target (s ) are as previously and
where ind (s ) : {1, . . . , |̃s |} → N is a partial function that is de�ned in any position j < |̃s | − n such
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that s̃j < {[, ]}. The previous conditions on the domain of ind (s ) ensure that any stack symbol in
s which is not the topmost one has a value by ind (s ) that we refer to as its index. An indexed

con�guration is a pair formed by a control state and an indexed stack.
The erasure of an indexed n-stack (̃s, target (s ), ind (s )) is the n-stack (̃s, target (s )). We extend

the notion of erasure to indexed con�gurations in the obvious way.
The intended meaning of the index of some symbol in the stack is the following. The index is

equal to the largest integer i such that since vi the symbol no longer appears as a top1-element.
Hence, if one uses the stack to store (and maintain) some information, the index is the moment
from which this information was no longer updated. Therefore when some symbol appears again
as the top1-element, one has to update the information by taking into account all that happened
since vi (included).
With any path λ = v0v1 · · · , with vi = (pi , si ) for all i ≥ 0, we inductively associate a sequence

of indexed con�gurations λ′ = v ′0v
′
1 · · · such that the following holds.

• The erasure of λ′ equals λ (the erasure of a sequence of indexed con�gurations being de�ned
as the sequence of the respective erasures).
• For any indexed con�gurationv ′m = (qm, s

′
m ) the following holds. Let s ′m = (s̃ ′m, target (s

′
m ), ind (s ′m)),

let s̃ ′m = x1 · · · xh , and let j be in the domain of ind (s ′m) and such that x j+1 = ]. Then let j ′ > j
be the largest integer such that xk = ] for all j + 1 ≤ k ≤ j ′ and let i be the unique integer
such that xi · · · x j′ is well-bracketed. Then, for any i < k < j ′, if ind (s ′m) (k ) is de�ned, one
has ind (s ′m) (k ) ≤ ind (s

′
m) (j ), and this inequality is strict if ind (s ′m) (j ) , 0. Intuitively, posi-

tion j is the topmost symbol of some (j ′− j )-stack, and any symbol in this stack has an index
smaller than the topmost symbol.

The intuitive idea behind the forthcomingde�nition ofλ′ is rather simple. The indices are always
preserved, so one only cares about new positions in the stack. On doing a pushk the indices of the
copied stack are inherited from the original copy. Then when new indices are needed (because a
position is no longer the top1 one, it gets indexm + 1 if the current con�guration is vm+1).
Before going to the formal de�nition, we start with an example.

Example 4.1. In Figure 3, we give an example (at order 3) that illustrates the previous intuitive
idea as well as the formal description below (ignore the information on colours for this example).
We only describe the indexed stacked (omitting the control states), and indicate the stack operation
(but omit the id operation). Indices are written as superscripts.

Now, we formally give the construction of λ′ (the previously mentioned properties easily fol-
low from the de�nition). The initial con�guration v ′0 = (p0, s

′
0), is obtained by letting ind (s ′0) be

the constant (partial) function equal to 0. Assume now that v ′1 · · ·v
′
m has been constructed, let

v ′m = (pm, s
′
m ) with s ′m = (̃sm, target (sm ), ind (s ′m)) and let vm+1 = (pm+1, sm+1) with sm+1 =

(̃sm+1, target (sm+1)). We letv ′m+1 = (pm+1, s
′
m+1) with s

′
m+1 = (̃sm+1, target (sm+1), ind (s ′m+1)) where

ind (s ′m+1) is de�ned thanks to the following case distinction on which stack oprations have been
applied to go from vm to vm+1.

• A top-rewriting operation (possibly equal to id) followed by a push
γ ,k
1 operation is applied in

con�guration vm . Then all previous indices are inherited and the former top1-element gets
indexm+ 1. Formally, ind (s ′m+1) (j ) = ind (s

′
m) (j ) whenever j < |̃sm | −n and ind (s

′
m+1) ( |̃sm | −

n) =m + 1.
• A top-rewriting operation (possibly equal to id) followed by a pushk operation is applied.First,
all existing indices are preserved, i.e. ind (s ′m+1) (j ) = ind (s ′m) (j ) whenever j belongs to the
domain of ind (s ′m). Then one writes s̃m as [ · · · [t]]n−k+1 with t being well-bracketed; hence,
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s ′0 =[[[⊥
0α0

]][[⊥]]] colour : 3

push
β ,1
1

−−−−−−→ s ′1 =[[[⊥
0α0

]][[⊥1β]]] colour : 0
rewα

1 ;push2
−−−−−−−−−→ s ′2 =[[[⊥

0α0
]][[⊥1α2

][⊥1α]]] colour : 1
pop1
−−−→ s ′3 =[[[⊥

0α0
]][[⊥1α2

][⊥]]] colour : 5

pushα ,11
−−−−−−→ s ′4 =[[[⊥

0α0
]][[⊥1α2

][⊥4α]]] colour : 3

push
β ,2
1

−−−−−−→ s ′5 =[[[⊥
0α0]][[⊥1α2][⊥4α5β]]] colour : 2

push3
−−−−−→ s ′6 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β]]] colour : 4

push
γ ,3
1

−−−−−−→ s ′7 =[[[⊥
0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β7γ]]] colour : 6

push2
−−−−−→ s ′8 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β7γ 8][⊥4α5β7γ]]] colour : 5

pop1
−−−→ s ′9 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α2][⊥4α5β7γ 8][⊥4α5β]]] colour : 6

col lapse
−−−−−−−→ s ′10 =[[[⊥

0α0]][[⊥1α2][⊥4α5β6]][[⊥1α]]] colour : 4
pop3
−−−→ s ′11 =[[[⊥

0α0]][[⊥1α2][⊥4α5β]]] colour : 3

push
γ ,1
1

−−−−−−→ s ′12 =[[[⊥
0α0]][[⊥1α2][⊥4α5β12γ]]] colour : 2

Fig. 3. Example of a sequence of indexed stacks.

s̃m+1 = [ · · · [t ′][t ′]]n−k+1 where t ′ is obtained from t by (possibly )changing its last sym-
bol to re�ect the top-rewriting operation. Then we let ind (s ′m+1) ( |s̃

′
m | − (n − k + 1) + j ) =

ind (s ′m) ( |s̃
′
m | − (n − k + 1) − ( |t | + 2) + j ) for all j ≥ 1 such that the second member of the

equality is de�ned: the indices are simply copied from the former top (k − 1)-stack. Finally,
the former top1-element gets indexm + 1: ind (s ′m+1) ( |̃sm | − n + k − 3) =m + 1.
• A top-rewriting operation (possibly equal to id) followed by either a popk operation or a
collapse or id is applied in con�gurationvm in λ. Then all indices are inherited from the pre-
vious indexed stack. Formally, ind (s ′m+1) (j ) = ind (s

′
m) (j ) whenever j belongs to the domain

of ind (s ′m+1).

The following straightforward proposition is crucial. In particular, it means that if we stored
some information on the stack, the index gives the “expiration date” of the stored information, that
is the step in the computation starting from which the information has no longer been updated.

Proposition 4.2. Let Λ = v0v1 · · · be a path and Λ′ = v ′0v
′
1 · · · be as above. Let m ≥ 0, let

s ′m = (̃sm, target (sm ), ind (s ′m)) be the indexed stack inv
′
m . Let j be such that i = ind (s

′
m) (j ) is de�ned.

If i > 0, then (i − 1) is the largest integer such that the j-th letter of s̃m is a copy of top1 (si−1). If i = 0,
there is no i ′ such that the j-th letter of s̃m is a copy of top1 (si ′ ).
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Proof. Immediate by induction onm and from the de�nition of λ′ from λ. �

Consider a �nite path λ = v0v1 · · ·vm in G ending in a con�guration vm = (q, s ) such that
top1 (s ) has an n-link (if the link is a k-link for some k < n the following concepts are not relevant).
The link-ancestor of vm is the con�guration vj where the original copy of the n-link in top1 (s )
was created1, or v0 if the link was present in the stack of the con�guration v0. The link-rank of
vm is the minimum colour of a state occurring in λ since its link-ancestor vj (inclusive) i.e. it is
min{ρ (vj ), · · · ρ (vm )}.

Example 4.3. Consider the sequence of indexed stacks given in Figure 3. The link-ancestor of
con�guration v8 is con�guration v7 and its link-rank is 5. The link-ancestor of con�guration v11
is con�guration v5 and its link-rank is 2.

De�nition 4.4. An n-CPDAA = (Γ,Q,∆,q0) equipped with a colouring function is rank-aware
from a con�guration v0 if there exists a function LinkRk : Q × Γ → N such that for any �-
nite path λ = v0v1 · · ·vℓ , the link-rank (if de�ned) of the con�guration vℓ = (q, s ) is equal to
LinkRk (q, top1 (s )). In other words, the link rank can be retrieved from the control state together
with the top1-element of the stack.

To show that any CPDA can be transformed into a rank-aware CPDA, we need to de�ne the
collapse-rank and the pop-rank. First, we introduce the notion of ancestor. Fix a �nite path Λ =

v0v1 · · ·vm , letvm = (q, s ) be some con�guration in Λ and let x be a symbol in s . Then the ancestor
of x is the con�guration vi where i is the index of x in v ′m (the indexed version of vm).
We now introduce the notion of collapse-rank. Fix a �nite path Λ = v0v1 · · ·vm and assume

that the top1-element of vm has a (k + 1)-link for some k . Then the collapse-ancestor in vm is
the ancestor of the top1-element of the target k-stack and the collapse-rank in vm is the smallest
colour visited since the collapse-ancestor (included).

Example 4.5. Consider the sequence of indexed stacks given in Figure 3 (the colours of the cor-
responding con�gurations are indicated on the right part of the �gure).
In v ′8 the collapse-ancestor is v

′
6 and the collapse-rank is therefore 4. In v

′
9 the collapse-ancestor

is v ′2 and the collapse-rank is therefore 1.

Next, we give a notion of pop-rank. Fix a partial play Λ = v0v1 · · ·vm and a con�guration
vm = (q, s ) in Λ. Then, for any 1 ≤ k ≤ n, the pop-ancestor for k , when de�ned, is the ancestor of
the top1-element of popk (s ) and the pop-rank for k , when de�ned, is the smallest colour visited
since the pop-ancestor for k (included). In particular, the pop-rank for n is the smallest colour
visited since the stack has height at least the height of s .

Example 4.6. Again, consider the sequence of indexed stacks given in Figure 3.
In con�guration v ′9 the pop-ancestor (resp. pop-rank) for 3 is v

′
6 (resp. 4), the pop-ancestor (resp.

pop-rank) for 2 is v ′8 (resp. 5) and the pop-ancestor (resp. pop-rank) for 1 is v ′5 (resp. 2).
In con�gurationv ′12 the pop-ancestor (resp. pop-rank) for 3 is v

′
0 (resp. 0), the pop-ancestor (resp.

pop-rank) for 2 is v ′2 (resp. 1) and the pop-ancestor (resp. pop-rank) for 1 is v ′12 (resp. 2).

Remark 4.7. To permit that the construction remains uniform if the ancestor of the pointed stack
(resp the ancestor of the top1-element of popk (s ) / the link-ancestor) is v0, the collapse-rank (resp
the pop-rank / the link-rank) is simply the smallest colour seen since the beginning of the play.

1Formally, one could index links as well: whenever performing, in con�guration vj , a push
γ ,e
1 , one attaches to the newly

created link the index j + 1. Later, if the link is copied (by doing a pushk operation) then the index is copied as well.
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4.2 Main Result

The next theorem shows that we can restrict our attention to CPDA games where the underlying
CPDA is rank-aware.

Theorem 4.8. For any n-CPDA A = 〈Γ,Q,∆,q0〉 and any associated parity game G, one can
construct an n-CPDAArk and an associated parity game Grk such that the following holds.

• There exists a mapping ν from the con�gurations of A to that of Ark such that:
– for any con�guration v0 of A, Ark is rank-aware from ν (v0);
– Éloïse has a winning strategy in G from a con�guration v0 i� she has a winning strategy in
Grk from ν (v0);

– both ν and ν−1 preserve regularity of sets of con�gurations.
• If there is an n-CPDA transducer Srk synchronised with Ark realising a well-de�ned winning
strategy for Éloïse in Grk from ν (q0,⊥n ), then one can e�ectively construct an n-CPDA trans-
ducer S synchronised withA realising a well-de�ned winning strategy for Éloïse in G from the
initial con�guration (q0,⊥n ).

4.3 Proof of Theorem 4.8

The proof of Theorem 4.8 is a non-trivial generalisation of [28, Lemma 6.3] (which concerns 2-
CPDA) to the general setting of n-CPDA and starting from an arbitrary con�guration.
Fix an n-CPDA A = (Γ,Q,∆,q0), a partition QE ⊎ QA of Q and a colouring function ρ : Q →

C ⊂ N. Denote by G the induced parity game. We de�ne a rank-aware (to be proven) n-CPDA
Ark = (Γrk,Qrk,∆rk,q0,rk) such that Qrk = Q ×C and

Γrk = Γ × (C ∪ {	}) × (C ∪ {	, †}) × (C {1, ...,n } ∪ {	})

We de�ne a map ν that associates with any con�guration ofA a con�guration ofArk. Let (q, s )
be a con�guration in A. Then ν (q, s ) = ((q, ρ (q)), s ′) where s ′ is obtained by:

• Replacing every internal (i.e. that is not the top1-element) symbol γ by (γ ,	,	,	) if it has
an n-link and by (γ ,	, †,	) otherwise.
• Replacing the top1-element γ by (γ , ρ (q), ρ (q), τρ (q ) if it has an n-link and otherwise by
(γ , ρ (q), †, τρ (q )), where τρ (q ) is the constant function assigning to any 1 ≤ i ≤ n the value
ρ (q).

We equip Ark with a colouring function ρrk by letting ρrk(q, θ ) = ρ (q). Our construction will
satisfy the following invariant. Let Λ be a �nite path in Graph(Ark) starting in some con�guration
ν (q, s ) ending in some con�guration ((p, θ ), s ) then the following holds. First, θ is the minimal
colour visited from the beginning of the path. Second, if top1 (s ) = (α ,mc ,ml , τ ) then

• mc is the collapse-rank;
• ml is the link-rank if it makes sense (i.e. if there is an n-link in the current top1-symbol) or
is † otherwise;
• τ is the pop-rank: τ (i ) is the pop-rank for i for every 1 ≤ i ≤ n.

Trivially, from the de�nition of ν , the invariant holds at the beginning of the path.
The transition function ofArk mimics that ofA and updates the ranks as explained below. First,

let us explain the meaning of symbols	. Such symbols will never been created using a push_,k1

or a rew	1 action: hence they can only be duplicated (using pushk ) from symbols originally in the
stack. The meaning of a symbol 	 is that the corresponding object (collapse-rank, link-rank or
pop-rank) has not yet been settled. However, when a 	 symbol appears in the top1-element the
various ranks can be easily retrieved as they necessarily equal the smallest colour visited so far (as
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noted in Remark 4.7): this is why we will compute the minimal colour visited so far in the control
state ofArk.
In order to make the construction more readable, we do not formally describe ∆rk but rather

explain howArk behaves. It should be clear that ∆rk can be formally described to �t this informal
description (and that some extra control states are actually needed as we will allow to do several
stack operation per transition); technical issues about this construction are discussed in Remark 4.9.
Note that the description below also contains the inductive proof of its validity, namely thatmc ,
ml and τ are as stated above. To avoid case distinction on whether the link-rank is de�ned or not,
we take the following convention that min(†, i ) = † for every i ∈ N.

The intuitive idea is the following. One stores in the stack information on the various ranks,
and after performing a popk or a collapse , one needs to update the information stored in the new
top1-element. Indeed this information has no longer been updated since the ancestor con�guration
(this was the last time it was on top of the stack). To update it, one uses either the collapse-rank /
pop-rank in the previous con�guration, which is exactly what is needed for this update.
Assume Ark is in con�guration vℓ = ((q, θ ), s ) with top1 (s ) = (α ,mc ,ml , τ ) and let v0v1 · · ·vℓ

be the beginning of the path of Graph(Ark) where we denote vi = ((qi , θi ), si ) (hence qℓ = q and
sℓ = s). For any (q′, rew

γ
1 ;op) ∈ ∆(q,α ) (note that the casewhere no rew1 is performed corresponds

to the case where γ = α ) the following behaviours are those allowed in ((q, θ ), s ).

(1) Assume op = popk for some 1 ≤ k ≤ n, let popk (s ) = s
′ and let top1 (s

′) = (α ′,m′c ,m
′
l
, τ ′).

Then Ark can go to the con�guration ((q′, θ ′), s ′′) where θ ′ = min(θ , ρ (q′)) and s ′′ is ob-
tained from s ′ by replacing top1 (s

′) by
(a) (α ′, θ ′, θ ′, (θ ′, . . . , θ ′)) ifm′c =	,m′

l
=	 and τ ′ 	;

(b) (α ′, θ ′, †, (θ ′, . . . , θ ′)) ifm′c =	,m′
l
= † and τ ′ 	;

(c) (α ′,min(m′c , τ (k ), ρ (q
′)),min(m′

l
, τ (k ), ρ (q′)), τ ′′) otherwise, with

τ ′′ (i ) =




min(τ ′(i ), τ (k ), ρ (q′)) if i ≤ k

min(τ (i ), ρ (q′)) if i > k .

Cases (a) and (b) correspond to the case where one reaches (possibly a copy) of a symbol
that was in the stack from the very beginning and that never appeared as a top1-element:
then the value of the collapse-rank, link-rank — if de�ned this is case (a) otherwise it is case
(b) — and pop-ranks are all equal to θ ′.
We now explain case (c ). Let vx be the ancestor of top1 (popk (s )). Then x > 0 as otherwise
we would be in case (a) or (b). By Proposition 4.2, it follows that top1 (popk (s )) = top1 (sx−1),
and by induction hypothesis, at step (x − 1),m′c ,m

′
l
and τ ′ had the expected meaning. Let y

be the index of the top1-element of the pointed stack in s ′: y is also the top1-element of the
pointed stack in sx−1, and moreover y < x . Hence, the collapse-rank in vℓ+1 is

min{ρ (qy ), . . . , ρ (qx−1), ρ (qx ), . . . , ρ (qℓ ), ρ (q
′)}

=min{min{ρ (qy ), . . . , ρ (qx−1)},min{ρ (qx ), . . . , ρ (qℓ )}, ρ (q
′)}

=min{m′c , τ (k ), ρ (q
′)}

Similarly, when de�ned, the link-ancestor of s ′ is the same as the one in sx−1: hence the
pop-rank in vℓ+1 is min{m′

l
, τ (k ), ρ (q′)}.

For any i ≤ k , top1 (popi (s
′)) = top1 (sx−1) and therefore the pop-rank for i invℓ+1 is obtained

by updating τ ′ (i ) to take care of the minimum colour seen sincevx which, as for the collapse-
rank, is min{τ (k ), ρ (q′)}: therefore the pop-rank for i in vℓ+1 equals min{τ ′(i ), τ (k ), ρ (q′)}.
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For any i > k , popi (s
′) = popi (s ) and thus top1 (popi (s

′)) = top1 (popi (s )). Therefore the
pop-rank for i in vℓ+1 is obtained by updating the one in vℓ to take care of the new visited
colour ρ (q′): hence the pop-rank for i in vℓ+1 equals min{τ (i ), ρ (q′)}.

(2) Assume op = collapse , let k be the order of the link in top1 (s ), let collapse (s ) = s ′ and let
top1 (s

′) = (α ′,m′c ,m
′
l
, τ ′). Then Ark can go to the con�guration ((q′, θ ′), s ′′) where θ ′ =

min(θ , ρ (q′)) and s ′′ is obtained from s ′ by replacing top1 (s
′) by

(a) (α ′, θ ′, θ ′, (θ ′, . . . , θ ′)) ifm′c =	,m′
l
=	 and τ ′ =	;

(b) (α ′, θ ′, †, (θ ′, . . . , θ ′)) ifm′c =	,m′
l
= † and τ ′ =	;

(c) (α ′,min(m′c ,mc , ρ (q
′)),min(m′

l
,mc , ρ (q

′)), τ ′′) otherwise with

τ ′′ (i ) =




min(τ ′(i ),mc , ρ (q
′)) if i ≤ k

min(τ (i ), ρ (q′)) if i > k .

The proof follows the same line as for the previous case. Cases (a) and (b) correspond to the
case where one reaches (possibly a copy) of a symbol that was in the stack from the very
beginning and that never appeared as a top1-element: then the value of the collapse-rank,
link-rank — if de�ned this is case (a) otherwise it is case (b) — and pop-ranks are all equal
to θ ′.
We now explain case (c ). Let vx be the collapse-ancestor of vℓ . Then x > 0 as otherwise we
would be in case (a) or (b). By induction hypothesis,m′c ,m

′
l
and τ ′ give the collapse-rank /

link-rank / pop-ranks invx−1. Moreover the ancestor of the top1-element of the target of the
top link in s ′ is the same as the one invx−1. Therefore, the collapse-rank is obtained by taking
theminimumof the collapse-rank invx−1withmin{ρ (qx ), . . . ρ (qℓ ), ρ (q′)} = min{mc , ρ (q

′)}.
Similarly (if de�ned) the link-ancestor in s ′ being the same as the one in vx−1, the link-rank
is obtained by taking the minimum of the one in vx−1 with min{ρ (qx ), . . . , ρ (qℓ ), ρ (q′)} =
min{mc , ρ (q

′)}.
Let i ≤ k . The ancestor of top1 (popi (s

′)) is the same as the ancestor of top1 (popi (sx−1)).
Therefore the pop-rank for i in vℓ+1 is obtained by taking the minimum of the one in vx−1
with min{ρ (qx ), . . . ρ (qℓ ), ρ (q′)} = min{mc , ρ (q

′)}.
Let i > k . Then the ancestor of top1 (popi (s

′)) is the same as the ancestor of top1 (popi (sℓ )):
indeed the collapse only modi�es the topk stack, in other words popi (collapse (s )) = popi (s ).
Therefore the pop-rank for i invℓ+1 is obtained by taking the minimum of the one invℓ with
the new visited colour ρ (q′).

(3) Assume op = pushj for some 2 ≤ j ≤ n, let pushj (rew
(γ ,mc,ml ,τ )
1 (s )) = s ′ and let top1 (s

′) =

(γ ,mc ,ml , τ ) (note that	 does not appear in top1 (s
′)). Then,Ark can go to the con�guration

((q′, θ ′), s ′′) where θ ′ = min(θ , ρ (q′)) and s ′′ is obtained from s ′ when replacing top1 (s
′) by

(γ ,min(mc , ρ (q
′)),min(ml , ρ (q

′)), τ ′) with

τ ′(i ) =




min(τ (i ), ρ (q′)) if i , j

ρ (q′) if i = j

Indeed, the collapse-ancestor in the new con�guration is the same as the one in s . As by
induction hypothesis mc is the collapse-rank in vℓ , the collapse-rank in vℓ+1 is obtained
by updating mc to take care of the new visited colour, namely by taking min{mc , ρ (q

′)}.
Similarly, if de�ned, the link-ancestors in vℓ and vℓ+1 are identical and then the link-rank in
vℓ+1 is min{mc , ρ (q

′)}.
For any i , j , the ancestor of top1 (popi (s )

′) and the ancestor of top1 (popi (s
′)) are the same.

Again using the induction hypothesis one directly gets that the pop-rank for i invℓ+1 equals
min{τ (i ), ρ (q′)}.
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The index of the ancestor of top1 (popj (s ′)) is by de�nition ℓ + 1. Hence, as the only colour
visited since vℓ+1 is ρ (q′) it equals the pop-rank for j .

(4) Assume op = push
β,k
1 with 1 ≤ k ≤ n, and β ∈ (Γ \ {⊥}). ThenArk can go to (q′, θ ′), where

θ ′ = min(θ , ρ ′(q′)), and apply successively rew
(γ ,mc,ml ,τ )
1 and push

(β,m′c,m
′
l
,τ ′),k

1 wherem′c =
min(τ (k ), ρ (q′)),m′

l
= ρ (q′) if k = n andm′

l
= † otherwise, and τ ′(i ) = min(τ (i ), ρ (q′)) for

every i ≥ 2 and τ (1) = ρ (q′).
Indeed, the pointed stack in s ′ is topk (popk (s )) and therefore the collapse-rank in vℓ+1 is the
minimumof the pop-rank fork in s and of the new visited colour ρ (q′), that is min{τ (k ), ρ (q′)}.
If k = n, the link-ancestor of vℓ+1 is vℓ+1 itself and hence the link-rank is the colour of the
current con�guration, namely ρ (q′).
For any i ≥ 2, as popi (s ) = popi (s

′) one also has that top1 (popi (s
′)) = top1 (popi (s )) and

therefore the pop-rank for i in vℓ+1 equals the minimum of the one in vℓ with the new
visited colour ρ (q′), that is min{τ (i ), ρ (q′)}. Finally as the ancestor of pop1 (s

′) is vℓ+1 then
the pop-rank for 1 is the current colour, namely ρ (q′).

From the previous description (and the included inductive proof) we conclude that, for any
con�gurationv0 ofA,Ark is rank-aware from ν (v0), where we let LinkRk ((q, (γ ,mc ,ml , τ ))) =ml .

Remark 4.9. One may object that Ark does not �t the de�nition of n-CPDA. Indeed, in a single
transition it can do a top-rewriting followed by another stack operation and followed again by a
top-rewriting (which itself depends on the new top1-element). One could add intermediate states
and simply decompose such a transition into two transitions, but this would be problematic later
when de�ning an n-CPDA transducer realising a winning strategy.

Fortunately, one can de�ne a variant A′rk of Ark that has the same properties as Ark and addi-
tionally �ts the de�nition of n-CPDA. The idea is simply to postpone the �nal top-rewriting to the
next transition. Indeed, it su�ces to add a new component on the control state where one encodes
the top-rewriting that should be performed next: this top-rewriting is then performed in the next
transition (note that this �ts the de�nition as performing two top-rewriting is the same as doing
only the last one). However, there is still an issue as the top-rewriting was actually depending on
the top1-symbol (one updates the various ranks) hence, one cannot save the next top-rewriting
in the control state without �rst observing the symbol to be rewritten. Again this is not a real
problem, as it su�ces to remember which kind of update should be done (one concerning a popk
or one concerning a collapse) and to store in the control state the various objects needed for this
update (for this, one can simply store the former top1-element).
One also needs to slightly modify the LinkRk function so that it returns the link-rank of the

top1-symbol after it is rewritten. This can easily be done as the domain of LinkRk is Qrk × Γrk.
Note thatA′rk andArk use the same stack alphabet, but that the state space ofA′rk uses an extra

component of size linear in the one of the stack alphabet.
In conclusion building a rank-aware (valid) n-CPDA from a non-aware one increases (by a mul-

tiplicative factor) the stack alphabet by |C |n+3 and the state set by O ( |C |n+3).
For now on, we usesArk to mean A′rk.

We are now ready to conclude the proof of Theorem 4.8. First recall that we de�ned ρrk by
letting ρrk(q, θ ) = ρ (q). Then, we de�ne a partition Qrk,E ⊎ Qrk,A of Qrk by letting the states in
Qrk,E be those states with their �rst component in QE, and those states in Qrk,A be those states
with their �rst component in QA. Let Grk be the corresponding arena and let Grk = (Grk,Ωρrk ) be
the corresponding n-CPDA parity game.
Consider the projection ζ de�ned from con�gurations ofArk into con�gurations ofA by only

keeping the �rst component of the control state, and by only keeping the Γ part of the symbols in
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the stack. Note that, on the domain of ν−1, ζ and ν−1 coincide. Also note that ζ preserves the shape
of stacks2, i.e. for any con�guration vrk, the stack in vrk has the same shape as the stack in ν (vrk).
We extend ζ as a function from (possibly partial) plays in Grk into (possibly partial) plays in
G by letting ζ (v ′0v

′
1 · · · ) = ζ (v ′0)ζ (v

′
1) · · · . It is obvious that for any play λ′ in Grk starting from

ν (v0), its image ζ (λ′) is a play in G starting from v0; moreover these two plays induce the same
sequence of colours and at any round the player that controls the current con�guration is the same
in both plays. Conversely, from the de�nition ofArk it is also clear that there is, for any play λ in
G starting from v0, a unique play λ′ in Grk starting from ν (v0) such that ζ (λ′) = λ.
In particular, ζ can be used to construct a strategy in G from a strategy in Grk. Indeed, let φrk

be a strategy for Éloïse from ν (v0) in Grk. We de�ne a strategy φ in G from ν (v0). This strategy
maintains as a memory a partial play λrk in Grk such that, if Éloïse respects φ, in G starting from
v0 after having played λ one has ζ (λrk) = λ and moreover λrk is a play in Grk starting from ν (v0)

where Éloïse respects φrk. Initially, we let λrk = ν (v0). Assume that we have been playing λ and
that Éloïse has to play next. Then she considersvrk = φrk (λrk) and she plays tov wherev = ζ (vrk).
Finally one updates λrk to be λrk ·vrk. If it is Abelard that has to play next and if he moves to some
v , then Éloïse updates λrk to be λrk · vrk where vrk is the unique con�guration such that λrk · vrk
is a valid play and such that ζ (vrk) = v . A similar construction can be done to build a strategy of
Abelard in G from one in Grk.

Now, assume that ν (v0) is winning for Éloïse (resp. Abelard) and call φrk an associated winning
strategy. Let φ be the strategy in G obtained as explained above. Then φ is winning for Éloïse (resp.
Abelard) in G from v0 (this follows directly from the fact that φrk is winning and that we have
the property that ζ (λrk) = λ for any partial play λ in G consistent with φ). Hence this proves that
Éloïse has a winning strategy in G from v0 i� she has a winning strategy in Grk from ν (v0).
The fact that both ν and ν−1 preserve regular sets of con�gurations is obvious: for this one

basically needs to simulate an automaton on the image by ν (or ν−1) that can be computed on-the-
�y (except for the very last steps of ν where one needs to know the control state before deducing
the top1 stack element as it has information on the colour of the control state. However, this is not
a problem to have a slight — �nite — delay in the �nal steps of the simulation).
Finally, from the previous construction of a strategy φ from a strategy φrk we prove that if there

is an n-CPDA transducer Srk synchronised with Ark realising a well-de�ned winning strategy
φrk for Éloïse in Grk from ν (q0,⊥n ), then one can e�ectively construct an n-CPDA transducer S
synchronised with A realising a well-de�ned winning strategy φ for Éloïse in G from the initial
con�guration (q0,⊥n ). Indeed, in our previous construction of φ, we maintained a partial play λrk
in Grk and used the value of φrk (λrk) to de�ne φ (λ). But if φrk is realised by an n-CPDA transducer
Srk, it su�ces to remember the con�guration of this transducer after playing λrk (as this su�ces
to compute φrk (λrk)). Hence, to obtain S from Srk one needs to “embed” the transition function of
Ark into it, so thatS can read/output elements inQ×OpΓn ×Op

Γ
n instead ofQrk×Op

Γrk
n ×Op

Γrk
n . This

can easily (but writing the formal construction would be quite heavy) be achieved by noting that
the shape of stacks is preserved by ζ : hence if Srk is synchronised withArk then S is synchronised
with A (asArk andA are “synchronised”, and Srk and S are “synchronised” as well).

4.4 Complexity

If we summarise, the overall blowup in the transformation from G to Grk given by Theorem 4.8 is
as follows.

2 Recall that the shape of a stack is the stack obtained by replacing all non-⊥ symbols appearing in s by a fresh dummy
symbol ♯ (but keeping the links).
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Proposition 4.10. Let A and Ark be as in Theorem 4.8. Then the set of states of Ark has size
O ( |Q |( |C | + 1)n+3) and the stack alphabet of Ark has size O ( |Γ |( |C | + 1)2n+5). Moreover the set of
colours used in G and Grk are the same.

Proof. By construction together with Remark 4.9. �

5 REMOVING THE n-LINKS

5.1 Main Result

In this section, we show how one can remove the outmost (i.e. order-n) links. In the following lf
intended to mean link-free.

Theorem 5.1. For any rank-aware n-CPDAArk = (Γrk,Qrk,∆rk,q0,rk) and any associated parity
gameGrk, one can construct ann-CPDAAlf and an associated parity gameGlf such that the following
holds.

• Alf does not create n-links.
• There exists a mapping ν from the con�gurations of Ark to that of Alf such that:
– Éloïse has a winning strategy in Grk from a con�guration v0 i� she has a winning strategy
in Glf from ν (v0);

– If the set of winning con�gurations for Éloïse in Glf is regular, then the set of winning con�g-
urations for Éloïse in Grk is regular as well.

• If there is an n-CPDA transducer Slf synchronised with Alf realising a well-de�ned winning
strategy for Éloïse in Glf from ν (q0,rk,⊥n ), then one can e�ectively construct an n-CPDA trans-
ducer Srk synchronised with Ark realising a well-de�ned winning strategy for Éloïse in Grk

from the initial con�guration (q0,rk,⊥n ).

The whole section is devoted to the proof of Theorem 5.1 and we thus �x from now on, a rank-
aware n-CPDAArk = (Γrk,Qrk,∆rk,q0,rk) (togetherwith a function LinkRk), a partitionQrk,E⊎Qrk,A

of Qrk, a colouring function ρ : Qrk → C ⊂ N and we let C = {0, . . . ,d }. Denote by Grk the
transition graph of Ark, by Grk the arena induced by Grk and the partition Qrk,E ⊎ Qrk,A, and by
Grk the parity game (Grk,Ωρ ).
There are now two tasks. The �rst one is to prove that the previous simulation game can be

generated by an n-CPDA with the extra property that it never creates n-links. The second one
is to prove that this game correctly simulates the original one (i.e. Éloïse wins in Grk from some
vertex v i� she wins in the Glf from the con�guration ν (v ) for some mapping ν — to be de�ned —
transforming vertices of the �rst game into vertices of the second one). The �rst task (see Section
5.2) is simple as the initial n-CPDA de�ningGrk is rank aware and therefore comes with a function
LinkRk as in Lemma 4.8. The second task (see Section 5.3) is more involved because we have to
de�ne ν and to prove that it preserves (arbitrary) winning con�gurations.

5.2 The Simulation Game: Glf

We now de�ne Alf and the associated game Glf . We start with an informal description ofAlf and
then formally describe its structure.
The n-CPDAAlf simulates Ark as follows. Assume that the play is in some con�guration (q, s )

and that the player that controls it wants to simulate a transition (p, rewα
1 ;op) ∈ ∆rk(q, top1 (s )).

In case op is neither of the form push
β,n
1 nor of the form collapse with top1 (s ) having an n-link

then the same transition (p, rewα
1 ;op) is available inArk and is performed. The interesting case is

when op = push
β,n
1 , and it is simulated byAlf as follows.

• The control state of Alf is updated to be pβ and one performs rewα
1 .
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• From pβ , Éloïse has to move to a new control state p? and can push any symbol of the form

(α ,
−→
R ) where

−→
R = (R0, · · ·Rd ) ∈ (2Q )d+1. A dummy 1-link is attached (and will never be

used for a collapse).
• From p?, Abelard has to play and choose between one of the following two options:
– either go to state p and perform no action on the stack,
– or pick a state r in some Ri , go to an intermediate new state r i (of colour i) without chang-
ing the stack and from this new con�guration go to state r and perform a popn action.

The intended meaning of such a decomposition of the push
β,n
1 operation is the following: when

choosing the sets in
−→
R , Éloïse is claiming that she has a strategy such that if the n-link (or a later

copy of it) created by pushing β is eventually used for collapsing the stack then the control state
after collapsing will belong to Ri where i is meant to be the smallest colour from the creation of
the link to the collapse of the stack (equivalently it will be the link rank — as computed in Ark —
just before collapsing). Note that the Ri are arbitrary sets because Éloïse does not have full control
over the play (and in general cannot force Ri to be a singleton). Then Abelard can either choose
to simulate the collapse (here state r i is only used for going through a state of colour i). If he does

not want to simulate a collapse then one stores
−→
R since its truth may be checked later in the play.

Assume that later, in con�guration (p ′, t ) one of the two players wants to simulate a transition

(r , rewβ
1 ; collapse) involving an n-link. By construction, top1 (t ) is necessarily of the form (γ ,

−→
R ).

Then the simulation is done by going to a sink con�guration that is winning for Éloïse i� r ∈

RLinkRk (p,γ ) , i.e. Éloïse wins i� her former claim on
−→
R was correct.

Formally we let Alf = (Γlf ,Qlf ,∆lf ,q0, lf ) with

• Γlf = Γrk ∪ Γrk × (2Qrk )d+1

• Qlf = Qrk ∪ {p
β | p ∈ Qrk, β ∈ Γrk} ∪ {p

? | p ∈ Qrk} ∪ {r
i | r ∈ Qrk, 0 ≤ i ≤ d } ∪ {qt,qf}

• ∆lf is de�ned as follows, wherep,q, r range overQrk,α , β,γ range over Γrk and
−→
R = (R0, . . . ,Rd )

ranges over (2Qrk )d+1.

– If (p, rewα
1 ;op) ∈ ∆rk(q,γ ) and if op is neither of the form pushβ,n1 nor collapse , then

(p, rewα
1 ;op) ∈ ∆lf (q,γ ) and (p, rew (α ,

−→
R )

1 ;op) ∈ ∆lf (q, (γ ,
−→
R )).

– If (p, rewα
1 ; push

β,n
1 ) ∈ ∆rk(q,γ ), then (pβ , rewα

1 ; id ) ∈ ∆lf (q,γ ) and (pβ , rew (α ,
−→
R )

1 ; id ) ∈

∆lf (q, (γ ,
−→
R )).

– For all pβ ∈ Qlf , ∆(pβ ,γ ) = ∆(pβ , (γ ,
−→
R )) = {(p?, push

(β,
−→
S ),1

1 ) |
−→
S ∈ (2Qrk )d+1)}.

– For all p? ∈ Qlf , ∆(p?, (γ ,
−→
R )) = {(p, id )} ∪ {(r i , id ) | 0 ≤ i ≤ d and r ∈ Ri }.

– For all r i ∈ Qlf , ∆(r i , (γ ,
−→
R )) = {(r , popn )}.

– If (p, rewα
1 ; collapse ) ∈ ∆rk(q,γ ), then (p, rewα

1 ; collapse ) ∈ ∆lf (q,γ ).

– If (r , rewα
1 ; collapse ) ∈ ∆rk(q,γ ), then (qt, id ) ∈ ∆lf (q, (γ ,

−→
R )) if r ∈ RLinkRk (q,γ ) and

(qf, id ) ∈ ∆lf (q, (γ ,
−→
R )) if r < RLinkRk (q,γ ) .

– ∆lf (qt, (γ ,
−→
R )) = {(qt, id )} and ∆lf (qf, (γ ,

−→
R )) = {(qf, id )}.

We let Glf be the transition graph of Alf . Now, in order to de�ne a game graph Glf out of Glf

we let Qlf,E = Qrk,E ∪ {p
β | p ∈ Qrk, β ∈ Γrk}. Finally to de�ne a corresponding n-CPDA parity

game Glf we extend ρ by letting, ∀p, r ∈ Qrk and β ∈ Γrk, ρ (pβ ) = ρ (p?) = d (as one cannot loop
forever in such states, it means that they have no in�uence on whether a play will be winning or
not), ρ (r i ) = i for every 0 ≤ i ≤ d , ρ (qt) = 0 and ρ (qf) = 1 (hence a play that visits qt is winning
for Éloïse and a play that visits qf is winning for Abelard, as these states are sinks).
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Note that Alf never creates an n-link.

5.3 Correctness of the Simulation

Consider some con�guration v0 = (p0, s0) in Grk. We explain now how to de�ne an “equivalent”
con�guration ν (v0) in Glf (here equivalent is in the sense of Lemma 5.3 below). The transfor-
mation consists in replacing any occurrence of a stack letter (call it γ ) with an n-link in s0 by

another letter of the form (γ ,
−→
R ) and replacing the n-link by a 1-link. The vector

−→
R is de�ned

as follows. Let s ′ be the stack obtained by popping every symbol and stack above γ , and let

R = {q | Éloïse wins in Grk from (q, collapse (s ′))}. Then one sets
−→
R = (R, · · · ,R).

Example 5.2. Assume we are playing a two-colour parity game and let

s0 = [[[a]] [[][a b c]] [[][a b c d]]],

R1 = {r | (r , [[[a]]]) is winning for Éloïse in Grk}

R2 = {r | (r , [[[a]] [[][a b c]]]) is winning for Éloïse in Grk}

Then
ν (s0) = [[[a]] [[][a b (c, (R1,R1))]] [[][a b (c, (R1,R1)) (d, (R2,R2))]]].

The rest of this section is devoted to the proof of the following result.

Lemma 5.3. Éloïse wins inGrk from some con�gurationv0 if and only if she wins inGlf from ν (v0).

Assume that the con�gurationv0 = (p0, s0) is winning for Éloïse inGrk, and let φrk be a winning
strategy for her. Using φrk, we de�ne a strategy φlf for Éloïse in Glf from ν (v0). The strategy φlf
maintains as a memory a partial play λrk in Grk, that is an element in V ∗rk (where Vrk denotes the
set of vertices ofGrk). At the beginning λrk is initialised to be (p0, s0). The play λrk will satisfy the
following invariant: assume that the play ends in a con�guration (q, s ), then the last con�guration

in λrk has control state q and its top1-element is either top1 (s ) or (top1 (s ),
−→
R ) for some

−→
R (and in

this case there is an n-link from the top1-symbol of s).
We �rst describe φlf , and then we explain how λrk is updated.

Choice of the move. Assume that the play is in some vertex (q, s ) with q ∈ Qlf,E \ {p
β | q ∈

Qrk, β ∈ Γrk}. The move given by φlf depends on φrk (λrk) = (p, rewα
1 ;op) (we shall later argue that

φlf is well de�ned whilst proving that it is winning).

• If op is neither of the form pushβ,n1 nor collapse then Éloïse plays (p, rewα
1 ;op) if top1 (s ) = γ

and she plays (p, rew (α ,
−→
R )

1 ;op) if top1 (s ) = (γ ,
−→
R ).

• If op = collapse and top1 (s ) = γ ∈ Γrk then Éloïse plays (p, rewα
1 ; collapse ).

• If op = collapse and top1 (s ) = (γ ,
−→
R ) then Éloïse plays (qt, id ). We shall later see that this

move is always valid.

• If op = push
β,n
1 then Éloïse plays (pβ , rewα

1 ; id ) if top1 (s ) = γ and she plays (pβ , rew (α ,
−→
R )

1 ; id )

if top1 (s ) = (γ ,
−→
R ).

In this last case, or in the case where q ∈ QA and Abelard plays some (pβ , rewα
1 ; id ) (resp. some

(pβ , rew (α ,
−→
R )

1 ; id )),we also have to explain howÉloïse behaves from (pβ , rewα
1 (s )) (resp. (p

β , rew (α ,
−→
R )

1 (s ))).

Éloïse has to play (p?, push
(β,
−→
S ),1

1 ) where
−→
S ∈ (2Qrk )d+1 describes which states can be reached

if the n-link created by pushing β (or a copy of it) is used for collapsing the stack, depending
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on the smallest visited colour in the meantime. In order to de�ne
−→
S , she considers the set of all

possible continuations of λrk · (p, push
β,n
1 (t )) (where (q, t ) denotes the last vertex of λrk) where she

respects her strategy φrk. For each such play, she checks whether some con�guration of the form

(r , popn (t )) is eventually reached by collapsing (possibly a copy of the) n-link created by push
β,n
1 .

If such an r exists, she considers the smallest colour i visited from the moment where the link was
created to the moment a collapse is performed (i.e. the link rank just before collapsing). For every
i ∈ {0, . . . d }, the set Si is de�ned to be the set of states r ∈ Q such that the preceding case happens.
Formally,

Si = {r | ∃ λrk · v0 · · ·vk · vk+1 · · · play in Grk where Éloïse respects φrk and s.t.

v0 = (p, pushβ,n1 (t )), vk+1 = (r ,popn (t )) is obtained by applying collapse from vk ,

v0 is the link ancestor of vk and i is the link rank in vk }

Finally, we set
−→
S = (S0, . . . , Sd ) and Éloïse plays (p?, push

(β,
−→
S ),1

1 ).

Update of λrk. The memory λrk is updated after each visit to a con�guration with a control state
in Qrk ∪ {qt,qf}. We have several cases depending on the transition.

• If the last transition is of the form (p, rewα
1 ;op) or (p, rew

(α ,
−→
R )

1 ;op) with op being neither of

the form push
β,n
1 nor collapse , then we extend λrk by applying transition (p, rewα

1 ;op), i.e. if
(q, t ) denotes the last con�guration in λrk, then the updated memory is λrk · (p,op (rew

α
1 (t ))).

• If the last transition is of the form (qt, id ) or (qf, id ), the play is in a sink con�guration.
Therefore we do not update λrk as the play will loop forever.

• If the last transitions form a sequence of the form (pβ , rewα
1 ; id ) · (p

?, push (β,
−→
S ),1

1 ) · (p, id )

or of the form (pβ , rew (α ,
−→
R )

1 ; id ) · (p?, push(β,
−→
S ),1

1 ) · (p, id ), then the updated memory is λrk ·

(p, push
β,n
1 (t )), where (q, t ) denotes the last con�guration in λrk.

• If the last transitions form a sequence of the form (pβ , rewα
1 ; id ) · (p

?, push
(β,
−→
S ),1

1 ) · (r i , id ) ·

(r , popn ) or of the form (pβ , rew (α ,
−→
R )

1 ; id ) · (p?, push(β,
−→
S ),1

1 ) · (r i , id ) · (r , popn ), then we ex-
tend λrk by a sequence of actions (consistent with φrk) that starts by performing transition

(p, pushβ,n1 ) and ends up by collapsing (possibly a copy of) the link created at this �rst step

and goes to state r whilst visiting i as a minimal colour in the meantime. By de�nition of
−→
S

such a sequence always exists. More formally, if (q, t ) denotes the last con�guration in λrk,
then the updated memory is a play in Grk, λrk ·v0 · · ·vk ·vk+1, where Éloïse respects φrk and

such that v0 = (p, pushβ,n1 (t )), vk+1 = (r ,popn (t )) is obtained by applying collapse from vk ,
v0 is the link ancestor of vk and i is the link rank in vk .

Therefore, with any partial play λlf in Glf starting from v0 in which Éloïse respects her strategy
φlf , is associated a partial play λrk in Grk. An immediate induction shows that λrk is a play where
Éloïse respects φrk. The same argument works for any in�nite play λlf that does not contain a state
in {qt,qf}, and the corresponding play λrk is therefore in�nite, starts from ν (v0) and Éloïse respects
φrk in that play. Therefore it is a winning play.

Moreover, if λlf is an in�nite play that does not contain a state in {qt,qf}, it easily follows from
the de�nitions of φlf and λrk that the smallest in�nitely visited colour in λlf is the same as the one
in λrk. Hence, any in�nite play in Glf starting from ν (v0) where Éloïse respects φlf and that does
not contain a state in {qt,qf} is won by Éloïse.
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Now, consider a play that contains a state in {qt,qf} (hence loops on it forever). Reaching a
con�guration with state in {qt,qf} is necessarily by simulating a collapse from some con�guration

with a top1-element of the form (α ,
−→
R ). We should distinguish between those elements (α ,

−→
R ) that

are “created” before (i.e. by the ν function) or during the play (by Éloïse). For the second ones,
note that whenever Éloïse wants to simulate a collapse, she can safely go to state qt (meaning

φlf is well de�ned): indeed, if this was not the case, it would contradict the way
−→
S was de�ned

when simulating the original creation of the link. For the same reason, Abelard can never reach

state qf provided Éloïse respects her strategy φlf . Now consider an element (α ,
−→
R ) created by ν

and assume that one player wants to simulate a collapse from some con�guration with such a
top1-element. Call λlf the partial play just before and call λrk the associated play in Grk. Then in
λrk, Éloïse respects her winning strategy φrk. If she has to play next in λrk, strategy φrk indicates to
play collapse; if it is Abelard’s turn to move he can play collapse . In both cases, the con�guration
that is reached after collapsing is winning for Éloïse (it is a con�guration visited in a winning play).

Hence, by de�nition of ν , its control state belongs to R where
−→
R = (R, · · · ,R), and therefore from

the current vertex in Glf there is no transition to qf and there is at least one to qt . Therefore plays
where Éloïse respects φlf and that contain a state in {qt,qf} necessarily contain state qt hence are
won by Éloïse.

Altogether, it proves that φlf is a winning strategy for Éloïse in Glf from ν (v0).

Let us now prove the converse implication. Assume that the con�guration ν (v0) is winning
for Éloïse in Glf , and let φlf be a winning strategy for her. Using φlf , we de�ne a strategy φrk for
Éloïse in Grk from v0 = (p0, s0). First, recall how ν (v0) is de�ned: every symbol γ in s0 with an
n-link is replaced by a pair (γ , (R, . . . ,R)) where R is the set of states r such that Éloïse wins from
(r , s ′) where s ′ is the stack obtained by �rst removing every symbol (and stack) above γ and then
performing a collapse . We can therefore assume that we have a collection of winning strategies,

one for each such con�guration (r , s ′); call such a strategy φr ,s
′

rk . Then, during a play where Éloïse
respects φrk, if one eventually visits such a con�guration (r , s ′), the strategy φrk will mimic the

winning strategy φr ,s
′

rk from that point and therefore the resulting play will be winning for Éloïse.
Then in the rest of this description we mostly focus on the case of plays where this situation does
not occur.
The strategy φrk maintains as a memory a partial play λlf in Glf , that is an element inV ∗lf (where

Vlf denotes the set of vertices of Glf ). At the beginning λlf is initialised to the con�guration ν (v0).
After having played λrk, the play λlf will satisfy the following invariant. Assume that the play λlf
ends in a con�guration (q, s ) then the following holds.

• If top1 (s ) = α , the last con�guration of λrk has control state q and its top1-element is α and
it has a k-link for some k < n.
• If top1 (s ) = (α ,

−→
R ), the last con�guration of λrk has control state q, its top1-element is α and

it has an n-link. Moreover, if Éloïse keeps respecting φrk in the rest of the play, if (possibly
a copy of) this link is eventually used in a collapse , then the state that will be reached just
after doing the collapse will belong to Ri where i will be the link rank just before collapsing.

We �rst describe φrk and we then explain how λlf is updated. Recall that we switch to a known
winning strategy in case we do a collapse from (possibly a copy of) an n-link that was already in
s0.

Choice of the move. Assume that the play is in some vertex (q, s ) with q ∈ Qrk,E. The move
given by φrk depends on φlf (λlf ) = (q′, rew ;op) (we shall later argue that φrk is well de�ned whilst
proving that it is winning).
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• If q′ ∈ Qrk then Éloïse plays (q′, rewα
1 ;op) where α is such that either rew = rewα

1 or

rew = rew (α ,
−→
R )

1 . Note that in this case, op is neither a collapse involving an n-link nor of the

form push
β,n
1 .

• If q′ = pβ then Éloïse plays to (p, rewα
1 ; push

β,n
1 ) where α is such that either rew = rewα

1 or

rew = rew (α ,
−→
R )

1 .

• If q′ = qt then Éloïse plays (r , collapse) for some arbitrary r ∈ RLinkRk (p, top1 (s ))
where (α ,

−→
R )

denotes the top1-element of the last vertex of λlf . Note that in this case, the collapse involves
an n-link.

Update of λlf . The memory λlf is updated after each move (played by any of the two players). We
have several cases depending on the last transition.

• If the last transition is of the form (q′, rewα
1 ;op) and op is neither a collapse involving an

n-link nor of the form push
β,n
1 , then λlf is extended by mimicking the same transition, i.e. if

(q, t ) denotes the last con�guration in λlf , then the updated memory is λlf · (q
′,op (rewα

1 (t ))

if top1 (t ) = γ for some γ ∈ Γrk, and is λlf · (q′,op (rew
(α ,
−→
R )

1 (t )) if top1 (t ) = (γ ,
−→
R ) for some

(γ ,
−→
R ) ∈ Γlf .

• If the last transition is of the form (p, rewα
1 ; push

β,n
1 ) then, we let (q, t ) denote the last con�g-

uration in λlf . If top1 (t ) = γ for some γ ∈ Γrk then the updated memory is λlf · (pβ , rewα
1 (t )) ·

(p?, push(β,
−→
R ),1

1 (rewα
1 (t ))) · (p, id ) where φlf (λlf · (p

β , rewα
1 (t ))) = (p?, push(β,

−→
R ),1

1 (rewα
1 (t ))).

If top1 (t ) = (γ ,
−→
S ) for some (γ ,

−→
S ) ∈ Γlf then the updated memory is λlf · (pβ , rew

(α ,
−→
S )

1 (t )) ·

(p?, push
(β,
−→
R ),1

1 (rew (α ,
−→
S )

1 (t )))·(p, id )whereφlf (λlf ·(pβ , rew
(α ,
−→
S )

1 (t ))) = (p?, push
(β,
−→
R ),1

1 (rew (α ,
−→
S )

1 (t ))).
• If the last transition is of the form (r , collapse) and the collapse follows an n-link, then we
have two cases. In the �rst case, the collapse follows (possibly a copy of) an n-link that was
already in s0 and we claim (and prove later) that one ends up in a winning con�guration
and thus one switches to a corresponding winning strategy as already explained. In the
other case, it follows an n-link that was created during the play, in which case we let λlf =
v0 · · ·vm and denote by vi the link ancestor of vm3. Then the updated memory is obtained
by backtracking inside λlf until reaching the con�guration where the (simulation of the)
collapsed n-link was created (this con�guration is vi , the link ancestor) and then extending
it by a choice of Abelard consistent with the collapse . That is the updatedmemory isv0 · · ·vi ·
(r ℓ, t ) · (r , popn (t )) where vi = (p?, t ) and ℓ denotes the link rank in the con�guration λrk
was just before doing the collapse .

Therefore, with any partial play λrk inGrk in which Éloïse respects her strategyφrk, is associated
a partial play λlf in Glf . Note that if we end up in a con�guration that is known to be winning, λlf
becomes useless and is no longer extended. This also implies that when collapsing an n-link that
was already in s0 one necessarily ends up in a winning con�guration. Indeed, assume the contrary
and let λlf be the constructed play before collapsing: then either Éloïse has to play and therefore
moves to qt (and therefore the con�guration in λrk after collapsing is winning by de�nition of
ν , leading a contradiction) or Abelard could move to qf (leading a contradiction with φlf being

3Here we implicitly extend the notion of link ancestor as follows. In Glf instead of creating n-link one pushes symbol of

the form (β,
−→
R ): hence whenever doing a push (β ,

−→
R ),1

1 one attaches to the vector
−→
R the index of the current con�guration.

Then if the top1 element of vn is some (β,
−→
R ) then the link ancestor of vm is de�ned to be vi where i is the indexed

attached with
−→
R . Note in particular that the control state in the link ancestor is necessarily of the form p? .
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winning). Therefore, from now on, we restrict our attention to the case where the n-links (and
their copies) originally in s0 are never used to do a collapse .
An easy induction shows that Éloïse respects φlf in λlf . The same argument works for an in�nite

play λrk, and the corresponding play λlf is therefore in�nite (one simply considers the limit of the
λlf in the usual way4), starts from ν (v0), never visits a state in {qt,qf} and Éloïse respects φlf in
that play. Therefore it is a winning play.
Now, in order to conclude that any play λrk in Grk in which Éloïse respects strategy φrk is

winning for her, one needs to relate the sequence of colours in λrk with the one in λlf . For this,
we introduce a notion of factorisation of a partial play λrk = v0v1 · · ·vm in Grk (we should later
note that it directly extends to in�nite plays). A factor is a nonempty sequence of vertices of the
following kind:

(1) it is a sequencevh · · ·vk such that the stack operation fromvh−1 tovh is of the form rewα
1 ; push

n,β
1 ,

the stack operation from vk−1 to vk is a collapse involving an n-link, and vh is the link an-
cestor of vk .

(2) or it is a single vertex;

Then the factorisation of λrk denoted Fact (λrk) is a sequence of factors inductively de�ned as fol-
lows (we underline factors to make them explicit): Fact (λrk) = v0 · · ·vk , Fact (vk+1 · · ·vn ) if there
exists some k such that v0 · · ·vk is as in (1) above, and Fact (λrk) = v0, Fact (v1 · · ·vn ) otherwise.
In the following, we refer to the colour of a factor as the minimal colour of its elements.
Note that the previous de�nition is also valid for in�nite plays. Now we easily get the following

proposition (the result is obtained by reasoning on partial play using a simple induction combined
with a case analysis. Then it directly extends to in�nite plays).

Proposition 5.4. Let λrk be some in�nite play in Grk starting from v0 where Éloïse respects φrk
and assume that there is no collapse that follows (possibly a copy of) an n-link already in s0. Let λlf
be the associated in�nite play in Glf constructed from φrk. Let λrk,0, λrk,1, · · · be the factorisation of
λrk and, for every i ≥ 0, let ci be the colour of λrk,i .

Then the sequence (ci )i≥0 and the sequence of colours visited in λlf have the same lim inf .

The previous proposition directly implies that φrk is a winning strategy for Éloïse from v0 in
Grk.

5.4 Regularity of the Winning Region is Preserved

We established in Lemma 5.3 that Éloïse wins in Grk from some con�guration v0 if and only if
she wins in Glf from ν (v0). We now prove that regular sets of winning positions are preserved by
inverse image by ν .

Proposition 5.5. Assume that we have an automaton Blf that recognises the set of winning con-
�gurations in Glf . Then, one can compute an automaton Brk that recognises the set of winning con-
�gurations in Grk.

Proof. We can safely assume that any control state of Blf is of the form (ξ ,R) with R ⊆ Qlf and
such that, after reading some input stack s (possibly with some pending open brackets) Blf is in a

4 Let (um )m≥0 be a sequence of �nite words. For anym ≥ 0 let um = um,0 · · ·um,km . Then the limit of the sequence
(um )m≥0 is the (possibly in�nite) word α = α0α1 · · · such that α is maximal for the pre�x ordering and for all 0 ≤ i < |α |

there is some Ni such that um,i = αi for allm ≥ Ni .
In our setting, the play λlf associated with an in�nite play λrk is de�ned as the limit of the sequence of partial plays

(λm
lf
)m≥0 where λm

lf
is the partial play associated with λrk truncated to itsm + 1 �rst vertices. From the de�nitions of the

λm
lf

it is easily veri�ed that the limit λlf is in�nite.
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state of the form (ξ ,R) with R = {r | Blf accepts (r , s ′)} where s ′ is the stack obtained from s by
closing all the pending open brackets (i.e. s ′ = s]k for some well chosen k ≤ n).
On an input (p0, s0) the automaton Brk computes on-the-�y the image of (p0, s0) by ν and simu-

lates Blf on it. In order to compute ν ((p0, s0)), Brk needs to retrieve, when reading a stack symbol
with an n-link, the states that are winning for the stack obtained by collapsing the n-link. This is
simple as it is given by the 2Qlf component of Blf (recall that Brk simulates Blf , hence keeps track
of this information) and hence the automaton can access it by de�nition of the model of automata.
Indeed, the information (i.e. the states winning when doing a collapse) is correct before reading
the �rst stack symbol coming with an n-link, and by induction on the number of n-links, if it is
correct after processing the k �rst symbols with an n-link, on reading the (k + 1)-th symbol with
an n-link, the information is still correct as it was correct for the pre�x read so far and therefore
Brk correctly simulated Blf on this pre�x.
We do not formally describe Brk as it is rather straightforward but we note that the size of Brk

is linear in the size of Blf . �

5.5 Strategies

In order to complete the proof of Theorem 5.1 it remains to establish the following proposition.

Proposition 5.6. If there is an n-CPDA transducer Slf synchronised with Alf realising a well-
de�ned winning strategy for Éloïse in Glf from ν ((q0,rk,⊥n )), then one can e�ectively construct an
n-CPDA transducer Srk synchronised withArk realising a well-de�ned winning strategy for Éloïse in
Grk from the initial con�guration (q0,rk,⊥n ).

Proof. The result follows from a carefully analysis of how we de�ned φrk from φlf in the proof
of Lemma 5.3. As we now only focus on the initial con�guration (q0,rk,⊥n ) we will not have to
deal with the special case of doing a collapse following (possibly a copy of) an n-link originally in
the initial con�guration. Also note that ν ((q0,rk,⊥n )) = (q0,rk,⊥n ).
Recall that φrk uses as a memory a partial play λlf in Glf and considers the value of φlf (λlf ) to

determine the next move to play. Now assume that φlf is realised by an n-CPDA transducer Slf
synchronised with Alf . Hence, instead of storing λlf it su�ces to store the con�guration Slf is in
after reading λlf .
One can also notice that the stack srk in the last con�guration of some partial play λrk and the

stack slf in the last con�guration of the associated λlf have the same shapes provided one replaces
in slf every 1-link from a symbol in Γrk × (2Qrk )d+1 by an n-link. Recall that these 1-links are never
used to perform a collapse: hence replacing those 1-links by n-links does not change the issue of
the game, and if one does a similar transformation on Slf it still realises a winning strategy, and it
is synchronised with the transformed version of λlf .
Now, it follows from the way one de�ned φrk (both the choice of the move and the memory

update) that one can design an n-CPDA transducer Srk synchronised with Ark realising a well-
de�ned winning strategy for Éloïse in Grk from the initial con�guration (q0,rk,⊥n ). In all cases but
one Srk simulates Slf . The only problematic case is when the move to play is some (r , collapse)
involving an n-link. Indeed, one needs to backtrack in λlf (namely retrieve the con�guration of
Slf right after the link ancestor) and extend it by doing (r ℓ, id ) (where ℓ is the link rank) and
then (r , popn ); one needs to retrieve the con�guration of Slf right after this. If one performs a
collapse in Srk, one directly retrieves the stack content, but the control state of Slf is still missing.
However, one can modify Slf so that after the simulation of the creation of an n-link, i.e. after a

symbol of the form (β,
−→
R ) is pushed, it stores in its top1-element the control state it will be in

after doing the transitions (r ℓ, id ) (r , popn ), for each 0 ≤ ℓ ≤ d and each r ∈ Rℓ (this can easily be
computed). As this information is then propagated when copying the symbol/link, it is available in
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the top1-element before doing a collapse involving an n-link, hence Srk can also correctly retrieve
the control state of Slf .
From this (somehow informal) description of Srk the reader should be convinced that Srk cor-

rectly simulates Slf on λlf and hence, realises a winning strategy in Grk. The fact that Srk is syn-
chronised with Ark follows from the fact that it is synchronised with the variant of Slf that itself
is synchronised with the variant of λlf which is synchronised with λrk. �

5.6 Optimising the Construction

The set Qlf has size O ( |Qrk |( |Γrk | + |C | + 3)), which is not very satisfactory for complexity reasons.
Actually, one would prefer a variant of the construction where |Γrk | does not appear in the blowup
concerning states. This factor actually comes from states {qγ | q ∈ Qrk, γ ∈ Γrk}, and one can easily

get rid of them by doing the following modi�cation on Alf . When simulating a pushβ,n1 , instead
of going to qβ , one stores the information on β (thanks to a rew1 operation) in the top1 element of
the stack (hence, the stack alphabet increases by a linear factor in |Γrk |) and goes to a special state
q!. State q! is controlled by Éloïse and the transition function is the same as from qβ where β is the
symbol stored on the top1-element of the stack.
It is straightforward that this modi�cation does not change the validity of Proposition 5.5 nor

Proposition 5.6.

5.7 Complexity

If we summarise, the overall blowup in the transformation from Grk to Glf given by Theorem 5.1
is as follows.

Proposition 5.7. Let Ark and Alf be as in Theorem 5.1. Then the set of states of Alf has size
O ( |Qrk |( |C | + 3)) and the stack alphabet ofAlf has size O ( |Γrk |

2 · 2 |Qrk | |C | ). Finally, the set of colours
used in Grk and Glf are the same.

Proof. By construction together with the optimisation discussed in Section 5.6. �

6 REDUCING THE ORDER

In the previous section, given a game played on a rank-aware n-CPDA, we have constructed an-
other game played on an n-CPDA that does not createn-links. The winning region (resp. a winning
strategy realised by an n-CPDA transducer) in the original game can then be recovered from the
winning region (resp. a winning strategy realised by n-CPDA transducer) in the latter game.

In this section, we prove a result of a similar �avour. Namely, starting from a game played on
an n-CPDA that does not create n-links, we construct a game played on an (n − 1)-CPDA, and we
show that the winning region (resp. a winning strategy realised by an n-CPDA transducer) in the
original game can be recovered from the winning region (resp. a winning strategy realised by an
(n − 1)-CPDA transducer) in the latter game.
We situate the techniques developed here in a general and abstract framework of (order-1) push-

down automata whose stack alphabet is a possibly in�nite set: abstract pushdown automata. We
start by introducing this concept and show how n-CPDA that do not create n-links �t into it. Then,
we introduce a model of automata, automata with oracles, that accept con�gurations of abstract
pushdown automata and we relate this model with automata accepting con�gurations of n-CPDA
as de�ned in Section 2.6. Then, we introduce the notion of conditional games and show that it is the
notion that captures the winning region in the original game. Finally, we show how such games
can be solved by reduction to an (n − 1)-CPDA parity game, and from the proof we also get the
expected result on the regularity of the winning region and on the existence of a winning strategy
realised by a CPDA transducer.
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6.1 Abstract Pushdown Automata

An abstract pushdownautomaton is a tupleA = (A,Q,∆,q0) whereA is a (possibly in�nite) set
called an abstract pushdown alphabet and containing a bottom-of-stack symbol denoted⊥ ∈ A,
Q is a �nite set of states, q0 ∈ Q is an initial state and

∆ : Q ×A→ 2Q×A
≤2

is the transition relation (here A≤2 = {ε } ∪A∪A ·A are the words over A of length at most 2). We
additionally require that for all a , ⊥, ∆(q,a) ⊆ Q× (A\{⊥})≤2 and that ∆(q,⊥) ⊆ Q× ({⊥}∪{⊥b |
b , ⊥}), i.e. the bottom-of-stack symbol can only occur at the bottom of the stack, and is never
popped nor rewritten.
An abstract pushdown content is a word in St = ⊥(A \ {⊥})∗. A con�guration of A is a pair

(q, s ) with q ∈ Q and s ∈ St .

Remark 6.1. In general an abstract pushdown automaton is not �nitely describable, as the do-
main of ∆ is in�nite and no further assumption is made on ∆.

A abstract pushdown automaton A induces a possibly in�nite graph G = (V , E), called an
abstract pushdown graph, whose vertices are the con�gurations of A and edges are de�ned
by the transition relation ∆, i.e. , from a vertex (q, s · a) one has an edge to (q′, s · u) whenever
(q′,u) ∈ ∆(q,a).

Example 6.2. An order-1 pushdown automaton is an abstract pushdown automaton whose stack
alphabet is �nite.

Example 6.3. Order-n CPDA that do not create n-links are special cases of abstract pushdown
automata. Indeed, let n > 1 and consider such an order-n CPDA A = (Γ,Q,∆,q0). Let A be the
set of all order-(n − 1) stacks over Γ, and for every p ∈ Q and a ∈ A with γ = top1 (a), we de�ne
∆′(p,a) by

• (q, ε ) ∈ ∆′(p,a) i� (q, rewα
1 ; popn ) ∈ ∆(q,γ );

• (q,a′ · a′) ∈ ∆′(p,a) with a′ = rewα
1 (a) i� (q, rewα

1 ; pushn ) ∈ ∆(q,γ );
• (q,a′) ∈ ∆′(p,a) with a′ = op (rewα

1 (a)) i� (q, rewα
1 ;op) ∈ ∆(q,γ ) and op < {popn, pushn }.

It follows from the de�nitions that A and the abstract pushdown automaton (A,Q,∆′,q0) have
isomorphic transition graphs.

Consider now a partitionQE∪QA ofQ between Éloïse and Abelard. It induces a natural partition
VE ∪ VA of V by setting VE = QE × St and VA = QA × St . The resulting arena Gabs = (VE,VA, E) is
called an abstract pushdown arena. Let ρ be a colouring function fromQ to a �nite set of colours
C ⊂ N. This function is easily extended to a function fromV toC by setting ρ ((q, t )) = ρ (q). Finally,
an abstract pushdown parity game is a parity game played on such an abstract pushdown arena
where the colouring function is de�ned as above.

6.2 Automata with Oracles

An automaton with oracles is a tuple B = (P,Q,A, δ ,p0,O1 · · · Ok ,Acc ) where P is a �nite set of
control states,Q is a set of input states, A is a (possibly in�nite) input alphabet, p0 ∈ P is the initial
state, Oi are subsets of A (called oracles) and δ : P × {0, 1}k → S is the transition function. Finally
Acc is a function from P to 2Q . Such an automaton is designed to accept in a deterministic way
con�gurations of an abstract pushdown automaton whose abstract pushdown content alphabet is
A and whose set of control states is Q .
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Let B = (P,Q,A, δ ,p0,O1 · · · Ok ,Acc ) be such an automaton. With every a ∈ A we associate a
Boolean vector π (a) = (b1, · · ·bk ) where

bi =




1 if a ∈ Oi
0 otherwise.

The automaton reads a con�gurationC = (q,a1a2 · · ·aℓ ) from left to right. A run over C is the
sequence r0, · · · , rℓ+1 such that r0 = p0 and ri+1 = δ (ri , π (ai )) for every i = 0, · · · , ℓ. Finally the
run is accepting if and only if q ∈ Acc (rℓ+1).

Remark 6.4. When the input alphabet is �nite, it is easily seen that automata with oracles have
the same expressive power as usual deterministic �nite automata.

We are going to use automata with oracles to accept sets of con�gurations of n-CPDA that do
not have n-links. As seen in Example 6.3 for an order-n CPDA that does not have n-links, we take
A to be the set of all order-(n − 1) stacks. The sets of con�gurations of an order-n CPDA without
n-links accepted by automata that use as oracles regular sets of order-(n−1) stacks are easily seen
to be regular.

Proposition 6.5. LetA be an order-n CPDAA that never creates n-links. Let B be an automaton
with oracles O1, . . . ,Ok and assume that each Oi is a regular set of (n − 1)-stacks (and denote by
Ci an associated automaton). Let C be the set of con�gurations of A accepted by B. Then C is reg-
ular and we can construct an automaton C (now working on order-n stacks without n-links) of size
O (n |B||C1 | · · · |Ck |) accepting it.

Proof. It su�ces to mimic the behaviour of B and to run in parallel the Cis to compute the
value of the oracles. Hence, the automaton C is obtained by taking a synchronised product of B
together with the automata C1, · · · , Ck . An extra component, coding a counter taking its values
in {0, 1, . . . ,n}, is needed to keep track of the bracketing depth (initially the counter equals 0;
on reading an opening bracket [ the counter is incremented, on reading a closing bracket ] it is
decremented). When the counter is equal to 0 or 1 one simulates B. When the counter goes to 2
(and as long as it di�ers from 1) one simulates in parallel the Cis. When the counter returns to 1
the components corresponding to the Cis give the value of the oracles on the last (n − 1)-stack
(i.e. bi = 1 if and only if the control state of the Cis component is �nal). Hence the B component
can be updated. Then the control states of the Cis are put back to the initial state and the next
(n−1)-stack is processed. Finally, when the counter is again equal to 0 (i.e. the last closing bracket
has been read), the control state q of the input con�guration is read and C goes to a �nal state if
and only if the current state p in the B component is such that q ∈ Acc (p). �

6.3 Conditional Games and Winning Regions of Abstract Pushdown Parity Games

We �x an abstract pushdown automatonA = (A,Q,∆,q0) together with a partition QE ∪QA ofQ
and a colouring function ρ using a �nite set of coloursC . We denote respectively by Gabs = (V , E)

and Gabs the associated abstract pushdown arena and abstract pushdown parity game.
We show in Lemma 6.6 below how to de�ne an automaton with oracles that accepts Éloïse’s

winning region in the game Gabs. The oracles of this automaton are de�ned using the concept of
conditional game. For every subset R ⊆ Q we de�ne the conditional game induced by R over

Gabs, denoted Gabs (R), as the game played over Gabs where a play λ is winning for Éloïse i� one of
the following happens:

• In λ no con�guration with an empty stack, i.e. of the form (q,⊥), is visited, and λ satis�es
the parity condition.
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• In λ a con�guration with an empty stack is visited and the control state in the �rst such
con�guration belongs to R.

More formally, the set of winning plays Ω(R) in Gabs(R) is de�ned as follows:

Ω(R) = [Ωρ \V
∗ (Q × {⊥})Vω ] ∪ V ∗ (R × {⊥})Vω

For any state q, any stack letter a , ⊥, and any subset R ⊆ Q it follows from Martin’s Deter-
minacy theorem [29] that either Éloïse or Abelard has a winning strategy from (q,⊥a) in Gabs(R).
We denote by R (q,a) the set of subsets R for which Éloïse wins in Gabs(R) from (q,⊥a):

R (q,a) = {R ⊆ Q | (q,⊥a) is winning for Éloïse in Gabs (R)}

Then one has the following characterisation of the set of winning positions in Gabs in terms of
automaton with oracles.

Lemma 6.6. Let Gabs be an abstract pushdown parity game induced by an abstract pushdown au-
tomaton A = (A,Q,∆,q0). Then the set of winning positions in Gabs for Éloïse is accepted by an
automaton with oracles A = (P,Q,A, δ ,p0,O1 · · · Ok ,Acc ) such that

• P = 2Q

• p0 = ∅

• There is an oracle Oq,R for every q ∈ Q and R ⊆ Q , and a ∈ Oq,R i� R ∈ R (q,a) and a , ⊥
• There is an oracle O⊥ and a ∈ O⊥ i� a = ⊥
• Using the oracles, δ is designed so that:
– From state ∅ on reading ⊥, A goes to {q | (q,⊥) is winning for Éloïse in Gabs}

– From state R on reading a, A goes to {q | R ∈ R (q,a)}
• Acc is the identity function

The proof of Lemma 6.6 is a direct consequence of the following proposition.

Proposition 6.7. Let s ∈ (A\ {⊥})∗, q ∈ Q and a ∈ A\ {⊥}. Then Éloïse has a winning strategy in
Gabs from (q,⊥sa) if and only if there exists some R ∈ R (q,a) such that (r ,⊥s ) is winning for Éloïse
in Gabs for every r ∈ R.

Proof. Assume Éloïse has a winning strategy from (q,⊥sa) in Gabs and call it φ. Consider the
set L of all plays in Gabs that start from (q,⊥sa) and where Éloïse respects φ. De�ne R to be
the (possibly empty) set that consists of all r ∈ Q such that there is a play in L of the form
v0 · · ·vk (r ,⊥s )vk+1 · · · where each vi for 0 ≤ i ≤ k is of the form (pi ,⊥sti ) for some ti , ε . In
other words, R consists of all states that can be reached on popping (possibly a rewriting of) a for
the �rst time in a play where Éloïse respects φ. De�ne a (partial) function τ : V → V by letting
τ (p,⊥st ) = (p,⊥t ) for every p ∈ Q . De�ne a function τ−1 : V → V by letting τ−1 (p,⊥t ) = (p,⊥st )

for all t ∈ A∗. We extend τ−1 as a morphism over V ∗.
It is easily shown that R ∈ R (q,a). Indeed a winning strategy for Éloïse in Gabs(R) is de�ned as

follows:

• if some empty stack con�guration has already been visited, play any legal move,
• otherwise go to τ (φ (τ−1 (λ)), where λ is the partial play seen so far.

By de�nition ofL andR, it easily follows that the previous strategy is winning for Éloïse inGabs (R),
and therefore R ∈ R (q,a).
Finally, for every r ∈ R there is, by de�nition of L, a partial play λr that starts from (q,⊥sa),

where Éloïse respects φ and that ends in (r ,⊥s ). A winning strategy for Éloïse in Gabs from (r ,⊥s )

is given by ψ (λ) = φ (λ′r · λ), where λ
′
r denotes the partial play obtained from λr by removing its

last vertex (r ,⊥s ).
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Conversely, let us assume that there is some R ∈ R (q,a) such that (r ,⊥s ) is winning for Éloïse
in Gabs for every r ∈ R. and denote by φr a winning strategy for Éloïse from (r ,⊥s ) in Gabs. Let
φR be a winning strategy for Éloïse in Gabs(R) from (q,⊥a). We de�ne τ and τ−1 as in the direct
implication and extend them as (partial) morphism over V ∗. We now de�ne a strategy φ for Éloïse
in Gabs for plays starting from (q,⊥sa). For any partial play λ,

• if λ does not contain a con�guration of the form (p,⊥s ) then φ (λ) = τ−1 (φR (τ (λ)));
• otherwise let λ = λ′ · (r ,⊥s ) · λ′′ where λ′ does not contain any con�guration of the form
(p,⊥s ). From how φ is de�ned in the previous case, it is follows that r ∈ R. One �nally sets
φ (λ) = φr ((r ,⊥s ) · λ

′′).

It is then easy to check that φ is a winning strategy for Éloïse in Gabs from (q,⊥sa). �

6.4 Reducing the Conditional Game

The main purpose of this section is to build a new parity game G̃ whose winning region provides
all the information needed to compute the sets R (q,a). Moreover, in the underlying arena the
vertices no longer encode stacks.

To help readability, we will use standard letters, e.g. λ orφ, to denote objects (plays, strategies. . . )
in Gabs, and letters with tilde, e.g. λ̃ or φ̃, to denote objects in G̃.
For an in�nite play λ = v0v1 · · · in Gabs, let Stepsλ be the set of indices of positions where no

con�guration of strictly smaller stack height is visited later in the play. More formally, Stepsλ =
{i ∈ N | ∀j ≥ i sh(vj ) ≥ sh(vi )}, where sh((q,⊥a1 · · · an )) = n + 1 is the stack height. Note that
Stepsλ is always in�nite and hence induces a decomposition of the play λ into in�nitely many
�nite pieces.
In the decomposition induced by Stepsλ , a factor vi · · ·vj is called a bump if sh(vj ) = sh(vi ),

called a Stair otherwise (that is, if sh(vj ) = sh(vi ) + 1 and j = i + 1).
For any play λ with Stepsλ = {n0 < n1 < · · · }, we can de�ne the sequence (mcolλi )i≥0 ∈ N

N

by lettingmcolλi = min{ρ (vk ) | ni ≤ k ≤ ni+1}. Obviously, this sequence fully characterises the
parity condition.

Proposition 6.8. For every play λ, one has λ ∈ Ωρ i� lim inf ((mcolλi )i≥0) is even.

In the sequel, we build a new parity game G̃ over a new arena G̃ = (Ṽ , Ẽ). This game simulates
the abstract pushdown game, in the sense that the sequence of visited colours during a correct
simulation of a play λ in Gabs is exactly the sequence (mcolλi )i≥0. Moreover, a play in which a
player does not correctly simulate the abstract pushdown game is losing for that player. We will
then show how the winning region in G̃ permits to compute the sets {a ∈ A | R ∈ R (q,a)}.
Before providing a description of the arena G̃, let us consider the following informal description

of this simulation game.We aim at simulating a play in the abstract pushdown game from its initial
con�guration (q0,⊥). In G̃ we keep track of only the control state and the top stack symbol of the
simulated con�guration.
The interesting case is when the simulated play is in a con�guration with control state p and

top stack symbol a, and the player owning p wants to perform transition (q,a′b), i.e. go to state
q, rewrite a into a′ and push b on top of it. For every strategy of Éloïse, there is a certain set of
possible (�nite) prolongations of the play (consistent with her strategy) that will end with popping
b (or actually a symbol into which b was rewritten in the meantime) from the stack. We require

Éloïse to declare a vector
−→
R = (R0, . . . ,Rd ) of (d + 1) subsets of Q , where Ri is the set of all states

the game can be in after popping (possibly a rewriting of) b along those plays where in addition
the smallest visited colour whilst (possibly a rewriting of) b was on the stack is i .
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Abelard has two choices. He can continue the game by pushing b onto the stack and updating
the state; we call this a pursue move. Otherwise, he can select a set Ri and pick a state r ∈ Ri ,
and continue the simulation from that state r ; we call this a jumpmove. If he does a pursue move,

then he remembers the vector
−→
R claimed by Éloïse; if later on, a transition of the form (r , ε ) is

simulated, the play goes into a sink state (either qt or qf) that is winning for Éloïse if and only if
the resulting state is in Rθ where θ is the smallest colour seen in the current level (this information
will be encoded in the control state, reseted after each pursue move and updated after each jump
move). If Abelard does a jump move to a state r in Ri , the currently stored value for θ is updated
to min(θ , i, ρ (r )), which is the smallest colour seen since the current stack level was reached.

(p,a,
−→
R , θ )

(p,a′,
−→
R , θ ,q,b)

∀(q,a′b) ∈ ∆(p,a)

∀(q,a′) ∈ ∆(p,a)

(q,a′,
−→
R ,min(θ , ρ (q)))

(qt,a)

If ∃(r , ε ) ∈ ∆(p,a) s.t. r ∈ Rθ

(qf,a)

If ∃(r , ε ) ∈ ∆(p,a) s.t. r < Rθ

(p,a′,
−→
R , θ ,q,b,

−→
R′)

∀
−→
R′ ∈ (2Q )d+1

(q,b,
−→
R′, ρ (q)) (s,a′,

−→
R ,min(θ , i, ρ (r )), i ) (s,a′,

−→
R ,min(θ , i, ρ (r )))

∀s ∈ R′i

Fig. 4. Local structure of G̃.

Let us now precisely describe the arena G̃. We refer the reader to Figure 4.

• The main vertices of G̃ are those of the form (p,a,
−→
R , θ ), where p ∈ Q , a ∈ A,

−→
R =

(R0, . . . ,Rd ) ∈ (2Q )d+1 and θ ∈ {0, . . . ,d }. A vertex (p,a,
−→
R , θ ) is reached when simulat-

ing a partial play λ in Gabs such that:
– The last vertex in λ is (p, sa) for some s ∈ A∗.
– Éloïse claims that she has a strategy to continue λ in such a way that if a (or a rewriting
of it) is eventually popped, the control state reached after popping belongs to Ri , where i
is the smallest colour visited since the stack height was at least |sa |.

– The colour θ is the smallest one since the current stack level was reached from a lower
stack level.

A vertex (p,a,
−→
R , θ ) is controlled by Éloïse if and only if p ∈ QE.
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• The vertices (qt,a) and (qf,a) are here to ensure that the vectors
−→
R encoded in the main

vertices are correct. Both are sink vertices and are controlled by Éloïse. Vertex (qt,a) gets
colour 0 and vertex (qf,a) gets colour 1. As these vertices are sinks, a play reaching (qt,a) is
won by Éloïse whereas a play reaching (qf,a) is won by Abelard.

There is a transition from some vertex (p,a,
−→
R , θ ) to (qt,a), if and only if there exists a

transition rule (r , ε ) ∈ ∆(p,a), such that r ∈ Rθ (this means that
−→
R is correct with respect

to this transition rule). Dually, there is a transition from a vertex (p,a,
−→
R , θ ) to (qf,a) if and

only if there exists a transition rule (r , ε ) ∈ ∆(p,a) such that r < Rθ (this means that
−→
R is

not correct with respect to this transition rule).

• To simulate a transition rule (q,a′) ∈ ∆(p,a), the player that controls (p,a,
−→
R , θ ) moves to

(q,a′,
−→
R ,min(θ , ρ (q))). Note that the last component has to be updated as the smallest colour

seen since the current stack level was reached is now min(θ , ρ (q)).

• To simulate a transition rule (q,a′b) ∈ ∆(p,a), the player that controls (p,a,
−→
R , θ ) moves to

(p,a′,
−→
R , θ ,q,b). This vertex is controlled by Éloïse whohas to give a vector

−→
R′ = (R′0, . . . ,R

′
d
) ∈

(2Q )d+1 that describes the control states that can be reached if b (or a symbol that rewrites
it later) is eventually popped. To describe this vector, she goes to the corresponding vertex

(p,a′,
−→
R , θ ,q,b,

−→
R′).

Any vertex (p,a′,
−→
R , θ ,q,b,

−→
R′) is controlled by Abelard who chooses either to simulate a

bump or a stair. In the �rst case, he additionally has to pick the minimal colour of the bump.

To simulate a bump with minimal colour i , he goes to a vertex (r ′,a′,
−→
R ,min(θ , i, ρ (s ))), for

some r ′ ∈ R′i , through an intermediate vertex (r ′,a′,
−→
R ,min(θ , i, ρ (s )), i ) coloured by i .

To simulate a stair, Abelard goes to the vertex (q,b,
−→
R′, ρ (q)).

The last component of the vertex (that stores the smallest colour seen since the currently
simulated stack level was reached) has to be updated in all those cases. After simulating a
bump of minimal colour i , the minimal colour is min(θ , i, ρ (r ′)). After simulating a stair, this
colour has to be initialised (since a new stack level is simulated). Its value, is therefore ρ (q),
which is the unique colour since the (new) stack level was reached.

The vertices of the form (p,a,
−→
R , θ ) get colour ρ (p). Intermediate vertices of the form (p,a′,

−→
R , θ ,q,b)

or (p,a′,
−→
R , θ ,q,b,

−→
R′) get colour d and hence, will be neutral with respect to the parity condition.

The following lemma relates the winning region in G̃ with Gabs and the conditional games
induced over Gabs.

Lemma 6.9. For every p0,q ∈ Q and a ∈ A the following holds.

(1) Con�guration (p0,⊥) is winning for Éloïse in Gabs if and only if (p0,⊥, (∅, . . . , ∅), ρ (p0)) is
winning for Éloïse in G̃.

(2) For every R ⊆ Q , R ∈ R (q,a) if and only if (q,a, (R, . . . ,R), ρ (q)) is winning for Éloïse in G̃.

Remark 6.10. Note that the above lemma is proved in [33, Theorem 5.1] in the case of usual push-
down automata, i.e. when A is �nite as remarked in Example 6.2. A careful analysis of that proof
shows that it does not make use of the fact that A is �nite and therefore the proof of Lemma 6.9
could be skipped. Nevertheless, we give it below for completeness and also because we need a
careful analysis later when dealing with the regularity of the winning con�guration and when
constructing a (n − 1)-transducer realising a winning strategy (in Theorem 6.15 below).
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The rest of the section is devoted to the proof of Lemma 6.9. We mainly focus on the proof of the
�rst item, the proof of the second one being a subpart of it. We start by introducing some useful
concept and then prove both implications.

6.4.1 Factorisation of plays in Gabs and in G̃. .

Recall that for an in�nite play λ = v0v1 · · · in Gabs, Stepsλ denotes the set of indices of positions
where no con�guration of strictly smaller stack height is visited later in the play. Recall that for
any play λ with Stepsλ = {n0 < n1 < · · · }, we de�ne the sequence (mcolλi )i≥0 ∈ N

N by letting
mcolλi = min{ρ (vk ) | ni ≤ k ≤ ni+1}.

Indeed, for any play λ with Stepsλ = {n0 < n1 < · · · }, one can de�ne the sequence (λi )i≥0
by letting λi = vni · · ·vni+1 . Note that each of the λi is either a bump or a stair. In the later we
designate (λi )i≥0 as the rounds factorisation of λ.

For any play λ̃ in G̃, a round is a factor between two visits through vertices of the form

(p,a,
−→
R , θ ). We have the following possible forms for a round.

• The round is of the form (p,a,
−→
R , θ ) (q,a′,

−→
R , θ ) and corresponds therefore to the simulation

of a transition (q,a′). We designate it as a trivial bump.

• The round is of the form (p,a,
−→
R , θ ) (p,a′,

−→
R , θ ,q,b) (p,a′,

−→
R , θ ,q,b,

−→
R′) (s,a′,

−→
R ,min(θ , i,

ρ (s )), i ) (s,a′,
−→
R ,min(θ , i, ρ (s ))) and corresponds therefore to the simulation of a transition

(q,a′b) pushing b followed by a sequence of moves that ends by popping b (or a rewriting of
it). Moreover, i is the smallest colour encountered whilst b (or other stack symbol obtained
by successively rewriting it) was on the stack. We designate it as a (non-trivial) bump.

• The round is of the form (p,a,
−→
R , θ ) (p,a′,

−→
R , θ ,q,b) (p,a′,

−→
R , θ ,q,b,

−→
R′) (q,b,

−→
R′, ρ (q)) and cor-

responds therefore to the simulation of a transition (q,a′b) pushing a symbol b leading to a
new stack level below which the play will never go. We designate it as a stair.

We de�ne the colour of a round as the smallest colour of the vertices in the round.
For any play λ̃ = v0v1v2 · · · in G̃, we consider the subset of indices corresponding to vertices of

the form (p,a,
−→
R , θ ). More precisely:

Rounds
λ̃
= {n | vn = (p,a,

−→
R , θ ), p ∈ Q, a ∈ A,

−→
R ∈ (2Q )d+1, 0 ≤ θ ≤ d }

The set Rounds
λ̃
induces a natural factorisation of λ̃ into rounds. Indeed, let Rounds

λ̃
= {n0 <

n1 < n2 < · · · }, then for all i ≥ 0, we let λ̃i = vni · · ·vni+1 . We call the sequence (λ̃i )i≥0 the round

factorisation of λ̃. For every i ≥ 0, λ̃i is a round and the �rst vertex in λ̃i+1 equals the last one in

λ̃i . Moreover, λ̃ = λ̃0 ⊙ λ̃1 ⊙ λ̃2 ⊙ · · · , where λ̃i ⊙ λ̃i+1 denotes the concatenation of λ̃i with λ̃i+1
without its �rst vertex.

In order to prove both implications of Lemma 6.9, we build from a winning strategy for Éloïse
in one game a winning strategy for her in the other game. The main argument to prove that the
new strategy is winning is to prove a correspondence between the factorisations of plays in both
games.

6.4.2 Direct implication. .

Assume that the con�guration (p0,⊥) is winning for Éloïse in Gabs, and let φ be a corresponding
winning strategy for her.

Using φ, we de�ne a strategy φ̃ for Éloïse in G̃ from (p0,⊥, (∅, . . . , ∅), ρ (p0)). The strategy φ̃
maintains as a memory a partial play λ in Gabs. At the beginning λ is initialised to the vertex
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(p0,⊥). We �rst describe φ̃, and then we explain how λ is updated. Both the strategy φ̃ and the
update of λ, are described for a round.

Choice of the move. Assume that the play is in some vertex (p,a,
−→
R , θ ) for p ∈ QE. The move

given by φ̃ depends on φ (λ):

• If φ (λ) = (r , ε ), then Éloïse goes to (qt,a) (Proposition 6.11 will prove that this move is
always possible).

• If φ (λ) = (q,a′), then Éloïse goes to (q,a′,
−→
R ,min(θ , ρ (q))).

• If φ (λ) = (q,a′b), then Éloïse goes to (p,a′,
−→
R , θ ,q,b).

In this last case, or in the case where p ∈ QA and Abelard goes to (p,a′,
−→
R , θ ,q,b), we also have

to explain how Éloïse behaves from (p,a′,
−→
R , θ ,q,b). She has to provide a vector

−→
R′ ∈ (2Q )d+1 that

describes which states can be reached if b (or its successors by top rewriting) is eventually popped,

depending on the smallest visited colour in the meantime. In order to de�ne
−→
R′, Éloïse considers

the set of all possible continuations of λ · (q, sa′b) (where (p, sa) denotes the last vertex of λ) where
she respects her strategyφ. For each such play, she checkswhether some con�guration of the form
(r ′, sa′) is visited after λ · (q, sa′b), that is if the stack level of b is eventually left. If it is the case,
she considers the �rst con�guration (r ′, sa′) appearing after λ · (q, sa′b) and the smallest colour i
since b and (possibly) its successors by top-rewriting were on the stack. For every i ∈ {0, . . . ,d },
R′i is exactly the set of states r ′ ∈ Q such that the preceding case happens. More formally,

R′i = {r
′ | ∃ λ · (q, sa′b)v0 · · ·vk (r

′, sa′) · · · play in Gabs where Éloïse respects φ and

s.t. |vj | ≥ |sa
′b |, ∀j = 0, . . . ,k and min({ρ (vj ) | j = 0, . . . ,k} ∪ {ρ (q)}) = i}

Finally, we let
−→
R′ = (R′0, . . . ,R

′
d
) and Éloïse moves to (p,a′,

−→
R , θ ,q,b,

−→
R′).

Update of λ. The memory λ is updated after each visit to a vertex of the form (p,a,
−→
R , θ ). We

have three cases depending on the kind of the last round:

• The round is a trivial bump and therefore a (q,a′) transition was simulated. Let (p, sa) be
the last vertex in λ, then the updated memory is λ · (q, sa′).
• The round is a bump, and therefore a bump of colour i (where i is the colour of the round)
starting with some transition (q,a′b) and ending in a state r ′ ∈ R′i was simulated. Let (p, sa)
be the last vertex in λ. Then the memory becomes λ extended by (q, sa′b) followed by a
sequence of moves, where Éloïse respects φ, that ends by popping b and reaches (r ′, sa′)
whilst visiting i as smallest colour. By de�nition of R′i such a sequence of moves always
exists.
• The round is a stair and therefore we have simulated a (q,a′b) transition. If (p, sa) denotes
the last vertex in λ, then the updated memory is λ · (q, sa′b).

Therefore, with any partial play λ̃ in G̃ in which Éloïse respects her strategy φ̃, is associated
a partial play λ in Gabs. An immediate induction shows that Éloïse respects φ in λ. The same
arguments work for an in�nite play λ̃, and the corresponding play λ is therefore in�nite, starts
from (p0,⊥) and Éloïse respects φ in that play. Therefore it is a winning play.
The following proposition is a direct consequence of how φ̃ was de�ned.

Proposition 6.11. Let λ̃ be a partial play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)), ends in

a vertex of the form (p,a,
−→
R , θ ), and where Éloïse respects φ̃. Let λ be the partial play associated with

λ̃ built by the strategy φ̃. Then the following holds:

(1) λ ends in a vertex of the form (p, sa) for some s ∈ A∗.
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(2) θ is the smallest visited colour in λ since a (or a symbol that was later rewritten as a) has been
pushed.

(3) Assume that λ is extended, that Éloïse keeps respecting φ and that the next move after (p, sa) is
to some vertex (r , s ). Then r ∈ Rθ .

Proposition 6.11 implies that the strategy φ̃ is well de�ned when it provides a move to some
(qt,a). Moreover, one can deduce that, if Éloïse respects φ̃, no vertex of the form (qf,a) is reached.

For plays that never reach a sink vertex (qt,a), using the de�nitions of G̃ and φ̃, we easily deduce
the following proposition.

Proposition 6.12. Let λ̃ be a play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)), and where Éloïse
respects φ̃. Assume that λ̃ never visits qt , let λ be the associated play built by the strategy φ̃, and let

(λi )i≥0 be its rounds factorisation. Let (λ̃i )i≥0 be the rounds factorisation of λ̃. Then, for every i ≥ 0
the following hold:

(1) λ̃i is a bump if and only if λi is a bump

(2) λ̃i has colourmcolλi .

Now consider a play λ̃ in G̃ starting from (p0,⊥, (∅, . . . , ∅), ρ (p0)) where Éloïse respects φ̃. Either

λ̃ loops in some (qt,a) (hence, is won by Éloïse). Or, thanks to Proposition 6.12 the sequence of
visited colours in λ̃ is (mcolλi )i≥0 for the corresponding play λ inGabs. Hence, using Proposition 6.8

we conclude that λ̃ is winning if and only if λ is winning; as λ is winning for Éloïse, it follows that

λ̃ is winning for her as well.

6.4.3 Converse implication. .

First note that in order to prove the converse implication one could follow the same approach
as for the direct implication by considering now the point of view of Abelard. Nevertheless the
proof we give here starts from a winning strategy for Éloïse in G̃ and constructs a strategy for
her in Gabs: this induces a more involved proof but has the advantage of leading to an e�ective
construction of a winning strategy for Éloïse in Gabs if one has an e�ective winning strategy for
her in G̃.
Assume now that Éloïse has a winning strategy φ̃ in G̃ from (p0,⊥, (∅, . . . , ∅), ρ (p0)). Using φ̃,

we build a strategy φ for Éloïse in Gabs for plays starting from (p0,⊥).

The strategy φ maintains as a memory a partial play λ̃ in G̃, that is an element in Ṽ ∗. At the
beginning λ̃ is initialised to (p0,⊥, (∅, . . . , ∅), ρ (p0)).
For any play λ where Éloïse respects φ the following will hold.

• λ̃ is a play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)) and where Éloïse respects her win-
ning strategy φ̃.

• The last vertex of λ̃ is some (p,a,
−→
R , θ ) if and only if the current con�guration in λ is of the

form (p, sa).
• If Éloïse keeps respecting φ, and if a (or a symbol that rewrites it later) is eventually popped
the con�guration reached will be of the form (r , s ) for some r ∈ Ri , where i is the smallest
visited colour since a (or some symbol that was later rewritten as a) was on the stack.

Note that initially the previous invariants trivially hold.
In order to describe φ, we assume that we are in some con�guration (p, sa) and that the last

vertex of λ̃ is some (p,a,
−→
R , θ ). We �rst describe how Éloïse plays if p ∈ QE, and then we explain

how λ̃ is updated.
Choice of the move. Assume that p ∈ QE. Then the move given by φ depends on φ̃ (λ̃).
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• If φ̃ (λ̃) = (q,a′,
−→
R ,min(θ , ρ (q))), Éloïse plays transition (q,a′).

• If φ̃ (λ̃) = (p,a′,
−→
R , θ ,q,b), then Éloïse applies plays transition (q,a′b).

• If φ̃ (λ̃) = (qt,a), Éloïse plays transition (r , ε ) for some state r ∈ Rθ . Lemma 6.13 will prove
that such an r always exists.

Update of λ̃. The memory λ̃ is updated after each move (played by any of the two players). We
have several cases depending on the last transition.

• If the last movewas from (p, sa) to (q, sa′) then the updatedmemory is λ̃·(q,a′,
−→
R ,min(θ , ρ (q))).

• If the last move was from (p, sa) to (q, sa′b), let (p,a′,
−→
R , θ ,q,b,

−→
R′) = φ̃ (λ̃ · (p,a′,

−→
R , θ ,q,b)).

Then the updated memory is λ̃ · (p,a′,
−→
R , θ ,q,b) · (p,a′,

−→
R , θ ,q,b,

−→
R′) · (q,b,

−→
R′, ρ (q)).

• If the last move was from (p, sa) to (r , s ) the update of λ̃ is as follows. One backtracks in λ̃

until one �nds a con�guration of the form (p ′,a′,
−→
R′, θ ′,p ′′,a′′,

−→
R ) that is not immediately fol-

lowed by a vertex of the form (s,a′′,
−→
R , θ ′′, i ). This con�guration is therefore in the stair that

simulates the pushing of a′′ onto the stack (here if a′′ , a it simply means that a′′ was later
rewritten asa). Call λ̃′ the pre�x of λ̃ ending in this con�guration. The updatedmemory is λ̃′·

(r ,a′,
−→
R′,min(θ ′, θ , ρ (r )), θ ) · (r ,a′,

−→
R′,min(θ ′, θ , ρ (r ))). Formally, write λ̃ = λ̃0⊙ λ̃1⊙ · · ·⊙ λ̃k

where (λ̃i )0≤i≤k is the round factorisation of λ̃. Leth ≤ k be the largest integer such that λ̃h is

a stair and let λ̃h = (p ′,a′,
−→
R′, θ ′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′,

−→
R ) (p ′′,a′′,

−→
R , ρ (p ′′)).

De�ne λ̃′
h
= (p ′,a′,

−→
R′, θ ′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′) (p ′,a′,

−→
R′, θ ′,p ′′,a′′,

−→
R ) (r ,a′,

−→
R′,min(θ ′, θ , ρ (r )), θ )·

(r ,a′,
−→
R′,min(θ ′, θ , ρ (r ))). Then the updated memory is λ̃1 ⊙ λ̃2 ⊙ · · · ⊙ λ̃h−1 ⊙ λ̃′h .

The following lemma gives the meaning of the information stored in λ̃.

Lemma 6.13. Let λ be a partial play in Gabs, where Éloïse respects φ, that starts from (p0,⊥) and
ends in a con�guration (p, sa). We have the following facts:

(1) The last vertex of λ̃ is of the form (p,a,
−→
R , θ ) with

−→
R ∈ (2Q )d+1 and 0 ≤ θ ≤ d .

(2) λ̃ is a partial play in G̃ that starts from (p0,⊥, (∅, . . . , ∅), ρ (p0)), that ends with (p,a,
−→
R , θ ) and

where Éloïse respects φ̃.
(3) θ is the smallest colour visited since a (or some symbol that was later rewritten as a) was pushed.
(4) If λ is extended by some move that pops a, the con�guration (r , s ) that is reached is such that

r ∈ Rθ .

Proof. We �rst note that the last point is a consequence of the second and third points. Indeed,
assume that the next move after (p, sa) is to play a transition (r , ε ) ∈ ∆(p,a). The second point

implies that (p,a,
−→
R , θ ) is winning for Éloïse in G̃. If p ∈ QE, by de�nition of φ, there is some edge

from that vertex to (qt,a), which means that r ∈ Rθ and allows us to conclude. If p ∈ QA, note that

there is no edge from (p,a,
−→
R , θ ) (winning position for Éloïse) to the losing vertex (qf,a). Hence

we conclude the same way.
Let us now prove the other points by induction on λ. Initially, they trivially hold. Now assume

that the result is proved for some play λ, and let λ′ be an extension of λ. We have two cases,
depending on how λ′ extends λ:

• λ′ is obtained by applying a transition of the form (q,a′) or (q,a′b). The result is trivial in
that case.
• λ′ is obtained by applying a transition of the form (r , ε ). Let (p, sa) be the last con�guration

in λ, and let
−→
R be the last vector component in the last vertex of λ̃ when in con�guration
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(p, sa). By the induction hypothesis, it follows that λ′ = λ · (r , s ) with r ∈ Rθ . Considering
how λ̃ is updated, and using the fourth point, we easily deduce that the new memory λ̃ is as
desired.

�

Actually, we easily deduce a more precise result.

Lemma 6.14. Let λ be a partial play inGabs starting from (p0,⊥) and where Éloïse respectsφ and let

(λi )i≥0 be its rounds factorisation. Let (λ̃i )i=0, ...,k be the rounds factorisation of λ̃. Then the following
holds for every i ≥ 0.

• λ̃i is a bump if and only if λi is a bump.
• λ̃i has colourmcolλi .

Both lemmas 6.13 and 6.14 are for partial plays. A version for in�nite plays would allow us to

conclude. Let λ be an in�nite play in Gabs. We de�ne an in�nite version of λ̃ by considering the
limit of the (λ̃i )i≥0 where λ̃i is thememory after the i �rst moves in λ. See Footnote 4 on page 29 for
a similar construction. It is easily seen that such a limit always exists, is in�nite and corresponds
to a play won by Éloïse in G̃. Moreover the results of Lemma 6.14 remain true.
Let λ be a play in Gabs with initial vertex (p0,⊥), and where Éloïse respects φ, and let λ̃ be the

associated play in G̃. Therefore λ̃ is won by Éloïse. Using Lemma 6.14 and Proposition 6.8, we
conclude, as in the direct implication that λ is winning.

6.5 Main Result

Following Example 6.3 we see an n-CPDA that does not create n-links as an abstract pushdown
automaton and we apply the construction of Section 6.4. We argue that the resulting game G̃ is
associated with an (n − 1)-CPDA, which leads the following result.

Theorem 6.15. For any n-CPDA Alf = (Γlf ,Qlf ,∆lf ,q0, lf ) that does not create n-links and any
associated parity game Glf , one can construct an (n − 1)-CPDA Ã = (Γ̃, Q̃, ∆̃, q̃0) and an associated
parity game G̃ such that the following holds.

• (q0, lf ,⊥n ) is winning for Éloïse in Glf if and only if (q̃0,⊥n−1) is winning for Éloïse in G̃ .

• If the set of winning con�gurations for Éloïse in G̃ is regular, then the set of winning con�gura-
tions for Éloïse in Glf is regular as well.

• If there is an (n−1)-CPDA transducer S̃ synchronised with Ã realising a well-de�ned winning
strategy for Éloïse in G̃ from (q̃0,⊥n−1), then one can e�ectively construct ann-CPDA transducer
Slf synchronised with Alf realising a well-de�ned winning strategy for Éloïse in Glf from the
initial con�guration (q0, lf ,⊥n ).

Proof. Following Example 6.3,Alf can be seen as an abstract pushdown automaton hence, we
can apply the construction of Section 6.4. We claim that the resulting game G̃ is associated with
an (n − 1)-CPDA.
Indeed, one simply needs to consider how the graph G̃ is de�ned and make the following obser-

vations concerning the local structure given in Figure 4 when G is played on the transition graph
of an n-CPDA that does not create links.

(1) For every vertex of the form (p,a,
−→
R , θ ), (qt,a),(qf,a),(p,a,

−→
R , θ ,q,b), (p,a,

−→
R , θ ,q,b,

−→
R′) or

(s,a, ~R, θ ′, i ), a and b are (n − 1)-stacks.

(2) For every vertex of the form (p,a,
−→
R , θ ,q,b) or (p,a,

−→
R , θ ,q,b,

−→
S ), one has a = b.
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This implies that any vertex in G̃ can be seen as a pair formed by a state in a �nite set and an
(n − 1)-stack. Then one concludes the proof by checking that the edge relation is the one of an
(n − 1)-CPDA.
Therefore, the �rst point follows from Lemma 6.9 and the second one follows by combining

Lemma 6.6 with Proposition 6.5 and Lemma 6.9.

We now turn to the third point and therefore assume that there is an (n−1)-CPDA transducer S̃
synchronised with Ã realising a well-de�ned winning strategy φ̃ for Éloïse in G̃ from (q̃0,⊥n−1).
We argue that the strategy φ constructed in the proof of Lemma 6.9 can be realised, when Gabs is
obtained from an n-CPDAAlf that does not create n-links, by an n-CPDA transducer Slf synchro-
nised with Alf .
For this, let us �rst have a closer look at φ. The key ingredient in φ is the play λ̃ in G̃, and the

value of φ uniquely depends on φ̃ (λ̃). In particular, if φ̃ is realised by an (n − 1)-CPDA transducer

S̃, it su�ces to know the con�guration of S̃ after reading λ̃ in order to de�ne φ. We claim that
it can be computed by an n-CPDA transducer Slf (synchronised with Alf ); the hard part being to
establish that such a device can update correctly its memory.

Let λ̃ = v0v1 · · ·vℓ and let r
λ̃
= (p0, s0) (p1, s1) · · · (pℓ, sℓ ) be the run of S̃ associated with λ̃,

i.e. after having playedv0 · · ·vk , S̃ is in con�guration (pk , sk ). Denote by Last (r λ̃ ) the last con�gu-
ration of r

λ̃
, i.e. (pℓ, sℓ ). To de�ne φ, Last (r λ̃ ) su�ces but of course, in order to update Last (r

λ̃
), we

need to recall some more con�gurations from r
λ̃
. In the case where the last transition applies an

order-k stack operation with k < n (i.e. it is neither popn nor pushn), then the update is simple, as

it consists in simulating one step of S̃. If the last stack operation is pushn then the update of λ̃ con-
sists in adding three vertices and the corresponding update of r

λ̃
is simple (as the only operation

on the (n − 1)-stack is to rewrite the top1-element). If the last stack operation is popn one needs

to backtrack in λ̃ (hence in r
λ̃
): the backtrack is to some vk with k maximal such that vk is of the

form (p ′,a′,
−→
R′, θ ′,p ′′,a′′,

−→
R ) andvk+1 = (p ′′,a′′,

−→
R , ρ (p ′′)). Oncevk has been found, the update is

fairly simple for both λ̃ and r
λ̃
(one simply extends the remaining pre�x of λ̃ by two extra vertices

whose stack content is unchanged compared with the one in vk ).
De�ne the following set of indices where λ̃ = v0v1 · · ·vℓ

Ext (λ̃) = {h | vh is of the form (p ′,a′,
−→
R′, θ ′,p ′′,a′′,

−→
R ) and vh+1 = (p ′′,a′′,

−→
R , ρ (p ′′))} ∪ {ℓ}

Note that after a partial play λ the cardinality of Ext (λ̃) is equal to the height of the stack in the
last con�guration of λ.
For any partial play λ in Glf de�ne the following n-stack (note that it does not contain any

n-link)

Mem(λ) = [s ′k1s
′
k2
· · · s ′kh]

where we let

• Ext (λ̃) = {k1 < · · · < kh }, λ̃ being thememory associatedwith λ as in the proof of Lemma 6.9;
• s ′j is the (n − 1)-stack obtained from sj (recall that (pj , sj ) denotes the j-th con�guration of
r
λ̃
) by appending pj to its top1-symbol (i.e. we work on an enriched stack alphabet).

Note that Last (r
λ̃
) is essentially top1 (Mem(λ)) as the only di�erence is that now the control

state is stored in the stack. Moreover Mem(λ) can easily be updated by an n-CPDA transducer:

for the case of a transition involving an order-k stack operation with k < n one simulates S̃ on

top1 (Mem(λ)); for the case of a transition involving a pushn one �rst simulates S̃ on top1 (Mem(λ))

(as one may do a rew1 before pushn ) and then makes a pushn to duplicate the topmost (n−1)-stack
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in Mem(λ); �nally, for the case of a popn , one simply needs to do a popn in Mem(λ) to backtrack
and then update the control state. This is how we de�ne Slf 5.
The fact that Slf is synchronised with Alf comes from the de�nition of how Slf behaves when

the transition in Alf involves a popn or a pushn , and for the other cases it follows from the initial

assumption of S̃ being synchronised with Ã. �

Remark 6.16. When applying the general construction of Section 6.4 to an n-CPDA Alf that

does not create links, we can safely enforce the following extra constraint on the vectors
−→
R and

−→
S :

they should be element in (2Q
popn
lf )d+1 where we let Q

popn
lf denote the set of control states of Alf

from which a popn operation can be performed. Indeed, the various component of such vectors
aims at representing set of states reachable by doing a popn . This is important later in the overall
complexity for Theorem 3.1.

6.6 Complexity

If we summarise, the overall blowup in the transformation from Glf to G̃ given by Theorem 6.15
is as follows.

Proposition 6.17. Let Alf and Ã be as in Theorem 6.15. Then the set of states of Ã has size
O (22 |C | |Qlf | ) and the stack alphabet of Ã has size O ( |Γlf |). Finally, the set of colours used in Glf and
G̃ are the same.

Proof. By construction. �

7 PROOF OF THEOREM 3.1 AND COMPLEXITY

The proof of Theorem 3.1 consists in combining theorems 4.8, 5.1 and 6.15. Indeed, starting from an
n-CPDA, we apply Theorem 4.8 to obtain a rank-aware n-CPDA, then Theorem 5.1 to remove the
order-n links, and �nally Theorem 6.15 to obtain an (n−1)-CPDA.By (n−1) successive applications
of these three results, we end-up with a 1-CPDA parity game. If we apply to this latter (pushdown)
game the construction of Section 6.4 we end up with a game on a �nite graph. Solving this game
and following the chain of equivalences provided by theorems 4.8, 5.1 and 6.15 concludes the proof.
Concerning complexity, one step of successive application of the construction in theorems 4.8,

5.1 and 6.15 results in an (n − 1)-CPDA with a state set of size O (22 |Q |( |C |+3)
n+5

), a stack alphabet
of size O ( |Γ |2 · 2 |Q |( |C |+1)

n+5
) and an unchanged number of colours. Indeed,

• by Proposition 4.10 one has |Qrk | = O ( |Q | · ( |C | + 1)n+3) and |Γrk | = O ( |Γ | · ( |C | + 1)2n+5);
• by Proposition 5.7 one has |Qlf | = O ( |Qrk | · ( |C | + 3)) = O ( |Q | · ( |C | + 3)n+4) and
|Γlf | = O ( |Γrk |

2 · 2 |Qrk | |C | ) = O ( |Γ |2 · ( |C | + 1)4n+10 · 2 |Q |( |C |+1)
n+4

) = O ( |Γ |2 · 2 |Q |( |C |+1)
n+5

);
• and �nally, by Proposition 6.17, one has |Q̃ | = O (22 |C | |Qlf | ) = O (22 |Q |( |C |+3)

n+5
) and

|Γ̃ | = O ( |Γlf |) = O ( |Γ |
2 · 2 |Q |( |C |+1)

n+5
).

If one lets, for a constant K , ExpK
h

be the function de�ned by ExpK0 (x ) = x for all x and

ExpK
h+1(x ) = 2KExpK

h
(x ) , we conclude that the 1-CPDA obtained after (n − 1) successive applica-

tions of the three reductions has

• a state set of size O (Exp2( |C |+3)
n+5

n−1 ( |Q |)) and

• a stack alphabet of size O ( |Γ |2(n−1) · Exp( |C |+1)
n+5

n−1 ( |Q |)).

5Technically speaking, if we impose that a transition of Slf does a rew1 (or id) followed by another stack operation, we
may not be able to do the update of the stack after doing a popn . However, we can use the same trick as the one used to
de�ne Ark, i.e. we postpone the rew1 action to the next transition (see Remark 4.9).
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Solving this latter game can be done by reducing it using the construction of Section 6.4 which

leads to solve a parity gameon a �nite graphwithO (Exp2( |C |+3)
n+5

n ( |Q |)·( |Γ |2(n−1)·Exp( |C |+1)
n+5

n−1 ( |Q |))2)

vertices. Solving this game can be achieved in time O (N |C | ) where N denotes the number of ver-
tices. Hence, the overall complexity of deciding the winner in an n-CPDA parity game is:

• n-times exponential in the number of states of the CPDA;
• n-times exponential in the number of colours;
• polynomial in the size of the stack alphabet of the CPDA.

Regarding lower bound, the problem is n-ExpTime-hard. In fact, hardness already holds when
one considers reachability condition (i.e. does the play eventually visit a con�guration with a �nal
control state?) for games generated by higher-order pushdown automata (i.e. CPDA that never use
collapse). A self-contained proof of this result was established by Cachat and Walukiewicz, but is
fairly technical [12].
Here we sketch a much simpler proof of this result that relies on the following well-known

result: checking emptiness of a nondeterministic order-n higher-order pushdown automaton is an
(n − 1)-ExpTime-complete problem [20] (here one uses higher-order pushdown automata as word
acceptors)6. Trivially, this result is still true if we assume that the input alphabet is reduced to a
single letter. Now consider an order-(n + 1) nondeterministic higher-order pushdown automaton
A whose input alphabet is reduced to a single letter. The language accepted by A is non-empty
if and only if there is a path from the initial con�guration of A to a �nal con�guration of A in
the transition graph G of A. Equivalently, the language accepted by A is non-empty if and only
if Éloïse wins the reachability game G over G where she controls all vertices (and where the play
starts from the initial con�guration ofA and where �nal vertices are those corresponding to �nal
con�gurations ofA). Now, consider the reduction used to prove Theorem 3.1 and apply it toG. As
A does not use links, we only need to do the third step, which leads to an equivalent reachability
game G̃ that is nowplayed on the transition graph of an order-n higher order pushdown automaton.

In the new arena, themain vertices are of the form (p, s,
−→
R , θ ): here s is ann-stack (without links),

−→
R

is actually a pair (R0,R1) (we consider a reachability condition) and θ is either 0 or 1. The important
fact is that R0 and R1 can be forced to be singletons: this follows from the fact that all vertices in
G are controlled by Éloïse (and thus she can precisely force in which state the play goes if some
popn+1 is eventually done). Therefore, one concludes that the size of the arena associated with G̃ is
polynomial in the size ofA. Hence, one has shown the following: checking emptiness for an order-
(n + 1) nondeterministic higher-order pushdown automaton whose input alphabet is reduced to
a single letter can be polynomially reduced to solve a reachability game over the transition graph
of an order-n higher-order pushdown automaton. In conclusion, this latter problem is n-ExpTime-
hard.

8 CONSEQUENCES

8.1 Marking The Winning Region

If one combines the fact that the winning region in a CPDA parity game is regular (Theorem 3.1)
together with the fact that the model of CPDA can perform regular test (Theorem 2.8) one directly
gets the following result.

6 The following result is also proved in [20]: checking emptiness of an alternating order-n higher-order pushdown automa-
ton is an n-EXPTIME complete problem. Nevertheless, note that this result does not directly imply hardness for games on
higher-order pushdown graphs. Indeed, in general it is more di�cult to check emptiness for an alternating device than to
solve a reachability game on the corresponding class of graphs: for instance, solving a reachability game on a �nite graph
is in P while checking emptiness for an alternating automata on �nite word (even if one considers a 1-letter alphabet) is
PSPACE-complete; the problems are trivially equivalent only when considering in�nite words on a single letter alphabet.
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Corollary 8.1. LetA = (Γ,Q, δ ,q0) be an n-CPDA and let G be an n-CPDA parity game de�ned
fromA. Then, one can build an order-n CPDAA′ with a state-setQ ′, a subset F ⊆ Q ′ and a mapping
χ : Q ′ → Q such that the following holds.

(1) Restricted to the reachable con�gurations from their respective initial con�guration, the transi-
tion graph of A and A′ are isomorphic.

(2) For every con�guration (q, s ) of A that is reachable from the initial con�guration, the corre-
sponding con�guration (q′, s ′) of A′ is such that q = χ (q′), and (q, s ) is winning for Éloïse in
G if and only if q′ ∈ F .

In other words, it means that fromG one can build a new game that behaves the same but where
the winning region is explicitly marked (thanks to the subset F ).

8.2 Logical Consequences

We now discuss the consequences of our main result regarding logical properties of structures
generated by CPDA. Due to its strong connections with parity games, we obtain positive results
regarding the µ-calculus. Before discussing them, we will start with some consideration regarding
monadic second-order (MSO) logic.
For both µ-calculus and MSO logic, it is usual to consider structures given by an edge-labelled

graphs coming with a labelling function that maps each vertex to a set of properties that hold in
it.
In the setting of CPDA, a natural way to de�ne such a structure is by adding an input alphabet

to the CPDA and de�ning the transition relation as a partial function depending on the current
control state, the current top stack symbol and the input letter; the labelling function mapping
vertices (i.e. con�gurations) to properties can simply depend on the current control state (as we
did when de�ning the colour in CPDA parity games). Rather than giving a formal de�nition we
give an example that illustrates how to generate an edge-labelled graph using a CPDA with an
input alphabet.

Example 8.2. LetA = (Γ,Q,∆,q0) be an order-2 CPDA over the input alphabetA = {a,b, c, 1, 2}

where Γ = {α , β,⊥}, Q = {q0,q1,q2} and ∆ : Q × Γ ×A→ 2Q×Op
Γ
2×Op

Γ
2 is de�ned by

• ∆(q0,⊥, 2) = ∆(q0,α , 2) = {(q1, id ; push2)};
• ∆(q1,⊥,a) = ∆(q1,α ,a) = {(q0, id ; push

α ,2
1 )};

• ∆(q1,⊥,b) = ∆(q1,α ,b) = {(q2, id ; push
β,2
1 )};

• ∆(q2,α , 1) = ∆(q2, β, 1) = {(q2, id ; pop1)};
• ∆(q2,α , c ) = ∆(q2, β, c ) = {(q0, id ; collapse)};

ThenA generates the edge labelled graph from Figure 5.

8.3 Monadic Second-Order Logic

We refer the reader to [35] for classical de�nitions regarding MSO logic over graphs seen as rela-
tional structures.
If one restricts its attention to higher-order pushdown automata, i.e. CPDA that do not use the

collapse operation, MSO logic is known to be decidable.

Theorem 8.3. [17] The structures generated by higher-order pushdown automata have decidable
MSO theories.

The next theorem shows that this is no longer the case for collapsible pushdown automata. In
the statement below, FO(TC) is the transitive closure �rst-order logic which is de�ned by extending
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(q0, [[⊥]]) (q1, [[⊥][⊥]])
2

(q2, [[⊥][⊥b]])

b

c

(q2, [[⊥][⊥]])

1

(q0, [[⊥][⊥a]])
a

(q1, [[⊥][⊥a][⊥a]])
2

(q2, [[⊥][⊥a][⊥ab]])

b

c

(q2, [[⊥][⊥a][⊥a]])

c

1

(q2, [[⊥][⊥a][⊥]])

1

(q0, [[⊥][⊥a][⊥aa]])
a
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1
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c
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. . .
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Fig. 5. The edge labelled graph generated from the CPDA with input from Example 8.2.

the �rst-order logic with a transitive closure operator (see e.g. [41]); in particular it subsumes the
extension of �rst-order logic with a reachability predicate.

Theorem 8.4. There exists a structure generated by a collapsible pushdown automata that has an
undecidable MSO theory (actually even an undecidable FO(TC) theory).

Proof. Consider the following MSO interpretation I7 (see e.g. [18]) applied to the structure
de�ned by the order-2 CPDA from Example 8.2.

φA (x ,y) = x
C
−→ y ∧ x

R
−→ y

φB (x ,y) = x
1
−→ y

with C = 1
∗
b a 2b 1∗ and R = c 2a c ∨ 1 c 2a c 1 where a bar-version of an edge label refers to

an edge which is taken in the other direction. Hence,C is used to enforce that A-edges occur only
between vertices from consecutive columns in the original structure while R is used to enforce
that A-edges occurs only between vertices from consecutive rows in the original structure.
We observe that the image of the structure generated by A by the interpretation I, when re-

stricted to its non-isolated vertices, is the “in�nite half-grid” (see Figure 6).
As the in�nite (half-) grid has an undecidable MSO theory and as MSO interpretations preserve

MSO decidability we conclude that theMSO theory of the structure generated byA is undecidable.
To re�ne the result to FO(TC), we simply remark that the interpretation I is FO(TC) de�nable

and that the in�nite (half) grid has an undecidable FO(TC) theory [41]. �

Remark 8.5. One can wonder about fragments of MSO weaker than FO(TC), e.g. FO(Reach) (the
extension of �rst-order logic with the reachability predicate) or the classical �rst-order logic (FO).
On a positive side, Kartzow proved in [27] that the structures generated by order-2- CPDA have
decidable FO(Reach) theories. But moving to order-3 leads to undecidability, even if one restricts
to FO, as proved by Broadbent in [4].

The following is a direct consequence of Theorem 8.3 and Theorem 8.4.

7In this proof think of an interpretation as a collection of formulas of the form φA (x, y ). Applying such an interpretation
to a structure leads to a new structure with the same domain but di�erent transitions: there is an A-labelled edge from x

to y in the new structure if and only if φA (x, y ) holds in the original structure.
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Fig. 6. The “infinite half-grid”.

Corollary 8.6. The class of graphs generated by collapsible pushdown automata strictly contains
the class of graphs generated by higher-order pushdown automata.

8.4 µ-Calculus

We refer the reader to [2] for classical de�nitions regarding µ-calculus as well as its connections
with games.

Due to the tight connection between µ-calculus model-checking and solving parity games, and
the fact that the class of structures generated by CPDA is trivially closed by taking a synchronised
product with a �nite graph, Theorem 3.1 directly leads the following result.

Corollary 8.7. The following holds.

(1) The µ-calculus model-checking problem against structures generated by collapsible pushdown
automata is decidable and its complexity (where n denotes the order of the CPDA) is n-times
exponential in the number of states of the CPDA, n-times exponential in the alternation depth
of greatest and smallest �xpoints in the µ-calculus formula and polynomial in the size of the
stack alphabet of the CPDA.

(2) The sets of con�gurations de�nable by a µ-calculus formula over a graph generated by a col-
lapsible pushdown automata are regular.

Remark 8.8. In the case of higher-order pushdown automata, links are useless and therefore
stacks can be seen as �nite words over the alphabet Γ ∪ {[, ]} (where Γ denotes the stack alphabet)
and regular sets of con�gurations are regular languages in the traditional sense of �nite words.
Hence, Corollary 8.7 permits to retrieve the main result in [14, Theorem 6] where the µ-calculus
global model-checking problem against higher-order pushdown automata was tackled.
Also note that in this setting, a stronger notion of regularity was introduced in [13] and shown

to exactly capture MSO-de�nable subsets of con�gurations.

Aswe did in Section 8.1 tomarkwinning regions, combining item (2) fromCorollary 8.7 together
with the fact that the model of CPDA can perform regular test (Theorem 2.8) one directly gets the
following result about marking a µ-calculus de�ned subset of vertices in the transition graph of a
CPDA.

Corollary 8.9. Let A = (Γ,Q, δ ,q0) be an n-CPDA and let φ be a µ-calculus formula de�ning
a subset of vertices in the transition graph of A. Then, one can build an order-n CPDA A′ with a
state-set Q ′, a subset F ⊆ Q ′ and a mapping χ : Q ′ → Q such that the following holds.

, Vol. 1, No. 1, Article . Publication date: April 2021.



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Collapsible Pushdown Parity Games 49

(1) Restricted to the reachable con�gurations from their respective initial con�guration, the transi-
tion graph of A and A′ are isomorphic.

(2) For every con�guration (q, s ) of A that is reachable from the initial con�guration, the corre-
sponding con�guration (q′, s ′) of A′ is such that q = χ (q′), and φ holds in (q, s ) if and only if
q′ ∈ F .

8.5 Perspectives

A natural perspective is to combine the results presented here with the equi-expressivity result [15,
23, 24] between higher-order recursion schemes and collapsible pushdown automaton for gener-
ating trees. In particular they imply the decidability of the MSO model-checking problem, both
its local [23] and global version (also known as re�ection) [8], and the MSO selection problem (a
synthesis-like problem) [15].
These results and other consequences are discussed in full detail in a companion paper [7].
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