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ABSTRACT
With the rising demand of smart mobility, ride-hailing service is

getting popular in the urban regions. These services maintain a sys-

tem for serving the incoming trip requests by dispatching available

vehicles to the pickup points. As the process should be socially and

economically profitable, the task of vehicle dispatching is highly

challenging, specially due to the time-varying travel demands and

traffic conditions. Due to the uneven distribution of travel demands,

many idle vehicles could be generated during the operation in dif-

ferent subareas. Most of the existing works on vehicle dispatching

system, designed static relocation centers to relocate idle vehicles.

However, as traffic conditions and demand distribution dynamically

change over time, the static solution can not fit the evolving situa-

tions. In this paper, we propose a dynamic future demand aware

vehicle dispatching system. It can dynamically search the relocation

centers considering both travel demand and traffic conditions. We

evaluate the system on real-world dataset, and compare with the

existing state-of-the-art methods in our experiments in terms of

several standard evaluation metrics and operation time. Through

our experiments, we demonstrate that the proposed system signifi-

cantly improves the serving ratio and with a very small increase in

operation cost.
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1 INTRODUCTION
Mobility and mobility-on-demand services are major concerns of

smart transportation. Mobility services exist in cities since long in

the form of public transportation, and mobility-on-demand services

were limited to renting cars, offered by companies like Hertz and

Avis. However, as we strive to make our cities smarter, over the past

10 years, we have seen the evolution of mobility-on-demand ser-

vices into many new, effective, and more convenient forms. These

services are increasingly being promoted as an influential strategy

to address the challenges of urban transportation in large and fast-

growing cities. Evolving from the traditional taxi service model,

today companies like Uber, Lyft, Ola, Didi and many others are

popular as ride-hailing mobility-on-demand service providers in

many cities globally. These services are facilitated by the recent

advancements in communication technologies and widely used

GPS-enabled mobile devices. Customers can send trip requests to

the service provider from their mobile devices in real time. Upon

receiving the requests, the vehicle dispatching system of the ser-

vice provider assigns available vehicles to serve the trip requests.

While in progress, the system keeps track of geographic location of

both the customer and the vehicle in order to maintain an updated

information dynamically, and provide a smooth service. One major

problem in the vehicle dispatching system is to find the most suit-

able vehicle to serve a trip request in such a way that results into

the highest overall social and economical benefit. With rapid devel-

opments taking place currently in the field of Internet of Things

(IoT), especially vehicle-to-anything (V2X), the future will have the

availability of more data of vehicles and traffic, with high accuracy

[2]. Using the dynamic traffic data on the roads and predicting

the future travel demands are major aids in making estimations of

benefit while serving a trip request, and thus have a high potential

to improve the decision making of mobility-on-demand services.

Being an important component of the mobility-on-demand ser-

vices, research on vehicle dispatching system has been under at-

tention since quite some time [4, 11, 18, 22]. Several concerns have

been studied since then [27]. One major concern is to deal with

the uneven geographic distribution of trip requests and available

vehicles. Quite often there arise geographic areas of low trip de-

mand with over-supplied vehicles, at the same time when there are

other areas of high trip demand with under-supplied vehicles. To

address this issue, efficient relocation of idle vehicles from areas

of low demand to those of high demand has been an important

problem [5]. Addressing this issue is crucial to improve the serving

ratio of incoming trip requests. Vazifeh et al. [23] gave the lower

bound of fleet size to serve all travel requests in an ideal scenario,

considering that all travel requests are known in advance. Having

this given knowledge, relocating the idle vehicles to areas with high

trip demand potential could significantly improve the serving ratio.

For this relocation, Wallar et al. [26] first found fixed relocation

centers for the serving area based on maximum waiting time. They

treat the road graph 𝐺 = (𝑉 , 𝐸) as a static graph, shown as Fig.

1(a), and formulated the relocation center searching as an Integer

Linear Programming problem (ILP). Due to its high computational

complexity, this method requires so long running time that can not

be used for online relocation in a real time scenario. Our previous

work [5] can be used online to deal with only the dynamic traffic

conditions, shown as the changing attribute of edges in the road

graph 𝐺𝑡 = (𝑉 , 𝐸,𝑊 𝑡
𝑒 ) (Fig. 1(b)). Some traditional graph partition-

ing algorithms [13, 25] could also partition the graph efficiently,

but only consider the weights on edges.

In a vehicle dispatching system, road graph have dynamic traffic

information on edges (𝑊 𝑡
𝑒 ) and trip request information on vertices
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Figure 1: Illustration of static and dynamic road graphs.
The directed graphs show the road network of a serving
area, where vertices represent the pickup/dropoff points,
and edges represent the directed path connecting the
pickup/dropoff points. The colors highlight the different at-
tributes on vertices and edges. The vertices in red color de-
note the points that have under-supplied vehicles and the
vertices in blue color denote the points that over-supplied
vehicles. The color of edges denotes the travel time in respec-
tive ways. (a) Static Road Graph 𝐺 = (𝑉 , 𝐸). The attributes
of both vertices and edges do not change over time in this
graph. (b) Dynamic-edge Road Graph𝐺𝑡 = (𝑉 , 𝐸,𝑊 𝑡

𝑒 ). The at-
tributes of edges change over time in this graph. The chang-
ing color of edges in different timestamps show the time-
varying attributes 𝑊 𝑡

𝑒 of edges. (c) Dynamic Graph 𝐺𝑡 =

(𝑉𝑡 , 𝐸𝑡 ,𝑊 𝑡
𝑣 ,𝑊

𝑡
𝑒 ). The attributes of both vertices and edges

change over time.

(𝑊 𝑡
𝑣 ), as shown in Fig. 1(c). The existing research does not effectively

use both these information for idle vehicle relocation. Therefore

it demands further research for a vehicle dispatching system that

considers the dynamic information of travel demand on the nodes

and traffic on the edges, and that could search relocation centers

online based on the dynamic information. The online relocation

in this manner will find the most suitable relocation centres and

effectively improve the serving quality from different perspectives.

There are two main challenges to achieve this. The main challenge

in addressing this existing limitation is to simultaneously consider

both traffic and demand information for identifying appropriate

vehicle relocation centres dynamically, and develop an online real-

time relocation mechanism.

To address the existing limitations, in this paper, we propose a

dynamic future demand aware vehicle dispatching system (called

dFDA-VeD). It is designed for urban on-demand mobility service and

can efficiently make decision for both vehicle dispatching and idle

vehicle relocation. Unlike present works [5, 13, 25, 26], dFDA-VeD
could partition road graph and search appropriate relocation centers

online based on both traffic and demand information. Overall, we

make the following main contributions:

– We propose a vehicle dispatching system, called dFDA-VeD,
which could dynamically search idle vehicle relocation cen-

ters online, considering the attributes on both vertices and

edges of a road graph.

– We develop a dynamic road graph partitioning based opti-

mization objective function that considers both real-time

traffic and travel demand information in order to effectively

relocate the vehicles.

– We propose an algorithm to achieve a local optimum in

order to solve the optimization objective function, and also

theoretically prove its convergence. The local optimum is

able approach the global optimum by parallel processing of

multiple instances.

– We perform extensive experiments on a real dataset and

compare our results with the existing systems. Results show

that our dynamic idle vehicle relocation based dispatching

system dFDA-VeD outperforms the state-of-the-art vehicle

dispatching systems in terms of passenger serving ratio with

an increase in a very small operating cost.

The rest of the paper is organized as follows. Section 2 presents

the related works in vehicle dispatching system and idle vehicle

relocation task. Then we give the problem formulation in Seciton 3.

The dFDA-VeD system is introduced in Section 4. Section 5 explore

the performance of the dFDA-VeD system against real-world taxi

data, and compared it with several baselines. Finally we conclude

the paper in Section 6, along with a brief discussion on the future

research directions.

2 RELATEDWORK
Vehicle dispatching problem has been studied for decades [4, 11, 18,

22, 27]. The objective of a dispatching system is to provide better

service for the passengers, specifically higher serving ratio, shorter

waiting time, lower cost and so on. Dandl et al. [3] converted the

dispatching problem to two bipartite matching problem: vehicle-to-

user and relocation assignments. Liu et al. [14] periodically get the

optimal result in offline using predicted demands and use the offline

results to guide the online dispatching. The two bipartite matching

problem and future demands are both considered in our previous

paper [5]. Tang et al. [21] and Al et al. [1] proposed reinforcement

learning method to solve the vehicle dispatching problem. Kim

et al. [10] considered multi-objective vehicle dispatching problem

and use minimum cost maximum flow algorithm to solve. Liu et al.

[15] considers the mobility ride demand on roadside which are not

sent to centralised platform. These researchers consider different

objective and methods to improve the dispatching service quality.

In this paper, we handle both the vehicle–request matching and

idle vehicle relocation problem, and make several contributions on

the latter one.

For a city, it is important to know the minimum number of

vehicles that can serve the travel requests in the region. In 2018,

the minimum number of vehicles to serve a city is addressed when

all travel requests are known in advance [23]. They transferred the

problem to find the minimum path cover for directed acyclic graph,

where nodes stand for trips. This scenario could be treated as a

special case that all idle vehicles are relocated to the passengers’

pickup location in time. It shows the power of a perfect idle vehicle

relocation strategy. However, in real urban on-demand mobility

application, the travel demands are received in real time. In this

section, we introduce the two kinds of methods to handle idle

vehicle relocation problem: machine learning and other methods.

Machine learning methods are used to design end-to-end ma-

chine solutions to relocate idle vehicles. Li et al. [12] designed a rein-

forcement learning technique to reposition bikes in a bike-sharing

system. In their methods, the whole serving area are partitioned
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to several cluster, and a spatio-temporal reinforcement learning

model are trained to learn an optimal inner-cluster reposition pol-

icy for each cluster. Holler et al. [6] consider the problem from

a system-centric perspective. They built a central fleet manage-

ment agent to make decision for all drivers and trained policies

using Deep Q-Networks [16] and Proximal Policy Optimization

[20] algorithms. For the end-to-end machine learning solutions,

the searching space is huge and hard to explain why the learned

policy works. It needs a long time to train the optimal policy on

simulation system before running online. However, using tradi-

tional optimization method, usually mathematically proof can be

given from theory. Different from the machine learning methods,

we use traditional optimization method to solve the idle vehicle

relocation problem and give mathematical proof to guarantee the

local optimal for the optimization.

Optimization and heuristic methods treat the idle vehicle re-
location problem as an optimization problem and use traditional or

heuristic methods to find the optimal solution. To relocate the idle

vehicle, the relocation centers and subareas should be searched and

idle vehicles should be redistributed the vehicles between subareas.

Volkov et al. [24], Dandl et al. [3] partitioned serving area based on

pickup/dropoff points’ physical distance. Wallar et al. [26] divided

the serving area based on travel time and search the minimum num-

ber of relocation centers using linear programming methods. This

method takes a long time to calculate the optimal results and can

only be used in offline. Guo et al. [5] proposed a heuristic method to

search the relocation centers based on the traffic conditions, which

could find relocation centers in an efficient way. However, they do

not consider effect of the travel demand distribution.

Our work is different from the existing idle vehicle relocation

in two aspects: (1) The existing works only consider the static

information [3, 24, 26] or dynamic traffic information [5]. Unlike

them, we consider both the dynamic traffic conditions and travel

demands to search the relocation centers, and give an objective

function to search optimal relocation centers. (2) Most previous

studies decide the relocation centers offline [3, 5, 24, 26], whereas

we propose an online relocation center searchingmethod that meets

the online dispatching requirement, and guarantee a local optimal

result for the objective function.

3 PROBLEM FORMULATION
3.1 Preliminaries
The vehicle dispatching system contains two entities: passengers
and vehicles. Passengers send the trip requests to the dispatching

system in a streaming fashion. After receiving a set of trip requests

in a batch time, the system needs to match these requests with avail-

able vehicles. The dispatching problem is to find the best assignment

plan for vehicles to serve the maximum number of requests. Here

we formulate the problem with following definitions.

Definition 1 (Trip Request). A trip request 𝑇𝑖 , defined as a tuple

(𝑡
𝑝

𝑖
, 𝑙
𝑝

𝑖
, 𝑙𝑑
𝑖
), is a trip requested by a passenger at time point 𝑡

𝑝

𝑖
(the

earliest time when the passenger can be picked up) from location 𝑙
𝑝

𝑖
,

to drop off at location 𝑙𝑑
𝑖
. A set of trip requests during a particular

time interval (e.g., 1 minute) is denoted by T = {𝑇1,𝑇2, ...,𝑇𝑘 }. ■

Definition 2 (Road Graph). A road graph 𝐺 = (𝑉 , 𝐸,𝑊 𝑡
𝑣 ,𝑊

𝑡
𝑒 ) is

a directed graph presenting the road network topology, compris-

ing a set of vertices 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛}, which are pickup/dropoff

points of trip requests, connected by the set of directed edges

𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑚}, which are paths in the actual road network.

𝑊 𝑡
𝑣 is the set of vertex attributes, which are pickup-dropoff gaps

(defined later in Definition 3) of corresponding vertices at time

point 𝑡 .𝑊 𝑡
𝑒 is the set of edges weights or attributes, which are

travel times on corresponding edges at time point 𝑡 . ■

Definition 3 (Pickup–dropoff Gap). The pickup–dropoff gap

𝑔𝑡
𝑖
is the difference between the number of pickup and dropoff

demands for point 𝑣𝑖 in the time window [𝑡, 𝑡 + 𝑡𝑟 ). Here 𝑡𝑟 is the
time length for relocating idle vehicles to their destinations. ■

Definition 4 (Served Trip). A trip request 𝑇𝑖 is called as a served
trip if the passenger is actually picked up between 𝑡

𝑝

𝑖
and 𝑡

𝑝

𝑖
+ Δ,

where Δ is a pre-defined serving threshold (passenger’s maximum

waiting time). The set of trip requests already served by the dispatch-

ing system is denoted by T𝑠𝑒𝑟𝑣𝑒𝑑 , which is a sub set of the total set of
trip requests T . Mathematically, T𝑠𝑒𝑟𝑣𝑒𝑑 = {𝑇𝑖 |𝑡𝑝𝑖 ≤ 𝑎𝑡

𝑝

𝑖
≤ 𝑡

𝑝

𝑖
+Δ},

where
𝑎𝑡

𝑝

𝑖
is the actual pickup time. ■

Definition 5 (Served Trip Ratio). Given the set of served trips

T𝑠𝑒𝑟𝑣𝑒𝑑 and all the trip requests T , the serving ratio 𝑅 of the cen-

tralized vehicle dispatching system is defined as the ratio of T𝑠𝑒𝑟𝑣𝑒𝑑
to T , i.e., 𝑅 =

|T𝑠𝑒𝑟𝑣𝑒𝑑 |
|T | . ■

3.2 Problem Definition
The problem considered in this paper is to develop a vehicle dis-

patching system that achieves a high serving ratio by dynamically

relocating idle vehicles from over-supplied areas to under-supplied

areas. A vehicle 𝑣𝑖 ∈ V can serve only one trip request at one time.

It can start to serve a new trip request only after it has arrived at the

destination of its last trip. With a given number of vehicles 𝑛𝑣 on a

road graph 𝐺 , a set of real-time trip requests T in a batch, a set of

historical tripsH completed, the objective of the centralized vehicle

dispatching system is to serve the maximum number of real-time

trip requests T by dynamically relocating the idle vehicles, and

thus achieve a high serving ratio 𝑅.

maximize 𝑅 =
|T𝑠𝑒𝑟𝑣𝑒𝑑 |

|T | ,

subject to ∀𝑡𝑖 ∈ T𝑠𝑒𝑟𝑣𝑒𝑑 , 𝑡
𝑝

𝑖
≤ 𝑎𝑡

𝑝

𝑖
≤ 𝑡

𝑝

𝑖
+ Δ

(1)

4 PROPOSED VEHICLE DISPATCHING
SYSTEM

This section presents the proposed vehicle dispatching system

dFDA-VeD. We present the overall framework of dFDA-VeD in Sec-

tion 4.1 and the detailed method for the future-demand-aware dy-

namic relocation of idle vehicles in Section 4.2.

4.1 Dispatching system
We solve the problem of vehicle dispatching in a ride-hailingmobility-

on-demand service by developing a dynamic future demand aware

vehicle dispatching system (dFDA-VeD). Fig. 2 shows the overall

framework of the dFDA-VeD system. It starts with an offline phase
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of preprocessing, and then follows on to an online phase of contin-

uously serving the realtime trip requests with available vehicles.

The offline phase pre-processes the road graph data and trains a

point-level travel demand prediction model based on the historical

data only once in the beginning. The online phase dynamically

partitions the available road graph into sub-graphs, dispatches vehi-

cles for incoming requests, and also relocates idle vehicles based on

potential future demands. The two phases of our dFDA-VeD system

and individual modules in them are briefly explained below. As

our primary focus in this paper is the dynamic relocation of idle

vehicles, we skip the complete details of other tasks and modules

in this paper, and present our vehicle relocation method in the next

section in detail. For other tasks and modules, we follow the ideas

from our previous paper [5] (refer to this paper for details).

Figure 2: The framework of dFDA-VeD system

4.1.1 Offline Phase. There are two modules in the offline phase: ex-

tract road graph module and point-level demand prediction module.

The first module extracts the road graph which is a fundamental

information required in the online phase. The second module trains

a point-level demand prediction model, used in the supply–demand

gap calculation module (discussed later) in online phase. These two

modules are briefly discussed below.

Road graph extractionmodule constructs the road graph𝐺 =

(𝑉 , 𝐸) for the dispatching system, where 𝐺 is a directed graph, 𝑉

is the set of vertices representing the pickup/dropoff points in the

serving area, and 𝐸 is the set of edges representing the directed

paths connecting the pickup/dropoff points in the serving area. The

road graph 𝐺 is fundamental for all other modules.

Point-level prediction module uses the point-level historical
average of travel demands as predictions for the prediction model.

The prediction model is used later in the online phase to get pre-

dictions for the future travel demands at different pickup/dropoff

points and calculate the supply-demand gap.

4.1.2 Online Phase. The online phase is the key to dispatch ve-

hicles and relocate idle vehicles continuously in real-time. These

two tasks are performed by four modules: graph partition module,

supply–demand gap calculation module, demand–vehicle matching

module and supply–demand balancing module. The graph partition

module dynamically partitions 𝐺 based on both real-time traffic

and travel demand. The supply–demand gap of each subarea is

calculated by the supply–demand gap calculation module. Then,

the vehicle dispatching task is handled by the demand–vehicle

matching module. The supply–demand balancing module is used

to address the idle vehicle relocation task. These four modules are

briefly discussed below.

Road graph partition module is used to partition the set of

vertices𝑉 for the whole serving area in to 𝑘 subareas 𝐴1, 𝐴2, ..., 𝐴𝑘 .

The input of this module is the road graph 𝐺 = (𝐸,𝑉 ,𝑊 𝑡
𝑒 ,𝑊

𝑡
𝑣 ).

Here𝑊 𝑡
𝑒 stands for the travel time on each directed edge 𝑒𝑖 ∈ 𝐸.

𝑊 𝑡
𝑣 stands for the pickup-dropoff gap for each vertex 𝑣𝑖 ∈ 𝑉 . For

any vertex 𝑣𝑖 in the road graph 𝐺 = (𝐸,𝑉 ) at a specific time-point

𝑡 , there are 𝑝𝑘𝑖 and 𝑑𝑝𝑖 standing for the number of pickup and

dropoff demands at this vertex during the specific time interval

(𝑡, 𝑡 + Δ). Then the we calculate 𝑔𝑖 = 𝑝𝑘𝑖 − 𝑑𝑝𝑖 , which stands for

the gap between pickup and dropoff demands in this time interval.

Here, the pickup–dropoff demand gap is the attribute of vertices

𝑉 , so𝑊𝑣 = {𝑔𝑖 |𝑖 = 1, ..., 𝑛}. The subarea set {𝐴𝑖 ∥𝑖 = 1, 2, ..., 𝑘} is
the partition of vertices set 𝑉 , which means to limitations: firstly,⋃𝑘

𝑖=1
𝐴𝑖 = 𝑉 ; secondly, ∀𝑖 ≠ 𝑗, 𝐴𝑖 ∩𝐴 𝑗 = ∅. The objective function

for partitioning the road graph and the algorithm to optimise the

objective function are presented in Section 4.2.

Supply–demand gap calculationmodule use themodel trained

in offline to predict the travel demand at point level, and then cal-

culate the corresponding region level supply–demand gap for the

each subarea𝐴𝑖 . The supply–demand gap is used in supply–demand

balancing module to relocate the idle vehicles.

Demand–vehicle matching module uses Hopcroft–Karp al-

gorithm [7] to find the maximum matching between the received

trip requests in a short batch and available vehicles at that time.

The available vehicles for a specific trip request are the vehicles

that can arrive at the passenger’s pickup point in Δ seconds.

Supply–demand balancingmodule relocates the idle vehicles
to undersupply subareas. It starts with a search for idle vehicles.

The idle vehicles are the free vehicles in over-supplied subareas.

Then it follows to finding the maximum matching between the idle

vehicles and the relocation centers of the under-supplied subareas.

Note that the relocation centres are identified dynamically in the

road graph partitioning module. The matching results are used to

relocate the idle vehicles, and balance the vehicle supply in the

whole serving area.

4.2 Dynamic Idle Vehicle Relocation
Relocating idle vehicles is very important to deal with the dynami-

cally changing travel demand and supply of vehicles in different

sub-areas of a serving area. This task would effectively re-balance

the vehicles in different subareas according to the demand and

supply. It requires the relocation destinations (a.k.a centres) to be

firstly identified in order to make the decision. The serving area

could be partitioned based on the passengers’ maximum waiting

time into subareas with some centres to be potential relocation

destinations [5, 26]. Specifically, the vehicles at relocation centers
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Table 1: Shortest travel time between any two vertices

d(j, i) 𝑑 ( 𝑗, 𝑖)𝑔𝑖
A B C D A(+1) B(-1) C(0) D(+1)

A 0 5 13 8 0 -5 0 8

B 4 0 8 3 4 0 0 3

C 5 6 0 9 5 -6 0 9

D 10 11 5 0 10 -11 0 0

should be able to serve the trip requests in the whole serving area

taking a minimum time. As the traffic conditions and the travel

demands continuously change in a dynamic manner, the relocation

centers also need to be updated with the changing conditions, so

that they can keep serving the entire effective area in minimum

time. In order to achieve this objective, we define a cost function

𝐹 (C,𝑉 ,𝑊𝑣) to evaluate the performance of a set of searched reloca-

tion centers. The function is shown in Equation 2, where 𝑑 (𝑐 𝑗 , 𝑣𝑖 )
is a distance function considered as the travel time from point 𝑐 𝑗 to

𝑣𝑖 , weighted by an activation function 𝑆 (·). The distance 𝑑 (𝑐 𝑗 , 𝑣𝑖 )
is the shortest travel time from vertex 𝑐 𝑗 to 𝑣𝑖 , and could be calcu-

lated by the attribute of edges𝑊𝑒 . The function 𝑆 (·) transforms the

pickup-dropoff gap 𝑔𝑖 to a weight. There are multiple definitions

possible for this activation function. We explore them later. The

overall objective is to obtain a set of relocation centres C that min-

imise the cost function 𝐹 (C,𝑉 ,𝑊𝑣), as shown in Equation 2. It is

illustrated in Example 1.

𝐹 (C,𝑉 ,𝑊𝑣) =
𝑛
Σ

𝑖=1

min

𝑐 𝑗 ∈C

{
𝑑 (𝑐 𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 )

}
minimize

C
𝐹 (C,𝑉 ,𝑊𝑣), subject to

{
C ⊂ 𝑉

|C| = 𝑘
(2)

Example 1: Consider a small traffic network of four pickup/dropoff
points as shown in Fig. 3, out of which two relocation centers are
to be identified. Table 1 give the shortest travel time with and with-
out the weighted by gap 𝑔𝑖 in destination vertex 𝑣𝑖 . In Table 2, we
give the objective value with different objective. Here 𝐹 (C,𝑉 ) =

Σ
𝑛
𝑖=1

min𝑐 𝑗 ∈C{𝑑 (𝑐 𝑗 , 𝑣𝑖 )}. Then with objective function 𝐹 (C,𝑉 ), the
low demand vertex B and no demand vertex C would be the centers.
However, with the function 𝐹 (𝐶,𝑉 ,𝑊𝑣), the two high demand vertices
A and D minimize the function 𝐹 (𝐶,𝑉 ,𝑊𝑣) and they would be the
centers. ■

Figure 3: A toy example for traffic network. Each circle
stands for a pickup/dropoff point. The red, green, and blue
color stand for 1, 0, -1 of pickup–dropoff gap, respectively.
The directed link stands for the way connected two points
and the number show howmany minutes will take through
thisway. For example, the directedway formA to Bwill take
5 minutes.

Table 2: Objective value with different centers

AB AC AD BC BD CD

𝐹 (𝐶,𝑉 ) 11 13 10 7 9 11

𝐹 (𝐶,𝑉 ,𝑊𝑣) 3 2 -11 7 4 -6

To achieve the considered objective, we develop a dynamic traffic

condition and travel demand aware road graph partitioning algo-

rithm, and use it to relocate the idle vehicles. The algorithm is based

on the ideas of k-medoids [8, 9, 17, 19]. As shown in Algorithm 1,

there are three steps to find the relocation centers and subareas.

The first step initialises by randomly selecting 𝑘 nodes from the

road graph as relocation centers (as shown in Line 1). The second

step uses the selected relocation centers C as centroids to find the

subareas A and calculate the objective value 𝑂 (C) (as shown in

Line 2-6). To be simple in the algorithm, we use 𝑂 (C) stands for
the objective value which means𝑂 (C) = 𝐹 (𝐶,𝑉 ,𝑊𝑣). The last step
calculates new relocation centers C′

based on the subareas A. If

𝑂 (C′) < 𝑂 (C), then second and third steps are repeated until

𝑂 (C′) >= 𝑂 (C). Until the objective value does not decrease, we
can get the relocation centers C and subareas A (as shown in Line

7-15).

Algorithm 1: Relocation Center Searching

Input: 𝑑 ( ·, ·) , 𝑘 ,𝑉 = {𝑣𝑖 |𝑖 ∈ (1, 2, ..., 𝑛) }, {𝑔𝑖 }
Output: A = {𝐴𝑖 |𝑖 ∈ (1, 2, ..., 𝑘) }, C = {𝑐𝑖 |𝑖 ∈ (1, 2, ..., 𝑘) }
I. Randomly select 𝑘 nodes as the relocation centers

1 C = {𝑣𝑖 |𝑖 ∈ 𝑟𝑎𝑛𝑑𝑜𝑚 (1, 𝑛, 𝑘) } ; // Initialize C
II. Find the subareas A and calculate the objective function
value𝑂 (C) based on relocation centers C

2 A = {𝐴𝑗 = ∅| 𝑗 ∈ (1, 2, ..., 𝑘) } ; // Initialize A
3 for 𝑣𝑖 ∈ 𝑉 do
4 𝑗 = arg min𝑖 𝑑 (𝑐𝑖 , 𝑗)𝑆 (𝑔𝑖 ) ; // Find nearest 𝑐 𝑗 for 𝑣𝑖

5 𝐴𝑗 .𝑎𝑑𝑑 (𝑣𝑖 ) ; // Add 𝑣𝑖 for set 𝐴𝑗

6 𝑂 (C) = Σ𝑣𝑖 ∈𝑉 min𝑐 𝑗 ∈C 𝑑 (𝑐 𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 ) ; // Calculate the

objective function value with C
III. Search the new relocation center for each subarea, until
the objective function does not decrease.

7 while True do
8 for 𝐴𝑖 ∈ A do
9 𝑐′

𝑖
= arg min𝑣𝑖 ∈𝑉 Σ𝑑 (𝑣𝑖 , 𝑗), 𝑗 ∈ 𝐴𝑖 ; // Search new

center 𝑐′
𝑖
for subarea 𝐴𝑖

10 𝑂 (C′) = Σ𝑣𝑖 ∈𝑉 min𝑐 𝑗 ∈C′ 𝑑 (𝑐 𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 ) ; // Calculate the

new objective function value with C′

11 𝑓 𝑙𝑎𝑔 = 𝑂 (C′) −𝑂 (C) ; // calculate the difference

between 𝑂 (C′) and 𝑂 (C)
12 C = C′

; // set C as C′

13 Repeat step II. to find the subareas A based on C
14 if 𝑓 𝑙𝑎𝑔 = 0 then
15 break ; // If the objective function value does

not decrease, then stop

Our distance metrics are different as compared to the traditional

metrics (such as Manhattan distance or euclidean metric). The

distance between any two points 𝑣𝑖 and 𝑣 𝑗 using traditional metrics



Guo et al.

is always the same in both ways, i.e., from 𝑣𝑖 to 𝑣 𝑗 𝑑 (𝑣𝑖 , 𝑣 𝑗 ) ≠ from

𝑣 𝑗 to 𝑣𝑖 𝑑 (𝑣 𝑗 , 𝑣𝑖 ).
This is quite natural in a normal scenario of traffic conditions.

Furthermore, the added weights on the distance measures make the

calculation more complex. With all these calculations we need to

ensure the convergence of Algorithm 1 to a minimum. We give the

theoretical proof in Lemma 1 that Algorithm 1 always converges

to a local minimum. To achieve a near optimal global minimum,

we can run the algorithm several times with new random initial

selections each time. As each run is independent to each other, the

calculations of different runs can be completely parallelised easily.

Lemma 1: The relocation centre searching algorithm (Algorithm 1)
always converges to a local minimum.

Proof. Let 𝐶 and 𝐴 denote the current sets of center points

and partitioned subareas respectively, and 𝐶 ′
and 𝐴′

denote the

sets of searched new center points and partitioned subareas, re-

spectively, by Algorithm 1, Lines 8–13. Two conditions need to

be proved independently to guarantee that an algorithm will con-

verge to a local minimum. First, the algorithm should be monotoni-

cally decreasing the objective (or error) value, which means that

𝐹 (C′,𝑉 ,𝑊𝑣) ≤ 𝐹 (C,𝑉 ,𝑊𝑣). Second, there has to be a lower bound

for the algorithm, which means that for any set of centre points 𝐶 ,

𝐹 (C,𝑉 ,𝑊𝑣) >= 𝜖 .

Proof of first condition: 𝐹 (C′,𝑉 ,𝑊𝑣) ≤ 𝐹 (C,𝑉 ,𝑊𝑣).

𝐹 (C,𝑉 ,𝑊𝑣) =
𝑛
Σ

𝑖=1

min

𝑐 𝑗 ∈C
{𝑑 (𝑐 𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 )} (3)

=
𝑘
Σ

𝑗=1

Σ

𝑣𝑖 ∈𝐴 𝑗

{𝑑 (𝑐 𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 )} (4)

≥
𝑘
Σ

𝑗=1

Σ

𝑣𝑖 ∈𝐴 𝑗

{𝑑 (𝑐 ′𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 )} (5)

≥
𝑛
Σ

𝑖=1

min

𝑐′
𝑗
∈C′

{𝑑 (𝑐 ′𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 )} (6)

= 𝐹 (C′,𝑉 ,𝑊𝑣) (7)

Here we illustrate why the inequalities in Equations 5 and 6

are valid. For Equation 5, the subarea set A is fixed. For each sub-

area 𝐴𝑖 , we search 𝑐 ′
𝑖
= arg min𝑣𝑖 ∈𝑉 Σ𝑑 (𝑣𝑖 , 𝑗), 𝑗 ∈ 𝐴𝑖 , and this

means that 𝑐 ′
𝑖
is the point to make the function Σ𝑣𝑖 ∈𝐴𝑖

{𝑑 (·, 𝑣𝑖 )𝑆 (𝑔𝑖 )}
to achieve the minimal value. So, Σ

𝑘
𝑗=1

Σ𝑣𝑖 ∈𝐴 𝑗
{𝑑 (𝑐 𝑗 , 𝑣𝑖 )𝑆 (𝑔𝑖 )} ≥

Σ
𝑘
𝑗=1

Σ𝑣𝑖 ∈𝐴 𝑗
{𝑑 (𝑐 ′

𝑗
, 𝑣𝑖 )𝑆 (𝑔𝑖 )}. Similarly for Equation 6, the new cen-

tre point set C′
is fixed. For each point 𝑣𝑖 , we search the nearest cen-

tral point 𝑐 𝑗 ∈ 𝐶 to make min𝑐′
𝑗
∈C′{𝑑 (𝑐 ′

𝑗
, 𝑣𝑖 )𝑆 (𝑔𝑖 )} to reach the min-

imum. So, Σ
𝑘
𝑗=1

Σ𝑣𝑖 ∈𝐴 𝑗
{𝑑 (𝑐 ′

𝑗
, 𝑣𝑖 )𝑆 (𝑔𝑖 )} ≥ Σ

𝑛
𝑖=1

min𝑐′
𝑗
∈C′{𝑑 (𝑐 ′

𝑗
, 𝑣𝑖 )𝑆 (𝑔𝑖 )}

Proof of second condition: Now we prove that there is a lower

bound of the objective function, i.e., 𝐹 (𝐶,𝑉 ,𝑊𝑣) >= 𝜖 . Here 𝜖 stands

for the optimal value for the objective function. The independent

variable in the objective function is the centre point set 𝐶 , where

𝐶 is a subset of the serving area set 𝑉 , and |𝐶 | = 𝑘 . The total

number of points in the serving area is 𝑛. There is a finite number

of possibilities to select 𝑘 points of 𝐶 from 𝑛 points, which is equal

to 𝐶𝑘 (𝑛) = 𝑛!

𝑘!(𝑛−𝑘)! . Among all possibilities, there is always a

minimum value for he objective function, so 𝐹 (𝐶,𝑉 ,𝑊𝑣) >= 𝜖 .

The two conditions are separately proved in the above. They

together prove that the relocation center searching algorithm guar-

antees to achieve a local minimum value for the objective function,

and thus converges to a local minimum. ■
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Figure 4: Activation Functions

Based on the proof, the algorithm will always converge irrespec-

tive of the exact distance metrics or the activation function. This

property allow us to select several activation functions. As shown

in Fig. 4, five activation functions are used in the objective function.

We investigate the effects of these activation functions in Section 5.

5 EXPERIMENTS AND RESULTS
This section presents the details of our experimental evaluation of

the proposed system and the obtained results. Section 5.1 presents

the compared baselines and state-of-the-art methods. The experi-

mental settings are described in Section 5.2. The evaluation metrics

and experimental results are given in Section 5.3 and Section 5.4,

respectively.

5.1 Compared Methods
We compare the proposed dFDA-VeD system having a dynamic

relocation centre searching method, with four existing state-of-

the-art relocation solutions: Integer Linear Programming based

relocation center searching method (ILP) [26], spectral clustering
(SC) [25], power iteration clustering (PIC) [13], and our previous

FDA-VeD system ([5]). These methods are used in our system in the

road graph partitioning and relocation centers searching module for

a direct comparison with the proposed method. All these methods

can be categorised into three classes:

– The first class treats the transportation graph as a static

graph (Fig. 1(a)). ILP belongs to this class.

– The second class treats the transportation graph as a dynamic

graph with time-varying edge attributes (Fig. 1(b)). SC, PIC,
FDA-VeD belong to this class.

– The third class treats the transportation graph as a dynamic

graph with time-varying node and edges attributes (Fig. 1(c)).

The proposed dFDA-VeD system with novel dynamic reloca-

tion center searching algorithm belongs to this class.

ILP [26]: It formulated the partitioning problem as an integer

linear programming problem. In this method, the maximumwaiting

time Δ is assumed as given, and used as a threshold. The whole

serving area is partitioned into subareas to ensure that any point

could be reached by its nearest relocation center less than Δ. In
their method, they design an offline method using a static directed

graph 𝐺 = (𝑉 , 𝐸), a matrix 𝑇 where 𝑇𝑖 𝑗 represents the travel time

between point 𝑖 and 𝑗 . The road graph 𝐺 = (𝑉 , 𝐸) is a directed

graph. The 𝑉 has attribute presenting the demand gap of each

pickup/dorpoff location. The 𝐸 has attribute presenting the real-

time traffic condition, specifically the travel time between the two

vertices it connecting.
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SC [25]: We develop a spectral clustering based baseline method

for partitioning the serving areas in order to identify the relocation

centres. It requires a graph𝐺𝑠 with similaritymeasures on the edges,

for which we construct a similarity graph𝐺𝑠 using the directed road

graph 𝐺 = (𝑉 , 𝐸,𝑊𝑒 ). As only edges attribute are used in this, we

use𝑊 to denote𝑊𝑒 for simplicity. The weighted adjacency matrix

of the directed road network 𝐺 is the matrix𝑊 = {𝑤𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑛 ,

where𝑤𝑖, 𝑗 stands for the travel time of an edge from vertex 𝑣𝑖 to

vertex 𝑣 𝑗 . If 𝑤𝑖, 𝑗 = 0, it means that there is no edge from vertex

𝑣𝑖 to vertex 𝑣 𝑗 . To get the adjacency matrix 𝐴 of the similarity

graph 𝐺𝑠 , firstly, we calculate the similarity of any two nodes 𝑠𝑖, 𝑗
using Equation 8. In 𝐴, each value 𝐴𝑖, 𝑗 = 𝑠𝑖, 𝑗 + 𝑠 𝑗,𝑖 . In this way, we

build the similarity graph 𝐺𝑠 . Then we use the standard spectral

clustering method to get the partitioning.

𝑠𝑖, 𝑗 =

{
0 𝑤𝑖, 𝑗 = 0

1/𝑤𝑖, 𝑗 𝑤𝑖, 𝑗 ≠ 0

(8)

PIC [13]: In this method, we first construct a similarity graph

𝐺𝑠 in the same way as explained in the above SC method, and then

partition the graph with the power iteration clustering method

[13].

FDA-VeD [5]: This is a method from our previous work [5]. It

assumes that the maximum number of points in a subarea 𝑛𝑚𝑎𝑥 , the

total number of subareas 𝑛𝑠𝑢𝑏 = ⌊𝑛𝑝𝑜𝑖𝑛𝑡 /𝑛𝑚𝑎𝑥 ⌋ and the maximum

waiting time Δ are given. Firstly it finds the points that can reach

the largest number of other points in Δ. Then this point is used as

a central nodes and its top 𝑛𝑚𝑎𝑥 nearest nodes to a new subarea.

The nodes belonging to this subarea are deleted and repeat the last

step to find the next subarea. If the total number of points in the

serving area is N, then the partitioning result can be generated in

O(𝑛𝑠𝑢𝑏𝑁 2) running time.

In the following experiments, we investigate the these methods

using the dFDA-VeD system and compare the results from different

perspectives.

5.2 Experiment Settings
This section presents the dataset and parameters settings of our

experiments.

5.2.1 Dataset. We use a trip records dataset on an actual road

network, as detailed below.

– Trip records dataset: The trip records dataset used in the

experiments is from New York City Taxi Records in January

2011
1
. Here we select the trips whose pickup and dropoff

location are both in Manhattan Island.

– Road Graph: We use the road network of Manhattan Is-

land
2
. Several kinds of ways (primary, primary_link, sec-

ondary, tertiary, residential, unclassified, road and living

street) are extracted to build the road graph.

5.2.2 Parameter Settings. There are several parameters need to be

predefined in the modules. In the offline phase, the extract road

graph module need to set the maximum length 𝑙𝑚𝑎𝑥 for any edge.

By this way, any pickup/dropoff location could be matched to the

1
Dataset: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

2
The road graph could be downloaded from www.openstreetmap.org

nearest vertices in 𝑙𝑚𝑎𝑥/2 meters. The point-level prediction mod-

ule needs two parameters: the future time interval 𝑡𝑓 and advance

time interval 𝑡𝑎 . These two parameters set which time length of

potential demand should be predict. Here we use the historical aver-

age demands as the predicted demands. In the online phase, firstly,

the total number of the vehicles should be fixed. Here we assume

that all the vehicles can provide service in 24 hours. The road graph

partitioning module needs setting the number 𝑘 of subareas and

relocation centers. The demand–vehicle matching module need the

passengers’ maximum waiting time Δ to find the possible vehicles

to serve the request. The Supply–demand balancing module should

set the idle vehicle relocation time 𝑡𝑟 which means that an idle vehi-

cle should arrive the destination relocation center in 𝑡𝑟 seconds. For

our experiments, we set the parameter values as follows. Maximum

length of any edge 𝑙𝑚𝑎𝑥 = 200 meters; The advance time interval

𝑡𝑎 = 600 seconds; The future time interval 𝑡𝑓 = 600 seconds; The

number of subareas 𝑘 is selected based on ILP problem’s result; The

number of vehicles 𝑛𝑣 is an adjusted variable in the experiments. It

varies from 2,000 to 10,000 with step of 1,000; Passengers’ maximum

waiting time Δ = 300 seconds; Idle vehicle relocation time 𝑡𝑟 = 𝑡𝑓
seconds.

5.3 Evaluation Metrics
To evaluate the performance of the proposed relocation algorithm,

we deploy it into an idle vehicle relocation based vehicle dispatching

system, and compare its impact to the service quality. The service

quality is measured using the following metrics: passenger serving

ratio, travel distance for every one kilometer, with-passenger ratio

and gain–cost ratio.

– Served trip ratio, denotated as 𝛾 , is the ratio of served trips
against all received travel demands.

– Vehicle kilometers per trip kilometer, denotated as 𝜌 .

Here, Vehicle kilometers (VKM) stands for the total travel

distance of all vehicles in the dispatching fleet. Trip kilome-

ters (TKM) stands for the total served trips’ distance from

pickup points to dropoff points. Then the vehicle kilometers

per trip kilometer (𝜌) could be calculated by: 𝜌 = VKM/TKM.

– Trip kilometers per vehicle, denotated as 𝜅. It stands for

the average trip kilometers for all vehicles. Then 𝜅 could be

calculated by: 𝜅 = TKM/𝑛𝑣 .
– Trip waiting time, denotated as 𝜏 , is average trip waiting

time of all served trips. The trip waiting time is the gap

between the send ideal pickup time and the actual pickup

time.

5.4 Results
This section demonstrates the performance of our method in com-

parison to the existing state-of-the-art methods. We evaluate in

terms of the quality of service in Section 5.4.1, in terms of operation

time in Section 5.4.2, the impact of different activation functions

in Section 5.4.3, and the road graph partitioning results in Section

5.4.4.

5.4.1 Comparison with baselines. In our experiments, we use the

travel requests in Manhattan Island during 20110112-20110118

(seven days) to evaluate the impact of different algorithms to search

relocation centers. For the baselines (SC, PIC and FDA-VeD) and
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dFDA-VeD method, the number of centers/subareas 𝑘 should be

predefined. Here, we use the first baseline (ILP method) to define 𝑘 .

When the passengers’ maximum waiting time Δ = 300 seconds, the

minimum number of relocation centers 𝑘 = 37. By this way, we get

the number of relocation centers and regions to be partitioned. For

the objective function in dFDA-VeD, we use the ReLU activation

function (as shown in Fig. 4(e)).

Served trip ratio (𝑅): The hourly served trip ratios 𝑅 using

different relocation centers searching methods with 6000 vehicles

are shown in Fig. 5(a). Fig. 5(b) gives the hourly request number.

Compared with the baselines, the dFDA-VeD achieved significant

higher 𝑅, especially in peak hours (e.g. 18:00). In addition, we also

investigated the served trip ratios with different number of vehicles.

Fig. 6(a) shows the served trip ratios in seven days when the vehicle

number changes. Fig. 6(b) illustrates the ratio difference of the

proposed dFDA-VeD against the baselines. It is clear that dFDA-

VeD outperforms the baselines in all different vehicle numbers. As

shown in Fig. 6(b) with the vehicle number increasing, the ratio

difference will raise firstly and then decline. This result is consistent

with our intuition. If there is very small number of vehicles, there

are very little idle vehicle to relocate. On the contrary, the baseline

model could achieve a relative high 𝑅, and the improvement won’t

continue significant. The biggest gaps between dFDA-VeD and

baselines appear when the number of vehicles is around 5000 or

6000.

Vehicle kilometers per trip kilometer (𝜌): For this metric,

the lower is better. This metric is very important for whether a

dispatching could be used in real world application. If 𝜌 is very

high, for example 5, it means that a vehicle drives 5 kilometers

however only 1 kilometers with passengers. In other words, if 𝜌 is

too high, the driver can not earn any money as the consumed oil

valued more that the trip earnings. In Fig. 6(c), it shows that the

dFDA-VeD has a higher 𝜌 compared with the baselines. This means

that there are additional cost to achieve a high served trip ratio.

The increase of 𝜌 is not big. The biggest increase is less than 5%.

Trip kilometers per vehicle (𝜅): For this metric, the higher

is better. Fig. 6(d) shows that the dFDA-VeD achieves the highest

𝜅. This means that this will bring more revenue for driver and

dispatching system.

Trip waiting time (𝜏): Fig. 6(e) shows how long the passenger

should wait after they send the travel requests. It shows that all

these methods does not have significant difference. Although there

is a downside trend of dFDA-VeD, the biggest difference of waiting

time is less than 4 seconds.

5.4.2 Operation Time. The operation time of the dFDA-VeD system
with dFDA-VeD are shown in Fig. 7. Here the black lines stand for

the average computation time on two task: vehicle–request match-

ing and idle vehicle relocation. The blue areas stand for the upper

bound and lower bound of the computation. For vehicle–request

matching module, as shown in Fig. 7(a), it runs every 1 minutes, and

the average running time is less than 1 seconds. It shows that the

running time of vehicle-request matching module will go up with

the vehicle number increasing. The longest running time appears

at the largest number of vehicles, as more vehicles to be matched.

Even with 10,000 vehicles, the maximum computation time is less

than 2.5 seconds, which can satisfy the online running requirement.

For the idle vehicle relocation, as shown in Fig. 7(b), it runs every 10

minutes, and the average running time around 25 seconds. There is

no obvious trend when the vehicle number increase. For every run

of idle vehicle relocation, there are three modules to run: subarea

partitioning, regional level gap calculating, supply–demand balanc-

ing. The most time consuming module is subarea partitioning. At

this experiment, we random select different initial central points

and sequential run 8 times and select the best central points. In

industry application, this time could be further decrease, as that 8

different initial points could be running in parallel. Overall, both

the vehicle–request matching and idle vehicle relocation part could

meet the online running requirement.

5.4.3 Impact of activation function. The activation function decide

how the travel demand gap will affect on the distance calculation.

We evaluate the served trip ratio 𝛾 with five activation functions

(Ignore, Identity, Sigmoid, Softplus and ReLU ). Here, number of vehi-

cles in Manhattan Island is set as 6000. Fig. 8 shows that the ReLU
and Identity activation function achieve the highest 𝛾 , these two

functions achieve almost the same served trip ratio. The Ignore
function means that the travel demand gap is not considered in the

optimization objective. The Sigmoid and Softplus functions both
convert the negative gap values to positive ones, which makes the

relocation centers have be more close to oversupply points than the

ReLU and Identity function based optimization. ReLU activation

function transfer all negative values to zero, which means ignoring

all oversupplied points when minimize the optimization objective.

Identity activation convert all under-supplied points were converted
to an positive value and vice versa. The ReLU and Identity functions

reached the same served trip ratio give us an insight: when select

relocation centers, we could ignore the oversupplied points and

just pay attention to the under-supplied points.

5.4.4 Road Graph Partition Results. Here we give the road graph

information (as shown in Fig. 9) in Manhattan Island at a typical

peak time 18:00. Around this time, the differences of served trip ratio

between several algorithms (as shown in Fig. 5(a)) and activation

functions (as shown in Fig. 8) are significant. Now we would like

to going deep to learn why an algorithm or activation function can

beat others. Fig. 9(a) show travel speed on different edges of the

road graph in Manhattan Island in 18:00. Fig. 9(b) show the pickup–

dropoff demand gaps of each vertex during 18:00-18:10. Then with

these information, we use baselines and relocation center searching

algorithm in dFDA-VeD to partition the graph in sub-graphs and

find the relocation centers.

Partition with Different Algorithms: Fig. 10 gives the parti-
tioning results using different methods. Here the different color of

vertices shows that it belongs to different sub-graphs. The black

vertices stand for the relocation centers. In Fig. 10(e), we use ReLU

activation function in the objective function. It is clear that parti-

tioning with four baseline methods, we get the sub-graphs with

clear boundaries and the size of each sub-graph does not have sig-

nificant differences. However, with the dFDA-VeD, a huge amount

of vertices belongs to the same sub-graphs. This is reasonable as

many vertices are no demand or low demand points (as shown

in Fig. 9(b)). This give us the insight that the graph partition for

relocation searching do not need to be similar size or have clear

boundary.
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Figure 5: Served trip ratio and request number in Manhattan Island during 20110112-20110118
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Figure 6: Evaluation against different number of vehicles
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Figure 7: Computation time for two modules

Partition with Different Activation Functions: Fig 11 gives
the partitioning results using relocation center searching algorithm

with different activation functions. It shows that with the Identity

and ReLU function similar partitioning result can be achieved. This

is consistent with their similar performance in terms of served

trip ratio 𝑅 (as shown in Fig. 8). This give us the insight that we

should not treat the high demand and low demand as the same

importance (just like Ignore function does), and should not treat the

low demand points in a positive way (just like Sigmoid and Softplus

function do). The low demand and high demand area should be

treated differently. With the proper way (e.g. ReLU and Identity

function) to treat different demand, the idle vehicle relocation could

significantly improve the served trip ratio.

6 CONCLUSION
In this paper, we proposed a dynamic future demand aware vehi-

cle dispatching system, called dFDA-VeD. The proposed system is

based on relocating the idle vehicles to re-balance the sub-areas

in an urban region. As the traffic conditions and travel demands

continuously change in a dynamic manner, the relocation is done

by dynamically identifying the relocation centres taking the real-

time conditions into account. We demonstrate the performance

of our dynamic future demand aware vehicle dispatching system

through extensive experiments on real data. We outperform the

existing state-of-the-art methods and vehicle dispatching systems

in terms of serving ratio. An important future research direction

is to develop an index for an efficient maintenance of the dynamic

information to support decision making in the dispatching system.
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