
Probabilistic Gradient Boosting Machines
for Large-Scale Probabilistic Regression

Olivier Sprangers
AIRLab, University of Amsterdam
Amsterdam, The Netherlands

o.r.sprangers@uva.nl

Sebastian Schelter
University of Amsterdam

Amsterdam, The Netherlands
s.schelter@uva.nl

Maarten de Rijke
University of Amsterdam

Amsterdam, The Netherlands
derijke@uva.nl

ABSTRACT
Gradient Boosting Machines (GBMs) are hugely popular for solving
tabular data problems. However, practitioners are not only inter-
ested in point predictions, but also in probabilistic predictions in
order to quantify the uncertainty of the predictions. Creating such
probabilistic predictions is difficult with existing GBM-based solu-
tions: they either require training multiple models or they become
too computationally expensive to be useful for large-scale settings.

We propose Probabilistic Gradient Boosting Machines (PGBMs),
a method to create probabilistic predictions with a single ensemble
of decision trees in a computationally efficient manner. PGBM ap-
proximates the leaf weights in a decision tree as a random variable,
and approximates the mean and variance of each sample in a dataset
via stochastic tree ensemble update equations. These learned mo-
ments allow us to subsequently sample from a specified distribution
after training.

We empirically demonstrate the advantages of PGBM compared
to existing state-of-the-art methods: (i) PGBM enables probabilistic
estimates without compromising on point performance in a single
model, (ii) PGBM learns probabilistic estimates via a single model
only (and without requiring multi-parameter boosting), and thereby
offers a speedup of up to several orders of magnitude over existing
state-of-the-art methods on large datasets, and (iii) PGBM achieves
accurate probabilistic estimates in tasks with complex differentiable
loss functions, such as hierarchical time series problems, where
we observed up to 10% improvement in point forecasting perfor-
mance and up to 300% improvement in probabilistic forecasting
performance.

ACM Reference Format:
Olivier Sprangers, Sebastian Schelter, and Maarten de Rijke. 2021. Probabilis-
tic Gradient Boosting Machines for Large-Scale Probabilistic Regression. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3447548.3467278

1 INTRODUCTION
Forecasting practioners are increasingly interested in probabilistic
forecasts instead of point forecasts, in order to obtain a notion of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467278

uncertainty of the forecast [2]. Even though probabilistic forecast-
ing techniques have been around for quite some time, applying
these techniques in large-scale industrial settings often remains
challenging. For example, retailers may require thousands of new
forecasts for each product for each store. In this setting, traditional
confidence interval techniques based on single model estimates
are often computationally too expensive to execute on a daily ba-
sis [14]. Existing Gradient Boosting methods for probabilistic fore-
casting often require training multiple models (e.g., LightGBM [10]
or xgboost [4] require a separate model for each quantile of the
forecast), or require computing expensive second-order derivative
statistics [NGBoost, 6]. Therefore, we aim to find a method that ef-
ficiently generates high-quality probabilistic forecasts with a single
model using GBMs.

We address the challenge of large-scale probabilistic forecasting
by proposing a novel, simple probabilistic forecasting method that
leverages the popular Gradient Boosting paradigm to provide accu-
rate probabilistic forecasts in large-scale data settings (Section 3).
We demonstrate that our approach achieves state-of-the-art point
performance as well as probabilistic performance in forecasting
tasks while only training a single ensemble of Gradient Boosted De-
cision Trees (GBDT). Our proposed method, Probabilistic Gradient
Boosting Machine (PGBM), consists of two steps: (1) We treat the
leaf weights in each tree as random variables that we approximate
during training via the sample mean and sample variance of the
samples in each leaf, and (2) We obtain an accurate estimate of the
conditional mean and variance of our target for each sample by
sequentially adding these random variables for each new tree. After
training, we obtain a learned mean and variance for each sample
which can be used during prediction. Based on the learned mean
and variance, we can specify a distribution from which to obtain
our probabilistic forecast after training. Our PGBM is simple as
its learning procedure is comparable to standard gradient boost-
ing such as LightGBM [10] or xgboost [4] while it requires only
few additional computation steps during training and prediction.
However, contrary to these existing methods, our method only
requires training a single ensemble of decision trees to obtain a
model capable of providing probabilistic predictions.

We empirically demonstrate that PGBM offers state-of-the-art
point and probabilistic regression performance on 11 datasets of
various sizes (Section 4.1). Therefore, PGBM provides the advan-
tages of existing state-of-the-art point prediction gradient boosting
packages such as LightGBM or xgboost, as well as the advantage
of a state-of-the-art probabilistic prediction package such as NG-
Boost. In addition, we show how to optimise PGBM’s probabilistic
estimates after training by varying a single hyperparameter and
choosing different sets of posterior distributions. This offers the

ar
X

iv
:2

10
6.

01
68

2v
2

 [
cs

.L
G

]
 6

 J
un

 2
02

1

https://orcid.org/0000-0002-1086-0202
https://orcid.org/0000-0002-1086-0202
https://doi.org/10.1145/3447548.3467278
https://doi.org/10.1145/3447548.3467278

benefit of training a model only once, and optimizing for proba-
bilistic performance thereafter. Neither existing standard gradient
boosting packages or probabilistic packages such as NGBoost offer
this. Furthermore, we demonstrate that our GPU-based implemen-
tation of PGBM trains an order of magnitude faster than existing
state-of-the-art probabilistic gradient boosting methods on large
datasets. Finally, we showcase the use of PGBM on the problem
of probabilistic hierarchical time series forecasting, demonstrat-
ing that our implementation enables the optimization of complex
differentiable loss functions without manually specifying an analyt-
ical gradient and hessian (in contrast to existing gradient boosting
packages that rely on a priori specification of an analytical gradient
and hessian).

In summary, the contributions of this paper are the following:
• We introduce PGBM, a gradient boosting framework for proba-
bilistic regression problems (Section 3);

• We demonstrate state-of-the-art point performance and proba-
bilistic performance of PGBM on a set of regression benchmarks
(Section 4.1);

• We show that PGBM’s probabilistic performance can be opti-
mized after training the model, which allows practitioners to
choose different posterior distributions without needing to re-
train the model (Section 4.1);

• Our implementation of PGBM trains up to several orders of mag-
nitude faster on larger datasets than competing methods (Sec-
tion 4.1), and our implementation allows the use of complex
differentiable loss functions, where we observed up to 10% im-
provement in point forecasting performance and up to 300% im-
provement in probabilistic forecasting performance (Section 4.2).

2 BACKGROUND
Gradient boosting optimizes a loss function by iteratively adding a
set of weak learners into an ensemble [7]. Each new weak learner
is added sequentially, such that this new learner reduces the aggre-
gate error from the existing ensemble of weak learners. Typically
the weak learners are decision trees due to their strong empirical
performance; and we also choose them as base learners in this work
following the formalization of gradient boosting with decision trees
due to Chen and Guestrin [4]. In gradient boosting, at each iteration
𝑘 , we seek to construct a decision tree 𝑓 (𝑘) (x𝑖) such that the update
equation for our estimate for sample 𝑖 reads:

𝑦
(𝑘)
𝑖

= 𝑦
(𝑘−1)
𝑖

− 𝛼 𝑓 (𝑘) (x𝑖), (1)

in which 𝛼 denotes the learning rate, typically chosen to be less than
1, such that only a tiny portion of each new base learner is added
to the overall estimate at each iteration. We will derive a different
set of update equations for PGBM in Section 3.3. To construct the
decision tree 𝑓 (𝑘) , we greedily split our training data based on its
input features x into left (𝐼𝐿) and right (𝐼𝑅) nodes by maximizing
the following gain:

𝐺 =
1
2

[
(∑𝑖∈𝐼𝐿 𝑔𝑖)

2∑
𝑖∈𝐼𝐿 ℎ𝑖 + 𝜆

+
(∑𝑖∈𝐼𝑅 𝑔𝑖)

2∑
𝑖∈𝐼𝑅 ℎ𝑖 + 𝜆

− (∑𝑖∈𝐼 𝑔𝑖)2∑
𝑖∈𝐼 ℎ𝑖 + 𝜆

]
, (2)

where 𝜆 is a regularization parameter, 𝐼 = 𝐼𝐿 ∪ 𝐼𝑅 , and 𝑔𝑖 , ℎ𝑖 are the
gradient and hessian, respectively, with respect to 𝑦 (𝑘−1)

𝑖
of some

differentiable loss function that we aim to minimize, for example

the mean-squared error loss in case of a regression problem.1,2
When constructing the decision tree, Eq. (2) is evaluated at each
node to find the best possible split gain𝐺∗ among all features in the
input x, and typically a split is made if the gain exceeds a certain
threshold. If no split is made, the node becomes a leaf and the
corresponding leaf weight𝑤 𝑗 follows from:

𝑤 𝑗 = −
∑
𝑖∈𝐼 𝑗 𝑔𝑖∑

𝑖∈𝐼 𝑗 ℎ𝑖 + 𝜆
, (3)

in which 𝑗 ∈ {0, 1, . . . ,𝑇 }, with 𝑇 the total number of leaves in
our tree. We typically stop learning the tree if some pre-defined
criterion is met, for example if no more splits with a positive split
gain according to Eq. (2) can be made or the tree reaches a pre-
defined fixed number of leaves. After training the tree, the output
𝑓 (𝑘) (x𝑖) for a particular sample is then simply the leaf weight𝑤 𝑗 ,
or:

𝑦
(𝑘)
𝑖

= 𝑦
(𝑘−1)
𝑖

− 𝛼𝑤 𝑗 . (4)

3 PROBABILISTIC GRADIENT BOOSTING
MACHINES

We discuss our method Probabilistic Gradient Boosting Machines
(PGBM). We introduce our problem setting, the core components
of PGBM, and end with an analysis and discussion of PGBM.

3.1 Probabilistic Forecasting
In this work, we are interested in the problem of probabilistic fore-
casting. More generally, we are interested in the problem of prob-
abilistic regression, in which one aims to estimate a conditional
probability distribution 𝑃 (𝑦 |x) of some target scalar variable 𝑦

based on a set of inputs x. In the case of probabilistic forecasting,
x commonly includes lagged target variables as well as additional
covariates. We are interested in finding a model 𝑓 (x) that provides
us with an estimate of the mean 𝜇 and variance 𝜎2 of a target dis-
tribution such that we can obtain a sample of an estimate 𝑦 by
sampling from a specified distribution 𝐷 after training:

(𝜇�̂�, 𝜎2�̂�) = 𝑓 (x) (5)

𝑦 ∼ 𝐷 (𝜇�̂�, 𝜎2�̂�). (6)

We construct our model 𝑓 (x) using gradient boosting. In order to
find the estimate for the mean and variance of our target distribu-
tion, we next derive formulas for stochastic leaf weights (Eq. (3))
and new update equations (Eq. (4)).

3.2 Stochastic Leaf Weights
By creating stochastic leaf weights, we are able to learn a mean and
variance of each leaf weight in each tree, thus enabling us to learn a
mean and variance for each sample in our dataset. We assume that
the gradient and hessian of our loss function are random variables
with amean (𝜇𝑔, 𝜇ℎ) and finite variance (𝜎2𝑔 , 𝜎2ℎ) and covariance𝜎

2
𝑔ℎ
,

which we approximate separately in each tree for each instance set
1Some researchers refer to this method asNewton boosting rather than gradient boosting
[20], as it employs a second-order derivative.
2Unlike [4], we drop the regularization term𝛾𝑇 .We have no need for this regularization
parameter, as the number of leaves𝑇 is a hyperparameter that needs to be specified
in our method. Note also that the parameter 𝛾 is in fact by default set to zero in the
xgboost implementation of [4].

𝐼 𝑗 using the sample mean, sample variance and sample covariance
for the 𝑛 𝑗 samples in an instance set 𝐼 𝑗 :

𝜇𝑔 ≈ 𝑔 𝑗 =
1
𝑛 𝑗

∑︁
𝑖∈𝐼 𝑗

𝑔𝑖 (7)

𝜇ℎ ≈ ℎ 𝑗 =
1
𝑛 𝑗

∑︁
𝑖∈𝐼 𝑗

ℎ𝑖 (8)

𝜎2𝑔 ≈ 𝜎2𝑔𝑗 =
1

𝑛 𝑗 − 1

∑︁
𝑖∈𝐼 𝑗

(𝑔𝑖 − 𝑔)2 (9)

𝜎2
ℎ
≈ 𝜎2

ℎ 𝑗
=

1
𝑛 𝑗 − 1

∑︁
𝑖∈𝐼 𝑗

(ℎ𝑖 − ℎ)2 (10)

𝜎2
𝑔ℎ

≈ 𝜎2
𝑔ℎ 𝑗

=
1

𝑛 𝑗 − 1

∑︁
𝑖∈𝐼 𝑗

(𝑔𝑖 − 𝑔) (ℎ𝑖 − ℎ). (11)

Note that the sample variance and covariance require the Bessel
correction 𝑛 𝑗 − 1 in order to obtain an unbiased estimate of the
true variance and covariance. Moreover, the Central Limit Theorem
dictates that we obtain our true mean and variance if 𝑛 𝑗 → ∞.
However, for tiny datasets, 𝑛 𝑗 is typically a small number as each
leaf may only contain a few samples and thereby using sample
statistics might be inappropriate. In the Experiments section (Sec-
tion 4), we will demonstrate that we are still able to provide accurate
probabilistic estimates even in such cases. Next, we write Eq. (3) in
terms of the sample mean of the gradient and hessian:

𝑤 𝑗 = −
1
𝑛 𝑗

∑
𝑖∈𝐼 𝑗 𝑔𝑖

1
𝑛 𝑗

∑
𝑖∈𝐼 𝑗 ℎ𝑖 +

1
𝑛 𝑗
𝜆
= −

𝑔 𝑗

ℎ 𝑗 + 𝜆 𝑗
. (12)

Now, we can model the expectation and variance of the leaf weight
𝑤 𝑗 using the sample statistics as follows (dropping the subscript 𝑗
for readability):

𝜇 𝑗 = 𝐸

[
𝑔

(ℎ + 𝜆)

]
≈ 𝑔

(ℎ + 𝜆)
−

𝜎2
𝑔ℎ

(ℎ + 𝜆)2
+

𝑔𝜎2
ℎ

(ℎ + 𝜆)3
(13)

𝜎2𝑗 = 𝑉

[
𝑔

(ℎ + 𝜆)

]
≈

𝜎2𝑔

(ℎ + 𝜆)2
+

𝑔2𝜎2
ℎ

(ℎ + 𝜆)4
− 2

𝑔𝜎2
𝑔ℎ

(ℎ + 𝜆)3
. (14)

We refer the reader to the Supplemental Materials A for the deriva-
tion of Eq. (13)–(14). Note that for most common loss functions
such as the mean-squared error, the two final terms of Eq. (13)–(14)
are zero as the Hessian ℎ has no variation. When training a decision
tree 𝑓 (𝑘) , we store the obtained expectation and variance of each
leaf of each tree and use these results to obtain our final estimate
for the mean and variance using the update equations described in
the next subsection.

3.3 Update Equations
Apart from the stochastic leaf weights, we require new update
equations (Eq. (4)) in order to update the estimate for our mean
and variance when adding a new tree at each iteration. These new
update equations allow us to aggregate the stochastic weights over
all the trees. For these equations, we make use of the following
rules for the mean 𝜇 and variance 𝜎2 of some random variables
(𝐴, 𝐵) and a constant 𝑐:

𝜇 (𝐴−𝑐𝐵) = 𝜇𝐴 − 𝑐 · 𝜇𝐵

𝜎2𝑐𝐵 = 𝑐2𝜎2𝐵

𝜎2(𝐴−𝑐𝐵) = 𝜎2𝐴 + 𝑐2𝜎2𝐵 − 2𝑐 · 𝜎2(𝐴,𝐵)
𝜎2(𝐴,𝐵) = 𝜌 (𝐴,𝐵)𝜎𝐴𝜎𝐵,

in which 𝜌 denotes Pearson’s correlation coefficient between the
variables (𝐴, 𝐵). Using these rules, we can modify Eq. (4) to ar-
rive at the formulas for the expectation 𝐸 and variance 𝑉 of our
estimate 𝑦 (𝑘)

𝑖
:

𝜇
�̂�
(𝑘)
𝑖

= 𝐸

[
𝑦
(𝑘)
𝑖

]
= 𝜇

�̂�
(𝑘−1)
𝑖

− 𝛼 · 𝜇 𝑗 (𝑘) (15)

𝜎2
�̂�
(𝑘)
𝑖

= 𝑉

[
𝑦
(𝑘)
𝑖

]
= 𝜎2

�̂�
(𝑘−1)
𝑖

+ 𝛼2𝜎2
𝑗 (𝑘)

− 2𝛼𝜌𝜎
�̂�
(𝑘−1)
𝑖

𝜎 𝑗 (𝑘) . (16)

where the hyperparameter 𝜌 denotes the correlation coefficient
between trees 𝑘 and 𝑘 − 1. We provide further discussion around
𝜌 in Section 3.5. Finally, the learned expectation and variance can
be used for creating probabilistic predictions of new samples after
training our model by sampling from a distribution parameterized
by these learned quantities:

𝑦
(𝑘)
𝑖

∼ 𝐷

(
𝜇
�̂�
(𝑘)
𝑖

, 𝜎2
�̂�
(𝑘)
𝑖

)
, (17)

We are now ready to fully present our method PGBM.

3.4 PGBM
Algorithm. We provide a succint overview of the procedures for
training and prediction with Probabilistic Gradient Boosting Ma-
chines (PGBM) in Algorithms 1& 2.
Training (Algorithm 1). In PGBM, gradient boosting is performed
comparable to LightGBM [10] or xgboost [4], and PGBM employs
global equal density histogram binning to bin continuous features
into discrete bins in order to reduce the computational effort re-
quired to find the optimal split decision (Line 1). At the start of
training, we initialize the estimate ŷ, typically with the mean of the
training set in a regression setting (Line 2). Then, gradient boosting
is performed for a fixed number of iterations by first computing
the gradient and hessian (Lines 4–5) of the training set and option-
ally choosing a subsample of the dataset (commonly referred to
as bootstrapping, Line 6) on which to build the decision tree. The
decision tree is then constructed up to a fixed number of leaves
(Line 7) by first selecting the samples in the current node (Line 8),
second by finding the best split for this node (Line 9), and third
by splitting the current node or creating stochastic leaf weights if
no split can be made (Line 10), for example, when the split does
not result in a positive gain according to Eq. (2). After the tree
construction has finished, predictions for the entire training set are
generated (Line 12) and the overall estimate is updated (Line 13)
and the process repeats for the next iteration.

Note that the learned variance is only used to create the prob-
abilistic estimate in the prediction algorithm; it can also serve as
a validation criterion during training (for example, by performing
a prediction step on a validation set and deciding based on some
probabilistic metric whether to continue training or not).
Prediction (Algorithm 2). During prediction, we initialize the esti-
mate using the stored initial estimate of the training set (Line 1).
Then, we make predictions on the dataset by iterating over all the

trees (Line 2) using our new update equations (Line 3). Finally, we
obtain our probabilistic estimate by sampling from a distribution
parameterized by our learned mean and variance (Line 5).

Algorithm 1 PGBM training algorithm

Input: Input dataset X ∈ R𝑛×𝑓 with 𝑛 samples and 𝑓 features,
target output y ∈ R𝑛 , differentiable loss function 𝑙 (y, ŷ) and model
hyperparameters.
Output:
1: Bin features such that for each feature |x| ≤ max_bins
2: Set initial estimate ŷ, e.g. to mean y of target output
3: for 𝑘 = 1 to num_iterations do
4: Compute gradient g(𝑘) = ∇ŷ(𝑘) 𝑙 (y, ŷ)
5: Compute hessian h(𝑘) = ∇2

ŷ(𝑘)
𝑙 (y, ŷ)

6: Select subsample of input dataset as instance set 𝐼1
7: for 𝑗 = 1 to max_leaves do
8: Select instance set 𝐼 𝑗 of X, g(𝑘) , h(𝑘)
9: Find best split for all (features, bins) (Eq. (2))
10: Create split if split criteria are met else create stochastic

leaf weight (Eq. (7)–(14))
11: end for
12: Predict X to obtain 𝜇

(𝑘)
ŷ (Eq. (15))

13: Update estimate ŷ = 𝜇
(𝑘)
ŷ

14: end for

Algorithm 2 PGBM prediction algorithm

Input: Input dataset X ∈ R𝑛×𝑓 with 𝑛 samples and 𝑓 features,
target distribution 𝐷 and model hyperparameters.
Output:
1: Set initial estimate ŷ to mean y of training dataset
2: for 𝑘 = 1 to num_iterations do
3: Predict X to obtain (𝜇 (𝑘)ŷ , 𝜎

2(𝑘)
ŷ) (Eq. (15)–(16))

4: end for
5: Draw n_samples ŷ ∼ 𝐷

(
𝜇ŷ(𝑘) , 𝜎

2
ŷ(𝑘)

)
Implementation. We implement PGBM in PyTorch [16] and offer
it as a Python package.3 PyTorch offers (multi-)GPU acceleration
by default, which allows us to scale PGBM to problems involving
a large number of samples (we trained on datasets of over 10M
samples) as we can distribute training across multiple GPUs. More
importantly, our implementation allows the use of the automated
differentiation engine of PyTorch, such that we can employ arbi-
trary complex differentiable loss functions without requiring an
analytical gradient and hessian. This is in stark contrast to existing
popular packages such as LightGBM [10] or xgboost [4], where
custom loss functions require the manual derivation of an analyti-
cal gradient and hessian. We provide an example of this benefit in
Section 4.2. Note that PGBM can be made compatible with existing
gradient boosting packages relatively easily too, as it only requires
storing one additional sample statistic (the variance), changing the

3https://github.com/elephaint/pgbm

update equations according to Section 3.3 and choosing a distri-
bution 𝐷 after training to sample from. We intend to provide an
implementation of PGBMwithin existing popular gradient boosting
packages in the future.

Furthermore, we implemented a custom CUDA kernel that in-
tegrates with PyTorch to calculate the optimal splitting decision
(Eq. (2)), the most compute intensive part of PGBM. Our kernel
leverages the parallel processing power of modern CUDA-capable
GPUs, by parallelizing the split decision across the sample and
feature dimension using parallel reductions. We demonstrate the
effectiveness of our GPU training in Section 4.1.

3.5 Analysis & Discussion
Computational complexity. Even though two parameters – a mean
and variance – are learned in PGBM, the trees are constructed com-
parable to standard gradient boosting such as in [4, 10]. Therefore,
the additional cost of our second parameter is negligible as only
the sample statistics need to be calculated in the leaves. In contrast
to NGBoost [6], PGBM also does not require calculation of a natu-
ral gradient, which involves the inversion of many small matrices.
PGBM’s runtime generally scales with the number of samples, the
number of features and the number of bins used to bin the features,
in accordance with existing GBM packages.
Higher-order moments and leaf sample quantiles. We only consider
the first two moments of a distribution (i.e., the mean and variance)
to derive our stochastic leaf weights, which limits the output distri-
bution 𝐷 to distributions parameterized using location and scale
parameters (i.e., our learned mean and variance). This is a limitation
compared to, e.g., NGBoost [6]. We considered calculating higher
order sample statistics such as the sample skewness (third moment)
and sample kurtosis (fourth moment), however the disadvantage
is that (i) there is no unbiased sample statistic for those measures,
(ii) deriving approximations of the form of Eq. (13)–(14) becomes
exceedingly complex, and (iii) higher-order sample statistics require
more samples in order for the sample statistic to provide a reason-
able estimate of the true statistic. Moreover, as we learn separate
sample statistics for each leaf in each tree, we are still able to model
complex distributions over the entire dataset using distributions
parameterized only by location and scale parameters.

Finally, one could also store the sample quantile information of
each leaf and draw samples according to the stored quantile infor-
mation. This would remove the need for specifying a particular
distribution. While this seems an attractive option, calculating sam-
ple quantile information for each leaf is computationally difficult
as it requires an expensive sorting operation, and storing a suffi-
cient number of sample quantiles to reap the full benefits of this
method requires storing at least 2–3x the number of leaf weights.
In short, there is no real need to use higher order moments or leaf
sample quantiles to provide accurate probabilistic estimates as we
demonstrate in Section 4.1.
Output sampling. PGBM allows one to sample from different out-
put distributions after training, which allows practitioners to train
their model by minimizing some point metric (e.g., RMSE) and after
training try different distributions for optimizing the probabilistic
forecast based on some validation metric. The key benefit is that

https://github.com/elephaint/pgbm

this allows PGBM to achieve state-of-the-art point forecasting per-
formance as well as accurate probabilistic forecasting performance
using the same model. We will demonstrate this in Section 4.1. Note
that practitioners can of course also directly optimize the probabilis-
tic forecast by using a loss function that optimizes the probabilistic
forecast.
Split decisions and tree dependence. In PGBM, split decisions in
the tree are not recomputed based on the stochasticity of the leaf
weights, even though it could be argued that this would be appro-
priate when sampling from the trees. We intentionally avoid this as
it is computationally expensive to recompute split decisions after
training when sampling from the learned distribution. Secondly,
by sequentially adding the mean and variance of each tree we omit
the explicit covariance between tree 𝑘 and trees 𝑘 − 2, 𝑘 − 3, . . .,
and only model the covariance between subsequent trees. We im-
plicitly model both these effects using a single constant correlation
hyperparameter 𝜌 (Eq. (16)), for which we provide a more detailed
analysis in Section 4.1.
Hessian distribution. The distribution of the Hessian ℎ should have
a support of [0,∞) to avoid division by zero in Eq. (13)–(14), or
equivalently, we require the sum of the hessians (plus regularization
constant 𝜆) of all samples in an instance set 𝐼 𝑗 of a leaf to be positive.
For common convex loss functions such as the mean-squared error
this is not an issue, however for non-convex loss functions this
might pose a problem in rare cases where all hessians in an instance
set add up to zero. In those cases, numerical issues can usually be
avoided by requiring a decent (e.g., > 10) minimum number of
samples in each leaf in a tree – this can be set as a hyperparameter
in PGBM.

4 EXPERIMENTS
In this section, we first demonstrate how PGBM can provide accu-
rate point and probabilistic predictions on a set of common regres-
sion benchmark datasets from the UCI Machine Learning Repos-
itory (Section 4.1). We show how PGBM allows practitioners to
optimize their probabilistic estimate after training, thereby remov-
ing the need to retrain amodel under different posterior distribution
assumptions. Next, we demonstrate the efficiency of our implemen-
tation of PGBM compared to existing gradient boosting methods.
Finally, we demonstrate PGBM on the problem of forecasting for
hierarchical time series, which requires optimizing a complex loss
function for which deriving an analytical gradient is too complex
(Section 4.2).

To facilitate reproducibility of the results in this paper, our ex-
periments are run on open data, and our experimentation code is
available online.4

4.1 UCI regression benchmarks
Task. We perform probabilistic regression on a set of regression
datasets. Our goal is to obtain the lowest probabilistic prediction
score as well as the lowest point performance score.
Evaluation. We evaluate the probabilistic performance of each
method using the Continuously Ranked Probability Score (CRPS),

4Repository at https://github.com/elephaint/pgbm

which is a measure of discrepancy between the empirical cumula-
tive distribution function of an observation 𝑦 and the cumulative
distribution 𝐹 of a forecast 𝑦 [23]:

𝐶 =

∫
[𝐹 (𝑦) − 1(𝑦 ≥ 𝑦)]2𝑑𝑦, (18)

in which 1 denotes the indicator function. We compute the em-
pirical CRPS based on 1,000 sample predictions generated by the
trained models on the test set. We evaluate point performance using
Root Mean Squared Error (RMSE):

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖)2 . (19)

We present these metrics relative to the median of PGBM over all
the folds tested for a dataset, and we refer the reader to Table 4 of
Supplemental Materials B for further details.
Protocol. We follow the same protocol as Duan et al. [6], and create
20 random folds for each dataset except for msd for which we only
create one. For each of these folds, we keep 10% of the samples as test
set. The remaining 90% is first split into an 80/20 validation/training
set to find the number of training iterations that results in the lowest
validation score. After validation, the full 90% training set is trained
using the number of iterations found in the validation step. As
output distribution for the probabilistic prediction we use a Normal
distribution, similar to Duan et al. [6].
Baseline models. For probabilistic performance, we compare against
NGBoost [6], which has recently been shown to outperform other
comparable methods on the current set of benchmarks. We use the
same settings for NGBoost as in [6]. For point performance, we
also compare to LightGBM [10], one of the most popular and best-
performing gradient boosting packages available. We configure
LightGBM to have the same settings as PGBM.
PGBM. For all datasets, we use the same hyperparameters for PGBM,
except that we use a bagging fraction of 0.1 for MSD in correspon-
dence with Duan et al. [6]. Our training objective in PGBM is to
minimize the mean-squared error (MSE). We refer the reader to
Table 5 of Supplemental Materials B for an overview of key hyper-
parameters of each method.
Results. We provide the results of our first experiment in Figure 1
and observe the following:
• On probabilistic performance, PGBM outperforms NGBoost on
average by approximately 15% as demonstrated by the relatively
lower CRPS across all but one dataset (msd, where the difference
is tiny). This is remarkable, as the training objective in PGBM
is to minimize the MSE, rather than optimize the probabilistic
forecast as does NGBoost.

• PGBM outperforms NGBoost on all datasets on point perfor-
mance, and on average by almost 20%, which is in line with
expectation as we explicitly set out to optimize the MSE as train-
ing objective in PGBM in this experiment. However, as becomes
clear from this result, PGBM does not have to sacrifice point
performance in order to provide state-of-the-art probabilistic
estimates nonetheless. Compared to LightGBM, PGBM performs
slightly worse on average (approx. 3%) on point performance. We
suspect this is due to implementation specifics.

https://github.com/elephaint/pgbm

The main takeaway from this experiment is that even though we
only optimized for a point metric (MSE) in PGBM, we were still
able to achieve similar probabilistic performance compared to a
method that explicitly optimizes for probabilistic performance.
Analysis: correlation hyperparameter. We perform a brief analysis of
the correlation hyperparameter 𝜌 (Eq. (16)). This hyperparameter
controls the dependence between variance estimates of subsequent
trees in PGBM, and is critical for probabilistic performance. Fig-
ure 2a shows the CRPS evaluated on the validation set at different
settings for 𝜌 for each dataset for a single fold. We normalized
the CRPS scores on the lowest CRPS for each dataset. Across all
datasets, the CRPS seems to follow a parabolic shape and conse-
quently there seems to be an optimal choice for 𝜌 across different
datasets: a value of 0.02–0.07 typically seems appropriate. Empiri-
cally, we found that an initial value of 𝜌 =

log10 𝑛
100 , where 𝑛 denotes

the size of the training set generally works well and therefore we
used that in our experiments as default value. Intuitively, the posi-
tiveness of the correlation between subsequent trees seems logical:
if the leaf weight of a given tree shifts more positively (negatively)
as a result of stochasticity, the residual on which the next tree
will be constructed shifts in the same direction. Consequently, the
leaf weights of this next tree will also shift in the same direction,
thus exhibiting a positive correlation with the previous tree’s leaf
weights. Furthermore, larger datasets tend to cluster together in
behavior, as can be seen from the curves for the protein, msd,
kin8nm, power and naval datasets. It seems that for larger datasets,
typically larger settings for 𝜌 are appropriate. Our hypothesis is
that for trees containing many samples per leaf, the correlation
between subsequent trees is higher, as more samples in the tree’s
leaves will generally imply that the model has not yet (over)fit to
the training set and there is likely more information left in the
residuals compared to the situation where there are few samples
per leaf. This would explain the behavior observed in Figure 2a as
we train each model with a maximum of 8 leaves per tree, resulting
in more samples per leaf for larger datasets. We test this hypothesis
by training the relatively larger protein and msd datasets using
different settings for the maximum number of leaves, for which
we show the results in Figure 2b. Confirming our hypothesis, we
indeed observe the optimal correlation parameter decreasing when
we train PGBM using a higher number of maximum leaves per tree
(i.e., the minimum of the parabola shifts to the left).
Analysis: posterior distribution. One of the key benefits of PGBM is
that it allows us to optimize the probabilistic estimate after training,
as the choice of distribution 𝐷 in Eq. (6) is independent from the
training process. This offers the benefit of training to optimize a cer-
tain point metric such as RMSE, and choosing the distribution that
best fits the learned mean and variance after training by validating
a set of distribution choices on a validation set. To demonstrate this
benefit, we repeated the experiments from our first experiment for
a single fold. For each dataset, we evaluated the learned model on
CRPS on the validation set for a set of common distributions and
a range of tree correlations 𝜌 = {0.00, 0.01, . . . , 0.09}. The optimal
choice of distribution and tree correlation on the validation set
was subsequently used for calculating the CRPS on the test set. We
report the results in Table 1, where ‘Base case’ refers to the base
case scenario from our first experiment, where we chose a Normal

distribution and a tree correlation hyperparameter of 𝜌 =
log10 𝑛
100

across all datasets, and ‘Optimal’ refers to the result on the test set
when choosing the distribution and tree correlation according to
the lowest CRPS on the validation set. We see that for most datasets,
the minimum CRPS on the validation set is similar across choices
of distribution, which implies that it is more beneficial to optimize
the tree correlation rather than the choice of output distribution for
these datasets. On the test set, we see improved scores compared
to the base case on all but the smallest dataset, thereby showcasing
the benefit of optimizing the probabilistic forecast after training.
We would advice practitioners to start with a generic distribution
such as the normal or Student’s t(3), and optimize the probabilistic
estimate after training by testing for different tree correlations and
distribution choices.
Analysis: training time. Our implementation in PyTorch allows us
to use GPU training by default, which allows us to significantly
speed up training for larger datasets. We demonstrate this benefit
in Table 2 where we compare training times for datasets of different
size against a baseline of PGBM (we refer to Table 6 in the Sup-
plemental Materials for the absolute timings). For this experiment,
we also included the higgs dataset, which is a 10M sample UCI
dataset commonly used to benchmark gradient boosting packages.
For PGBM, we show results for training on GPU-only and CPU-
only. NGBoost does not offer GPU training and runs on top of the
default scikit-learn decision tree regressor. We ran our experiments
on a 6-core machine with a nVidia RTX 2080Ti GPU. As can be seen,
PGBM is up to several orders of magnitude faster than NGBoost as
the dataset size increases. This demonstrates that PGBM and our
implementation allow practitioners to solve probabilistic regression
problems for datasets much larger than NGBoost.

In general, for smaller datasets, training on cpu offers the best
timings for the two methods. We include the relative timings to
LightGBM for reference in Table 2, which shows that PGBM even
becomes competitive to LightGBM for the largest dataset (higgs).
However, the timings for LightGBM represent the timings to train
a single LightGBM model. If one is interested in obtaining a prob-
abilistic forecast, the timings would be multiplied by the number
of quantiles required. Hence, for a fine-grained probability distri-
bution, the timings would be 5–10x higher for LightGBM, again
demonstrating the effectiveness of our implementation for proba-
bilistic forecasting.

4.2 Hierarchical time series
Task. So far, our experimental results were obtained using the mean-
squared error as objective function for which an analytical gradient
and hessian can be easily derived. In this experiment, we apply
PGBM to the problem of hierarchical time series forecasting, which
is a problem where our loss function is rather complex, so that it
becomes very tedious to manually calculate an analytical gradient
and hessian for it:

𝐿 =

𝑁∑︁
𝑗

𝑤 𝑗 (𝑦 𝑗 − 𝑦 𝑗)2, (20)

where𝑤 𝑗 is the weight of the 𝑗-th time series, and 𝑁 is the number
of time series. In hierarchical time series, we aggregate time series
across multiple levels. For example, in the case of two time series

0.5

1.0

1.5

2.0

2.5

CR
PS

yacht

0.9

1.0

1.1

1.2

boston

0.8

0.9

1.0

1.1

1.2

1.3

energy

0.8

1.0

1.2

1.4

1.6

concrete

0.90

0.95

1.00

1.05

1.10

1.15

wine

1.0

1.1

1.2

1.3

CR
PS

kin8nm

0.95

1.00

1.05

1.10

1.15

1.20

power

1.0

1.1

1.2

1.3

naval

1.00

1.05

1.10

1.15 protein

0.995

0.996

0.997

0.998

0.999

1.000
msd

pgbm ngboost

(a) Probabilistic performance (CRPS)

0.25
0.50
0.75
1.00
1.25
1.50
1.75

RM
SE

yacht

0.8

0.9

1.0

1.1

1.2

1.3

boston

0.6

0.8

1.0

1.2

1.4

1.6

1.8
energy

0.6

0.8

1.0

1.2

1.4

1.6

1.8
concrete

0.90

0.95

1.00

1.05

1.10

1.15
wine

0.8

0.9

1.0

1.1

1.2

1.3

RM
SE

kin8nm

0.9

1.0

1.1

1.2

power

0.9

1.0

1.1

1.2

1.3

1.4

naval

0.95

1.00

1.05

1.10

1.15
protein

1.000

1.002

1.004

1.006

1.008
msd

pgbm ngboost lightgbm

(b) Point performance (RMSE)

Figure 1: Results for probabilistic (CRPS, left) and point (RMSE, right) performance for each dataset for eachmethod, with the smallest dataset
yacht in the top left corner and the largest dataset msd in the lower right corner. Lower is better, and results have been indexed against the
median test score of PGBM. PGBM outperforms NGBoost both in probabilistic and point performance.

Table 1: Results for probabilistic (CRPS) performance for each dataset when varying the posterior distribution and tree correlations on the
validation set (left) and subsequently using the optimal choice of distribution and tree correlation on the test set (right). Best results on
validation and test set are in bold. We report the minimum CRPS on the validation set across all the tree correlations tested per distribution.

Validation set Test set

Dataset Normal Student’s t(3) Logistic Laplace LogNormal Gumbel Weibull Poisson NegativeBinomial Base case Optimal

yacht 0.37 0.37 0.37 0.37 0.44 0.38 0.37 0.75 9.7 0.18 0.19
boston 1.41 1.4 1.39 1.39 1.4 1.42 1.39 1.58 12.27 2.08 2.06
energy 0.62 0.61 0.62 0.61 0.62 0.62 0.63 1.25 16.15 0.64 0.64
concrete 2.21 2.21 2.21 2.19 2.23 2.26 2.22 2.38 3.59 2.69 2.64
wine 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.59 0.64 0.35 0.34
kin8nm 0.08 0.08 0.08 0.08 1.04 0.08 0.08 0.26 0.26 0.08 0.08
power 1.86 1.86 1.86 1.86 1.86 1.87 1.88 5.22 454.34 1.81 1.80
naval 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.22 0.22 0.00 0.00
protein 2.18 2.18 2.18 2.18 45.3 2.17 2.54 2.15 2.15 2.14 2.12
msd 4.74 4.73 4.74 4.73 4.74 4.88 4.69 11.16 1982.19 4.78 4.74

0.05 0.00 0.05
Tree correlation

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
ize

d
CR

PS

boston
concrete
energy
kin8nm

msd
naval
power

protein
wine
yacht

(a)

0.05 0.00 0.05
Tree correlation

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
CR

PS

msd (8)
msd (32)

msd (128)
protein (8)

protein (32)
protein (128)

(b)

Figure 2: Normalized CRPS on the validation set for different set-
tings of tree correlation hyperparameter 𝜌 , (a) for all datasets and
(b) for protein and msd when trained using a maximum number of
leaves per tree of {8, 32, 128}.

and two levels, 𝑁 = 3 and our loss for each series reads 𝐿1 =

𝑤1 (𝑦1−𝑦1)2, 𝐿2 = 𝑤2 (𝑦2−𝑦2)2, 𝐿3 = 𝑤3 ((𝑦1+𝑦2)− (𝑦1+𝑦2))2 with
𝑤1,𝑤2,𝑤3 weights of each series, for example 0.25, 0.25, 0.5. Hence,
the gradient and hessian of 𝐿 with respect to the first estimate
𝑦1 becomes 𝜕𝐿

𝜕�̂�1
= −𝑤1 (2𝑦1 − 2𝑦1) − 𝑤3 (2𝑦1 + 2𝑦2 − 2𝑦1 + 2𝑦2)

Table 2: Training time for 2,000 iterations for 5 datasets of different
size as a fraction of PGBM-gpu training time. Bold indicates proba-
bilistic forecasting method with the lowest training time.

Probabilistic forecast Point forecast
Dataset PGBM-gpu PGBM-cpu NGBoost LightGBM

wine (n=1,599) 1.00 0.41 0.20 0.01
naval (n=12k) 1.00 1.62 1.05 0.02
protein (n=46k) 1.00 3.09 3.39 0.02
msd (n=515k) 1.00 26.85 48.83 0.09
higgs (n=10,5M) 1.00 101.76 147.78 0.43

and 𝜕2𝐿
𝜕2 �̂�1

= 2𝑤1 + 2𝑤3. It becomes clear that deriving this result
analytically becomes increasingly complex when the number of
levels and the number of time series increases, which necessitates
the use of autodifferentiation packages such as PyTorch if we are
interested in optimizing this objective.
Dataset. We use a subset of the dataset from the M5 forecasting
competition [13], in which participants were asked to provide hier-
archical forecasts for Walmart retail store products. We use a single
store and create forecasts for a single day. For each store, we are

Table 3: Point (RMSE) and probabilistic (CRPS) forecasting perfor-
mance for the M5 dataset across aggregations when using MSE or
weighted MSE (only for PGBM) as training objective. Lower is bet-
ter, best results are indicated in bold.

RMSE CRPS

PGBM NGBoost LightGBM PGBM NGBoost
objective MSE wMSE MSE MSE MSE wMSE MSE

Individual1 2.00 2.00 2.01 2.00 0.77 0.93 0.78
Category2 67.9 67.6 77.4 70.0 72.6 40.4 82.0
Department3 108 101 129 111 160 59 184
Total4 213 190 276 225 472 136 560

1. n=85,372 2. n=196 3. n=84 4. n=28.

interested not only in accurately forecasting individual item sales,
but also in optimizing the aggregate sales per day, aggregate sales
per day per category and aggregate sales per day per department.
Hence, we obtain four levels for our weighted loss function: (i) in-
dividual items, (ii) category aggregates per day, (iii) department
aggregates per day, and (iv) total daily aggregates. For more details
on the data and preprocessing we refer to Supplemental Materials B.
Protocol. We compare against a baseline of LightGBM, NGBoost and
PGBM trained with the regular mean-squared error objective. All
models are trained using the same hyperparameters. We validate
on the last 28 days of the training dataset and pick the number of
iterations resulting in the lowest item RMSE on this validation set.
After validating, we retrain on the entire dataset for the number of
optimal iterations and test on a held out test set of 28 days (with the
first day starting the day after the last day in the validation set). We
use the Normal distribution with a tree correlation of 𝜌 =

log10 𝑛
100 to

generate our probabilistic forecasts for PGBM.
Results. We evaluate our model on RMSE and CRPS for each ag-
gregation and the results are displayed in Table 3. We observe that
using the weighted MSE that incorporates our four levels of ag-
gregation results in a similar point forecast score for individual
items, but in a much better forecast for the aggregations – differ-
ences up to 10% compared to the second-best point performance
of PGBM are observed. Secondly, we see that the gain using the
weighted MSE increases at hierarchically higher aggregation levels
such as ‘total by date’. This is important, as this implies that we are
able to generate item-level forecasts that are more consistent with
higher-level aggregates. Finally, we observe that item-level CRPS
is worse in the weighted MSE setting compared to the regular MSE
setting, whereas our probabilistic estimate for higher aggregations
improves up to 300% when using the weighted MSE. This can be
expected: in the MSE setting, each individual item forecast ‘does not
consider’ aggregates in the category or department, whereas in the
weighted MSE setting, item forecasts are optimized to also consider
the impact on the overall aggregations. All in all, this experiment
demonstrates the benefit of our implementation: we can optimize
over more complex loss functions, thereby enabling probabilistic
forecasts of more complex problems such as hierarchical time series
problems.

5 RELATEDWORK
Traditional forecasting methods such as ARIMA [3] allow for prob-
abilistic forecasts through specification of confidence intervals [9].
However, creating a confidence interval in these methods often

requires assuming normality of the distribution of the target vari-
able or its residuals. Generalized Additive Models for Shape, Scale
and Location (GAMLSS) [17] is a framework that allows for a more
flexible choice of distribution of the target variable in probabilistic
regression problems. A disadvantage is that the model needs to
be pre-specified, limiting flexibility of this method. Prophet [22] is
a more recent example of generalized additive models applied to
the probabilistic forecasting setting. However, Prophet has been
shown to underperform other contemporary probabilistic forecast-
ing methods [1, 19] and to have difficulties scaling to very large
datasets [19]. Other Bayesian methods exhibiting similar issues
include Bayesian Additive Regression Trees (BART) [5], which re-
quires computationally expensive sampling techniques to obtain
probabilistic predictions.

Gradient Boosting Machines (GBMs) [7] are widely used for
regression problems such as forecasting [4]. Popular GBM imple-
mentations such as LightGBM [10] or xgboost [4] have won various
machine learning competitions [4]. The winning solution of the
accuracy track of the recent M5 forecasting competition was based
on a set of LightGBM models, and 4 out of the top-5 solutions
used LightGBM models in their solutions [13]. However, GBMs
are not naturally equipped to provide probabilistic forecasts as
these models return point predictions, requiring multiple models
when a practitioner desires a range of predictions. For example,
the uncertainty track of the M5 forecasting competition required
contestants to provide a set of quantiles for a hierarchical time
series problem. The winning solution was based on 126 (!) separate
LightGBM models, one for each requested quantile and time series
aggregation level [14]. To address these limitations, NGBoost [6]
allows for probabilistic regression with a single GBM by using the
natural gradient to boost multiple parameters of a pre-specified
distribution. Compared to NGBoost, our method PGBM does not
require a natural gradient; it can achieve better or on-par predictive
uncertainty estimates, without sacrificing performance on the point
forecast of the same model as does NGBoost. Taieb et al. [21] also
propose boosted additive models for probabilistic forecasting. Our
work is different in that we use GBMs with stochastic leaf weights
to estimate the conditional mean and variance simultaneously for
each estimator. Gouk et al. [8] present a method for incrementally
constructing decision trees using stochastic gradient information.
Our method is different in that (i) we focus on the general case of
probabilistic regression instead of incremental online learning of
trees and (ii) we obtain our stochastic estimates by approximating
the ratio of the gradient and hessian.

Outside of the GBM context, decision trees have also been used
for probabilistic regression problems in Quantile Regression Forests
(QRF) [15]. However, this method requires storing all observations
when computing leaf weights of a decision tree, which makes this
method less suitable for large datasets. In addition, GBMs commonly
outperform random forests on regression tasks, making the former
a better choice when performance is a key consideration.

Contemporary large-scale probabilistic forecasting techniques
often leverage the power of neural networks, such as DeepAR
[18] or Transformer-based models [11, 12]. However, in practice
GBMs still seem the technique of choice—only one out of the top-
5 solutions in the M5 uncertainty forecasting competition used a
neural network method as its primary probabilistic forecasting tool.

In summary, we contribute the following on top of the related
work discussed above: (i) PGBM is a single-parameter boosting
method that achieves state-of-the-art point and probabilistic esti-
mates using a single model, (ii) PGBM allows choosing an output
distribution after training, which means the probabilistic forecast
can be optimized after training, (iii) our implementation allows
training of larger datasets up to several orders of magnitude faster
than the existing state-of-the-art, and (iv) our implementation al-
lows using complex differentiable loss functions, which removes
the need to calculate an analytical gradient, thereby opening up a
wider set of problems that can be effectively addressed.

6 CONCLUSION
In this work we introduced Probabilistic Gradient Boosting Ma-
chines (PGBM), a method for probabilistic regression using gradi-
ent boosting machines. PGBM creates probabilistic estimates by
using stochastic tree leaf weights based on sample statistics. By
combining the learned weights for each subsequent tree, PGBM
learns a mean and variance for samples in a dataset which can
be used to sample from an arbitrary distribution of choice. We
demonstrated that PGBM provides state-of-the-art probabilistic
regression results across a range of small to large datasets. Benefits
of PGBM compared to existing work are that (i) PGBM is a sin-
gle-parameter boosting method that optimizes a point regression
but achieves state-of-the-art probabilistic estimates using the same
model, (ii) PGBM enables the choice of an output distribution af-
ter training, which means practitioners can optimize the choice of
distribution without requiring retraining of the model, (iii) our im-
plementation allows training of larger datasets up to several orders
of magnitude faster than the existing state-of-the-art, and (iv) our
implementation in PyTorch allows using complex differentiable
loss functions which removes the need to calculate an analytical
gradient as is common in existing gradient boosting packages. We
demonstrated the latter benefit for the problem of hierarchical time
series forecasting, where we observed up to 10% improvement in
point performance and up to 300% improvement in probabilistic
forecasting performance.

Limitations of our work are that PGBM only learns the mean
and variance in a tree, which limits the choice of output distribu-
tion. However, we observed no negative performance effects in our
experiments thereof.

In the future, we intend to further work on the theoretical er-
ror bounds of PGBM. Under mild assumptions, sample statistics
in each leaf of each tree appropriately represent the true statistics
of the samples in each leaf provided a sufficient number of sam-
ples. However, we have yet to determine appropriate theoretical
error bounds on the final estimated statistics when considering the
simplifications we make during decision tree learning, such as the
greedy approximate split finding, using a limited number of tree
leaves, our approximation to the stochastic leaf weights, keeping
decision points constant and treating the correlation between sub-
sequent trees as a constant across samples and trees. Regarding the
latter, we also expect that the probabilistic estimate can be further
improved by using a better approximation to the tree correlations
instead of our choice of keeping it fixed across trees and samples.

REFERENCES
[1] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider,

Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama
Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner Türkmen,
and YuyangWang. 2020. GluonTS: Probabilistic and Neural Time Series Modeling
in Python. Journal of Machine Learning Research 21, 116 (2020), 1–6.

[2] Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin
Lange, David Salinas, Sebastian Schelter, Matthias Seeger, and Yuyang Wang.
2017. Probabilistic Demand Forecasting at Scale. Proc. VLDB Endow. 10, 12 (Aug.
2017), 1694–1705. https://doi.org/10.14778/3137765.3137775

[3] G. E. P. Box and David A. Pierce. 1970. Distribution of Residual Autocorrelations
in Autoregressive-Integrated Moving Average Time Series Models. J. Amer.
Statist. Assoc. 65, 332 (1970), 1509–1526. https://doi.org/10.2307/2284333

[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, San Francisco California USA,
785–794. https://doi.org/10.1145/2939672.2939785

[5] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. 2010. BART:
Bayesian Additive Regression Trees. Ann. Appl. Stat. 4, 1 (March 2010), 266–298.
https://doi.org/10.1214/09-AOAS285

[6] Tony Duan, Anand Avati, Daisy Ding, Khanh K. Thai, Sanjay Basu, Andrew Ng,
and Alejandro Schuler. 2020. NGBoost: Natural Gradient Boosting for Probabilis-
tic Prediction. ICML (2020).

[7] Jerome H. Friedman. 2001. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics 29, 5 (2001), 1189–1232.

[8] Henry Gouk, Bernhard Pfahringer, and Eibe Frank. 2019. Stochastic Gradient
Trees. In Asian Conference on Machine Learning. PMLR, 1094–1109.

[9] Rob J Hyndman. 2018. Forecasting: Principles and Practice.
[10] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 3146–3154.

[11] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the Locality and Breaking the Memory Bot-
tleneck of Transformer on Time Series Forecasting. In Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 5244–5254.

[12] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. 2019. Temporal
Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting.
arXiv:1912.09363 [cs, stat] (Dec. 2019). arXiv:1912.09363 [cs, stat]

[13] Spyros Makridakis, Evangelos Spiliotis, and Vassilis Assimakopoulos. 2020. The
M5 Accuracy Competition: Results, Findings and Conclusions.

[14] Spyros Makridakis, Evangelos Spiliotis, Vassilis Assimakopoulos, Zhi Chen, Anil
Gaba, Ilia Tsetlin, and Robert Winkler. 2020. The M5 Uncertainty Competition:
Results, Findings and Conclusions.

[15] Nicolai Meinshausen. 2006. Quantile Regression Forests. Journal of Machine
Learning Research 7, 35 (2006), 983–999.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035.

[17] R. A. Rigby and D. M. Stasinopoulos. 2005. Generalized Additive Models for
Location, Scale and Shape. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 54, 3 (2005), 507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x

[18] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2019.
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. In-
ternational Journal of Forecasting (Oct. 2019). https://doi.org/10.1016/j.ijforecast.
2019.07.001

[19] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. 2019. Think Globally, Act Locally:
A Deep Neural Network Approach to High-Dimensional Time Series Forecasting.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
4838–4847.

[20] Fabio Sigrist. 2020. Gradient and Newton Boosting for Classification and Regres-
sion. Expert Systems with Applications (Oct. 2020). https://doi.org/10.1016/j.eswa.
2020.114080

[21] Souhaib Ben Taieb, Raphael Huser, Rob J Hyndman, and Marc G Genton. 2015.
Probabilistic Time Series Forecasting with Boosted Additive Models: An Applica-
tion to Smart Meter Data. (2015), 30.

[22] Sean J. Taylor and Benjamin Letham. 2018. Forecasting at Scale. The Ameri-
can Statistician 72, 1 (Jan. 2018), 37–45. https://doi.org/10.1080/00031305.2017.
1380080

[23] Michaël Zamo and Philippe Naveau. 2018. Estimation of the Continuous
Ranked Probability Score with Limited Information and Applications to En-
semble Weather Forecasts. Math Geosci 50, 2 (Feb. 2018), 209–234. https:
//doi.org/10.1007/s11004-017-9709-7

https://doi.org/10.14778/3137765.3137775
https://doi.org/10.2307/2284333
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1214/09-AOAS285
https://arxiv.org/abs/1912.09363
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1016/j.eswa.2020.114080
https://doi.org/10.1016/j.eswa.2020.114080
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1007/s11004-017-9709-7
https://doi.org/10.1007/s11004-017-9709-7

A DERIVATION OF STOCHASTIC LEAF
WEIGHTS

A.1 Expectation
We approximate the mean in each leaf by using a second-order
Taylor approximation of the expectation of a function of the two
random variables (𝑔, ℎ) around the point 𝒂 = (𝑔,ℎ):

𝐸 [𝑓 (𝑔, ℎ)] = 𝐸 [𝑓 (𝒂) + 𝑓 ′𝑔 (𝒂) (𝑔 − 𝑔) + 𝑓 ′
ℎ
(𝒂) (ℎ − ℎ)

+ 1
2
𝑓 ′′𝑔𝑔 (𝒂) (𝑔 − 𝑔)2 + 𝑓 ′′

𝑔ℎ
(𝒂) (𝑔 − 𝑔) (ℎ − ℎ)

+ 1
2
𝑓 ′′
ℎℎ

(𝒂) (ℎ − ℎ)2 + 𝐻] (21)

with 𝐻 denoting the higher-order terms that we drop for our esti-
mate. Using the laws of expecations we then obtain:

𝐸 [𝑓 (𝑔, ℎ)] ≈ 𝐸 [𝑓 (𝒂)] + 𝐸 [𝑓 ′𝑔 (𝒂) (𝑔 − 𝑔)] + 𝐸 [𝑓 ′
ℎ
(𝒂) (ℎ − ℎ)]

+ 𝐸 [1
2
𝑓 ′′𝑔𝑔 (𝒂) (𝑔 − 𝑔)2] + 𝐸 [𝑓 ′′

𝑔ℎ
(𝒂) (𝑔 − 𝑔) (ℎ − ℎ)]

+ 𝐸 [1
2
𝑓 ′′
ℎℎ

(𝒂) (ℎ − ℎ)2] (22)

= 𝐸 [𝑓 (𝒂)] + 𝑓 ′𝑔 (𝒂) 𝐸 [(𝑔 − 𝑔)]︸ ︷︷ ︸
0

+𝑓 ′
ℎ
(𝒂) 𝐸 [(ℎ − ℎ)]︸ ︷︷ ︸

0

+ 1
2
𝑓 ′′𝑔𝑔 (𝒂) 𝐸 [(𝑔 − 𝑔)2]︸ ︷︷ ︸

𝜎2
𝑔

+𝑓 ′′
𝑔ℎ
(𝒂) 𝐸 [(𝑔 − 𝑔) (ℎ − ℎ)]︸ ︷︷ ︸

𝜎2
𝑔ℎ

+ 1
2
𝑓 ′′
ℎℎ

(𝒂) 𝐸 [(ℎ − ℎ)2]︸ ︷︷ ︸
𝜎2
𝑔

(23)

= 𝐸 [𝑓 (𝒂)] + 1
2
𝑓 ′′𝑔𝑔 (𝒂)𝜎2𝑔 + 𝑓 ′′

𝑔ℎ
(𝒂)𝜎2

𝑔ℎ

+ 1
2
𝑓 ′′
ℎℎ

(𝒂)𝜎2
ℎ
, (24)

with 𝜎2
𝑔ℎ

denoting the covariance of the gradient and the hessian.
For a function 𝑓 (𝑔, ℎ) = 𝑔

ℎ
, we have:

𝑓 ′𝑔 = ℎ−1

𝑓 ′
ℎ
= −𝑔ℎ−2

𝑓 ′′𝑔𝑔 = 0

𝑓 ′′
𝑔ℎ

= −ℎ−2

𝑓 ′′
ℎℎ

= 2𝑔ℎ−3 .

Substituting and using 𝒂 = (𝑔,ℎ), 𝑓 (𝒂) = 𝑔

ℎ
:

𝐸 [𝑓 (𝑔, ℎ)] ≈ 𝐸 [𝑓 (𝒂)] − ℎ−2 (𝒂)𝜎2
𝑔ℎ

+ 𝑔ℎ−3 (𝒂)𝜎2
ℎ

(25)

=
𝑔

ℎ
−
𝜎2
𝑔ℎ

ℎ
2 +

𝑔𝜎2
ℎ

ℎ
3 . (26)

Finally, we can include the regularization constant 𝜆 to arrive at
the final estimate of the expectation for the leaf weight 𝑤 𝑗 . This
constant only affects the mean of the random variable ℎ, therefore

we can safely add it to the terms containing ℎ:

𝐸

[
𝑔

(ℎ + 𝜆)

]
≈ 𝑔

(ℎ + 𝜆)
−

𝜎2
𝑔ℎ

(ℎ + 𝜆)2
+

𝑔𝜎2
ℎ

(ℎ + 𝜆)3
. (27)

Note that we can obtain the first-order Taylor approximation of the
mean by dropping the last two terms of Eq. (27):

𝐸

[
𝑔

(ℎ + 𝜆)

]
≈ 𝑔

(ℎ + 𝜆)
. (28)

A.2 Variance
For the variance, we start with the definition of variance for a
function 𝑓 (𝑔, ℎ):

𝑉 [𝑓 (𝑔, ℎ)] = 𝐸
[
(𝑓 (𝑔, ℎ) − 𝐸 [𝑓 (𝑔, ℎ)])2

]
. (29)

We perform a first-order Taylor expansion of 𝑓 (𝑔, ℎ) around the
point 𝒂 = (𝑔,ℎ) and we substitute the first-order approximation of
the mean:

𝑉 [𝑓 (𝑔, ℎ)] ≈ 𝐸

[(
𝑓 (𝒂) + 𝑓 ′𝑔 (𝒂) (𝑔 − 𝑔) + 𝑓 ′

ℎ
(𝒂) (ℎ − ℎ)

− 𝐸 [𝑓 (𝒂)]
)2]

(30)

= 𝐸 [(𝑓 ′𝑔 (𝒂) (𝑔 − 𝑔) + 𝑓 ′
ℎ
(𝒂) (ℎ − ℎ))2] (31)

= 𝐸 [𝑓
′2
𝑔 (𝒂) (𝑔 − 𝑔)2 + 𝑓

′2
ℎ
(𝒂) (ℎ − ℎ)2

+ 2𝑓 ′𝑔 (𝒂) (𝑔 − 𝑔) 𝑓 ′
ℎ
(𝒂) (ℎ − ℎ)] (32)

= 𝑓
′2
𝑔 (𝒂)𝐸 [(𝑔 − 𝑔)2] + 𝑓

′2
ℎ
(𝒂)𝐸 [(ℎ − ℎ)2]

+ 2𝑓 ′𝑔 (𝒂) 𝑓 ′ℎ (𝒂)𝐸 [(𝑔 − 𝑔) (ℎ − ℎ)] (33)

= ℎ
−2
𝜎2𝑔 + 𝑔2ℎ−4𝜎2

ℎ
− 2𝑔ℎ

−3
𝜎2
𝑔ℎ

(34)

=
𝜎2𝑔

ℎ
2 +

𝑔2𝜎2
ℎ

ℎ
4 − 2

𝑔𝜎2
𝑔ℎ

ℎ
3 . (35)

Finally, including the regularization constant 𝜆 we obtain:

𝑉

[
𝑔

(ℎ + 𝜆)

]
≈

𝜎2𝑔

(ℎ + 𝜆)2
+

𝑔2𝜎2
ℎ

(ℎ + 𝜆)4
− 2

𝑔𝜎2
𝑔ℎ

(ℎ + 𝜆)3
. (36)

B REPRODUCIBILITY
We report absolute scores and dataset statistics for the UCI benchmark in Table 4. An overview of the key hyperparameters for each method
for both experiments is given in Table 5, and absolute timings for the timings of Table 2 in Table 6. An overview of the M5 dataset is given in
Table 7. We refer to our code at https://github.com/elephaint/pgbm for further details, such as the features of the M5 dataset, which mainly
comprise lagged target variables, time indicators (e.g., day-of-week), event indicators (e.g., holidays) and item indicators.

Table 4: Results for probabilistic (CRPS) and point (RMSE) performance for each dataset.We reportmeanmetrics over all folds
per method and indicate the standard deviation in brackets. Lower is better.

CRPS RMSE

Dataset folds samples features PGBM NGBoost PGBM NGBoost LightGBM

yacht 20 308 6 0.22 (0.070) 0.32 (0.104) 0.63 (0.213) 0.75 (0.297) 0.64 (0.281)
boston 20 506 13 1.61 (0.201) 1.73 (0.236) 3.05 (0.507) 3.31 (0.661) 3.11 (0.675)
energy 20 768 8 0.21 (0.034) 0.25 (0.022) 0.35 (0.062) 0.49 (0.055) 0.29 (0.075)
concrete 20 1,030 8 2.06 (0.335) 2.95 (0.326) 3.97 (0.759) 5.50 (0.642) 3.80 (0.762)
wine 20 1,599 11 0.33 (0.034) 0.34 (0.024) 0.60 (0.054) 0.62 (0.043) 0.60 (0.050)
kin8nm 20 8,192 8 0.07 (0.002) 0.10 (0.002) 0.13 (0.005) 0.17 (0.003) 0.11 (0.003)
power 20 9,568 4 1.81 (0.053) 2.01 (0.120) 3.35 (0.153) 3.70 (0.222) 3.20 (0.140)
naval 20 11,934 14 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
protein 20 45,730 9 2.19 (0.030) 2.44 (0.038) 3.98 (0.056) 4.50 (0.059) 3.82 (0.058)
msd 1 515,345 90 4.78 4.75 9.09 9.16 9.11
higgs 1 10,500,000 28 0.253 0.238 0.418 0.419 0.414

Table 5: Key hyperparameters for the UCI benchmark and hierarchical time series experiment.

UCI benchmark Hierarchical time series

PGBM NGBoost LightGBM PGBM LightGBM NGBoost

min_split_gain 0 0 0 0 0 0
min_data_in_leaf 1 1 1 1 1 1
max_bin 64 n.a. 64 1024 1024 n.a.
max_leaves 16 n.a. 16 64 64 64
max_depth -1 3 -1 -1 -1 -1
learning_rate 0.1 0.01 0.1 0.1 0.1 0.1
n_estimators 2000 2000 2000 1000 1000 1000
feature_fraction 1.0 1.0 1.0 0.7 0.7 0.7
bagging_fraction 1.0 1.0 1.0 0.7 0.7 0.7
seed 1 1 1 1 1 1
lambda 1.0 n.a. 1.0 1.0 1.0 n.a.
early_stopping_rounds n.a. n.a. n.a. 20 20 20

Table 6: Average time in seconds for running 2,000 iter-
ations for each dataset on the UCI benchmark datasets.
For msd and higgs, a bagging fraction of 0.1 was used.

Probabilistic forecast Point forecast
Dataset PGBM-gpu PGBM-cpu NGBoost LightGBM

wine (n=1,599) 100 41 20 1
naval (n=12k) 103 167 108 2
protein (n=46k) 115 355 389 2
msd (n=515k) 136 3,645 6,628 12
higgs (n=10,5M) 316 32,200 46,744 135

Table 7: M5 dataset description.

M5

time series # 3,049
time series description item product sales
target R+

train samples # 2,415,359
validation samples # 85,372
test samples # 85,372
time step 𝑡 day
features # 48

https://github.com/elephaint/pgbm

	Abstract
	1 Introduction
	2 Background
	3 Probabilistic Gradient Boosting Machines
	3.1 Probabilistic Forecasting
	3.2 Stochastic Leaf Weights
	3.3 Update Equations
	3.4 PGBM
	3.5 Analysis & Discussion

	4 Experiments
	4.1 UCI regression benchmarks
	4.2 Hierarchical time series

	5 Related work
	6 Conclusion
	References
	A Derivation of stochastic leaf weights
	A.1 Expectation
	A.2 Variance

	B Reproducibility

