
Scaling Up Graph Neural Networks Via Graph Coarsening
Zengfeng Huang*

School of Data Science
Fudan University

huangzf@fudan.edu.cn

Shengzhong Zhang
School of Data Science

Fudan University
szzhang17@fudan.edu.cn

Chong Xi
School of Data Science

Fudan University
cxi19@fudan.edu.cn

Tang Liu
Fudan University

cnliutang@gmail.com

Min Zhou
Huawei Technologies Co. Ltd

zhoumin27@huawei.com

ABSTRACT
Scalability of graph neural networks remains one of the major chal-
lenges in graph machine learning. Since the representation of a node
is computed by recursively aggregating and transforming represen-
tation vectors of its neighboring nodes from previous layers, the
receptive fields grow exponentially, which makes standard stochastic
optimization techniques ineffective. Various approaches have been
proposed to alleviate this issue, e.g., sampling-based methods and
techniques based on pre-computation of graph filters.

In this paper, we take a different approach and propose to use
graph coarsening for scalable training of GNNs, which is generic,
extremely simple and has sublinear memory and time costs during
training. We present extensive theoretical analysis on the effect of us-
ing coarsening operations and provides useful guidance on the choice
of coarsening methods. Interestingly, our theoretical analysis shows
that coarsening can also be considered as a type of regularization and
may improve the generalization. Finally, empirical results on real
world datasets show that, simply applying off-the-shelf coarsening
methods, we can reduce the number of nodes by up to a factor of ten
without causing a noticeable downgrade in classification accuracy.

CCS CONCEPTS
• Computing methodologies → Learning latent representations;
Semi-supervised learning settings; Neural networks.

KEYWORDS
Graph Coarsening; Graph Neural Networks; Scalable Training

ACM Reference Format:
Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou.
2021. Scaling Up Graph Neural Networks Via Graph Coarsening. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Singa-
pore. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3447548.
3467256

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467256

1 INTRODUCTION
In the recent few years, graph neural network (GNN) has emerged
as a major tool for graph machine learning [3, 7, 11, 17, 20, 21,
25, 30, 37], which has found numerous applications in scenarios
with explicit or implicit graph structures, e.g., [13, 22, 31, 32, 38,
42, 44]. Despite the tremendous success, the difficulty of scaling up
GNNs to large graphs remains one of the main challenges, which
limits their usage in large-scale industrial applications. In traditional
machine learning settings, the loss function of the model can be
decomposed into the individual sample contributions, and hence
stochastic optimization techniques working with mini-batches can
be employed to tackle training set that is much larger than the GPU
memory. However, GNN computes the representation of a node
recursively from its neighbors, making the above strategy non-viable,
as the loss corresponding to each sample in a ℓ-layer GNN depends
on the subgraph induced by its ℓ-hop neighborhood, which grows
exponentially with ℓ . Therefore, full-batch gradient descent is often
used for training GNNs [20, 37], but this does not scale to large
graphs due to limited GPU memory.

Recently, a large body of research work studies this issue and
various techniques have been proposed to improve the scalability of
GNNs. One prominent direction is to decouple the interdependence
between nodes hence reducing the receptive fields. Pioneered by [17],
layer-wise sampling combined with mini-batch training has proved
to be a highly effective strategy, and since then, several follow-up
works try to improve this baseline with optimized sampling process,
better stochastic estimations, and other extensions [4, 5, 10, 33, 47].
Another related technique is based on subgraph sampling, which
carefully samples a small subgraph in each training iteration and
then simply performs full-batch gradient descent on this subgraph
[8, 43]. In practice, performing random sampling from a large graph
in each epoch requires many random accesses to the memory, which
is not friendly to GPUs [33].

A second approach is largely motivated by [39], in which the
authors show that removing the nonlinear activations in GCN [20]
does not affect the accuracy by much on common benchmarks. The
resulting model is simply a linear diffusion process followed by
a classifier. Then the diffusion process can be pre-computed and
stored, after which the classifier can be trained with naive stochastic
optimization. Recently, this idea is extended to more general prop-
agation rules akin to personalized Pagerank, and highly scalable
algorithms for pre-computing the propagation process are inves-
tigated [2, 6]. Although such methods often perform better than
sampling-based techniques on popular benchmarks [6], they only

ar
X

iv
:2

10
6.

05
15

0v
1

 [
cs

.L
G

]
 9

 J
un

 2
02

1

https://doi.org/10.1145/3447548.3467256
https://doi.org/10.1145/3447548.3467256
https://doi.org/10.1145/3447548.3467256

work for a restricted class of architectures: graph diffusion and non-
linear feature transformation are decoupled, which does not retain
the full expressive power of GNNs [40].
Our Contributions. In this paper, we investigate a simple and
generic approach based on graph coarsening. In a nutshell, our
method first applies an appropriate graph coarsening method, e.g.,
[27], which outputs a coarse graph with much smaller number of
nodes and edges; then trains a GNN on this coarse graph; finally
transfers the trained model parameters of this smaller model to the
GNN defined on the original graph for making inference. Since, the
training is only done on a much smaller graph, the training time
and memory cost are sublinear, while all previous methods have
time complexity at least linear in the number of nodes [6]. Moreover,
full-batch gradient descent can be applied, which not only avoids
doing random sampling on a large graph repeatedly, but is also much
simpler than previous techniques, since any GNN model can be
applied directly without changing the code. Our contributions are
summarized as follows.

(1) A new method based on graph coarsening for scaling up
GNN is proposed, which is generic, extremely simple and has
sublinear training time and memory without using sampling.

(2) Extensive theoretical analysis is presented. We analyze the
effect of coarsening operations on GNNs quantitatively and
provides useful guidance on the choice of coarsening methods.
Interestingly, our theoretical analysis shows that coarsening
can also be considered as a type of regularization and may
improve the generalization, which has been further verified
by the empirical results.

(3) Empirical studies on real world datasets show that, simply
applying off-the-shelf coarsening methods, we can reduce the
number of nodes by up to a factor of ten without causing a
noticeable downgrade in classification accuracy.

We remark that our methods and existing ones mentioned above are
complementary techniques, and can be easily combined to tackle
truly industrial-scale graphs.

2 PRELIMINARIES
2.1 Graph and Matrix Notations
In this paper, all graphs considered are undirected. A graph with
node feature is denoted as𝐺 = (𝑉 , 𝐸, 𝑋), where𝑉 is the vertex set, 𝐸
is the edge set, and 𝑋 ∈ R𝑛×𝑓 is the feature matrix (i.e., the 𝑖-th row
of 𝑋 is the feature vector of node 𝑣𝑖). Let 𝑛 = |𝑉 | and𝑚 = |𝐸 | be the
number of vertices and edges respectively. We use 𝐴 ∈ {0, 1}𝑛×𝑛 to
denote the adjacency matrix of 𝐺 , i.e., the (𝑖, 𝑗)-th entry in 𝐴 is 1 if
and only if their is an edge between 𝑣𝑖 and 𝑣 𝑗 . The degree of a node
𝑣𝑖 , denoted as 𝑑𝑖 , is the number of edges incident on 𝑣𝑖 . The degree
matrix 𝐷 is a diagonal matrix and the its 𝑖-th diagonal entry is 𝑑𝑖 .

For a 𝑑-dimensional vector 𝑥 , ∥𝑥 ∥2 is the Euclidean norm of 𝑥 .
We use 𝑥𝑖 to denote the 𝑖th entry of 𝑥 , and diag(𝑥) ∈ R𝑑×𝑑 is a
diagonal matrix such that the 𝑖-th diagonal entry is 𝑥𝑖 . We use 𝐴𝑖:
and 𝐴:𝑖 to denote the 𝑖-th row and column of 𝐴 respectively, and
𝐴𝑖 𝑗 for the (𝑖, 𝑗)-th entry of 𝐴. We use ∥𝐴∥2 to denote the spectral
norm of 𝐴, which is the largest singular value of 𝐴, and ∥𝐴∥𝐹 for the

Frobenius Norm, which is
√︃∑

𝑖, 𝑗 𝑎
2
𝑖, 𝑗

. The trace of a square matrix
𝐴 is denoted by Tr(A), which is the sum of the diagonals in 𝐴. It is
well-known that Tr(𝐴) is equal to the sum of its eigenvalues. For

notational convenience, we always write 𝐴𝑃 ≜ 𝑃𝑇𝐴𝑃 for any matrix
𝑃 with the same number of rows as 𝐴.

2.2 Graph Laplacian and Graph Fourier
Transformation

The Laplacian matrix of a graph𝐺 is defined as 𝐿𝐺 = 𝐷−𝐴; when the
underling graph𝐺 is clear from the context, we omit the subscription
and simply write 𝐿. A key property of 𝐿 is that its quadratic form
measures the "smoothness" of a signal w.r.t. the graph structure, and
thus is often used for regularization purposes. More formally, for
any vector 𝑥 ∈ R𝑛 , it is easy to verify that

𝑥𝑇 𝐿𝑥 =
∑︁
𝑖, 𝑗

𝐴𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2 =
∑︁

(𝑣𝑖 ,𝑣𝑗) ∈𝐸
(𝑥𝑖 − 𝑥 𝑗)2 . (1)

Here, 𝑥 can be viewed as a one-dimensional feature vector and
𝑥𝑇 𝐿𝑥 measures the smoothness of features across edges. This can be
extended to multi-dimensional features. For any matrix 𝑋 ∈ R𝑛×𝑑 ,
where 𝑋𝑖 is the feature of the 𝑖-th node, then we have∑︁

(𝑣𝑖 ,𝑣𝑗) ∈𝐸
∥𝑋𝑖: − 𝑋 𝑗 :∥2 =

∑︁
𝑖, 𝑗

𝐴𝑖 𝑗 ∥𝑋𝑖: − 𝑋 𝑗 :∥2 = Tr(𝑋𝑇 𝐿𝑋). (2)

In many applications, the symmetric normalized version of 𝐿, i.e.,
𝐷−1/2𝐿𝐷−1/2, is the right matrix to consider, which is denoted as N .
Since N is real symmetric, it can be diagonalized and it is known that
all its eigenvalues are in the range [0, 2]. Let 0 = 𝜆1 ≤ · · · ≤ 𝜆𝑛 ≤ 2
be the eigenvalues of N with corresponding eigenvectors 𝑢1, · · · , 𝑢𝑛
and let N = 𝑈Λ𝑈𝑇 =

∑𝑛
𝑖=1 𝜆𝑖𝑢𝑖𝑢

𝑇
𝑖

be the eigen-decomposition.
In graph signal processing, given an 𝑛-dimensional discrete signal
𝑥 ∈ R𝑛 , its Graph Fourier Transformation (GFT) is 𝑥 = 𝑈𝑇 𝑥 [20].
The corresponding eigenvalue of a Fourier mode is the frequency.
From this perspective, the orthogonal projector to the low-frequency
eigenspace acts as a low-pass filter, which only retains contents in
the lower frequencies; on the other hand, a projector to the high-
frequency space is a high-pass filter.

2.3 Graph Neural Networks
In each layer of a GNN, the representation of a node is computed
by recursively aggregating and transforming representation vectors
of its neighboring nodes from the last layer. One special case is the
Graph Convolutional Network (GCN) [20], which aims to generalize
CNN to graph-structured data. Kipf and Welling [20] define graph
convolution (GC) as 𝑍 = �̃�−1/2�̃��̃�−1/2𝑋𝑊 , where �̃� = 𝐴 + 𝐼 ,
�̃� = 𝐷 + 𝐼 , and 𝑊 is a learnable parameter matrix. GCNs consist
of multiple convolution layers of the above form, with each layer
followed by a non-linear activation. In [21], the authors propose
APPNP, which uses a propagation rules inspired from personalized
Pagerank. More precisely, the APPNP model is defined as follows:

• 𝑍 (1) = 𝐻 ≜ 𝑓 (𝑋,𝑊) , where 𝑓 (𝑋,𝑊) is a neural network
with parameter set𝑊 .

• 𝑍 (𝑘+1) = (1− 𝛽)�̃�−1/2�̃��̃�−1/2𝑍 (𝑘) + 𝛽𝐻 , where 𝛽 ∈ (0, 1] is
a hyperparameter.

3 OUR METHOD
3.1 Graph Coarsening
Given a graph 𝐺 = (𝑉 , 𝐸, 𝑋), the coarse graph is a smaller weighted
graph 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝑋 ′,𝑊) with edge weights 𝑊 . Denote 𝑛′ ≜

|𝑉 ′ | and 𝑚′ ≜ |𝐸 ′ |. 𝐺 ′ is obtained from the original graph by first
computing a partition 𝑃 = {𝐶1,𝐶2, · · · ,𝐶𝑛′} of 𝑉 , i.e., the clusters
𝐶1 · · ·𝐶𝑛′ are disjoint and cover all the nodes in 𝑉 . Each cluster 𝐶𝑖
corresponds to a “super-node” in𝐺 ′ and the “super-edge” connecting
the super-nodes 𝐶𝑖 ,𝐶 𝑗 has weight equal to the total number of edges
connecting nodes in 𝐶𝑖 to 𝐶 𝑗 :𝑊𝑖 𝑗 =

∑
𝑢∈𝐶𝑖 ,𝑣∈𝐶 𝑗

𝐴𝑖 𝑗 .

The partition can be represented by a matrix 𝑃 ∈ {0, 1}𝑛×𝑘 , with
𝑃𝑖 𝑗 = 1 if and only if vertex 𝑖 belongs to cluster 𝐶 𝑗 . So, each row of
𝑃 contains exactly one nonzero entry and columns of 𝑃 are pairwise
orthogonal. Then 𝑊 = 𝐴

𝑃
≜ 𝑃𝑇𝐴𝑃 and 𝐴

𝑃
is identified as the

adjacency matrix of 𝐺 ′. Similarly, 𝐷
𝑃
≜ 𝑃𝑇𝐷𝑃 is the degree matrix

of 𝐺 ′. Note that the number of edges in the coarse graph is also
significantly smaller than 𝑚, as each super-edge combines many
edges in the original graph. It means that the number of non-zero
entries in the adjacency matrix 𝐴

𝑃
is much smaller than 𝐴.

Let 𝑐 𝑗 , 𝑗 = 1, · · ·𝑛′ be the number of vertices in 𝐶 𝑗 , and 𝐶 ≜
diag(𝑐1, · · · , 𝑐𝑘). The normalized version of 𝑃 is 𝑃 ≜ 𝑃𝐶−1/2, i.e.,
𝑃𝑖 𝑗 = 1/√𝑐 𝑗 if 𝑣𝑖 ∈ 𝐶 𝑗 and 0 otherwise. It is easy to verify that 𝑃 has
orthonormal columns, and thus 𝑃𝑇 𝑃 = 𝐼 . We use P to denote the set
of all normalized partition matrices.

3.2 Our Method

The generic algorithm. We mainly focus on the semi-supervised
node classification setting, where we are given an attributed graph
𝐺 = (𝑉 , 𝐸, 𝑋) and labels for a small subset of nodes. Assume the
number of classes is 𝑙 . We use 𝑌 ∈ {0, 1}𝑛×𝑙 to represent the label
information: if 𝑣𝑖 is labeled, then 𝑌𝑖: is the corresponding one-hot
indicator vector, otherwise 𝑌𝑖: = 0. We use GNN𝐺 (𝑊) to denote the
GNN model based on 𝐺 . Given a loss function ℓ , e.g., cross entropy,
the loss of the model is denoted as ℓ (GNN𝐺 (𝑊), 𝑌). The training
algorithm is to minimize the loss w.r.t. 𝑊 . The time and memory
costs of training are proportional to the size of 𝐺 . To improve the
computational costs, we first compute a coarse approximation of 𝐺 ,
denoted as 𝐺 ′, via graph coarsening described above, then minimize
the loss ℓ (GNN𝐺′ (𝑊), 𝑌 ′) w.r.t.𝑊 . The optimal parameter matrix
𝑊 ∗ is then used in GNN𝐺 () for prediction.

In the coarse graph, each node is a super-node corresponding to
a cluster of nodes in the original graph. The feature vector of each
super-node is the mean of the feature vectors of all nodes in the clus-
ter, i.e.,𝑋 ′ = 𝑃𝑇𝑋 . We set the label of each super-node similarly, i.e.,
𝑃𝑇𝑌 . However, it is possible that the super-node contains nodes from
more than one class. For this case, we pick the dominating label,
i.e., apply a row-wise argmax operation on 𝑃𝑇𝑌 . In our experiments,
we find that discarding such super-nodes with mixed labels often
benefits the accuracy. However, in general, more sophisticated ag-
gregation schemes can be applied to suit the application at hand. See
Algorithm 1 for the description of our framework. We remark that
graph coarsening can be efficiently pre-computed on CPUs, where
the main memory size could be much larger than GPUs. The coarse
graph 𝐺 ′ is weighted and the number of nodes in each super-node
may vary significantly. Thus, when constructing the smaller model
GNN𝐺′ (𝑊), we sometimes need to revise the propagation scheme.
Next, we give a slightly more general GC, which is motivated from
our theoretical analysis in Section 4.

Algorithm 1 Training GNN with Graph Coarsening

Input: 𝐺 = (𝑉 , 𝐸, 𝑋); Labels 𝑌 ; Model GNN𝐺 (𝑊); Loss ℓ;
Output: Output trained weight matrix𝑊 ∗

1: Apply a graph coarsening algorithm on 𝐺 , and output a normal-
ized partition matrix 𝑃 .

2: Construct the coarse graph 𝐺 ′ using P;
3: Compute the feature matrix of 𝐺 ′ by 𝑋 ′ = 𝑃𝑇𝑋

4: Compute the labels of 𝐺 ′ by 𝑌 ′ = argmax(𝑃𝑇𝑌)
5: Train parameter 𝑊 to minimize the loss ℓ (GNN𝐺′ (𝑊), 𝑌 ′) to

obtain a optimal weight matrix𝑊 ∗

6: return𝑊 ∗;

Graph convolution on the coarse graph. We define the convolu-
tion operation on 𝐺 ′ as

𝑍 = (𝐷
𝑃
+𝐶)−1/2 (𝐴

𝑃
+𝐶) (𝐷

𝑃
+𝐶)−1/2𝑋 ′𝑊 .

Here we add 𝐶 instead of 𝐼 as in [20] to reflect the relative size of
each super-node, for which we will give a theoretical justification in
Section 4. Also, this definition includes the standard GC as a special
case, i.e., when there is no coarsening, then 𝐶 = 𝐼 . By definitions of
𝑃 and 𝐶, we have

�̃�𝑃 ≜ 𝑃𝑇 �̃�𝑃 = 𝑃𝑇 (𝐴 + 𝐼)𝑃 = 𝐴𝑃 + 𝐼 = 𝐶−1/2𝐴
𝑃
𝐶−1/2 + 𝐼 ,

�̃�𝑃 ≜ 𝑃𝑇 �̃�𝑃 = 𝑃𝑇 (𝐷 + 𝐼)𝑃 = 𝐷𝑃 + 𝐼 = 𝐶−1/2𝐷
𝑃
𝐶−1/2 + 𝐼 .

Since 𝐷
𝑃

is diagonal, �̃�𝑃 is further simplified to 𝐶−1𝐷
𝑃
+ 𝐼 =

𝐶−1 (𝐷
𝑃
+𝐶). Then the coarse graph convolution is equivalent to

𝑍 = �̃�
−1/2
𝑃

�̃�𝑃 �̃�
−1/2
𝑃

𝑋 ′𝑊, (3)

which looks more similar to the standard GC.

4 THEORETICAL FOUNDATIONS
Note that, when 𝛽 → 0, the propagation step of APPNP is the same
as GCN. So one can think of GCN as a model which stacks multi-
ple single-step APPNP models, interlaced by non-linear activations.
In this section, we provide rigorous analysis on how APPNP be-
haves on the coarse graph, present theoretical guarantees on the
approximation errors of different coarsening methods, and make
interesting connections to existing graph coarsening schemes. We
first provide a variational characterization of APPNP, from which
we derive APPNP on the coarse graph.

4.1 A Characterization of APPNP
Let 𝑍 (𝑡) be the output of the 𝑡-th layer in APPNP. It can be shown
that 𝑍 𝑡 converges to the solution to a linear system, see e.g., [21, 45].

PROPOSITION 1. 𝑍 (∞) is the solution to the linear system(
𝐼 − (1 − 𝛽)�̃�−1/2�̃��̃�−1/2

)
𝑍 = 𝛽𝐻 ≜ 𝑓 (𝑋,𝑊) . (4)

It is known that the above linear system is non-singular (in fact
positive definite) when 𝛽 is strictly positive [9], and thus the solution
exists and is unique. It is a standard fact in numerical optimization
that the solution to such a linear system is the optima of some convex
quadratic optimization problem.

PROPOSITION 2. Let 𝑌 ∗ be the optima of the following quadratic
optimization problem:

min
𝑌 ∈R𝑛×ℎ

(1 − 𝛽)Tr
(
𝑌𝑇 𝐿𝑌

)
+ 𝛽 ∥�̃�1/2𝑌 − 𝐻 ∥2𝐹 . (5)

Then 𝑍 ∗ = �̃�1/2𝑌 ∗ is the unique solution to (4).

Let 𝐿′ be the Laplacian of the coarse graph. APPNP on the coarse
graph corresponds to an optimization problem of the same form
except 𝐿 is replaced by 𝐿′. With this perspective, we can quantita-
tively analyze the effect of replacing 𝐿 with 𝐿′ in APPNP. Of course
the quadratic variational representation is not unique, and similar
formulations have been used to derive label and feature propagation
schemes [14, 45, 46].

In (5), the optimization problem is unconstrained. To motivate
graph coarsening, we generalize it to the constrained case, where we
require 𝑌 ∈ C ⊆ R𝑛×ℎ for some constraint set C, i.e.,

min
𝑌 ∈C

(1 − 𝛽)Tr
(
𝑌𝑇 𝐿𝑌

)
+ 𝛽 ∥�̃�1/2𝑌 − 𝐻 ∥2𝐹 . (6)

We will show that applying graph coarsening is roughly equivalent
to putting a special constraint C on APPNP. Therefore, coarsening
can also be considered as a type of regularization and may improve
the generalization, which is verified by our empirical results.

Possible Choices of C. The canonical example of C is a set of
matrices whose columns are within some 𝑘-dimensional subspace
with 𝑘 < 𝑛. More precisely, let 𝑉 ∈ R𝑛×𝑘 be an orthonormal basis
of the 𝑘-dimensional subspace, then 𝐶 = {𝑌 : 𝑌 = 𝑉𝑅, for some 𝑅 ∈
R𝑘×ℎ}. Different choices of C’s give rise to different variants of
APPNP, e.g., one could encode sparsity, rank, and general norm
constraints in C, which may be highly useful depending on the tasks
and datasets at hand. For the graph coarsening purpose, we will
only focus on the case where C is a subspace. Nevertheless, being
subspaces has already included many interesting special cases. For
instance, when C is the eigenspace of the normalized Laplacian
N corresponding to small eigenvalues, then it acts as a low-pass
filter; on the other hand, when C consists of eigenvectors with high
eigenvalues, then it is a high-pass filter.

4.2 Subspace Constraints and Dimensionality
Reduction

In this subsection, we show that subspace constraints will ben-
efit computation, as we essentially only need to solve a lower-
dimensional problem. From now on, C is always a linear subspace
of dimension 𝑘 , and let 𝑉 ∈ R𝑛×𝑘 be an orthonormal basis of C. As
a result, (6) can be rewritten as

min
𝑌 :𝑌=𝑉𝑅 for some 𝑅∈R𝑘×ℎ

(1 − 𝛽)Tr
(
𝑌𝑇 𝐿𝑌

)
+ 𝛽 ∥�̃�1/2𝑌 − 𝐻 ∥2𝐹 . (7)

Thus, we only need to solve a lower-dimensional problem

𝑅∗ = arg min
𝑅∈R𝑘×ℎ

(1 − 𝛽)Tr
(
𝑅𝑇𝑉𝑇 𝐿𝑉𝑅

)
+ 𝛽 ∥�̃�1/2𝑉𝑅 − 𝐻 ∥2𝐹 . (8)

The optima of (7) can be recover via 𝑌 ∗ = 𝑉𝑅∗. Let 𝐿𝑉 = 𝑉𝑇 𝐿𝑉 ,
which is an 𝑘 × 𝑘 matrix and thus much smaller than 𝐿, similarly
let 𝐴𝑉 = 𝑉𝑇𝐴𝑉 , �̃�𝑉 = 𝑉𝑇 �̃�𝑉 = 𝐴𝑉 + 𝐼 , 𝐷𝑉 = 𝑉𝑇𝐷𝑉 and �̃�𝑉 =

𝑉𝑇 �̃�𝑉 = 𝐷𝑉 + 𝐼 .

THEOREM 4.1. Let 𝑅∗ be the optima of the quadratic optimiza-
tion problem (8). Then 𝑍 ∗ = �̃�

1/2
𝑉

𝑅∗ is the unique solution to the
linear system(

𝐼 − (1 − 𝛽)�̃�−1/2
𝑉

�̃�𝑉 �̃�
−1/2
𝑉

)
𝑍 = 𝛽�̃�

−1/2
𝑉

𝑉𝑇 �̃�1/2𝐹 .

PROOF. By taking the gradient of (8) and set it to 0, we have

(1 − 𝛽) (𝐷𝑉 −𝐴𝑉)𝑅∗ + 𝛽 (𝐷𝑉 + 𝐼)𝑅∗ − 𝛽𝑉𝑇 �̃�1/2𝐹 = 0.

By rearranging the terms, it implies

(𝐷𝑉 + 𝐼 − (1 − 𝛽) (𝐴𝑉 + 𝐼)) 𝑅∗ = 𝛽𝑉𝑇 �̃�1/2𝐹

=⇒ �̃�
1/2
𝑉

(�̃�1/2
𝑉

− (1 − 𝛽)�̃�−1/2
𝑉

�̃�𝑉)𝑅∗ = 𝛽𝑉𝑇 �̃�1/2𝐹 .

Multiply both sides by �̃�
−1/2
𝑉

and reparameterize 𝑍 ∗ = �̃�
1/2
𝑉

𝑅∗,(
𝐼 − (1 − 𝛽)�̃�−1/2

𝑉
�̃�𝑉 �̃�

−1/2
𝑉

)
𝑍 ∗ = 𝛽�̃�

−1/2
𝑉

𝑉𝑇 �̃�1/2𝐹,

which proves the lemma. □

One should see the resemblance between the above equation
and (4), and thus we may approximately solve 𝑍 ∗ using the same
propagation rule.

COROLLARY 4.2. Consider the propagation rule:

• 𝑍 (1) = 𝐻 ′ ≜ �̃�
−1/2
𝑉

𝑉𝑇 �̃�1/2𝐻 ,

• 𝑍 (𝑘+1) = (1 − 𝛽)�̃�−1/2
𝑉

�̃�𝑉 �̃�
−1/2
𝑉

𝑍 (𝑘) + 𝛽𝐻 ′.

Then, 𝑍 𝑡 converges to 𝑍 ∗.

This is almost the same as APPNP, but now the dimension, i.e.,
the size of the symmetric propagation matrix �̃�

−1/2
𝑉

�̃�𝑉 �̃�
−1/2
𝑉

is 𝑘 by
𝑘 , which is smaller than that in the original APPNP.

Unfortunately, now the time to compute the propagation matrix,
�̃�
−1/2
𝑉

�̃�𝑉 �̃�
−1/2
𝑉

, is 𝑂 (𝑛𝑘2) which is expensive for moderately large
𝑘. Note the original propagation matrix �̃�−1/2�̃��̃�−1/2 can be com-
puted in time 𝑂 (𝑚), and for sparse graph this is only 𝑂 (𝑛). More-
over, �̃�−1/2

𝑉
�̃�𝑉 �̃�

−1/2
𝑉

is a dense matrix, which requires 𝑂 (𝑘2) space
to store and in each propagation, the time complexity is 𝑂 (𝑘2ℎ),
where ℎ is the size of feature vectors in 𝑍 (𝑡) . In comparison, for
sparse graphs, �̃�−1/2�̃��̃�−1/2 only requires 𝑂 (𝑚) space and each
propagation takes 𝑂 (𝑚ℎ) time. Therefore, unless the reduction ratio
is extremely high, say reduce from 106 to 103, the computational
costs and space usage could increase significantly, which defeats the
purpose of graph coarsening in the first place.

4.3 Sparse Projections and Graph Coarsening
To overcome the above issues, we restrict the orthonormal matrix
𝑉 to be sparse. In this paper, we will only consider the family of
normalized partition matrices of size 𝑛 × 𝑘 (see Section 3.1 for the
definitions), denoted as P. Given a target constraint subspace C
and its orthonormal basis 𝑉 , we will first find a matrix 𝑃 ∈ P that
is close to 𝑉 and then replace 𝑉 with 𝑃 in (8). Since 𝑃 is also an
orthonormal matrix, we can apply Corollary 4.2 directly. Therefore,
for this surrogate quadratic objective, the propagation rule become

1) 𝑍 (1) = 𝐻 := �̃�
−1/2
𝑃

𝑃𝑇 �̃�1/2𝐹 ,

2) 𝑍 (𝑘+1) = (1 − 𝛽)�̃�−1/2
𝑃

�̃�𝑃 �̃�
−1/2
𝑃

𝑍 (𝑘) + 𝛽𝐻 .
The above propagation converges to some 𝑅 close to 𝑅∗ (8), as

long as 𝑃 ≈ 𝑉 . How to find such a 𝑃 will be discussed in the

following subsections. Recall that �̃�𝑃 = 𝐴𝑃 + 𝐼 = 𝑃𝑇𝐴𝑃 + 𝐼 ; and
�̃�𝑃 = 𝑃𝑇𝐷𝑃 + 𝐼 is still a diagonal matrix. Note when 𝑃 = 𝐼 , i.e., there
is no coarsening, this recovers APPNP. Moreover, the propagation
matrix �̃�

−1/2
𝑃

�̃�𝑃 �̃�
−1/2
𝑃

is exactly the graph convolution we defined
for coarse graph in Section 3.2. Now since 𝑃 contains one non-zero
entry per row, the time complexity to compute �̃�

−1/2
𝑃

�̃�𝑃 �̃�
−1/2
𝑃

is
𝑂 (𝑚), which is 𝑂 (𝑛) for sparse graph. The number of non-zero
entries in �̃�

−1/2
𝑃

�̃�𝑃 �̃�
−1/2
𝑃

is 𝑚′, i.e., the number of super-edges in
𝐺 ′. Then the space to store it is 𝑂 (𝑚′) and the time complexity
to compute each propagation is 𝑂 (𝑚′ℎ). Thus, the time and space
complexity in the forward pass are improved by a factor of 𝑚

𝑚′ over
the original graph, and note 𝑚′ could be much smaller than 𝑚 as
each super-edge corresponds to many edges in the original graph.
More importantly, the number of nodes is reduced from 𝑛 to 𝑛′. So,
the space and time complexity in backpropagation are improved by
a factor of 𝑛

𝑛′ .

4.4 Nuclear Norm Error, 𝑘-Means, and Spectral
Clustering

From the above discussion, the main question left is how to effi-
ciently compute a partition matrix 𝑃 which is a good approximation
to the target orthonormal matrix 𝑉 . In this subsection, we provide
suitable metrics to quantify the approximation error and give efficient
and effective approximation algorithms.

Our goal is to find a matrix 𝑃 ∈ P whose column space is close
to the space spanned by 𝑉 . Since both 𝑃 and 𝑉 are orthonormal, so
if 𝑃 is close to 𝑉 , then 𝑃𝑇𝑉 should be close to identity. Hence, one
natural error metric is the distance between 𝑃𝑇𝑉 and 𝐼 . Since 𝑃𝑇𝑉
is not symmetric in general, it is more convenient to measure the
distance between𝑉𝑇 𝑃𝑃𝑇𝑉 and 𝐼 , or ∥𝑉𝑇 𝑃𝑃𝑇𝑉 − 𝐼 ∥ for some matrix
norm ∥ · ∥. We next show that, when the matrix norm is chosen to be
the nuclear norm (denoted as ∥ · ∥1), i.e., the sum of singular values,
the problem is equivalent to 𝑘-means clustering.

THEOREM 4.3. Let 𝑆 = {𝑣1, · · · , 𝑣𝑛} be a set of𝑛 points, where 𝑣𝑖
is the 𝑖-th row of 𝑉 . Let Cost(𝑃) be the 𝑘-means cost of the partition
induced by 𝑃 with respect to 𝑆 . Then we have ∥𝐼 − 𝑉𝑇 𝑃𝑃𝑇𝑉 ∥1 =

Cost(𝑃) for all 𝑃 ∈ P.

PROOF. First observe that the matrix 𝐼 − 𝑉𝑇 𝑃𝑃𝑇𝑉 is positive
semidefinite, and therefore

∥𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉 ∥1 = Tr
(
𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉

)
. (9)

Moreover,

Tr
(
𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉

)
= Tr

(
𝑉𝑇𝑉 −𝑉𝑇 𝑃𝑃𝑇𝑉

)
= Tr

(
𝑉𝑇𝑉 − 2𝑉𝑇 𝑃𝑃𝑇𝑉 +𝑉𝑇 𝑃𝑃𝑇𝑉

)
= Tr

(
𝑉𝑇𝑉 − 2𝑉𝑇 𝑃𝑃𝑇𝑉 +𝑉𝑇 𝑃𝑃𝑇 𝑃𝑃𝑇𝑉

)
= Tr

(
(𝑃𝑃𝑇𝑉 −𝑉)𝑇 (𝑃𝑃𝑇𝑉 −𝑉)

)
= ∥𝑃𝑃𝑇𝑉 −𝑉 ∥2𝐹 ,

where in the last equality, we use the fact that ∥𝐴∥2
𝐹
= Tr(𝐴𝑇𝐴) for

any 𝐴. Together with (9), we have

∥𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉 ∥1 = ∥𝑃𝑃𝑇𝑉 −𝑉 ∥2𝐹 . (10)

The r.h.s. of (10) is exactly the 𝑘-means cost of the partition induced
by 𝑃 . To see this, let 𝐶1, · · · ,𝐶𝑘 be the clusters of points in this
partition, i.e., 𝑣𝑖 ∈ 𝐶 𝑗 iff 𝑃𝑖 𝑗 ≠ 0, then the corresponding 𝑘-means
cost of this partition is

Cost(𝑃) =
𝑘∑︁
𝑗=1

∑︁
𝑣∈𝐶 𝑗

∥𝑣 − 𝑔 𝑗 ∥22, (11)

where 𝑔 𝑗 is the centroid of the 𝑗-th cluster. Recall the definition of
𝑃 (with 𝑃 = 𝑃𝐶−1/2), which is the unnormalized partition matrix.
Then 𝑔 𝑗 =

1
|𝐶 𝑗 |

∑
𝑣∈𝐶 𝑗

𝑣 = 1
𝑐 𝑗
𝑃𝑇:𝑗𝑉 . Therefore,

Cost(𝑃) =
𝑘∑︁
𝑗=1

∑︁
𝑣∈𝐶 𝑗

∥𝑣 − 1
𝑐 𝑗
𝑃𝑇:𝑗𝑉 ∥22 =

𝑛∑︁
𝑖=1

∥𝑣𝑖 −
1
𝑐 𝑗
𝑃𝑖:𝑃

𝑇𝑉 ∥22

= ∥𝑃𝑃𝑇𝑉 −𝑉 ∥2𝐹 .

By (10), we have Cost(𝑃) = ∥𝐼 − 𝑉𝑇 𝑃𝑃𝑇𝑉 ∥1 for all normalized
partition matrix 𝑃 ∈ P, which proves the Lemma. □

We have the following simple corollary.

COROLLARY 4.4. 𝑃∗ = argmin𝑃 ∈P ∥𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉 ∥1 if and only
if the partition induced by 𝑃∗ has optimal 𝑘-means cost w.r.t. 𝑆 .

Connection to Spectral Clustering. From the above corollary, to
obtain a good approximation 𝑃 in terms of nuclear norm, it is equiva-
lent to solve the 𝑘-means problem w.r.t.𝑉 . Note that when𝑉 consists
of the 𝑘 eigenvectors of the normalized Laplacian N with lowest
eigenvalues, then applying 𝑘-means to 𝑉 is the spectral clustering
algorithm. Thus, in this paper, we provide an alternative explanation
of the role of 𝑘-means in spectral clustering algorithms.

For sparse graphs, the time to compute the 𝑘 lowest eigenvectors
will be dominated by the complexity of 𝑘-means computation. In
the worst case, the 𝑘-means problem is known to be NP-hard, and
approximation algorithms are used in practice, e.g., Lloyd’s algo-
rithm [26], which takes 𝑂 (𝑛𝑘𝑑) time per iteration, where 𝑑 is the
dimension of each points. For spectral clustering 𝑑 = 𝑘. Therefore,
spectral clustering does not scale well to large graphs for our appli-
cation, since 𝑘 , the number of clusters, will be quite large compared
to typical graph clustering scenarios. We next investigate a relaxed
error norm, and make a connection to a recent work of Loukas [27]
on graph coarsening.

4.5 Spectral Norm Error
In the above subsection, we measure the error of 𝑃 w.r.t. 𝑉 by ∥𝐼 −
𝑉𝑇 𝑃𝑃𝑇𝑉 ∥1, which is the sum of singular values; next we relax this
to the spectral norm ∥𝐼 − 𝑉𝑇 𝑃𝑃𝑇𝑉 ∥2, i.e., the maximum singular
value. We have

∥𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉 ∥2 = max
𝑥 :∥𝑥 ∥2=1

���𝑥𝑇 (𝑉𝑇𝑉 −𝑉𝑇 𝑃𝑃𝑇𝑉)𝑥
���

= max
𝑥 :∥𝑥 ∥2=1

���𝑥𝑇𝑉𝑇𝑉𝑥 − 𝑥𝑇𝑉𝑇 𝑃𝑃𝑇 𝑃𝑃𝑇𝑉𝑥

���
= max

𝑥 :∥𝑥 ∥2=1

���∥𝑉𝑥 ∥22 − ∥𝑃𝑃𝑇𝑉𝑥 ∥22
���

Note that 𝑦 = 𝑉𝑥 has norm 1 for any unit-norm 𝑥 , and thus {𝑦 :
𝑦 = 𝑉𝑥,∀x s.t. ∥𝑥 ∥2 = 1} is the set of all unit vector in the subspace
spanned by 𝑉 , i.e., C. Thus we have

∥𝐼 −𝑉𝑇 𝑃𝑃𝑇𝑉 ∥2 = max
𝑦∈C, ∥𝑦 ∥=1

���∥𝑦∥22 − ∥𝑃𝑃𝑇𝑦∥22
���

= max
𝑦∈C

��∥𝑦∥22 − ∥𝑃𝑃𝑇𝑦∥22
��

∥𝑦∥22

= max
𝑦∈C

∥𝑦 − 𝑃𝑃𝑇𝑦∥22
∥𝑦∥22

, (12)

where the last equality is from Pythagorean theorem (since 𝑃𝑃𝑇

is an orthogonal projection). This is essentially equivalent to the
Grassmannian distance between two subspaces, which is defined
as ∥𝑃𝑃𝑇 −𝑉𝑉𝑇 ∥2. The equivalence proof is nontrivial and can be
found in the book [19] (Theorem 6.34).

The above error measure is independent on the underlying graph.
In many graph applications, it is often more suitable to use a gen-
eralized Euclidean norm ∥ · ∥𝐿 , i.e., ∥𝑥 ∥𝐿 =

√
𝑥𝑇 𝐿𝑥 , where 𝐿 is the

Laplacian of the graph. Using this generalized norm in (12), we will
consider the following graph dependent error metric:

max
𝑦∈C

∥𝑦 − 𝑃𝑃𝑇𝑦∥2
𝐿

∥𝑦∥2
𝐿

. (13)

It is still difficult to efficiently compute an partition matrix 𝑃 that
minimize the above objective. Fortunately, this objective has been
studied in [27] recently (see Definition 11 in [27]), and the author
proposed efficient approximation algorithms for the case when 𝑉

is the first 𝑘 eigenvectors. Moreover, several effective heuristics are
discussed and tested empirically on real world datasets.

In our experiments, the coarsening algorithms from [27], which
aim to minimize (13), perform better than spectral clustering. We
believe this is mainly due to the generalized Euclidean norm used.
Next, we provide a theoretical explanation on this.

THEOREM 4.5. Suppose max𝑦∈C
∥𝑦−𝑃𝑃𝑇 𝑦 ∥𝐿

∥𝑦 ∥𝐿 ≤ 𝜀 < 1, then we

have for any 𝑦 ∈ C, there exists 𝑥 ∈ R𝑘 such that���𝑦𝑇 𝐿𝑦 − 𝑥𝑇 𝑃𝑇 𝐿𝑃𝑥

��� ≤ 3𝜀∥𝑦∥2𝐿 .

PROOF. Given 𝑦, we simply set 𝑥 = 𝑃𝑇𝑦. Then,����√︃𝑦𝑇 𝐿𝑦 −
√︁
𝑥𝑇 𝑃𝑇 𝐿𝑃𝑥

���� = ����√︃𝑦𝑇 𝐿𝑦 −
√︃
𝑦𝑇 𝑃𝑃𝑇 𝐿𝑃𝑃𝑇𝑦

����
=

���∥𝐿1/2𝑦∥2 − ∥𝐿1/2𝑃𝑃𝑇𝑦∥2
���

≤ ∥𝐿1/2 (𝑦 − 𝑃𝑃𝑇𝑦)∥2 Triangle inequality

= ∥𝑦 − 𝑃𝑃𝑇𝑦∥𝐿

≤ 𝜀

√︃
𝑦𝑇 𝐿𝑦 By assumption

Equivalently, (1 − 𝜀)∥𝑦∥𝐿 ≤
√
𝑥𝑇 𝑃𝑇 𝐿𝑃𝑥 ≤ (1 + 𝜀)∥𝑦∥𝐿 , which

implies (1 − 𝜀)2∥𝑦∥2
𝐿
≤ 𝑥𝑇 𝑃𝑇 𝐿𝑃𝑥 ≤ (1 + 𝜀)2∥𝑦∥2

𝐿
. Since (1 − 𝜀)2 =

1 − 2𝜀 + 𝜀2 ≥ 1 − 2𝜀 and (1 + 𝜀)2 = 1 + 2𝜀 + 𝜀2 ≤ 1 + 3𝜀, the theorem
follows from the above inequalities. □

Similarly, if we have max𝑦∈span(𝑃)
∥𝑦−𝑉𝑉𝑇 𝑦 ∥𝐿

∥𝑦 ∥𝐿 ≤ 𝜀 < 1, we can

also prove that, for any 𝑥 ∈ R𝑘 , there exists 𝑦 ∈ C such that���𝑦𝑇 𝐿𝑦 − 𝑥𝑇 𝑃𝑇 𝐿𝑃𝑥

��� ≤ 3𝜀∥𝑃𝑥 ∥2𝐿 .

For graph coarsening, we essentially replace the graph regularization
term 𝐸 (𝑦) = 𝑦𝑇 𝐿𝑦,𝑦 ∈ C in (6) by 𝐸 ′(𝑥) = 𝑥𝑇 𝑃𝑇 𝐿𝑃𝐿𝑥, 𝑥 ∈ R𝑘 . So
if the two conditions holds simultaneously, this replacement does
not change the optimization problem by much, and the resulting
embedding should be similar, which is qualitatively verified in the
experiments.

5 RELATED WORK
To overcome the scalability issue of training GNNs. Layer-wise
sampling combined with mini-batch training has been extensively
studied [4, 5, 10, 17, 33, 47]. Subgraph sampling for scaling up
GNNs, which sample a small subgraph in each training iteration
and perform full-batch training on this subgraph, is also explored
recently [8, 43]. The authors in [33] study the problem of how to
reduce the sampling frequency in aforementioned sub-sampling ap-
proaches. Edge sampling is also used as effective tool for tackling
oversmoothing [34]. Another approach focuses on how to simplify
the models without sacrificing, in particular, to decouple the graph
diffusion process from the feature transformation. In this way, the
diffusion process can be pre-computed and stored, after which the
classifier can be trained with naive stochastic optimization[2, 6, 39].
[35] propose a method to pre-compute and store graph convolu-
tional filters of different size. Graph reduction techniques have been
used to speed up combinatorial problems [15, 29]. Graph reduction
with spectral approximation guarantees are studied in [18, 23, 27].
Recently, graph coarsening has been applied to speedup graph em-
bedding algorithms [12, 16, 24]. As far as we are aware, this is
the first work applying graph coarsening to speedup the training of
GNNs in the semi-supervised setting.

6 EXPERIMENTS
In this section, we evaluate the performance of our method on two
representative GNN architectures, namely GCN and APPNP: GCN
has a structure with interlacing layers of graph diffusion and feature
transformation, and APPNP decouples feature transformation from
the diffusion. We compare the effect of different coarsening ratios
on GCN and APPNP, including the full-graph training. We also test
the effect of several representative graph coarsening methods.

6.1 Experimental Setup
Data splits. The results are evaluated on five real world networks
Cora, Citeseer, Pubmed, Coauthor Physics and DBLP [1, 20, 36] for
semi-supervised node classification. Refer to the appendix for more
details of the five datasets. For Cora, Citeseer, and Pubmed, we use
the public split from [41], which is widely used in the literature. In
particular, the training set contains 20 labeled nodes per class, with
an additional validation set of 500 and accuracy is evaluated on a
test set of 1,000 nodes. For the other two datasets, the performance
is tested on random splits [36], where 20 labeled nodes per class are
selected for training, 30 per class for validation, and all the other
nodes are used for testing. Moreover, we also test the performances

Table 1: Summary of results in terms of mean classification accuracy and standard deviation (in percent) over 20 runs on different
datasets. The coarsening ratios of GCN and APPNP are 𝑐 = [0.7, 0.5, 0.3, 0.1] for each dataset respectively. The highest accuracy for
each model in each column is highlighted in bold.

Method Cora Citeseer Pubmed Coauthor Physics DBLP

5 Fixed 5 Fixed 5 Fixed 5 20 5 20

GCN 67.5±4.8 81.5±0.6 57.3±3.7 71.1±0.7 67.4±5.6 79.0±0.6 91.2±2.1 93.7±0.6 61.5±4.8 72.6±2.3
GCN (c=0.7) 67.9±4.3 82.3±0.6 57.5±5.9 71.8±0.4 68.3±5.2 78.9±0.4 91.0±1.9 93.8±0.6 61.4±5.0 72.1±2.1
GCN (c=0.5) 68.8±4.6 82.7±0.5 57.7±5.3 72.0±0.5 68.9±4.4 78.5±0.3 91.5±2.0 93.7±0.7 61.8±4.8 72.7±2.0
GCN (c=0.3) 69.4±4.5 81.7±0.5 58.1±5.2 71.4±0.3 68.7±4.2 78.4±0.4 90.8±2.3 93.4±0.6 64.8±5.2 74.5±1.9
GCN (c=0.1) 67.6±5.1 77.8±0.7 58.3±6.3 71.1±0.4 68.5±5.2 78.3±0.5 87.8±3.6 91.5±1.4 67.9±5.6 76.0±2.1

APPNP 72.8±3.8 83.3±0.5 59.4±4.5 71.8±0.5 70.4±4.9 80.1±0.2 92.0±1.6 94.0±0.6 72.9±4.2 79.0±1.1
APPNP (c=0.7) 73.9±4.6 83.9±0.8 59.7±4.3 71.8±0.6 70.7±5.5 80.4±0.3 92.3±1.6 93.7±0.8 72.0±4.5 78.7±1.3
APPNP (c=0.5) 73.4±4.3 83.7±0.7 60.4±4.8 72.0±0.5 71.2±5.0 79.6±0.3 91.8±1.9 93.9±0.5 72.3±4.0 79.1±1.2
APPNP (c=0.3) 73.1±3.5 82.5±0.6 60.9±5.7 71.6±0.4 70.6±5.3 78.4±0.7 91.7±1.5 93.6±0.6 72.7±4.2 79.7±1.0
APPNP (c=0.1) 70.8±4.9 80.2±0.8 60.7±5.8 71.8±0.5 70.4±4.9 77.3±0.5 88.6±3.3 91.0±1.2 72.1±5.8 79.0±1.7

orig c=0.7 c=0.5 c=0.3 c=0.1
Cora

0

2

4

6

8

10

12

14

16

M
em

or
y

Us
ag

e

16.9

12.3

9.2

6.2

3.1

orig c=0.7 c=0.5 c=0.3 c=0.1
Citeseer

0

10

20

30

40

50

M
em

or
y

Us
ag

e

49.9

40.2

33.6

27.2

20.8

orig c=0.7 c=0.5 c=0.3 c=0.1
Pubmed

0

10

20

30

40

50

M
em

or
y

Us
ag

e

48.9

34.3

24.6

14.9

5.2

orig c=0.7 c=0.5 c=0.3 c=0.1
Coauthor Physics

0

200

400

600

800

1000

M
em

or
y

Us
ag

e

1132.6

793.4

567.5

341.8

115.9

orig c=0.7 c=0.5 c=0.3 c=0.1
DBLP

0

20

40

60

80

100

120

M
em

or
y

Us
ag

e

121.7

88.4

66.2

44.1

21.9

Figure 1: The Memory Usage of APPNP and coarse APPNP.

on each dataset under few label rates. We also evaluate in the few-
shot regime, where, for each dataset, the training and validation
set both have 5 labeled nodes per class, and the test set consists of
all the rest. All the results are averaged over 20 runs and standard
deviations are reported.
Implementation details. For the original GCN and APPNP, we
follow the settings suggested in the previous papers [28, 36] for hy-
perparameters. In addition, we tuned the hyperparameter of models
for better performance on Coauthor Physics and DBLP. For the fair-
ness of comparison, our models use the same network architectures
as baselines. For evaluating the effect of different coarsening ratios,
we report the results of variation neighborhoods coarsening; see [27]
for the detail. During the coarsening process, we remove super-nodes
with mixed labels from the training set and the validation set, and
also remove unlabeled isolated nodes. The detailed hyperparameter
settings are listed in appendix.

6.2 Results and Analysis
Table 1 presents the node classification accuracy and standard devia-
tion of different coarsening ratios. The memory usages are summa-
rized in Figure 1.
Performance of GCN. Our results demonstrate that coarse GCN
achieves good performance across five datasets under diffenernt
experimental settings. In most cases, the coarsening operation will
not reduce the accuracy by much. Interestingly, the best result for
all settings (except for the public split on Pubmed) is not achieved
on full-graph training. This verifies our hypothesis on the regular-
ization effect of graph coarsening. It is also observed that, when
the coarsening ratio is 0.3, the performance of GCN is competitive

against full-graph training; actually, the performance is improved on
7 out of 10 settings. Even when the graph is reduced by 10 times,
the performance is still comparable and in 6 out of 10 cases, the
accuracy is higher than or the same as using full-graph training.
Performance of APPNP. For APPNP, we observe similar phe-
nomenons as for GCN, even though the performance gain is not
as noticeable as that on GCN. The resuts clearly are clearly consis-
tent with our theoretical analysis.
Memory Usage. Figure 1 shows the memory usage of APPNP with
different coarsening ratios; The memory usages of GCN are very
similar to APPNP, and thus we omit the results on GCN. Compared
with the size of the input tensor, the space occupied by the parameters
is very small, so the proportion of the space occupied by the coarse
APPNP is close to the coarsening rate.
Visualization. We provide visualizations of the output layer with
t-SNE for qualitative analyses. Here, we present the visualization
results with different coarsening ratios on Cora in Figure 2, where
nodes with the same color are from the same class. We clearly ob-
serve that, even though the number of nodes are different for each
coarsening ratio, the overall distribution of node embeddings are
quite similar across all ratios. This qualitatively verifies the theoreti-
cal analysis on the approximation quality of graph coarsening.

6.3 Studies on Different Coarsening Methods
Here we also study the efficacy of different coarsening methods for
the proposed framework. We test the classification performance of
four coarsening methods discussed in [27] together with spectral
clustering on Cora and DBLP. The four coarsening methods from
[27] are Variation Neighborhoods, Variation Edges, Algebraic JC

Table 2: Summary of results in terms of accuracy, standard deviation and coarsening time(secs) with different coarsening methods.

Dataset Coarsening Method c=0.7 c=0.5 c=0.3

GCN APPNP Time GCN APPNP Time GCN APPNP Time

Cora

Spectral Clustering 82.2±0.5 83.2±0.4 23.4 81.5±0.7 82.5±0.5 16.3 79.4±0.5 78.0±1.3 10.0
Variation Neighborhoods 82.3±0.6 83.9±0.8 2.0 82.7±0.5 83.7±0.7 1.3 81.7±0.5 82.5±0.6 2.1
Variation Edges 82.3±0.5 83.6±0.6 0.3 82.2±0.5 83.9±0.5 0.5 80.0±0.4 81.1±0.7 0.6
Algebraic JC 81.9±0.7 82.9±0.7 0.3 81.6±0.6 83.5±0.6 0.5 82.2±0.5 82.5±0.7 0.7
Affinity GS 81.4±0.4 83.3±0.4 2.3 82.0±0.7 83.7±0.6 3.2 81.2±0.6 81.9±1.1 3.7

DBLP

Spectral Clustering 71.5±2.2 78.9±1.0 720.6 72.8±1.9 78.7±0.9 492.2 73.7±1.8 77.4±1.3 273.5
Variation Neighborhoods 72.1±2.1 78.7±1.3 8.3 72.7±2.0 79.1±1.2 9.4 74.5±1.9 79.7±1.0 12.6
Variation Edges 72.3±2.4 78.9±1.0 2.8 73.4±1.9 79.1±1.2 4.3 74.2±1.7 79.5±1.2 6.2
Algebraic JC 72.5±2.3 78.6±1.6 3.0 73.1±2.0 78.3±1.1 5.5 74.0±1.7 79.1±1.2 7.3
Affinity GS 73.2±2.1 79.2±1.6 135.7 73.9±1.7 79.6±0.7 199.6 75.3±1.6 79.9±1.1 225.9

(a) GCN (b) GCN (c=0.7) (c) GCN (c=0.5) (d) GCN (c=0.3)

(e) APPNP (f) APPNP (c=0.7) (g) APPNP (c=0.5) (h) APPNP (c=0.3)

Figure 2: Visualization of embeddings with t-SNE.

and Affinity GS. In order to compare fairly, we use the same network
structure and hyperparameters.

Table 2 shows the result of different coarsening methods. Except
for spectral clustering, there is no obvious difference between other
coarsening methods. Compared with other methods, Variation Neigh-
borhoods has best overall testing accuracies, and the coarsening time
of variation neighborhoods is also acceptable. Variation Edge and
Algebraic JC are competitive in classification accuracies, and their
computational time is faster than Variation Neighborhoods.The time
of spectral clustering is high mainly because the number of clusters
in the 𝑘-means steps is large,and we can observe that the time goes
down as the coarsening ratio gets lower.

7 CONCLUSION
In this paper, we propose a different approach, which use graph
coarsening, for scalable training of GNNs. Our method is generic,
extremely simple and has sublinear training time and space. We
present rigorous theoretical analysis on the effect of using coarsening
operations and provides useful guidance on the choice of coarsening

methods. Interestingly, our theoretical analysis shows that coarsening
can also be considered as a type of regularization and may improve
the generalization. Finally, empirical results on real world datasets
show that, simply applying off-the-shelf coarsening methods, we can
reduce the number of nodes by up to a factor of ten without causing
a noticeable downgrade in classification accuracy. To sum up, this
paper adds a new and simple technique in the toolbox for scaling up
GNNs; from our theoretical analysis and empirical studies, it proves
to be highly effective.

8 ACKNOWLEDGMENTS
This work is supported by Shanghai Sailing Program Grant No.
18YF1401200, National Natural Science Foundation of China Grant
No. 61802069, Shanghai Science and Technology Commission
Grant No. 17JC1420200, and Science and Technology Commis-
sion of Shanghai Municipality Project Grant No. 19511120700.

REFERENCES
[1] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-

ding of Graphs: Unsupervised Inductive Learning via Ranking. In International

Conference on Learning Representations.
[2] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling graph neural networks with approximate pagerank. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464–2473.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
networks and locally connected networks on graphs. In International Conference
on Learning Representations.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: fast learning with graph
convolutional networks via importance sampling. In International Conference on
Learning Representations.

[5] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Con-
volutional Networks with Variance Reduction. In International Conference on
Machine Learning. 942–950.

[6] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-
Rong Wen. 2020. Scalable Graph Neural Networks via Bidirectional Propagation.
In Advances in Neural Information Processing Systems.

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning.

[8] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257–266.

[9] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.
American Mathematical Soc.

[10] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020. Min-
imal variance sampling with provable guarantees for fast training of graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1393–1403.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems. 3844–3852.

[12] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. 2019.
GraphZoom: A Multi-level Spectral Approach for Accurate and Scalable Graph
Embedding. In International Conference on Learning Representations.

[13] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning graph transformations to detect and fix bugs in programs.
In International Conference on Learning Representations.

[14] Buchnik Eliav and Edith Cohen. 2018. Bootstrapped graph diffusions: Exposing
the power of nonlinearity. In Proceedings of the ACM on Measurement and
Analysis of Computing Systems.

[15] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Racke, Inbal
Talgam-Cohen, and Kunal Talwar. 2014. Vertex sparsifiers: New results from old
techniques. SIAM J. Comput. (2014).

[16] Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, and Chi
Wang. 2020. Faster graph embeddings via coarsening. In International Conference
on Machine Learning.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[18] Yu Jin, Andreas Loukas, and Joseph JaJa. 2020. Graph coarsening with preserved
spectral properties. In International Conference on Artificial Intelligence and
Statistics.

[19] Tosio Kato. 1995. Perturbation theory for linear operators. Springer Science &
Business Media.

[20] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning Represen-
tations.

[21] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
International Conference on Learning Representations.

[22] Chang Li and Dan Goldwasser. 2019. Encoding social information with graph con-
volutional networks forpolitical perspective detection in news media. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics.
2594–2604.

[23] Huan Li and Aaron Schild. 2018. Spectral subspace sparsification. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science.

[24] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2018. Mile: A multi-
level framework for scalable graph embedding. arXiv preprint arXiv:1802.09612
(2018).

[25] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining.

[26] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[27] Andreas Loukas. 2019. Graph Reduction with Spectral and Cut Guarantees.
Journal of Machine Learning Research 20, 116 (2019), 1–42.

[28] Jan E. Lenssen Matthias Fey. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In International Conference on Learning Representations
Workshop.

[29] Ankur Moitra. 2009. Approximation algorithms for multicommodity-type prob-
lems with guarantees independent of the graph size. In 2009 50th Annual IEEE
Symposium on Foundations of Computer Science.

[30] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-
boda, and Michael M Bronstein. 2017. Geometric deep learning on graphs and
manifolds using mixture model CNNs. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition.

[31] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli,
and Oriol Vinyals. 2020. Reinforced genetic algorithm learning for optimizing
computation graphs. In International Conference on Learning Representations.

[32] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia.
2021. Learning Mesh-Based Simulation with Graph Networks. In International
Conference on Learning Representations.

[33] Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam,
and Mahmut Kandemir. 2020. GCN meets GPU: Decoupling “When to Sample”
from “How to Sample”. In Advances in Neural Information Processing Systems.

[34] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropE-
dge: Towards Deep Graph Convolutional Networks on Node Classification. In
International Conference on Learning Representations.

[35] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[37] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Con-
ference on Learning Representations.

[38] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. Lambdanet: Proba-
bilistic type inference using graph neural networks. In International Conference
on Learning Representations.

[39] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In International
Conference on Machine Learning. 6861–6871.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Pow-
erful are Graph Neural Networks?. In International Conference on Learning
Representations.

[41] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-
Supervised Learning with Graph Embeddings. In International Conference on
Machine Learning. 40–48.

[42] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[43] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. GraphSAINT: Graph Sampling Based Inductive Learning Method.
In International Conference on Learning Representations.

[44] Muhan Zhang and Yixin Chen. 2019. Inductive Matrix Completion Based on
Graph Neural Networks. In International Conference on Learning Representa-
tions.

[45] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bern-
hard Schölkopf. 2004. Learning with local and global consistency. In Advances in
neural information processing systems.

[46] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting
and Unifying Graph Neural Networks with An Optimization Framework. In
Proceedings of The Web Conference 2021.

[47] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. In Advances in neural information processing systems.

A APPENDIX
Here we describe more details about the experiments to help in
reproducibility.

Datasets. See Table 3 for a concise summary of the five datasets.
The nodes in the networks are documents, each having a sparse bag-
of-words feature vector; the edges represents citation links between
documents.

Table 3: Summary of the datasets used in our experiments

.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Coauthor Physics 34,493 247,962 8,415 5
DBLP 17,716 52,867 1,639 4

Hyperparameters. For the coarse GCN, we use Adam optimizer
with learning rates of [0.01, 0.01, 0.01, 0.001, 0.01] and a 𝐿2 regular-
ization with weights [0.0005, 0.0005, 0.0005, 0, 0.0005]. The number
of training epochs are [60, 200, 200, 200, 50] and the early stopping is
set to 10. For the coarse APPNP, 𝛼 is set to [0.1, 0.1, 0.1, 0.1, 0.05] and
the number of layers is set to [10, 10, 10, 20, 20] respectively. We use
Adam optimizer with learning rates of [0.01, 0.01, 0.01, 0.0005, 0.01]
and a 𝐿2 regularization with weights [0.0005, 0.0005, 0.0005, 0, 0.0005].
The number of training epochs are [200, 200, 200, 500, 200] and the
early stopping is set to [10, 10, 10, 10, 0]. The source code can be
found in https://github.com/szzhang17/Scaling-Up-Graph-Neural-
Networks-Via-Graph-Coarsening.

Configuration. All the models are implemented in Python and
PyTorch Geometric. Experiments are conducted on an NVIDIA
2080 Ti GPU, Intel(R) Core(TM) i7-10750H CPU@2.60GHz and
Intel(R) Xeon(R) Silver 4116 CPU@2.10GHz.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph and Matrix Notations
	2.2 Graph Laplacian and Graph Fourier Transformation
	2.3 Graph Neural Networks

	3 Our Method
	3.1 Graph Coarsening
	3.2 Our Method

	4 Theoretical Foundations
	4.1 A Characterization of APPNP
	4.2 Subspace Constraints and Dimensionality Reduction
	4.3 Sparse Projections and Graph Coarsening
	4.4 Nuclear Norm Error, k-Means, and Spectral Clustering
	4.5 Spectral Norm Error

	5 Related Work
	6 Experiments
	6.1 Experimental Setup
	6.2 Results and Analysis
	6.3 Studies on Different Coarsening Methods

	7 Conclusion
	8 Acknowledgments
	References
	A Appendix

