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ABSTRACT
The increasing interest in international travel has raised the demand
of retrieving point of interests (POIs) in multiple languages. This is
even superior to find local venues such as restaurants and scenic
spots in unfamiliar languages when traveling abroad. Multilingual
POI retrieval, enabling users to find desired POIs in a demanded
language using queries in numerous languages, has become an in-
dispensable feature of today’s global map applications such as Baidu
Maps. This task is non-trivial because of two key challenges: (1) vis-
iting sparsity and (2) multilingual query-POI matching. To this end,
we propose a Heterogeneous Graph Attention Matching Network
(HGAMN) to concurrently address both challenges. Specifically,
we construct a heterogeneous graph that contains two types of
nodes: POI node and query node using the search logs of Baidu
Maps. First, to alleviate challenge #1, we construct edges between
different POI nodes to link the low-frequency POIs with the high-
frequency ones, which enables the transfer of knowledge from the
latter to the former. Second, to mitigate challenge #2, we construct
edges between POI and query nodes based on the co-occurrences
between queries and POIs, where queries in different languages
and formulations can be aggregated for individual POIs. More-
over, we develop an attention-based network to jointly learn node
representations of the heterogeneous graph and further design a
cross-attention module to fuse the representations of both types of
nodes for query-POI relevance scoring. In this way, the relevance
ranking between multilingual queries and POIs with different pop-
ularity can be better handled. Extensive experiments conducted
on large-scale real-world datasets from Baidu Maps demonstrate
the superiority and effectiveness of HGAMN. In addition, HGAMN
has already been deployed in production at Baidu Maps, and it
successfully keeps serving hundreds of millions of requests ev-
ery day. Compared with the previously deployed model, HGAMN
achieves significant performance improvement, which confirms
that HGAMN is a practical and robust solution for large-scale real-
world multilingual POI retrieval service.
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Figure 1: An example of the multilingual POI search result
for the query “tokyo 塔” at Baidu Maps. In this case, the
multilingual POI retrieval module helped the user obtain
the desired POI named with English words “Tokyo Tower”
or Japanese words “東京タワー” by using a query consisting
of mixed-language characters, i.e., an English word “Tokyo”
and a Chinese character “塔”.
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1 INTRODUCTION
As one of the key components of the search engines in almost all
global map applications, such as Baidu Maps, multilingual POI re-
trieval plays a significant role in providing on-demand map services
as the retrieved results directly influence the success or failure of
routing and navigation, and hence impact the long-term user expe-
rience. For the 169 million Chinese tourists who traveled abroad in
2019 [22], Baidu Maps, which covers more than 150 million POIs
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in 200 countries and territories worldwide, is their prior choice
to find specific locations and navigate to desired destinations. Fig-
ure 1 shows an example of the multilingual POI retrieval feature
at Baidu Maps, where the query “Tokyo塔” consists of an English
word “Tokyo” and a Chinese character “塔”, meanwhile the name
of the retrieved POI is composed of English words “Tokyo Tower”
or Japanese words “東京タワー”. To enable users who are travel-
ing abroad to obtain their desired POIs effectively when finding
local venues in unfamiliar languages and areas, it is crucial for a
multilingual POI retriever to fill the gaps between queries and POIs
in different languages and formulations.

To build an effective multilingual POI retriever in both the aca-
demic and industrial fields, we must address two key challenges:

• Visiting Sparsity. To the best of our knowledge, existing
approaches on multilingual POI retrieval for industrial use
mainly leverage large-scale user click logs for query-POI
relevance scoring. However, the average visits of 150 million
POIs at Baidu Maps are highly sparse. We empirically study a
large-scale search log of Baidu Maps, which contains billions
of search records. Statistics show that only 6.4% of the POIs
have been clicked by one or more users. The effectiveness
of a POI retrieval model would significantly decline when
handling the majority of POIs that have sparse click logs.
• Multilingual Query-POI Matching. In real applications,
most of the users search the overseas POIs by their native
languages, which are more likely to be inconsistent with the
languages of the target POIs. For example, a Chinese user
may search the “Tokyo Tower” located in Japan using queries
composed of Chinese words, meanwhile, the information of
this POI is probably maintained in Japanese or English. As
a result, a simple literal matching method cannot meet the
demands of such cross-language retrieval. Moreover, queries
are sometimes mixed keyboard inputs of multi-languages
(e.g., English and Japanese, Chinese and Pinyin Alphabets),
which further necessitates multilingual POI retrieval.

In this paper, we present our recent efforts in designing and
implementing an effective multilingual POI retrieval framework,
which has already been deployed in production at Baidu Maps
and has achieved great success in addressing both problems, as
illustrated by Figure 1. The framework can provide a data sparsity-
tolerant multilingual POI retrieval function, which facilitates tens
of millions of users to find their desired POIs every day.

This new framework is powered by a Heterogeneous Graph
Attention Matching Network (HGAMN). Specifically, we first con-
struct a heterogeneous graph that contains two types of nodes:
POI node and query node using the search logs of Baidu Maps.
In this graph, to alleviate the visiting sparsity problem, we con-
struct edges between different POI nodes to link the low-frequency
POIs with the high-frequency ones, which enables the transfer of
knowledge from the latter to the former. To address the multilingual
query-POI matching challenge, we construct edges between POI
and query nodes based on the co-occurrences between queries and
POIs, where queries in different languages and formulations can be
aggregated for individual POIs. Upon the constructed graph, we de-
sign an attention-based network to learn the representations of POI
and query nodes. Then, we use a multi-source information learning

module to learn the location and multilingual text representations
of the queries and POIs. Finally, we fuse the node representations of
a POI and its linked queries via a cross-attention module and use the
fused representation to calculate the relevance score between the
user’s query and a candidate POI. To facilitate the model training,
we apply an in-batch negative sampling strategy [18] to produce
more sample pairs and increase the number of training examples.

We evaluate HGAMN both offline and online using large-scale
real-world datasets. For offline evaluation, the training and test sets
consist of tens of millions of search records for several months,
covering hundreds of cities and tens of millions of POIs world-
wide. Experimental results show that HGAMN achieves substantial
(absolute) improvements compared with several mainstream meth-
ods. For online evaluation, we launch our framework online to
serve a portion of the search traffic at Baidu Maps. A/B testing was
conducted between HGAMN and the previously deployed models.
Experimental results show that the improvements are consistent
with those obtained by the offline evaluation.

The main contributions can be summarized as follows:

• Potential impact: We propose an end-to-end neural frame-
work, named HGAMN, as an industrial solution to the mul-
tilingual POI retrieval task in global map applications. In
addition, this framework has already been deployed in pro-
duction at Baidu Maps, and it successfully keeps serving
hundreds of millions of POI search requests every day.
• Novelty: The design of HGAMN is driven by the novel idea
that addresses the data sparsity problem and the multilingual
matching problem by enhancing the representations of POIs
via a heterogeneous graph.
• Technical quality:We evaluate HGAMN both offline and
online using large-scale real-world datasets. Extensive exper-
imental results show that our framework achieves significant
improvements onmultiple evaluationmetrics comparedwith
several mainstream methods.
• Reproducibility: We have made the source code publicly
available at https://github.com/PaddlePaddle/Research/tree/
master/ST_DM/KDD2021-HGAMN/.

2 HGAMN
HGAMN consists of three modules: multi-source information learn-
ing module, heterogeneous graph learning module, and POI ranker
module. First, we feed a query, the candidate POIs, and the historical
queries to the multi-source information learning module to learn
the text and location representations of them. Then, we construct
the heterogeneous graph of different POIs and historical queries.
The constructed graph enables us to learn the POI representations
from it by the heterogeneous graph learning module. Finally, we
calculate the relevance score between the representations of the
query and the candidate POIs by the POI ranker module. Figure 2
shows the architecture of HGAMN. Subsequently, we introduce
them in detail.

2.1 Multi-Source Information Learning
Unlike traditional text retrieval, POI retrieval inmap servicesmainly
measures the relevance between a query and POIs rather than plain

https://github.com/PaddlePaddle/Research/tree/master/ST_DM/KDD2021-HGAMN/
https://github.com/PaddlePaddle/Research/tree/master/ST_DM/KDD2021-HGAMN/
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Figure 2: The architecture of HGAMN.

text. Besides its name, a typical POI also contains other multi-
sourced and heterogeneous information such as the address, cate-
gory, and GPS coordinates. Utilizing such information can facilitate
retrieving more relevant POIs. Here we mainly introduce the loca-
tion and text representations of a query 𝑞 ∈ Q and a POI 𝑃𝑖 ∈ P,
where Q and P denote a set of query and POI, respectively.

2.1.1 GPS Encoding. POI’s GPS coordinates are numerical pairs
consisting of longitude and latitude. However, in the online system,
the coordinates are usually stored as a Geohash string for its better
properties: (1) it is easy to be used to index the POI and (2) it is
convenient to be used to calculate the distance of two POIs.

Instead of directly taking this numerical pair as a 2-dimensional
feature vector, we use the Geohash algorithm [21] to encode the
geographic coordinates into a short string of letters and digits.
Specifically, given the latitude 𝑥𝑣 and longitude 𝑦𝑣 of a POI, the
Geohash algorithm is performed as follows:

𝑠𝐺𝑃𝑆 = Geohash((𝑥𝑣, 𝑦𝑣)) , (1)

where the length |𝑠𝐺𝑃𝑆 | ∈ [1, 12].
Given the Geohash string 𝑠𝐺𝑃𝑆 =“wx4g09np9p”, we split the

string to character sequence and add ‘[PAD]’ at the beginning of
the sequence if its length is less than 12, i.e., 𝑋 = [‘[PAD]’, ‘[PAD]’,
‘w’, ‘x’, ‘4’, ‘g’, ‘0’, ‘9’, ‘n’, ‘p’, ‘9’, ‘p’ ]. Then, we transform them into
character embeddings X ∈ R12×𝑑𝑐 , where 𝑑𝑐 = 64 is the dimension
of the character embedding.

An essential property of Geohash string is that POIs with a longer
common prefix are closer to each other in geographic distance.
Thus, the Geohash string is order-sensitive. To encode this kind of
property, we utilize the bidirectional gated recurrent unit to encode

the character embeddings, which is formulated by:

h̃𝑡 = [
−−−→
GRU(X𝑡 );

←−−−
GRU(X𝑡 )] . (2)

The last state h̃12 is used as the representation of the POI’s GPS.
We use this module to transform each POI’s GPS coordinates into
an embedding, and obtain an embedding matrixG ∈ R | P |×𝑑 , where
|P | denotes the size of P.

We regard a query’s location as the place where the user is
typing in the query. Similarly, we can obtain the query’s location
representation G𝑢 according to the user’s GPS coordinates.

2.1.2 Text Encoding. For multilingual POI retrieval in map services,
the text data such as queries, POI names, and POI addresses are
critical for improving the retrieval performance.

To better handle the multilingual matching problem, we take a
sequence (such as a query or POI name) consisting of multilingual
characters and alphabets as input and adopt a pre-trained language
model to obtain its representation.

Specifically, we use the pre-trained language model ERNIE [29]
as the basic component, which shows better performance on extract-
ing multilingual features and semantic information. We directly
utilize ERNIE to obtain 𝑞’s text representation q by:

q = ERNIE( [𝑐1, 𝑐2, . . . , 𝑐𝐿]) , (3)

where [𝑐1, 𝑐2, . . . , 𝑐𝐿] is the character sequence of the query.
After analyzing the query logs, we found that a query’s loca-

tion helps retrieve the desired POI because users usually demand
the nearest target. To utilize such location features, we combine a
query’s location representation with its text representation. Thus,
the final representation of a query is represented as: q̃ = q + G𝑢 .
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 Search Logs POI-POI Graph

Figure 3: The process of constructing the heterogeneous graph G.

For each POI 𝑃𝑖 , we use Q𝑃𝑖 to denote the matrix of the rep-
resentations of the top-4 queries associated with it, i.e., Q𝑃𝑖 =

[q̃1, q̃2, q̃3, q̃4].
For each POI 𝑃𝑖 , we concatenate its name and address as a long

character sequence and apply ERNIE to extract its text representa-
tion. Similarly, we combine 𝑃𝑖 ’s location and text representations
to obtain its final representation P𝑖 ∈ R1×𝑑 by:

P𝑖 = ERNIE( [𝑥1, 𝑥2, . . . , 𝑥𝐿, 𝑎1, 𝑎2, . . . , 𝑎𝐿]) + G𝑖 , (4)

where [𝑥1, 𝑥2, . . . , 𝑥𝐿] is the character sequence of 𝑃𝑖 ’s name and
[𝑎1, 𝑎2, . . . , 𝑎𝐿] is the character sequence of 𝑃𝑖 ’s address. G𝑖 is the
GPS encoding of 𝑃𝑖 . We stack each POI’s embedding together as a
POI embedding matrix P ∈ R | P |×𝑑 .

2.2 Heterogeneous Graph Learning
Here, we introduce how to construct the heterogeneous graph
from search logs and how to learn POI representations from the
heterogeneous graph.

2.2.1 Graph Construction. Multilingual POI retrieval faces the vis-
iting sparsity and multilingual matching problems. To alleviate the
visiting sparsity problem, we construct edges between different
POI nodes to link the low-frequency POIs with the high-frequency
ones, which enables the transfer of knowledge from the latter to
the former. Furthermore, to mitigate the multilingual matching
problem, we construct edges between POI and query nodes based
on the co-occurrences between queries and POIs. Thus, the graph
can aggregate queries in different languages and formulations for
each POI. As shown by Figure 3, both types of nodes and edges
constitute a heterogeneous graph G(V, E).

The construction of the heterogeneous graph is as follows. A
user’s search behaviors produce a visited POI sequence in search
logs. We extract relations of POI-POI from the historical search
sequences. A search sequence is a period of time that consists of
“a sequence of interactions” for the similar information need [12],
which can reflect the similarities of successive POIs. To capture the
similarity between two POIs, we define the co-occurrence frequency
of them in the search sequences as the graph’s edge. To extract this
kind of relation, a 2-gram sliding window is perform on the search
sequences. We apply the pointwise mutual information (PMI) to

calculate the weight of the edges by:

A𝑝𝑝

𝑖 𝑗
= PMI(𝑃𝑖 , 𝑃 𝑗 ) = 𝑙𝑜𝑔

𝑃𝑟 (𝑃𝑖 , 𝑃 𝑗 )
𝑃𝑟 (𝑃𝑖 ) · 𝑃𝑟 (𝑃 𝑗 )

,

𝑃𝑟 (𝑃𝑖 , 𝑃 𝑗 ) =
#𝑊 (𝑃𝑖 , 𝑃 𝑗 )

#𝑊
,

𝑃𝑟 (𝑃𝑖 ) =
#𝑊 (𝑃𝑖 )
#𝑊

,

(5)

where #𝑊 (𝑃𝑖 , 𝑃 𝑗 ) is the number of sliding windows that contain
both 𝑃𝑖 and 𝑃 𝑗 . #𝑊 denotes the number of sliding windows, and
#𝑊 (𝑃𝑖 ) is the number of sliding windows that contain 𝑃𝑖 .

After typing in a query, a user would click on the desired POI
from a list of ranked POIs that the POI search engine suggested. This
process produces a large-scale query-POI pairs where the multilin-
gual expressions of each POI can not only effectively mitigate the
multilingual matching problem, but also bridge the semantic gap
between queries and POIs. For example, users usually make spelling
errors or use abbreviations, which would lead to poor results when
directly matching query and POI text information. Motivated by
this observation, we try to model the relations between historical
queries and POIs.

Specifically, we select the top-4 searched queries for each POI
and connect an edge for every POI and its historical query nodes
for POI-Query relations. In this way, we can build connections
between POIs and Queries. Formally, the adjacency matrix can be
formulated as follows:

A𝑝𝑞

𝑖 𝑗
=

𝑐𝑖, 𝑗∑ | Q𝑃𝑖 |
𝑘=1 𝑐𝑖,𝑘

, (6)

where 𝑐𝑖, 𝑗 is the frequency of query-POI pair (𝑞 𝑗 , 𝑃𝑖 ), 𝑞 𝑗 ∈ Q𝑃𝑖 .

2.2.2 Heterogeneous Graph Learning. To learn representations of
POIs and queries from the heterogeneous graph, we use attention-
based graph neural network to aggregate neighbors for generating a
distributed representation of each node based on the heterogeneous
graph, which enables us to learn a high-level hidden representation
for each vertex.

As shown by Figure 3, there are two types of nodes (POI node
and query node) and two types of edges (POI-POI correlation and
POI-Query semantic relation) in the graph. For a certain node 𝑛𝑖 , its
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initial embedding: n𝑖 ∈ R𝑑𝑛 , is randomly initialized by a uniform
distribution.

First, we introduce how to produce edge embeddings for the
heterogeneous graph. We apply an aggregator proposed in Graph-
SAGE [7] to integrate neighbor node embeddings for edge embed-
ding e𝑗 :

e(𝑘 )
𝑗

= 𝜎 (max({W(𝑘 )n𝑡 , 𝑛𝑡 ∈ N𝑗 })) , (7)

whereW(𝑘 ) is the trainable weight of 𝑘-th layer, 𝜎 (·) is the sigmoid
activation function. N𝑗 is the neighbor set of edge 𝑒 𝑗 .

Suppose the node 𝑛𝑖 has𝑚 edges connected with it, we concate-
nate edge embeddings for the node 𝑛𝑖 as E𝑖 ∈ R𝑚×𝑑𝑒 :

E𝑖 = (e𝑖,1, e𝑖,2, . . . , e𝑖,𝑚) . (8)

Next, we apply the cross attention mechanism to fuse E𝑖 into a
vector ẽ𝑖 ∈ R𝑑𝑒 by:

𝜶𝑖 = softmax(n𝑖 tanh(W𝑟E𝑇𝑖 ) ⊙ A(𝑟 )
𝑖
) ,

ẽ𝑖 = 𝜶𝑇
𝑖 E𝑖 ,

(9)

where ⊙ denotes the element-wise multiplication operation. 𝜶𝑖 ∈
R𝑚 is the coefficients. W𝑟 ∈ R𝑑𝑛×𝑑𝑒 is a trainable weight for edge
type 𝑟 . A(𝑟 )

𝑖
∈ {A𝑝𝑝

𝑖,1:𝑚,A
𝑝𝑞

𝑖,1:𝑚} denotes the weights of 𝑚 edges
which belong to the type 𝑟 and connect with 𝑛𝑖 .

Then, the overall node representation of 𝑛𝑖 can be computed by:

ñ𝑖 = n𝑖 +W1ẽ𝑖 +W2n′𝑖 , (10)

where W1 ∈ R𝑑𝑛×𝑑𝑒 ,W2 ∈ R𝑑𝑛×𝑑 are two trainable parameters
and n′

𝑖
∈ {Q𝑃𝑖 , P𝑖 }. Q𝑃𝑖 and P𝑖 denote 𝑃𝑖 ’s associated query repre-

sentations and its POI embedding, respectively.
Finally, the graph learning module produces the representations

of all POIs: P̃ ∈ R | P |×𝑑𝑛 , and the representations of all queries:
Q̃ ∈ R | Q |×𝑑𝑛 .

2.3 POI Ranker
The POI ranker module calculates the relevance between a query 𝑞
and a candidate POI 𝑃𝑖 based on the learned representations. This
module also considers 𝑃𝑖 ’s historical queries Q𝑃𝑖 when predicting
the relevance since Q𝑃𝑖 conveys substantial evidence to bridge the
semantic gap between 𝑃𝑖 and 𝑞. Both 𝑃𝑖 and Q𝑃𝑖 contain essential
information for calculating the relevance, but their importance is
different. How to automatically determine the importance of them
for measuring the relevance is still a challenge.

In this paper, we apply an attention module to automatically de-
termine their importance and fuse them as a feature vector. Specifi-
cally, we regard the representation of 𝑞 as the key, while regard the
representations of 𝑃𝑖 and Q𝑃𝑖 as the value. We stack the representa-
tions of 𝑃𝑖 and Q𝑃𝑖 as a new matrixM = [P̃𝑖 , Q̃𝑃𝑖 ]. Each attention
weight 𝜙𝑘 is defined as follows:

𝑠𝑘 = W4 tanh( [q̃;M𝑘 ]W3 + 𝑏) ,

𝜙𝑘 =
𝑒𝑥𝑝 (𝑠𝑘 )∑ |M |
𝑗=1 𝑒𝑥𝑝 (𝑠 𝑗 )

,
(11)

whereW3 ∈ R2𝑑𝑛×𝑑𝑛 andW4 ∈ R1×𝑑𝑛 are trainable matrices.

We use the attention weight to fuse the representations of 𝑃𝑖
and Q𝑃𝑖 by:

m =

|M |∑︁
𝑘=1

𝜙𝑘M𝑘 , (12)

where m ∈ R𝑑𝑛 is the fused POI representation.
Finally, we concatenate q̃ with m, and feed them into the output

softmax layer for relevance calculation by:

𝑃𝑟 (𝑐𝑖 |𝑞, 𝑃𝑖 ,G) = softmax( [q̃;m]W𝑣) , (13)

where W𝑣 ∈ R2𝑑𝑛×2 is the trainable parameter, and 𝑃𝑟 (𝑐𝑖 |𝑞, 𝑃𝑖 ,G)
is the probability vector of a category 𝑐𝑖 ∈ {0, 1}. The category 1
(0) indicates that 𝑃𝑖 is relevant (irrelevant) to 𝑞. We use the output
probability of category 1 as the score for ranking.

2.4 Model Training
We train the model in a supervised manner by minimizing the cross-
entropy loss of relevance classification described above, whose loss
function is defined as follows:

L = −
| P |∑︁
𝑖=1

𝑦𝑖 log𝑃𝑟 (𝑐𝑖 |𝑞, 𝑃𝑖 ,G) , (14)

where |P | denotes the amount of total training POIs, and 𝑦𝑖 is the
label of the instance POI 𝑃𝑖 .

To increase the number of training instances inside each batch
and improve the computing efficiency, we apply an in-batch nega-
tive sampling strategy [18]. Specifically, assuming that we have 𝐵
queries in a mini-batch, each one is associated with a relevant POI.
Let Q̂ and P̂ be the (𝐵 × 𝑑) matrix of query and POI embeddings in
a batch of size 𝐵. S = Q̂P̂𝑇 is a (𝐵 × 𝐵) matrix of similarity scores,
where each row corresponds to a query, paired with 𝐵 POIs. In this
way, we reuse computation and effectively train on 𝐵2 (𝑞𝑚, 𝑃𝑛)
query-POI pairs in each batch. Any (𝑞𝑚, 𝑃𝑛) pair is a positive ex-
ample when𝑚 = 𝑛, and negative otherwise. This procedure creates
𝐵 training instances in each batch, where there are 𝐵 − 1 negative
POIs for each query.

3 EXPERIMENTS
To thoroughly test HGAMN, we conduct extensive experiments in
both offline and online settings.

3.1 Comparison Models
We evaluate HGAMN against the following four groups of methods.
Furthermore, to understand the relative importance of several facets
of HGAMN, variations of this model with different settings are
implemented for comparison.

3.1.1 Text Matching Group.

• DSSM [16] is a widely-used text matching model in which a
deep neural network is employed to predict the relevance
between keywords and documents. In our experiments, for
all DSSM based models, we treat queries as keywords while
POI name and POI address as documents.
• ARC-I [8] uses pre-trained word embeddings to represent
the text. It then uses a convolutional network to learn the
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semantic features and feeds the feature vectors to a multi-
layer perceptron for prediction.
• Conv-DSSM [26] extends DSSM by adding extra convolu-
tional layers to extract sentence-level features from n-gram
word representations.

3.1.2 Query-POI Matching Group.

• DPSM [35] is a POI latent semantic model based on neural
networks, which extracts query and POI semantic features
for the similarity calculation.
• PALM [34] is an attention-based neural network. It uses
semantic similarity and geographic correlation to quantify
the query-POI relevance.

3.1.3 Our Model and Its Variants.

• HGAMN is the complete model defined in Section 2. In this
setting, we use it independently as a POI retriever to return
the desired POIs.
• HGAMN w/o POI-POI Graph. In this setting, we remove
the edges between different POIs in the graph learning mod-
ule described in Section 2.2.2. The removed part is designed
to mitigate the visiting sparsity problem.
• HGAMNw/o POI-QueryGraph. In this setting, we remove
the edges between different POIs and queries in the graph
learning module described in Section 2.2.2. The removed part
is designed to mitigate the multilingual matching problem.
• HGAMN w/o Heterogeneous Graph. In this setting, we
remove the entire graph learning module described in Sec-
tion 2.2.2 and directly use the query and POI’s representa-
tions described in section 2.1 for calculation.

3.1.4 Online Model Group.

• LTR is the basic model for online multilingual POI retrieval
system at Baidu Maps [11, 20]. It adopts GBRank [36] as
the specific learning-to-rank model. This model mainly uses
heuristic features, including the popularity of POIs, the de-
mographic information on users, and the spatial-temporal
features of each POI, such as the frequency of search on
specific types of POIs at different times and locations.
• LTR + HGAMN is trained with all the features employed
by LTR and the similarity feature computed by HGAMN.
It is expensive to directly deploy HGAMN online to serve
hundreds of millions of requests every day. For this reason,
we instead use the feature generated by HGAMN offline as
one of the features fed to the LTR model.

3.2 Offline Evaluation
3.2.1 Dataset. The services of Baidu Maps cover over 200 coun-
tries and territories worldwide, where the sessions on POI search
dominate about 80% search traffic. A POI search session refers to a
sequence of interactions between a user and the POI search engine.

We collect a large number of POI search sessions from the search
logs of international services at Baidu Maps for offline evaluation.
Each example of the dataset consists of the query typed by the
user, the POI list that the POI search engine suggested, and the
exact POI that the user clicked. Table 1 shows the statistics of the
large-scale dataset sampled from one-month search logs for model

training (abbr. Train), hyper-parameter tuning (abbr. Valid), and
performance testing (abbr. Test).

Table 1: Statistics of the dataset.

Subset #(Queries) #(Candidate POIs)/#(Queries)

Train 11,935,730 2.7
Valid 73,255 2.8
Test 181,589 11.6

Total 12,190,574 2.8

3.2.2 Evaluation Metrics. We use several widely-used metrics in
information retrieval for offline performance evaluation.

The first group of metrics, Success Rate (SR) at Top-K (SR@K),
is the coarse metric that denotes the average percentage of ground-
truth POIs ranked at or above the position K in the ranked list
provided by a POI retriever. Because of the limited space for display
on mobile phones, Baidu Maps can mostly display 3 POIs on the
first screen when the input keyboard is launched and at most 10
POIs when the input keyboard is closed. Therefore, we consider
SR@1, SR@3, and SR@10 for offline evaluation.

Another group of fine-grained metrics, including Mean Recip-
rocal Rank (MRR) and normalized Discounted Cumulative Gain at
Top-K (nDCG@K), concerns more about the exact position where a
POI retriever arranges the ground-truth POI in the returned list. We
consider nDCG@1, nDCG@3, and nDCG@10 for offline evaluation
due to the display limitations on mobile phones.

3.2.3 Model Configuration. The dimensionality of POI and query
embeddings 𝑑 is set to 128. The sequence length of query text, POI
name, and POI address is set to 30. The POI graph learning module
consists of two graph attention layers with output dimensionality
of 𝑑 = 128 and 𝑑′ = 256, respectively. The number of heads in the
multi-head attention 𝐾 is chosen from {1, 2, . . . , 10}, and finally, set
to 4.

During training, we use Adam optimizer [19], with the learning
rate initialized to 0.001 and gradually decreased during the process
of training. To prevent overfitting, we use the dropout strategy with
a dropout rate of 0.5. The maximum training epoch is set to 40, and
the batch size of the training set is set to 64.

3.2.4 Experimental Results. In this section, we evaluate the effec-
tiveness of HGAMN for the multilingual POI retrieval task. Table 2
shows the performance of offline assessments on the models men-
tioned in Section 3.1. From the results, we can see that the proposed
model HGAMN significantly outperforms all baseline methods on
the large-scale real-world dataset. Specifically, we have the follow-
ing observations.

(1) HGAMN significantly outperforms all conventional text re-
trieval methods (i.e., DSSM, ARC-I, and Conv-DSSM). Furthermore,
the “HGAMN w/o POI-POI Graph” model also achieves better per-
formance compared with these methods. The main reason is that
the POI-Query graph is able to model multilingual features between
a POI and its historical queries, which enables us to mitigate the
gap between a query and the candidate POIs.
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Table 2: Offline evaluation results of different models.

Model Evaluation Metrics (Offline)
MRR nDCG@1 nDCG@3 nDCG@10 SR@1 SR@3 SR@10

DSSM [16] 0.6681 0.5235 0.6634 0.7258 0.5235 0.7705 0.9324
ARC-I [8] 0.6604 0.5127 0.6561 0.7206 0.5127 0.7665 0.9337
Conv-DSSM [26] 0.6485 0.4985 0.6420 0.7097 0.4985 0.7515 0.9281

DPSM [35] 0.6181 0.4900 0.6084 0.6655 0.4900 0.7010 0.8491
PALM [34] 0.6921 0.5488 0.6902 0.7500 0.5488 0.7993 0.9521

HGAMN 0.7663 0.6539 0.7653 0.8097 0.6539 0.8528 0.9636
w/o POI-POI Graph 0.7655 0.6527 0.7648 0.8091 0.6527 0.8526 0.9628
w/o POI-Query Graph 0.7573 0.6408 0.7557 0.8030 0.6408 0.8455 0.9640
w/o Heterogeneous Graph 0.6924 0.5451 0.6921 0.7507 0.5451 0.8052 0.9540

LTR 0.8253 0.7323 0.8294 0.8582 0.7323 0.9030 0.9721
LTR + HGAMN 0.8307 0.7393 0.8347 0.8627 0.7393 0.9072 0.9743

(2) Compared with recently proposed neural-based POI retrieval
methods (i.e., DPSM and PALM), HGAMN achieves better perfor-
mance. Although these methods combine geographic or spatial-
temporal features with text representations for POI retrieval, they
do not take the POI visiting sparsity problem into account, which
is a critical problem in industrial map services. The POI-POI graph
builds connections between low-frequency POIs and their similar
high-frequency ones, which is able to transfer the abundant super-
visory signals from high-frequency POIs to facilitate learning better
representations of the low-frequency POIs. The results verify that
HGAMN is able to effectively relieve this problem.

(3) After removing the POI-POI graph and POI-Query graph
separately (“HGAMN w/o POI-POI Graph” and “HGAMN w/o POI-
Query Graph”), the performance of HGAMN decays considerably
compared with the complete model. This indicates that both com-
ponents in HGAMN are essential for multilingual POI retrieval, and
they are complementary to each other.

(4) In the last section of Table 2, we observe that the LTR model
outperforms the single HGAMN model. The reason is that the LTR
model is one of the typical industrial ranking models based on a
large set of time-proven high-quality features [3]. However, after
adding the feature computed by HGAMN into the LTR model, the
“LTR + HGAMN” model achieves significant improvements. Since
it is challenging to create a new feature that is able to significantly
improve the overall performance of industrial ranking models, the
improvements made by “LTR + HGAMN” further confirm the effec-
tiveness of HGAMN. This shows that HGAMN can not only be used
as an individual ranking model, but also be used to obtain a single
strong feature that is robust to an industrial ranking framework.

3.3 Online A/B Testing
3.3.1 Traffic of Data. Before being launched in production, we
would routinely deploy the newmodel online and make it randomly
serve 5% traffic of the POI search. During the A/B testing period,
we monitor the performance of the new model and compare it with
the previously deployed models. This period conventionally lasts
for at least one week.

3.3.2 Experimental Results. We use SR@1, SR@3, and SR@10 as
the metrics for online evaluation, which are also adopted by offline
evaluation. Table 3 shows the experimental results of the online A/B
testing on different models mentioned in Section 3.1. All models
were selected by the test set for offline evaluations, and we launched
the best-performed ones. They are tested by 5% search traffic of
Baidu Maps.

Table 3: Online evaluation results of different models.

Model Evaluation Metrics (Online)
SR@1 SR@3 SR@10

DSSM 0.4847 0.7130 0.8358
ARC-I 0.4668 0.7024 0.8349
PALM 0.4900 0.7010 0.8491
LTR 0.6647 0.8189 0.8802

LTR + HGAMN 0.7173 0.8807 0.9437

Compared with the offline evaluation results, we gain lower
results on SR@1, SR@3, and SR@10 in the online A/B testing.
The main reason is that the POI lists returned by our POI search
engine might be ignored entirely by a small proportion of users,
mainly because they prefer directly typing in the full names of their
desired POIs and then click the search button. In this interactive
mode, BaiduMaps will directly provide users with the relevant POIs.
This results in a phenomenon that none of the returned POIs were
clicked, which may lead to much lower performance on Success
Rate (SR). However, the relative improvements of these models are
consistent with those obtained by the offline evaluation.

4 DISCUSSION
Here we explore the reason why HGAMN is able to boost both the
offline and online performance of the POI search engine. Gener-
ally speaking, as an end-to-end framework for multilingual POI
retrieval, HGAMN can produce an intermediate feature vector, i.e.,
the graph-based representation of a POI (denoted by “HGAMN”).
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The probability from the classifier, taking the vector as input, is a
reliable indicator to decide the rank order of candidate POIs in the
model. The significance of this indicator has already been proved
by the experimental results of both offline and online evaluations,
which are reported by Table 2 and Table 3, respectively.

Moreover, we are curious about how much this probability from
the intermediate vector, as a feature, can contribute to the GBRank-
based multilingual POI retrieval model LTR, which has kept serving
online in the search engine of international service at Baidu Maps.
From the perspective of industrial practice, we need to figure out
the relative importance of a proposed feature among all features
leveraged by the GBRank model for multilingual POI retrieval.

LTR

HGAMN

Total Weight

Figure 4: Histogram of the feature importance.

GBRank can provide a score that indicates how useful a feature
was in constructing the boosted decision trees within the model,
which can help investigate the impact of different features (e.g.,
[9, 11]). The more a feature is used to make critical decisions for
decision trees, the higher its relative importance is allocated. Fig-
ure 4 illustrates the weights of the top-10 most important features
in “LTR + HGAMN”, and the total weight of them is 71.67%. Among
all features, the importance of the graph-based representation (i.e.,
𝑓 1, colored in green) ranks 1𝑠𝑡 with the weight of 16.89%. This
further demonstrates that HGAMN is able to significantly improve
the effectiveness of multilingual POI retrieval.

5 RELATEDWORK
Here we briefly review the closely related work in the fields of text
retrieval, POI retrieval, and heterogeneous graph neural network.

5.1 Text Retrieval
Text retrieval aims to provide the most relevant documents for a
query [32]. There are three conventional categories of methods for
text retrieval: pointwise (such as logistic regression [17]), pairwise
(such as RankSVM [17] and RankBoost [5]), and listwise (such as
ListNet [1] and AdaRank [31]). The major difference between them
lies in the input document space, output space, and loss function.
These methods require manually designed features. However, such
features may be sparse and insufficient to effectively encode the
semantic information of queries and documents. Moreover, design-
ing effective features is usually time-consuming and heavily relies
on expert knowledge in particular areas [6].

With the rapid development of deep learning, researchers adopt
neural networks to automatically learn representations for text

retrieval. For example, Huang et al. [16] propose a DSSM model
to map the query and the document into a semantic space and
treat the similarity between two embeddings as the relevance score.
Subsequently, Conv-DSSM [27] and LSTM-DSSM [23] are proposed
to improve the ability of semantic feature extraction of DSSM. Pang
et al. [24] propose to model text matching as the problem of image
recognition and employ a convolutional neural network to extract
matching features. DeepRank [25] further simulates the human
judgment process to capture important features.

Multilingual POI retrieval task is different from text retrieval task
in that it requires not only capturing semantic similarities between
text data but also addressing the cross-language matching problem
and textual-geographic matching problem (i.e., computing the rel-
evance between a query and a POI by taking both text data and
geolocations into consideration), which are generally not required
in text retrieval task.

5.2 POI Retrieval
There is a growing body of work that explores and assesses POI
retrieval [4, 11, 20, 33–35]. Here, we briefly review recent attempts
on applying neural networks to address this task. To address the
mistyping or an alias inquiry problem, Zhao et al. [35] propose
a POI latent semantic model based on deep learning, which can
effectively extract query and POI features for similarity calculation.
Fan et al. [4] propose a personalized POI retrieval model which
also has the ability to provide time- and geography-aware results.
Furthermore, geographic information [34] and spatial-temporal
factors [33] have been considered in recent work.

However, little work has considered the problems of visiting
sparsity and multilingual query-POI matching, which are two main
challenges that must be tackled for POI retrieval in global map
applications such as Baidu Maps. To address both problems, we first
encode a POI’smulti-source information to enrich its representation.
Then, we establish the relations among different POIs and queries by
constructing a heterogeneous graph. Finally, we produce enhanced
representations of queries and POIs via the heterogeneous graph,
which has a significant effect on POI retrieval performance.

5.3 Heterogeneous Graph Neural Network
The heterogeneous graph, which constitutesmultiple types of nodes
or edges, is ubiquitous in real-world applications. Previous stud-
ies [2, 28, 30, 37] focus on different aspects of the heterogeneous
graph to learn node representations. For example, Sun et al. [28]
propose a meta-graph-based network embedding model, which
simultaneously considers the hidden relations of all meta informa-
tion of a meta-graph. Wang et al. [30] propose a heterogeneous
graph neural network, which utilizes hierarchical attention, in-
cluding node-level and semantic-level attentions, to learn node
representations from meta-path based neighbors. Cen et al. [2]
propose a unified attributed multiplex heterogeneous network to
solve the multiplex heterogeneous graph embedding problem with
both transductive and inductive settings. Zhu et al. [37] propose
a heterogeneous graph convolution network to directly learn the
complex relational hierarchy, potential incompatible semantics, and
node-context relational semantics.
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Inspired by the recent success in heterogeneous graph represen-
tation learning, we build a heterogeneous graph from search logs,
which links the low-frequency POIs with the high-frequency ones
and aggregates queries in different languages and formulations for
individual POIs. As a result, the visiting sparsity and multilingual
matching problem can be effectively alleviated by enhancing the
representations of queries and POIs via the heterogeneous graph.

6 CONCLUSIONS AND FUTUREWORK
This paper presents an industrial solution to the multilingual POI
search for international services at Baidu Maps. We propose a het-
erogeneous graph attention matching network (HGAMN) to ad-
dress the visiting sparsity and multilingual query-POI matching
problems. HGAMN is composed of threemodules: (1) a multi-source
information learning module, which learns the text and location
representations of the multilingual query, POI name, and POI ad-
dress; (2) a heterogeneous graph learning module, which constructs
the connections of different POIs and historical queries, and learns
the node representations from the heterogeneous graph; and (3)
a POI ranker module, which calculates the relevance between a
query and candidate POIs. We conduct both offline and online eval-
uations using large-scale real-world datasets. The experimental
results show that HGAMN achieves significant improvements over
several mainstream approaches, which demonstrates the effective-
ness of enhancing the representations of queries and POIs via the
heterogeneous graph to improve multilingual POI retrieval.

The user input habits and preferences are not taken into account
in this paper. In the future, we intend to utilize these kinds of vital
information for personalized POI searches. In addition, previous
studies have shown that context [12, 13] and explanation [10, 14, 15]
can bring significant improvements in recommendation effective-
ness and increase user satisfaction. As future work, we plan to
investigate whether multilingual POI retrieval could benefit from
the adoption of such factors.
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