
Faster motif counting via succinct color coding

and adaptive sampling

Marco Bressan
Università degli Studi di Milano

marco.bressan@unimi.it

Stefano Leucci
Università dell’Aquila

stefano.leucci@univaq.it

Alessandro Panconesi
Sapienza Università di Roma

ale@di.uniroma1.it

Abstract

We address the problem of computing the distribution of induced connected subgraphs,
aka graphlets or motifs, in large graphs. The current state-of-the-art algorithms estimate
the motif counts via uniform sampling by leveraging the color coding technique by Alon,
Yuster and Zwick. In this work we extend the applicability of this approach by introducing
a set of algorithmic optimizations and techniques that reduce the running time and space
usage of color coding and improve the accuracy of the counts. To this end, we first show how
to optimize color coding to efficiently build a compact table of a representative subsample
of all graphlets in the input graph. For 8-node motifs, we can build such a table in one
hour for a graph with 65M nodes and 1.8B edges, which is 2000 times larger than the state
of the art. We then introduce a novel adaptive sampling scheme that breaks the “additive
error barrier” of uniform sampling, guaranteeing multiplicative approximations instead of
just additive ones. This allows us to count not only the most frequent motifs, but also
extremely rare ones. For instance, on one graph we accurately count nearly 10.000 distinct
8-node motifs whose relative frequency is so small that uniform sampling would literally
take centuries to find them. Our results show that color coding is still the most promising
approach to scalable motif counting.

1 Introduction

Counting the number of copies of a given pattern graph in a host graph is one of the basic graph
mining primitives, with applications in network analysis [1], graph classification [39], graph
clustering [41], and biology [40]. Of particular interest are the subgraphs that are induced and
connected, which are commonly known as graphlets or motifs. Indeed, motifs are often seen as
“high-order edges” that are the true building blocks of real-world networks and give fundamental
insights into the nature of a graph [25, 34, 39, 41]. The problem of counting the number of copies
of a given motif in a graph has a long and rich history, which started with triangle counting and
evolved towards larger and more complex motifs [3, 8, 12, 15, 20, 25, 30, 32, 36, 37, 38, 43]. Entire
frameworks have been designed to make motif mining easy, including systems based on graph
databases such as Arabesque [33] and GraphSig [31], or standalone systems such as Fractal [16]
and AutoMine [26].

Unfortunately, motif counting becomes quickly intractable with the size k of the motif. For
this reason exact counting is practically feasible only for k ≤ 5, save for special cases such as

1

ar
X

iv
:2

00
9.

03
05

2v
2

 [
cs

.D
S]

 1
7

Ju
l 2

02
1

counting cliques in sparse graphs. This hardness is not surprising, since the problem is widely
believed to require time nΩ(k) [13] where n is the number of nodes in the input graph. The natural
approach to overcome this barrier is to abandon exact counting in favor of approximate counting.
Approximate counting can replace exact counting in many cases, such as in hypothesis testing
(deciding if a graph comes from a certain distribution or not) or in estimating the clustering
coefficient of a graph (the fraction of triangles among 3-node motifs). In this work we focus
on approximate motif counting, with special attention on guarantees. More precisely, we aim
to estimate as accurately as possible the number of occurrences of every possible distinct motif
on k nodes (the star, the clique, the path, etc.) in a graph. Formally, suppose we are given a
simple graph G (e.g., a social network), an integer k > 2, and two approximation parameters
ε, δ ∈ (0, 1). For each motif H on k nodes (the star, the clique, the path, etc.), we want an
estimate of the number of induced copies of H in G, so that with probability at least 1 − δ
all estimates are within a factor (1 ± ε) of the actual values. Our goal is to develop practical
algorithms that solve this problem for G and k significantly larger than the state of the art. This
means we aim at graphs G with billions of edges and motifs on more than 5 nodes. Note that
we are looking at induced copies; counting non-induced copies can be significantly easier (think
of the stars). We also remark that, following all previous literature, graphlets are defined as
connected.

The most natural approach to motif counting is combinatorial counting. Unfortunately, this
approach requires enumerating and/or counting a number of subgraphs that can grow as nΩ(k),
and therefore does not scale to large G and k. Indeed, even state-of-the-art exact counting
algorithms such as [30] or [26] are reported to work only for k ≤ 5. We note that combinatorial
explosion also affects approximation algorithms as long as one wants to estimate the counts of
all motifs at once, as we do. Consider indeed Nk, the number of distinct graphlets on k nodes
(that is, the number of non-isomorphic connected simple k-node graphs). Obviously, estimating
all k-graphlet counts takes time Nk since we might need to output one count for each graphlet.
One can show that Nk grows extremely fast, as Nk = exp(Ω(k2)); for example, N20 > 1030, so
already for k = 20 the task is hopeless in practice.1 However, N8 ' 11 000 and N10 ' 12 000 000,
so for these values of k the task could still be feasible even on large graphs such as real-world
social networks.

With combinatorial algorithms ruled out, the most appealing approach left is sampling. The
idea is just to sample graphlet copies uniformly at random from G and estimate their frequencies
and counts consequently. The difficulty lies in implementing the graphlet sampling primitive
in an efficient way, which is trickier than it may appear. The first general graphlet sampling
technique was based on Markov chains and was introduced in [8]. The approach is elegant
and works in principle for every G and k, but in practice it is efficient only for k = 4, 5 on
medium-sized graphs. It was later proved that this approach needs nΩ(k) steps in the worst
case to produce just a single unbiased graphlet sample [9], making it comparable to brute-force
enumeration. On the other hand, [9] showed that one can efficiently sample subgraphs using
the color coding technique of Alon, Yuster and Zwick [6]. The idea of color coding is to assign
to each node of G one of k colors independently and uniformly at random. Then, via dynamic
programming, one can count the number of subtrees of G that span k distinct colors (we say
they are colorful) in time O(EG), which gives an estimate of the actual number of subtrees in G.
While [6] used color coding for counting trees, [9] showed how to use it to implement graphlet
sampling. This sampling framework has two components. The first component is an enriched
version of the aforementioned dynamic programming, which builds an abstract “urn” containing
a representative sub-population of all the trees of G on up to k nodes (henceforth “k-treelets”).
The second component is a recursive algorithm that uses the urn to sample a random k-treelet

1See sequence A001349 in the OEIS, https://oeis.org/A001349.

2

https://oeis.org/A001349

from G and, thus, obtain a random connected subset of k nodes (that is, a motif). One can thus
estimate graphlet counts in two steps: the build-up phase, where one builds the urn from G, and
the sampling phase, where one samples k-treelets from the urn. The build-up phase takes time
O(akm) and space O(akn) for some a > 0, where n and m are the number of nodes and edges of
G, while sampling takes a variable but typically small amount of time. This algorithm, named
CC by the authors (after color coding), can reliably and accurately count motifs on k > 5 nodes
on medium-large graphs and is the current state of the art in motif counting [10].

While CC was the first algorithm consistently able to count motifs on more than 5 nodes
on large graphs, the hardness of the problem still imposed some limitations on it. First, the
build-up phase of CC is resource-demanding, especially concerning the memory usage, which
as mentioned above, grows exponentially with k. This limits the scalability; for example, even
on a machine with 72GB of main memory, CC runs out of memory while estimating 7-graphlet
counts on graphs with more than 2M nodes, as shown in our experiments. Second, since CC
samples graphlets uniformly at random, its approximation guarantees are only additive. That is,
using s samples, CC can only detect graphlets whose relative frequency is at least 1/s — all other
graphlets will be undetected or heavily misestimated. Since in many graphs nearly all graphlets
have extremely low frequencies, CC would need to draw an unacceptable number of samples
(this is true not only for CC but for any algorithm based on uniform sampling). In this work
we overcome these two bottlenecks, pushing the color-coding approach in the realm of massive
graphs.

1.1 Our results

We present two motif counting algorithms. The first is Motivo, which is designed to count
motifs on k ≤ 16 nodes. The second is L8Motif (pronounced “leitmotif”, for Large-graph
8-node M otif counter), which is optimized for motifs on k ≤ 8 nodes. In particular, L8Motif
can count motifs on graphs with billions of edges with excellent accuracy, using just ordinary
hardware. To convey the idea, in one hour we can accurately count 8-node motifs in a graph
with 65M nodes and 1.8B edges (Friendster); this is 200 and 2000 times larger, in terms of n
and m, than the prior art.2 Unlike all previous algorithms, Motivo and L8Motif compute
accurate counts for nearly all graphlets at once, even extremely rare ones. Consider for instance
the Yelp graph (one of our datasets). On this graph, the state-of-the-art algorithm CC finds only
the top two most frequent 8-graphlets and literally misses all the others. In the same amount of
time, L8Motif produces counts within a multiplicative error of ε ≤ 0.25 for ' 10.000 distinct
graphlets simultaneously. Many of these graphlets have frequency ≤ 10−21, which means that
any algorithm based on uniform sampling, like CC or random walks, would need 103 years to
find them even by sampling 106 graphlets/second. Figure 1 gives a pictorial summary of these
results.

Technical contributions. Our algorithms Motivo and L8Motif rely on two technical
contributions of different nature. The first contribution is a set of efficient algorithms and data
structures that improve the running time and especially the space usage of the build-up phase
(one of the main bottlenecks of CC). In particular, for L8Motif we design data structures that
use a nearly-optimal amount of bits in an information-theoretical sense, by adopting a compact
integer representation of rooted colored treelets, and a variable-length encoding of the treelet
counts. In addition, we show how to entirely skip the heaviest round of the dynamic program
via a balanced treelet decomposition trick, saving additional time and space. Thanks to these
ingredients we can scale the build-up phase from millions to billions of edges and from k = 5 to
k = 8, although from an asymptotic point of view we are still subject to the O(akm) running

2All measurements are obtained on a workstation with 36 cores and 72GB of main memory — see Section 5.

3

facebook

dblp
amazon

berkstan yelp

ljournal

orkut
twitter

friendster

●

●
●

1M

10M

100M

1G

10G

100K 1M 10M 100M
nodes

ed
ge

s ● LM

GM

CC

●

●

●

●

100

10−3

10−6

10−9

10−12

10−15

10−18

10−21

10−24

m
otif frequency

Figure 1: Our performance in a picture for motifs on k = 8 nodes. Left: the size of the graphs
managed by the state-of-the-art CC and by our algorithms Motivo and L8Motif (abbreviated
as LM). Right: the dense green band has one point for each distinct graphlet that we count
accurately on the Yelp graph (' 10.000 in total) while the two red circles show the only two
graphlets detected by CC.

time and O(ckn) space usage bounds of CC. Our other algorithm, Motivo, can be used to
handle graphlets on up to k = 16 nodes (with some loss of efficiency compared to L8Motif).

The second technical contribution, common to both Motivo and L8Motif, is for the sam-
pling phase and is of a fundamentally different nature. To convey the idea, imagine having an
urn with 1000 balls — 990 red, 9 green, and 1 blue. With uniform sampling, we will quickly
obtain a good estimate of the fraction of red balls, but we will need many samples to observe
green or blue balls. This is the uniform sampling barrier mentioned above. Now imagine to
remove ∼99% of all red balls from the urn. We would be left with 10 red, 9 green, and 1 blue
ball, and we would then quickly get a good estimate of the fraction of green balls. Then imagine
deleting ∼99% of the red and green balls; after this, we could quickly estimate the fraction of
blue balls. We show that our treelet database supports a similar “deletion trick”: we can ignore
some treelets (say, stars) and focus on other ones (say, paths). In this way we can estimate the
most frequent graphlet, delete it and proceed to the second most frequent one, and so on. We
name this algorithm Adaptive Graphlet Sampling, or AGS. Technically speaking, AGS is based
on an online greedy algorithm for a fractional set cover problem (we want to “cover” all graphlets
with their spanning treelets). We provide theoretical guarantees on the accuracy and efficiency
of AGS via competitive analysis and martingale concentration bounds. We note that AGS is the
first algorithm to ensure accuracy for all graphlets at once.

Remark. We first described Motivo in [11], a preliminary version of this work. The
main contribution of this extended version is L8Motif and all the associated technical ideas
(integer treelet encoding, round skipping, and variable-length counts). Thanks to these ideas
we can reduce the running time and space usage of Motivo by almost an order of magnitude,
which allows us to scale k = 7 to k = 8 on the largest graphs. Recall that the time and
space requirements grow exponentially with k, hence, scaling from k to (k+ 1) is a considerable
challenge. To give an idea, to count 6-node motifs on our largest graph Friendster (∼ 2B
nodes), Motivo needs 130 GB of space and 3 hours of time, while L8Motif needs only 25GB
and 30 minutes. The source code of both Motivo and L8Motif is publicly available at https:
//gitlab.com/steven3k/motivo.

4

https://gitlab.com/steven3k/motivo
https://gitlab.com/steven3k/motivo

Manuscript organization. Subsections 1.2 and 1.3 respectively discuss related work and
introduce notation and conventions. Section 2 reviews color coding and CC, the starting points
of our work. Section 3 describes the build-up phase of our algorithms, comparing them to
CC. Section 4 describes our adaptive graphlet sampling technique and other graphlet sampling
optimizations. Finally, Section 5 provides experimental results on several public datasets.

1.2 Related work

The traditional approach to subgraph counting is based on combinatorial counting. This ap-
proach works for k = 4 and 5, but becomes unusable for k > 5, even for approximate counting.
This limitation affects many motif mining tools such as Arabesque [33], ESCAPE [30], Frac-
tal [16], Pangolin [14], AutoMine [26], and DISC [42]. None of these works reports results for
k > 5. The only algorithms that can scale to k > 5 are based on random walks or color coding.

The random walk approach works as follows. We define a graph Gk whose nodes are the
graphlets of G and where two graphlets are adjacent if they share k − 1 nodes. Then, the lazy
random walk on Gk can be shown to be ergodic and converge towards a unique limit distribution
on the set of all graphlets of G. Moreover, each step of the walk can be efficiently simulated
using only local information from G. Thus one just simulates enough steps, draw a graphlet
from the limit distribution, and compute an unbiased estimator of its frequency [8, 36, 15, 20].
Unfortunately, the random walk may need Ω(nk−1) steps to reach the limit distribution, or even
just to find the most frequent graphlet of G when G is fast-mixing [9, 10]. The running time
of this approach is therefore close to O(nk), which is the running time of the naive brute-force
enumeration. One can mitigate this mixing time explosion by walking on subgraphs on less than
k nodes [15] or by sampling a spanning tree directly in G [29]. Unfortunately, this gives biased
samples that needs to be reweighted, increasing the estimator variance so that Ω(nk−1) samples
become necessary again. In addition, most of these algorithms can estimate only the relative
frequencies of graphlets, but not their counts.

There are several algorithms based on color coding. Most of them can only count special
motifs, such as trees and subgraphs of small treewidth. Moreover, often they count only non-
induced copies [21, 4, 43, 44, 32, 19, 12]. Here instead we want to count the induced copies of all
graphlets at once. The only algorithm that can do so is the CC algorithm of [9, 10]. The only
two limitations of CC are that (1) for k = 8, it can only manage graphs on less than 0.5M nodes,
and (2) it gives accurate counts only for the few most frequent graphlets. In contrast, thanks to
our optimization of the build-up phase and the introduction of adaptive sampling, we manage
graphs with tens of millions of nodes and billions of edges while giving guarantees for nearly all
k-graphlets at once. We note that specialized algorithms can efficiently compute or estimate the
number of cliques on graphs with tens or hundreds of millions of edges [26, 22, 23]. Again, these
algorithms work only for a particular motif (the clique) while we can count all motifs at once.

1.3 Preliminaries and notation.

We denote the host graph by G = (V,E), and we let n = |V | and m = |E|. A graphlet is a
connected graph H = (VH , EH). An occurrence or copy of H in G is a subgraph of G isomorphic
to H. Unless otherwise specified, a copy of H in G is meant as induced. We let k = |VH |; in this
work we consider k ≤ 16, and we pay particular attention to k ≤ 8. A treelet T is a graphlet that
is a tree. When using treelets as spanning trees, their copies in G are meant as not necessarily
induced. We denote by H = Hk the set of all k-node graphlets, i.e., all non-isomorphic connected
graphs on k nodes. When needed we denote by Hi the i-th graphlet of H. A colored graphlet
has a color cu ∈ [k] associated to each one of its nodes u. With a mild abuse of notation, in

5

this paper we use [k] to denote the set {0, . . . , k − 1}. A graphlet is colorful if its nodes have
pairwise distinct colors. We denote by C ⊆ [k] a subset of colors. We denote by (T,C) or TC a
colored treelet whose nodes span the set of colors C; we only consider colorful treelets, i.e., the
case |T |=|C|. We often consider treelets and colored treelets rooted at a node r ∈ T (different
rootings can give different treelets). Finally, by dv we denote the degree of v in G, and by u ∼ v
we indicate that u is a neighbor of v in G.

2 Color coding and the CC algorithm

Our algorithms, like the CC algorithm of [9, 10], are based on the color coding technique by
Alon, Yuster and Zwick [6], which works as follows. First, we assign to each node v ∈ G a color
chosen uniformly and independently in [k]. Now consider any k-node treelet in G: the random
coloring makes it colorful with probability pk = k!

kk
≈ e−k. Therefore a constant fraction of all

treelets of G will become colorful. The main idea of color coding is that the number of colorful
k-treelets can be counted in time O(m · ak) with a bottom-up dynamic program. The running
time is exponential in k, but linear in m.

Color coding was introduced to detect and count noninduced trees. Then, the authors of [9,
10] showed how to extend it for sampling graphlets. The idea is to run a modified dynamic
program that collects information about the “colorful structure” of G. Once this is done, it is
easy to sample colorful k-treelets from G and, so, to sample colorful graphlets (just take the
graphlet spanned by the treelet). This is the essence of the CC algorithm [9, 10]. We now detail
the two phases of CC, the build-up phase and the sampling phase, which will also be the same
phases used in our algorithms.

2.1 The build-up phase

The goal of this phase is to build a count table holding the counts of colorful treelets of G. The
phase starts by coloring G: for each node v, we draw a color cv uniformly at random in [k]. Now,
for every v ∈ G and every rooted colored treelet TC on up to k nodes, we want to compute the
following quantity:

c(TC , v) = the number of copies of TC in G that are rooted in v (1)

We compute c(TC , v) by dynamic programming. For each v we initialize c(TC , v) = 1, where T
is the trivial treelet on 1 node and C = {cv}; all other counts are implicitly 0. Now suppose we
have computed the counts of all treelets on h − 1 nodes for some h ≤ k. To compute c(TC , v)
for some TC = (T,C) on h nodes, we decompose T in two smaller subtrees T ′ and T ′′, rooted
respectively at the root r of T and at a child of r, and combine their counts. It is easy to see
that c(TC , v) is given by (see [10]):

c(TC , v) =
1

βT

∑
u∼v

∑
C′⊂C
|C′|=|T ′|

c(T ′C′ , v) · c(T ′′C′′ , u) (2)

where βT is the number of subtrees of T isomorphic to T ′′ rooted in a child of r. In practice,
one uses a canonical decomposition which defines the pair (T ′, T ′′) uniquely as a function of T .
A simple analysis of the entire dynamic program shows that:

Theorem 1 ([10], Theorem 5.1). The build-up phase of CC takes time O(akm) and space O(akn),
for some constant a > 0.

6

In practice, the table size grows quickly. For k = 6 on a graph with 5M nodes, CC needs
50GB of memory [10].

2.2 The sampling phase

The goal of this phase is to estimate the graphlet counts by sampling graphlets from G. We do
this by sampling colorful treelet copies from the treelet count table, as follows. First, draw a pair
(TC , v) with probability proportional to c(TC , v). This is possible since we know all the counts
c(TC , v). Now we want to sample a copy of TC = (T,C) rooted at v. To this end, we take again
the canonical decomposition of T into T ′ and T ′′. We then sample a pair (u,C ′′), where u ∼ v and
C ′′ ⊂ C contains |T ′′| colors, with probability proportional to β−1

T c((T ′, C\C ′′), v)·c((T ′′, C ′′), u).
We then recursively sample a copy of T ′C′ = (T ′, C\C ′′) rooted at v, and a copy of T ′′C′′ = (T ′′, C ′′)
rooted at u. Once we have the copies of T ′C′ and T ′′C′′ , we just combine them into a copy of TC .
One can verify that the resulting copy is drawn uniformly at random from the set of all colorful
treelets of G [10].

Using this k-treelet sampling primitive, one can estimate the copies of any given k-graphlet
Hi (e.g., the clique). First, we estimate the number ci of colorful copies of Hi. To achieve this,
we sample a treelet copy as described above. This treelet copy necessarily spans some induced
k-node subgraph x of G. Let χi be the indicator random variable of the event that x is a copy
of Hi. It is easy to see that E[χi] = ciσi/t, where σi is the number of spanning trees in Hi

and t is the total number of colorful k-treelets of G. Now, t is known from the treelet count
table, and σi can be computed quickly via Kirchhoff’s theorem (see below). Therefore we can
compute ĉi = t σ−1

i χi, which is an unbiased estimator of ci. By standard concentration bounds,
ĉi concentrates around ci if enough samples are taken.

Finally, to estimate the total number gi of copies of Hi, we simply divide ĉi by the probability
pk = k!/kk that a fixed set of k nodes in G becomes colorful. Indeed, if G contains gi copies of
Hi, then by linearity of expectation the expected number of copies of Hi that become colorful is
E[ci] = pkgi. Therefore ĝi = ĉi/pk is an unbiased estimator for gi.

2.3 Statistical guarantees of the estimates

The crucial point of the algorithm just described is the accuracy of the graphlet estimates, ĝi.
There are two sources of error: the coloring, which distorts the true graphlet distribution into
the colorful one, and the sampling.

Regarding the coloring error, one can prove that the colorful graphlet distribution is statisti-
cally close to the actual graphlet distribution of G. First, we report a bound from [10], slightly
rephrased. Let g =

∑
i gi be the total number of induced k-graphlet copies in G. Then:

Theorem 2 ([10] Thm 5.3). For all ε > 0, a random coloring of G with k colors gives:

Pr

[∣∣∣∣ cipk − gi
∣∣∣∣ > 2εg

1− ε

]
= exp

(
−Ω

(
ε2g1/k

))
. (3)

Note that the bound above is additive, that is, it establishes a deviation proportional to g,
the total number of graphlets. In this work we complement it with a multiplicative bound that
holds when the maximum degree ∆ of G is small.

Theorem 3. For all ε > 0, a random coloring of G with k colors gives:

Pr

[∣∣∣∣ cipk − gi
∣∣∣∣ > ε gi

]
< 2 exp

(
− 2ε2p2

k gi
(k − 1)!∆k−2

)
. (4)

7

Proof. We use a concentration bound for dependent random variables from [17]. Let Vi be the
set of copies of Hi in G. For any h ∈ Vi let Xh be the indicator random variable of the event
that h becomes colorful. Let ci =

∑
h∈Vi Xh; clearly E[ci] = pkgi. Note that, for any h1, h2 ∈ Vi,

the random variables Xh1
, Xh2

are independent if and only if |V (h1)∩ V (h2)| ≤ 1, which means
h1, h2 share at most one node. For any u, v ∈ G let then g(u, v) = |{h ∈ Vi : u, v ∈ h}|, and define
χk = 1+maxu,v∈G g(u, v). By a standard counting argument maxu,v∈G g(u, v) ≤ (k−1)!∆k−2−1
and thus χk ≤ (k − 1)!∆k−2. The bound then follows immediately from Theorem 3.2 of [17] by
setting t = εE[ci] = εpkgi, (bα − aα) = 1 for all α = h ∈ Vi, and χ∗(Γ) ≤ χk ≤ (k− 1)!∆k−2.

These two bounds suggest that the random coloring does not introduce a significant distortion.
This is confirmed by our experiments, where the ĝi appear concentrated around the mean. Hence,
one may avoid averaging over Θ(exp(k)) independent colorings, as suggested in the original color
coding paper [6]; one run is enough. Thus, in a sense, the treelet count table is w.h.p. a database
that holds (implicitly) a representative sample of all k-graphlets in G.

For what concerns the sampling error, standard concentration bounds apply to the error of
uniform sampling (see above). For AGS the analysis is more complex, and is shown in Sec-
tion 4.1.

3 Fast construction of a compact treelet database

This section details the internals of the build-up phase of Motivo and L8Motif. Recall that
the goal of this phase is to compute a compact database of colorful treelet counts (Section 2).
This database will support the following operations:

• occ(v): get the total number of colorful treelet copies rooted at v

• sample(v): get a uniform random colored treelet rooted at v

Using these two operations, we can implement graphlet sampling, by first selecting a node v
with probability proportional to the number of treelets rooted in it, and then sampling one such
treelet uniformly at random. For our adaptive sampling scheme AGS, we will also support the
following operations:

• occ(TC , v): get the total number of copies of TC rooted at v

• sample(T, v): get a uniform random colored treelet rooted at v with shape T

To give a detailed account of Motivo and L8Motif, we describe them incrementally. We
start in Section 3.1 by discussing the implementation of CC’s build-up phase. Then, in Sec-
tion 3.2 (Motivo) and Section 3.3 (L8Motif) we progressively replace the algorithms and data
structures of CC with ours, measuring the cumulative performance impact. To measure the
performance impact for Motivo, we use as baseline a C++ version of CC (which is originally in
Java), that we wrote by carefully porting all algorithms and data structures. The baseline for
L8Motif is Motivo itself. Finally, in Subsection 3.4 and Subsection 3.5 we describe additional
optimizations for both Motivo and L8Motif.

3.1 Treelets and counts

In this subsection we discuss the crucial aspects of the build-up phase of CC. This phase spends
nearly all its time in manipulating rooted (un)colored treelets and reading/writing their counts,
as described in Section 2. Therefore, to speed up the phase, we need to make the manipulation
of these objects as efficient as possible.

8

The first computationally intensive task is merging the treelet counts. Consider a single treelet
count c(TC , v). To compute c(TC , v), both CC and our algorithms process all the neighbors u of
v as follows. First, suppose we have defined a total order over all the TC (this order is described
below). For every pair of non-zero counts c(T ′C′ , v) and c(T ′′C′′ , u), check that C ′ ∩ C ′′ = ∅,
and that T ′′C′′ is not smaller than the smallest subtree rooted in a child of the root of T ′C′ .
Here, “smaller” and “smallest” are determined by the total order. If these conditions hold, then
T ′C′ and T ′′C′′ can be merged into a treelet TC . It is easy to see that for each occurrence of TC
rooted in v there are exactly βT pairs of: (i) an occurrence of a treelet T ′C′ rooted in v, and (ii) an
occurrence of a treelet T ′′C′′ rooted in a neighbor u of v, for which the above procedure on T ′C′ and
T ′′C′′ returns TC . Consequently, the value of c(TC , v) is incremented by β−1

T c(T ′C′ , v) · c(T ′′C′′ , u).
This procedure is essentially a direct computation of the sum in Equation 2, once a particular
decomposition of TC has been chosen by our total order. Since Equation 2 holds regardless of the
chosen decomposition, this implies the correctness of the build-up phase as well. In this process,
the computationally intensive part is the check-and-merge operation, which can be formalized as
the primitive:

• merge(T ′C′,T
′′
C′′): if possible, merge T ′C′ , T

′′
C′′ by appending T ′′C′′ to the root of T ′C′ , else

FAIL

In CC, this primitive is implemented as a recursive algorithm, which can be quite expensive.
This is because CC encodes each treelet TC as a classic, pointer-based tree data structure. Here,
we show a different implementation that makes the check-and-merge operation much faster.

The second computationally expensive task is storing and accessing the counts. CC does it
as follows: for each node v ∈ G, it keeps a dedicated hash table in main memory which maps
each colored treelet TC > 0 to its count c(TC , v). In the hash table, the key used for c(TC , v) is
a 64-bit pointer to an instance of TC . Thus, each entry of CC’s table thus uses 128 bits: 64 for
the key, and 64 for the integer count. Already for k = 6 on a graph with a few million nodes,
storing the hash table can require a dozen GB of main memory, so this approach becomes quickly
impractical. Here, we show how to reduce the space used by the count table by almost an order
of magnitude.

Before moving on, we note that a perfectly fair porting of CC is not possible. This is because
CC makes heavy use of fast specialized integer hash tables provided by the fastutil3 library,
which exists only in Java and seems to be crucial to its performance. Indeed, for the porting
we tested three popular libraries — google::sparse hash map and google::dense hash map

of the sparsehash library4, and std::unordered map from the C++ containers library. With the
first two, the porting is up to 17× slower than CC, and with the latter one it is up to 7× slower.
Nonetheless, after all optimizations are in place, we are always faster than CC.

3.2 Motivo: a general-purpose motif counter for k ≤ 16 nodes

We describe our first toolbox, Motivo, introduced in our preliminary work [11], for graphlets
on up to 16 nodes. Starting from the C++ porting of CC, we introduce succinct treelets and the
succinct count table, obtaining the performance improvement shown in Figure 2.

3.2.1 Succinct treelets and count table

Treelet representation. We drop CC’s pointer-based structures, and we represent treelets as
bitstrings. This accelerates merge(T,T ′) by up to 150× for k = 5 and up to 1000× for k = 7.

3http://fastutil.di.unimi.it/
4https://github.com/sparsehash/sparsehash

9

http://fastutil.di.unimi.it/
https://github.com/sparsehash/sparsehash

0

100

200

300

CC p
or

tin
g

+
su

cc
in

ct
 tr

ee
le

ts

+
su

cc
in

ct
 ta

bl
e

tim
e

(s
)

0

1

2

3

CC p
or

tin
g

+
su

cc
in

ct
 tr

ee
le

ts

+
su

cc
in

ct
 ta

bl
e

m
ai

n
m

em
or

y
(G

B
)

Figure 2: Cumulative impact of our optimizations on the build-up phase, for Amazon with k = 6.
The baseline is the C++ porting of CC.

Given an uncolored treelet T rooted at r, its bitstring representation sT is defined as follows.
Perform a DFS traversal of T starting from r. The i-th bit of sT is 1 (resp. 0) if the i-th edge is
traversed moving away from (resp. towards) r.

This encoding exhibits several nice properties. First, for all k ≤ 16, it requires at most 30
bits, which fit in a 4-byte integer type. Second, the total order over the treelets T is just the
lexicographic order over their encodings (and we can show that this coincides with the total order
used by CC as well). Third, the order serves also as tie-breaking rule for the DFS traversal: the
children of a node are visited in the order given by their rooted subtrees. This implies that
every T has a well-defined unique encoding sT . Fourth, merging T ′ and T ′′ into T boils down to
concatenating the bitstrings 1, sT ′′ , sT ′ , in this order, which is typically faster than manipulating
a pointer-based structure.

To encode a colored rooted treelet, TC = (T,C), we simply concatenate sT and the charac-
teristic vector sC of C.5 For all k ≤ 16, the resulting bitstring sTC

fits in 46 bits. Set-theoretical
operations on C become bitwise operations over sC (or for union, and for intersection). And
again, the lexicographical order of the encodings gives the total order over the treelets. An
example of a colored rooted treelet and its encoding is given in Figure 3.

3

1

2 7

5 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0

sT sC

Figure 3: A colored rooted treelet TC and its encoding, shown for simplicity on just 8 + 8 = 16
bits. The label ` of each node represents its color and the corresponding `-th least significant bit
of sC is set to 1. sT is the bitstring representing the tree T .

Count tables. Instead of using hash tables, Motivo maintains the key-value pairs (TC , c(TC , v))
in a set of arrays, one for each v ∈ G and each treelet size h ∈ {1, . . . , k}, storing only the entries
with a non-zero count c(TC , v) > 0 (note that each array is built only once and never modified
thereafter). Clearly, using arrays makes iteration extremely fast. Moreover, given the key of
an entry, we do not need to dereference any pointer to access the corresponding colored treelet

5Given a universe U = 0, 1, . . . , eta, the characteristic vector 〈x0, x1, . . . , xη−1〉 of a subset S ⊆ U contains
one bit xi for each element in U , where xi is 1 if i ∈ S and 0 otherwise.

10

—the key is the treelet itself. The price to pay is that searching for a given key is potentially
more expensive. However, by sorting every array according to the total order over the keys (see
above), we can find a key via binary search in time O(k), since every array has length O(6k).6

For what concerns the treelet counts themselves, while CC uses 64 bits per count, Motivo
uses 128 bits per count. This adds a small overhead,7 but avoids dangerous overflows for large
values of k.8 Moreover, since each key fits into 48 bits, each array entry actually uses 48+128=176
bits. We conclude with one final optimization. In place of c(TC , v), Motivo stores the cumulative
count η(TC , v) =

∑
T ′C′≤TC

c(T ′C′ , v), see Figure 4 for a toy example. This has several benefits:

(i) the count c(TC , v) can be computed with negligible overhead as the difference between two
consecutive entries, (ii) the total treelet count ηv for v is at the end of the record, and (iii) we
can sample a uniform random treelet rooted in v in time O(k), by drawing a uniform random
value X in {1, . . . , ηv} and then doing a binary search for X over the array of v.

3.3 L8Motif: counting 8-graphlets in large graphs

In this subsection we describe L8Motif, a version of Motivo specialized for k ≤ 8. To this
end, we start with Motivo and plug in three new ingredients which improve its performance
—see Figure 5.

3.3.1 Integer treelet encoding (ITE)

Our first ingredient is an extremely compact representation of treelets as unsigned integers. The
idea is simple: we observe that there are exactly 1991 rooted colored treelets on at most 8 nodes.
Therefore, we can encode each treelet TC as an 11-bit integer. This reduces the space by more
than 4× compared to the bitstring encoding of Motivo. From an asymptotic point of view,
we are using the optimal amount of bits, up to a multiplicative factor 1 + o(1). In this sense,
one cannot use fewer bits per treelet. To ensure treelets are memory-aligned, we pad the 11-bit
representation into a 16-bit integer. This leaves 5 spare bits, that we use to encode the length
of our variable-length count, see described in Section 3.3.3. The impact of ITE on the overall
space usage of Motivo is around ' 20% on all instances (see Figure 5).

Adopting ITE makes treelet manipulations harder. Recall for example that merge(T ′C′ , T
′′
C′′)

checks if T ′C′ and T ′′C′′ can be merged into a treelet TC , and that T can be decomposed into T ′

v1

v2 v4

v3

v5

v6

, 2 , 3 , 4 , 5 , 6

, 2 , 3

, 3, 2 , 4 , 5

, 1 , 2 , 3

, 2 , 3

, 2 , 4 , 6 , 8 , 9

v1

v2

v3

v4

v5

v6

Figure 4: Left: a graph G whose vertices have been colored using k = 4 colors. Right: a graphical
representation of the count table (implicitly) storing the number c(TC , v) of all colored treelets
TC of size 3 in G. Notice how we actually store η(TC , v) instead of c(TC , v).

6By Cayley’s formula: there are O(3kk−3/2) rooted treelets on k vertices [28], and 2k subsets of k colors.
7Tests on our machine show that summing 500k unsigned integers is 1.5× slower with 128-bit than with 64-bit

integers.
8Already for k = 6, the number of k-stars centered in a node of degree 216 is ≈1022.

11

and T ′′. Since in ITE a treelet is just a number, merge would need to go back and forth between
ITE and bitstring encodings. To resolve, we precompute the results of merge(T ′C′ , T

′′
C′′) on all

treelets on up to 8 nodes, and store all the results, in ITE format, in a bidimensional array. In
this array, entry [i][j] is the ITE index of the treelet resulting from merging i and j (or −1 for
FAIL). Another array tells, for every ITE index of a treelet T , the ITE indices i, j of the treelets
of the canonical decomposition of T . Other arrays tell us the ITE index of the treelet T and
the set of colors C associated to a colored treelet TC = (T,C), and so on. Thus, each treelet
operation is just a sequence of black-blox lookups in these arrays, using only the ITE encoding.
The total size of all arrays is less than 3 megabytes, which fits in the cache of a modern CPU.
With this technique, the time taken by a single treelet operation is similar to the one required
by the bitstring encoding of Section 3.2.1.

0

1000

2000

3000

default +ITE +skip +vlc

build−up time (s)

0

25

50

75

default +ITE +skip +vlc

space usage (GB)

0

20000

40000

60000

80000

default +ITE +skip +vlc

sampling speed (motifs/s)

Figure 5: Twitter graph, k = 6. Cumulative impact of using ITE, skipping the heaviest round
of the dynamic program, and using variable-length counts. The “default” baseline is Motivo,
described in the previous section.

3.3.2 Round skipping via balanced treelet decomposition

Recall again that, in the build-up phase, we repeatedly merge the counts of smaller treelets. In
particular, in round k−1 we produce the counts for all treelets on k−1 nodes. For k ≤ 8, round
k − 1 is consistently the most expensive one, and consumes roughly 40% of the time and space
of the entire phase — see Figure 7. We would like to reduce the time and space usage of this
round.

Our observation is the following: a (k− 1)-treelet count is used only to compute the counts of
k-treelets whose smallest subtree in the canonical decomposition is a single node. For example,
a k-star is certainly decomposed into a single node and a treelet on k − 1 nodes, and therefore
to count k-stars we need the (k − 1)-treelet counts. It turns out that stars are the only treelets
whose decomposition necessarily contains a treelet on a single node; for all other treelets, we can
find a decomposition where the largest subtree contains at most k − 2 nodes. And for stars, we
can avoid counting them at all: at sampling time, they can be sampled very efficiently in the
naive way.

Let us now describe our round skipping technique in more detail. We rely on the following
basic fact:

Lemma 1. Any k-treelet T that is not a star has an edge that, if cut, yields two trees each with
at most k − 2 nodes.

Proof. If T is not a star then it contains a path on 3 edges, say (x, u, v, y). Cutting (u, v) yields
two trees, each one with at least 2 nodes or, equivalently, at most (k − 2) nodes.

12

Therefore, for any non-star k-treelet T , we can find a root u and a child v of u that give a
balanced decomposition of T into T ′ and T ′′, that is, one where both T ′ and T ′′ have at most
≤ k−2 nodes, see Figure 6. We therefore replace the canonical decomposition of Subsection 3.2.1
with this balanced decomposition, and we exclude k-stars from the set of treelets that we count
in the k-th round. Then, we completely skip round (k− 1) of the dynamic program. This yields
a reduction in both space and time, consistently across all instances, of up to 40% (Figure 7).

3

1

2 7

5

3

1

2 7

5

3

1

2 7

5

Figure 6: A rooted colored 5-treelet (left) with its original decomposition in two subtrees on 4
and 1 nodes (middle) and its balanced decomposition in two subtrees on 3 and 2 nodes (right).

0

10

20

30

1 2 3 4 5 6
round

sp
ac

e
(G

B
)

0

200

400

600

800

1 2 3 4 5 6
round

tim
e

(s
)

Figure 7: Build-up phase on Twitter for k = 6: space and time usage of single rounds, before
and after adopting balanced treelet decompositions and round skipping.

As said, since we do not have the counts of k-stars anymore, to sample a star we now simply
draw a root node v from G with probability proportional to

(
dv
k−1

)
and then choose k−1 neighbors

of v u.a.r. without replacement. This gives an uncolored k-star u.a.r. from G, which is even better
since we avoid the noise introduced by coloring. Sampling in this fashion is much faster than
using the count table, and since most treelets of G are often stars, the sampling rate can increase
by several orders of magnitude (see Figure 5).

3.3.3 Variable-length counts

Our third and final ingredient is aimed again at saving space. To this end, we encode each treelet
count c(TC , v) as a variable-length count. The rationale is that, in practice, most of the treelet
counts can be stored in very few bits as shown, e.g., by Figure 8. Our variable-length counts
can be thought of as a variant of Elias delta coding [18], which can represent any integer x using
only (1 + o(1))dlog2 xe bits. In practice, by using the 5 spare bits left by the encoding of TC (see
Section 3.3.1), we encode each key-value pair (TC , c(TC , v)) in a byte-aligned memory region, as
shown in Figure 9, that is we use:

• 11 bits for the integer representation of TC , see Section 3.3.1.

• 5 bits for the length ` of c(TC , v), expressed in bytes. Thus, we can support counts c(TC , v)
on up to 256 bits (twice the maximum count length supported by Motivo), and with
values as large as 2256 − 1.

13

• ` bytes for the binary encoding of c(TC , v)

Variable-length counts yield an additional space reduction of≥ 60% on all graphs for all k ≥ 6.
The downside is that we cannot find counts via binary search, as the counts are not aligned in
memory anymore. Moreover, we pay the obvious overhead of encoding and decoding the counts.
This has a significant impact on the build-up time; in the worst case, we witness an increase
of about 50%. However, the gains outweigh the losses: on our largest graphs Twitter and
Friendster, variable-length counts are crucial to reduce the space footprint enough to manage
graphlets on k = 8 nodes.

0.00

0.25

0.50

0.75

1.00

0 4 8 16 32 64 128
bits

co
un

ts

Figure 8: The fraction of treelet counts that require at least b bits, as a function of b, for the
treelet table of Twitter with k = 6. The resulting average bit length is just 14, almost 90% less
than 128 bits.

TC ` c(TC , v)

11 bits 5 bits 8` bits

Figure 9: Variable-length encoding of a treelet count.

3.4 Lower-level optimizations and architectural details

For completeness and reproducibility, we describe some additional optimizations and features of
Motivo and L8Motif, some with a significant impact.

3.4.1 Zero-rooting

This is only for Motivo. Consider a colorful treelet copy in G formed by the nodes v1, . . . , vh.
This treelet appears in the records of v1, . . . , vh, since it counts as a rooted treelet for each of
them. Therefore, the treelet is counted h times. This redundancy is necessary when h < k, since
we need all rootings for the next round of the dynamic program, see (2). However, for h = k this
is useless. Thus, we store k-treelet counts only at nodes of color 0. This cuts the running time
by 30% − 40%, while reducing the size of the k-treelets records by a factor of k, and the total
space usage by ≈ 10%. Notice that L8Motif already counts k-treelets only once, thanks to the
balanced treelet decomposition of Section 3.3.2.

3.4.2 Greedy flushing

To reduce the memory footprint, we use a greedy flushing strategy. Suppose we are building the
count table of the h-treelets. We temporarily store the record/array of v in a hash table, which

14

allows for efficient insertions and lookups; when done, we immediately flush it on disk and delete
the hash table. In this way we produce the count tables for all nodes of G, in some order. Thus,
a second I/O pass is needed to sort the tables by their corresponding node of G, so that they
can be retrieved efficiently in the next round. This technique increased the total runtime by at
most 10% in all our runs.

3.4.3 Multi-threading

We make heavy use of thread-level parallelism in both the build-up and sampling phases. For
the build-up phase, the count of each node v ∈ G is computed by an independent thread from a
thread pool of a fixed size. As long as the number of remaining vertices is sufficiently large, each
thread is assigned a (yet unprocessed) vertex v and will compute all the counts c(TC , v) for all
pairs TC . Obviously, when the number of remaining vertices drops below the number of available
threads, some threads become idle. When this happens, we partition the edges of a single vertex
v across different threads and make them compute different summands of the outermost sum of
Equation (2). The partial sums are then summed together into c(·, v). For the sampling phase,
samples are by definition independent and are taken by all threads in parallel.

3.4.4 Memory-mapped reads

Recall that our treelet count database is stored in external memory. This entails I/O access,
since computing the count table for treelets of size h requires the count tables of each size j < h.
We delegate the task to the operating system by using memory-mapped I/O. This means that
we see the count tables as if they resided in main memory, and the operating system takes care
of loading and storing them to disk. With enough memory this gives virtually no overhead;
otherwise, the OS will reclaim memory by unloading part of the tables, and future requests to
those parts will incur a page fault and prompt a reload from the disk. The overhead in terms of
additional I/O turns out to be at most 100MB, except for k = 8 on LiveJournal (34GB) and
Yelp (8GB) and for k = 6 on Friendster (15GB). In these cases the overhead is inevitable, as
the aggregate size of the tables is close to or even larger than the memory size.

3.5 Biased coloring

Finally, we describe a simple trick that reduces space significantly, in exchange for accuracy,
which is useful on very large graphs. The idea is to skew the distribution of colors so that fewer
treelets become colorful and we have less counts to process and store.

Consider the following color distribution. We choose each color i ∈ {1, . . . , k − 1} with
probability λ � 1

k , and color 0 with probability 1 − λ(k − 1). Then, for any set of j colors C,
the probability that a given j-treelet is colored with C is:

pk,j(C) =

{
j!λj if 0 /∈ C
' j!λj−1 if 0 ∈ C (5)

Therefore, if λ is sufficiently small, for most treelets we will have a zero count at v. Moreover,
most nonzero counts will be for a restricted set of colorings – those containing color 0. This
reduces the size of the treelet count table, and thus the running time of the algorithm. As a
downside we suffer a loss of accuracy, since a lower colorful probability increases the variance of
the number ci of colorful copies of Hi. However, if n is large enough, and a substantial fraction
of nodes of G is part of some occurrence of Hi, then the total number of copies gi of Hi is large
enough to ensure concentration. In particular, by Theorem 3 the accuracy loss is negligible as
long as λk−1n/∆k−2 is large.

15

This technique allows us to manage our largest instances, Twitter and Friendster for k = 8,
with an acceptable loss of accuracy, see Section 5. In those experiments, we use an educated guess
of λ = 0.001. We note that, otherwise, one could find a good value for λ by setting λ� 1/kn and
then growing λ until a good fraction of counts are positive, at which point Theorem 3 ensures
concentration.

4 Sampling treelets from the database

This section describes in detail the algorithms for sampling graphlets from the treelet count table.
Recall that we support two sampling algorithms: uniform sampling, which is the native sampling
algorithm of CC, and our novel adaptive graphlet sampling strategy (AGS). Uniform sampling
is exactly the one described in Section 2. Hence we directly move on to AGS in the next section;
we then conclude by describing lower-level optimizations that apply to both sampling strategies,
and, in many cases, increment the sampling rate substantially.

4.1 Adaptive Graphlet Sampling (AGS)

Recall that the main idea of CC is to build a compact database for sampling k-treelets from G.
Interestingly, we can choose the kind of treelet to sample (a star, a path, etc.). That is, for every
k-treelet T our database supports the operation:

• sample(T): return a colorful copy of T u.a.r. from G

We can use this primitive to virtually “delete” certain graphlets from the database, and focus
on other ones.

Let us explain the idea with an example. Suppose G contains just two types of colorful
graphlets, H1 and H2, of which H2 represents a tiny fraction, say 10−10. With uniform sampling,
we will need approximately 1010 samples before finding H2. Suppose, however, that H1 and H2

are spanned by treelets of different shape, say T1 and T2. We can then start calling sample(T1),
which will return only copies of H1, until we estimate accurately H1. At this point we call
sample(T2), which will return only copies of H2, until we estimate accurately H2, too. Thus,
using sample(T) we can estimate both graphlets with just O(1) samples. Clearly, the general
situation is more complex, as we have thousands of graphlets with common spanning treelets.
Still, the idea can be adapted and it works strikingly well.

Let us describe AGS in more detail. We start by invoking sample(T) on the most frequent
k-treelet T in G (which we know from the database). Eventually, some graphlet Hi spanned
by T will appear enough times, say Θ(ε−2 ln(1/δ)), so that we can estimate its occurrences with
a multiplicative approximation of 1 + ε, with a probability of at least 1 − δ. We then say Hi

is covered. Now we do not need any additional sample of Hi, so we would like to “delete” it.
That is, we want to switch to another treelet T ′ that does not span Hi. Such a T ′ may not
exist, but we can use the T ′ that minimizes the probability of returning a copy of Hi. Now the
crucial point is that we can find T ′ as follows. First, we have a good estimate ĉi of the number of
colorful copies of Hi. Then, for each k-treelet Tj we can estimate the number of colorful copies
of Tj that span a colorful copy of Hi in G as ĉi σij , where σij is the number of spanning trees of
Hi isomorphic to Tj . Finally, dividing this estimate by the number tj of colorful copies of Tj in
G yields an estimate of the probability that sample(Tj) spans a copy of Hi. That is,

Pr(sample(Tj) yields a copy of Hi) =
of colorful copies of Tj in G spanning Hi

of colorful copies of Tj in G
=
ĉiσij
tj

(6)

16

More generally, we need the probability that sample(Tj) spans a copy of some covered graphlet:

Pr(sample(Tj) yields a covered graphlet) =
1

tj

∑
Hi covered

ĉiσij (7)

We switch to the treelet Tj∗ minimizing this probability, and continue sampling until a new
graphlet becomes covered.

The pseudocode of AGS is listed below. A graphlet is marked as covered when it has appeared
in at least c̄ samples. To have a probability of at least 1− δ of obtaining a multiplicative (1 + ε)-
approximation over all k-graphlets one would set c̄ = O(ε−2 ln(s/δ)) where s = sk is the number
of distinct k-graphlets. In our experiments we set c̄ = 1000, which gives good accuracy on most
graphlets. We denote by H1, . . . ,Hs the distinct k-node graphlets and by T1, . . . , Tς the distinct
k-node treelets.

Algorithm AGS(ε, δ)

1: (c1, . . . , cs)← (0, . . . , 0) . graphlet counts
2: (w1, . . . , ws)← (0, . . . , 0) . graphlet weights
3: c̄← d 4

ε2
ln(2s

δ
)e . covering threshold

4: C ← ∅ . graphlets covered
5: Tj ← an arbitrary treelet type
6: while |C| < s do
7: for each i′ in 1, . . . , s do
8: wi′ ← wi′ + σi′j/tj

9: TG ← an occurrence of Tj drawn u.a.r. in G
10: Hi ← the graphlet type spanned by TG
11: ci ← ci + 1
12: if ci ≥ c̄ then . switch to a new treelet Tj
13: C ← C ∪ {i}
14: j∗ ← arg minj′=1,...,ς

1
tj′

∑
i′∈C σi′j′ ci′/wi′

15: Tj ← Tj∗

16: return (c1
w1
, . . . , cs

ws
)

4.2 Approximation guarantees of AGS

This section is dedicated to showing that AGS provides strong statistical guarantees. Our main
result is that, if AGS chooses the “right” treelet Tj∗ , then we obtain multiplicative error guar-
antees for all graphlets at once. Formally:

Theorem 4. If the tree Tj∗ chosen by AGS at line 14 minimizes Pr[sample(Tj) spans a copy
of some Hi ∈ C] then, with probability (1 − δ), when AGS stops, (ci/wi) is a multiplicative
(1± ε)-approximation of gi for all i = 1, . . . , s.

The proof requires a martingale analysis, since the distribution from which we draw the
graphlets changes over time. To this end, from now on we fix a graphlet Hi and analyse the
concentration of its estimate. We drop the index i from the notation unless necessary. We start
by recalling the following martingale tail inequality from [5]:

Theorem 5 ([5], Theorem 2.2). Let (Z0, Z1, . . .) be a martingale with respect to the filter (Fτ)t≥0.

Suppose that Zτ+1−Zτ ≤M for all τ , and write Vt =
∑t
τ=1 Var[Zτ |Fτ−1]. Then for any z, v > 0

17

we have:

Pr [∃ t : Zt ≥ Z0 + z, Vt ≤ v] ≤ exp

(
− z2

2(v +Mz)

)
(8)

We now plug the appropriate quantities from our algorithm into Theorem 5.

A) For t ≥ 1, let Xt be the indicator random variable of the event “Hi is the graphlet sampled
at step t” (line 10 of AGS)

B) For t ≥ 0, let Y tj be the indicator random variable of the event “at the end of step t, the
treelet to be sampled at the next step is Tj”

C) For t ≥ 0 let Ft be the event space generated by the random variables Y τj : j ∈ [ς], τ = 0, . . . , t

D) For any random variable Z, then, E[Z | Ft] = E[Z |Y τj : j ∈ [ς], τ = 0, . . . , t], and Var[Z | Ft]
is defined analogously

E) For t ≥ 1 let Pt = E[Xt|Ft−1] be the probability that the graphlet sampled at the t-th
invocation of line 10 is Hi, as a function of the events up to time t − 1. It is immediate to
see that Pt =

∑ς
j=1 Y

t−1
j aji

F) Let Z0 = 0, and for t ≥ 1 let Zt =
∑t
τ=1(Xt−Pt). Now, (Zt)t≥0 is a martingale with respect

to the filter (Ft)t≥0, since Zt is obtained from Zt−1 by adding Xt and subtracting Pt which
is precisely the expectation of Xt w.r.t. Ft−1

G) Let M = 1, since |Zt+1 − Zt| = |Xt+1 − Pt| ≤ 1 for all t

Finally, notice that Var[Zt|Ft−1] = Var[Xt|Ft−1], since again Zt = Zt−1 + Xt − Pt, and both
Zt−1 and Pt are constant over Ft−1, so their variance w.r.t. Ft−1 is 0. Now, Var[Xt|Ft−1] =
Pt(1 − Pt) ≤ Pt; and therefore we have Vt =

∑t
τ=1 Var[Zτ | Fτ−1] ≤

∑t
τ=1 Pτ . By applying

Theorem 5 above, we obtain:

Pr

[
∃ t : Zt ≥ z,

t∑
τ=1

Pτ ≤ v

]
≤ exp

(
− z2

2(v + z)

)
∀ z, v > 0 (9)

Now consider AGS(ε, δ). Recall that we are looking at a fixed graphlet Hi (which here does
not denote the graphlet sampled at line 10). Note that

∑t
τ=1Xτ is exactly the value of ci after

t executions of the main cycle (see line 11). Similarly,
∑t
τ=1 Pτ is the value of gi · wi after t

executions of the main cycle: indeed, if Y t−1
j = 1, then at step τ we add to wi the value

σij

tj

(line 8), while the probability that a sample of Tj yields Hi is exactly
giσij

tj
. Therefore, after the

main cycle has been executed t times, Zt =
∑t
τ=1(Xt − Pt) is the value of ci − giwi.

We now derive our concentration bounds. Suppose that, when AGS(ε, δ) returns, ci
wi
≥

gi(1 + ε), i.e., ci(1 − ε
1+ε) ≥ giwi. On the one hand this implies that ci − giwi ≥ ci

ε
1+ε , i.e.,

Zt ≥ ci
ε

1+ε ; and since upon termination ci = c̄, this means Zt ≥ c̄ ε
1+ε . On the other hand it

implies that giwi ≤ ci(1− ε
1+ε), i.e.,

∑t
τ=1 Pτ ≤ ci(1−

ε
1+ε); again since upon termination ci = c̄,

this means
∑t
τ=1 Pτ ≤ c̄(1 − ε

1+ε). We can then apply (9) with z = c̄ ε
1+ε and v = c̄(1 − ε

1+ε),
and since v + z = c̄ we get:

Pr

[
ci
wi
≥ gi(1 + ε)

]
≤ exp

(
−

(c̄ ε
1+ε)

2

2c̄

)
= exp

(
− ε2c̄

2(1 + ε)2

)
(10)

18

but ε2c̄
2(1+ε)2 ≥

ε2

2(1+ε)2
4
ε2 ln

(
2s
δ

)
≥ ln

(
2s
δ

)
and thus the probability above is bounded by δ

2s .

Suppose instead that, when AGS(ε, δ) returns, ci
wi
≤ gi(1 − ε), i.e., ci(1 + ε

1−ε) ≤ giwi. On
the one hand this implies that ci− giwi ≥ ε

1−εci, that is, upon termination we have −Zt ≥ ε
1−ε c̄.

Obviously (−Zt)t≥0 is a martingale too with respect to the filter (Ft)t≥0, hence (9) holds if we
replace Zt with −Zt. Let t0 ≤ t be the first step where −Zt0 ≥ ε

1−ε c̄; since |Zt − Zt−1| ≤ 1, it

must be −Zt0 < ε
1−ε c̄+ 1. Moreover,

∑t
τ=1Xτ is nondecreasing in t, so

∑t0
τ=1Xτ ≤ c̄. It follows

that
∑t0
τ=1 Pτ = −Zt0 +

∑t0
τ=1Xτ <

ε
1−ε c̄+ 1 + c̄ = 1

1−ε c̄+ 1. Applying again (9) with z = ε
1−ε c̄

and v = 1
1−ε c̄+ 1, we obtain:

Pr

[
ci
wi
≤ gi(1− ε)

]
≤ exp

(
−

(c̄ ε
1−ε)

2

2(1+ε
1−ε c̄+ 1)

)
≤ exp

(
− ε2c̄2

2(1 + c̄)

)
(11)

but since c̄ ≥ 4 then c̄
1+c̄ ≥

4
5 and so ε2c̄2

2(1+c̄) ≥
2ε2c̄

5 . By replacing c̄ we get 2ε2c̄
5 ≥ 2ε2

5
4
ε2 ln

(
2s
δ

)
>

ln
(

2s
δ

)
and thus once again the probability of deviation is bounded by δ

2s .
By using the union bound on the two cases, the probability that ci

wi
is not within a factor

(1± ε) of gi is at most δ
s . Using the union bound once again on all i ∈ [s], we obtain theorem 4.

4.3 Sampling efficiency of AGS

4.3.1 Near-optimality of AGS

Imagine a “clairvoyant” algorithm that knows, for every treelet Tj , the number of invocations
of sample(Tj) necessary in order to get the desired accuracy bounds while minimizing the total
number of taken samples. We show that the number of samples used by AGS is close to the
number of samples used by this clairvoyant algorithm. Formally, we prove:

Theorem 6. If the treelet Tj∗ chosen by AGS at line 14 minimizes Pr[sample(Tj) spans a copy
of some Hi ∈ C], then AGS makes a number of calls to sample() that is at most O(ln(s)) = O(k2)
times the minimum needed to ensure that every graphlet Hi appears in c̄ samples in expectation.

The rest of this section is devoted to proving Theorem 6. We will write the problem of
minimizing the total number of samples as a covering problem, and show that AGS is a greedy
algorithm for that problem. This will allow us to prove the guarantees of AGS by adapting a
standard proof for greedy algorithms for covering problems.

For each i ∈ [s] and each j ∈ [ς] let aji be the probability that sample(Tj) returns a copy of
Hi. Note that aji = giσij/tj , which is the fraction of colorful copies of Tj that span a copy of
Hi. Our goal is to allocate, for each Tj , the number xj of calls to sample(Tj), so that (1) the
total number of calls

∑
j xj is minimised and (2) each Hi appears at least c̄ times in expectation.

Formally, let A = (aji)
T , so that columns correspond to treelets Tj and rows to graphlets Hi,

and let x = (x1, . . . , xς) ∈ Nς . We obtain the following integer program: min 〈1,x〉
s.t. Ax ≥ c̄1

x ∈ Nς

We now describe the natural greedy algorithm for this problem; it turns out that this is
precisely AGS. The algorithm works in steps. Let x0 = 0, and for all t ≥ 1 denote by xt

the partial solution after t steps. The vector Axt is an s-entry column whose i-th entry is the
expected number of occurrences of Hi drawn using the sample allocation given by xt. We define

19

the vector of residuals at time t as ct = max(0, c −Axt), and we write ct = 〈1, ct〉. Note that
c0 = c̄1 and c0 = sc̄. Finally, we let U t = {i : cti > 0}; this is the set of graphlets not yet covered
at time t. Clearly, U0 = [s].

At step t, the algorithm chooses Tj∗ such that sample(Tj∗) spans an uncovered graphlet with
the highest probability. To this end, it computes:

j∗ := arg max
j=1,...,ς

∑
i∈Ut

aji (12)

It then lets xt+1 = xt+ej∗ , where ej∗ is the indicator vector of j∗, and updates ct+1 accordingly.
The algorithm stops when U t = ∅, since then xt is a feasible solution. We prove:

Lemma 2. The greedy algorithm returns a solution of cost O(z ln(s)), where z is the cost of the
optimal solution.

Proof. Let wtj =
∑
i∈Ut

aji. For any j ∈ [ς] let ∆t
j = ct− ct+1. This is the decrease in the overall

residual weight that we would obtain if j∗ = j. Note that ∆t
j ≤ wtj . We consider two cases.

Case 1: ∆t
j∗ < wtj∗ . This means that for some i ∈ Ut we have ct+1

i = 0, implying i /∈ Ut+1. In
other terms, Hi becomes covered at time t+ 1. Since the algorithm stops when Ut = ∅, this case
occurs at most |U0| = s times.
Case 2: ∆t

j∗ = wtj∗ . Suppose that the original problem admits a solution with cost z. Obviously,
the “residual” problem where c is replaced by ct admits a solution of cost z, too. This implies
the existence of j ∈ [ς] with ∆t

j ≥ 1
z c
t; otherwise, any solution for the residual problem would

have cost strictly larger than z. But, by the choice of j∗, we have ∆j∗ = wtj∗ ≥ wtj ≥ ∆t
j for any

j, hence ∆t
j∗ ≥ 1

z c
t. Thus by choosing j∗ we get ct+1 ≤ (1− 1

z)ct. Therefore, after running into

this case ` times, the residual cost is at most c0(1− 1
z)`.

Note that ` + s ≥ c0 = s · c̄ since at any step the overall residual weight can decrease by at
most 1. Therefore the algorithm performs `+ s = O(`) steps. Furthermore, after `+ s steps we

have c`+s ≤ sc̄e− `
z . By choosing ` = z ln(2s), we obtain c`+s ≤ c̄

s , and therefore each one of the
s graphlets receives a weight of at least c̄

2 . To correct the factor 1
2 , replace c̄1 with 2c̄1 in the

original problem. The cost of the optimal solution is then at most 2z, and in O(z ln(s)) steps
the algorithm finds a cover where each graphlet has weight at least c̄.

Now, note that the treelet index j∗ given by (12) remains unchanged as long as Ut remains
unchanged. Therefore we need to recompute j∗ only when some new graphlet exits Ut, i.e.,
becomes covered. In addition, we do not need each value aji, but only their sum

∑
i∈Ut

aji. This
is precisely the quantity that AGS estimates at line 14. Theorem 6 follows immediately as a
corollary.

4.3.2 A general lower bound

We conclude by showing a lower bound for all algorithms based solely on the primitive sample(T).
This includes many natural graphlet sampling algorithms such as [25, 37, 38].

Theorem 7. For any constant k ≥ 2 there are graphs on an arbitrarily large number of nodes
n such that (i) some graphlet H represents a fraction pH = 1/ poly(n) = Ω(n1−k) of all graphlet
copies, and (ii) any algorithm needs Ω(1/pH) calls to sample(T) in expectation to just find one
copy of H.

Proof. Let T and H be the path on k nodes. Let G be the (n− k + 2, k − 2) lollipop graph; so
G is formed by a clique on n− k+ 2 nodes and a dangling path on k− 2 nodes, connected by an

20

arc. G contains Θ(nk) non-induced occurrences of T in G, but only Θ(n) induced occurrences
of H (all those formed by the k − 2 nodes of the dangling path, the adjacent node of the clique,
and any other node in the clique). Since there are at most Θ(nk) graphlets in G, then H forms
a fraction pH = Θ(n1−k) of all the graphlets. Obviously, T is the only spanning tree of H.
However, an invocation of sample(G,T) returns H with probability Θ(n1−k), and therefore we
need Θ(nk−1) = Θ(1/pH) samples in expectation before obtaining H. One can make pH larger
by considering the (n′, n− n′) lollipop graph for larger values of n′.

4.4 Lower-level optimizations and architectural details

For completeness and reproducibility, as we did for the build-up phase, we describe some lower-
level details of uniform sampling and AGS.

4.4.1 Alias method sampling

Recall that sampling starts by drawing a node v with probability proportional to c(TC , v). We
do this in time O(1) by using the alias method [35]. This method requires us to build an alias
table, which requires O(n) time and space. For uniform sampling, the alias table is built in the
second stage of the build-up phase. For AGS, the alias table is rebuilt every time a new treelet is
selected. In any case we observe that, in practice, building the alias table consumes a negligible
fraction of the overall running time.

4.4.2 Neighbor buffering

We have observed that, if G has a node v with degree dv = ∆ much higher than all other nodes,
then the sampling rate is very low. We argue that the reason is the following. First, if ∆ is large
then c(TC , v) is large, so the sampling routine will often choose v as root node. Second, drawing
a neighbor of u will take time, as we have to potentially scan Θ(∆) nodes. The combination
of these two effects imply that, if ∆ is large, the sampling phase will spend most of the time
scanning the neighbors of v. To mitigate this problem, the first time we sample a neighbor of
v, we actually sample many neighbors of v, say B, and keep them for later. To this end we use
reservoir sampling, which allows us to sample B neighbors by sweeping over them only once,
and thus at the same cost of sampling just one neighbor. We apply this trick to every node v
with dv ≥ ∆0 for some tunable parameter ∆0. As a result, we scan the neighbors of large-degree
nodes only once in a while. As Figure 10 shows, this increases the sampling speed of Motivo
significantly (we note that L8Motif already achieves those sampling rates and buffering does
not increase it further).

1e+02

1e+03

1e+04

1e+05

1e+06

am
az

on
 k

=8

fa
ce

bo
ok

 k
=9

or
ku

t
 k

=6

be
rk

st
an

 k
=8

be
rk

st
an

 k
=9

sa
m

pl
es

 /
s

original
buffered

Figure 10: impact of neighbor buffering on sampling.

21

4.4.3 Graphlet manipulations

Recall that, after sampling a graphlet occurrence, we have to perform isomorphism tests (to iden-
tify its class H) and compute its spanning trees (in order to weigh the sample). To perform the
isomorphism test, we first replace the graphlet with a canonical representative of its isomorphism
class, computed using the Nauty library [27]. Then, as the k × k (boolean) adjacency matrix of
the graphlet is symmetric with diagonal 0, we pack it as a (k− 1)× k

2 matrix if k is even and in

a k× k−1
2 matrix if k is odd (see e.g. [7]). Finally, we further reshape this matrix into a 1× k2−k

2
vector, which fits into 128 bits for all k ≤ 16. Therefore, every graphlet is mapped into a 128-bit
string identifying its isomorphism class, and the isomorphism test between two graphlets boils
down to comparing these 128-bit encodings.

To compute the number of spanning trees σi of Hi, we employ Kirchhoff’s matrix-tree theo-
rem, which relates σi to the determinant of a submatrix of the Laplacian Hi. The running time
is O(k3). To compute the number σij of occurrences of a specific treelet Ti in Hj (needed for our
sampling algorithm AGS, see Section 4.1), we use an in-memory implementation of the build-up
phase where each vertex Hj is assigned a distinct color in {0, . . . , k − 1}.

5 Experimental results

We measure the performance of Motivo and L8Motif in terms of running time, space usage,
and accuracy of the counts, with a special attention towards L8Motif. We recall that CC is
the current state of the art; in particular, algorithms based on random walks are outperformed
by CC, see [10]. Therefore, we compare only against CC. All our experiments are performed on
an Amazon EC2 c5d.9xlarge instance, with 36 virtual CPUs, 72GB of main memory, and a
900GB solid-state disk drive used to store the count tables.

To begin, we tested Motivo and L8Motif on all our graphs for increasing values of k,
stopping when witnessing a slowdown due to excessive I/O (recall that our algorithms must
repeatedly read and store the count tables on disk). In the sampling phase, we took 5 million
samples. As we show below, this was sufficient to guarantee high accuracy on most graphlets.
Table 1 summarizes the results. Using L8Motif we reached k = 8 on all our graphs, and
using Motivo we reached k > 8 on half of them. The table does not show the YeastProtein

graph [24], a small graph on which we successfully ran Motivo for k = 16 in less than three
hours (we recall that there are 6 · 1022 distinct motifs on 16 nodes). For comparison, [4] on
YeastProtein reached k = 10 and only on tree-like graphlets.

Table 1: Summary of our results. For each graph we report the maximum reached value of k
and the total wall time (∗ = with biased coloring). The wall time includes sampling.

graph nodes (millions) edges (millions) source k wall time algorithm
Facebook 0.1 0.8 MPI-SWS 11 1h Motivo
Dblp 0.9 3.4 SNAP 9 7m Motivo
Amazon 0.7 3.5 SNAP 9 8m Motivo
BerkStan 0.7 6.6 SNAP 9 55m Motivo
Yelp 7.2 26.1 YLP 8 13m L8Motif
LiveJournal 5.4 49.5 LAW 8 24m L8Motif
Orkut 3.1 117.2 MPI-SWS 8 1h11m L8Motif
Twitter 41.7 1202.5 LAW 8∗ 2h45m L8Motif
Friendster 65.6 1806.1 SNAP 8∗ 1h10m L8Motif

22

5.1 Computational efficiency

Figure 11 shows the performance of Motivo and L8Motif for k = 8: the running time (sec-
onds), the total space usage of the build-up phase (GB), and the speed of uniform sampling
(graphlets/second). This shows how L8Motif manages graphs significantly larger than the
state of the art. Note also the reduction in space usage of L8Motif compared to Motivo. For
both Twitter and Friendster, we used biased coloring to keep the build-up time below 3 hours.

100

101

102

103

104

fa
ce

bo
ok

db
lp

am
az

on
be

rk
st

an ye
lp

ljo
ur

na
l

or
ku

t
tw

itt
er

fri
en

ds
te

r
build−up time (s)

0

25

50

75
fa

ce
bo

ok
db

lp
am

az
on

be
rk

st
an ye
lp

ljo
ur

na
l

or
ku

t
tw

itt
er

fri
en

ds
te

r

space usage (GB)

101

102

103

104

105

106

fa
ce

bo
ok

db
lp

am
az

on
be

rk
st

an ye
lp

ljo
ur

na
l

or
ku

t
tw

itt
er

fri
en

ds
te

r

sampling rate (graphlets/s)

Figure 11: Computational performance of Motivo (black bars) and L8Motif (yellow bars), for
k = 8. Missing bars represent the failure of Motivo by memory exhaustion. Note the drop in
space usage of L8Motif which allows it to run even where Motivo fails.

We also measured the performance of L8Motif as a function of n = |V (G)| and m = |E(G)|,
by computing the average time per million edges and the average space per node on all our graphs,
see Figure 12. We did this to show that L8Motif is predictable as a function of n and m. This
sets it apart from most graphlet counting algorithms, whose running time varies chaotically. For
instance, ESCAPE takes 5 seconds on a graph with 1.2M edges and 11 days on a graph with
3.6M edges, a blow-up of 175.000 times [30]. The reason is that the algorithm enumerates all
occurrences in G of certain “critical” subgraphs (for instance, cliques), whose number can vary
wildly between graphs of comparable size. A similar chaotic behaviour is exhibited by random
walks [9, 10], since their mixing time depends on the ratio between the maximum and minimum
degree of G, raised to the power of Θ(k) [2].

●

●

●

●

1

10

3

30

5 6 7 8
k

s
/ M

 e
dg

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

1.0

3.0

5 6 7 8
k

M
iB

 p
er

 n
od

e

Figure 12: Build-up time in seconds per million edge, and space usage in bits per input node, on
all our graphs, showing how L8Motif is predictable as a function of n, m, and k.

23

Comparison against CC. We compare Motivo and L8Motif against CC in Table 2 and
Table 3. For each graph we report the largest k for which CC ran, without dying by memory
exhaustion or integer overflow. For the space usage, we compare the main memory used by CC
to the total external memory usage of our algorithms (recall that CC works in main memory).
The sampling rate refers to uniform sampling, which is the only one supported by CC. The
sampling speed of AGS is similar, and never more than 40% lower than uniform sampling. The
only exception is the Yelp graph, on which AGS for k = 8 is 20× slower than uniform sampling.
But it is also much more accurate and still 10 000× faster than CC, as we show below.

graph k build-up time (seconds) build-up space (GB) sampling rate (motifs/sec)

CC Motivo speedup CC Motivo reduction CC Motivo speedup

Facebook 9 860 86 10× 33 5 7× 5 70k 14 000×
Facebook 8 95 17 5.5× 24 1.4 17× 419 149k 356×
Dblp 9 1245 320 3.9× 43 44 1× 72 112k 1 556×
Dblp 8 182 82 2.2× 30 27 1× 679 186k 274×
Amazon 9 376 84 2.2× 49 51 1× 226 87k 385×
Amazon 8 140 87 1.6× 33 31 1× 1556 150k 96×
BerkStan 5 14 7 2× 18 0.5 36× 160 6770 42×
Yelp 5 167 71 2.4× 36 4.5 8× 20 910 45×
LiveJournal 6 306 99 3× 36 9.5 4× 295 12k 41×
Orkut 5 225 40 5.6× 27 3.2 8× 295 15k 51×

Table 2: Computational performance of Motivo versus CC.

graph k build-up time (seconds) build-up space (GB) sampling rate (motifs/sec)

CC LM speedup CC LM reduction CC LM speedup

Facebook 8 95 22 4.3× 24 0.2 114× 420 23k 55×
Dblp 8 182 77 2.4× 30 1.7 1.8× 680 41k 60×
Amazon 8 140 84 1.7× 31 1.8 17× 1550 120k 77×
BerkStan 5 14 7 2× 18 0.2 130× 160 1.2M 7 700×
Yelp 5 167 69 2.4× 36 1.3 27× 20 4.2M 210 000×
LiveJournal 6 306 79 3.9× 36 1.8 20× 295 112k 380×
Orkut 5 225 38 6× 27 0.7 40× 295 162k 550×

Table 3: Computational performance of L8Motif versus CC. Note that the maximum value of
k tested is k = 8 as this is the largest value supported by L8Motif.

5.2 Accuracy of the estimates and performance of AGS

We evaluate the accuracy of the estimates produced by our algorithm L8Motif.

Uniform sampling. First, we consider uniform sampling. In this case, the accuracy of
L8Motif and the accuracy of Motivo are identical, as they give the same output (only the
sampling rate changes). We started by computing the ground-truth count of the number of copies
of each possible k-graphlet in each graph. For k = 5 we used the exact algorithm ESCAPE [30]
which works well on small graphs (Facebook, Dblp, Amazon, LiveJournal, Orkut). On all
other graphs and/or for k > 6, we used as ground truth the average of the counts returned by
20 independent runs of L8Motif, of which 10 used uniform sampling and 10 used AGS. We
then measured the average accuracy of L8Motif against the ground truth over 10 runs. In
each run we took 10M samples, or stopped the sampling after 600s (10 minutes). To measure

24

the accuracy, we use the relative error. We denote by cH the ground-truth count of a specific
graphlet H, and let ĉH be the estimate returned by the algorithm. Then we define the relative
error of H as:

errH =
ĉH − cH
cH

. (13)

Therefore a value errH ' 0 means cH has been accurately estimated; whereas errH � 0 means
cH is overestimated, and errH � 0 means cH is underestimated (and errH = −1 means no copy
of H was found).

Figure 13 shows the distribution of the relative error errH for uniform sampling, for k = 7,
on three representative graphs. The x-axis shows the value of errH , and the y-axis the number
of distinct graphlets H for which that value is achieved. Note that for Yelp and Amazon almost

0

20

40

60

80

−1.0 −0.5 0.0 0.5 1.0

relative error

gr

ap
hl

et
s

amazon

facebook

yelp

Figure 13: Relative error distribution of uniform sampling for k = 7. On Yelp and Amazon

almost all graphlets have a relative error of −1, i.e., they are completely missed.

all graphlets have errH = −1, as can be seen by the straight segments leaving in the leftmost
part of the plot. This means uniform sampling misses almost all graphlets on Amazon and Yelp.

AGS. Figure 14 gives the relative error distribution for AGS. Note how the distribution is now
concentrated around 0. This means that AGS gives an accurate estimate of nearly all graphlets,
in line with our theoretical predictions.

0

20

40

60

80

−1.0 −0.5 0.0 0.5 1.0

relative error

gr

ap
hl

et
s

amazon

facebook

yelp

Figure 14: Relative error distribution of AGS for k = 7. Unlike the case of uniform sampling,
here almost all graphlets are accurately estimated and have a relative error close to 0.

25

To complete the evaluation of AGS, we computed the number of graphlets with relative error
below 0.25. This number is shown in Figure 15, where the shaded area represents the maximum
achievable, i.e., N8 = 11 117 (the number of non-isomorphic simple connected graphs on 8 nodes).
The plot is particularly telling if we look at the Yelp graph. According to our ground truth,
in this graph over 99.9996% of all 8-graphlets are stars. Thus, we can expect uniform sampling
to waste essentially all of its samples by drawing stars. The figure shows this is exactly the
case. Indeed, uniform sampling achieves a relative error ≤ 25% only for the 4 most frequent
graphlets (as a fraction, 0.04% of the total). AGS instead achieves a relative error ≤ 0.25 for
9 860 graphlets (as a fraction, 89% of the total). This includes many graphlets with frequency
below 10−21. (These graphlet are well-estimated in all 10 runs, so they are not the product
of chance). To find those graphlets, uniform sampling would need more than 103 years even if
running at 109 samples per second. Therefore, we can say that AGS can count graphlets that
uniform sampling cannot.

0

3000

6000

9000

12000

ac
cu

ra
te

 c
ou

nt
s

facebook

amazon

yelp

0

3000

6000

9000

12000

ac
cu

ra
te

 c
ou

nt
s

facebook

amazon

yelp

Figure 15: Number of 8-graphlets for which L8Motif achieved relative error below 25%. Left:
uniform sampling. Right: AGS. The shaded area shows the total number of 8-graphlets, N8 =
11 117.

6 Conclusions

In this work we confirm that color coding is an effective technique for sampling and counting
motifs in large graphs. Although this was already suggested by existing work, here we refine the
approach and push the color coding motif mining paradigm forward. It would be interesting to
investigate how this color coding approach could be extended to richer and more challenging sce-
narios. Two of these scenarios that fit well with the assumption of large graphs are a distributed
computing setting and graphs that evolve in time.

References

[1] A. F. Abdelzaher, A. F. Al-Musawi, P. Ghosh, M. L. Mayo, and E. J. Perkins. Tran-
scriptional network growing models using motif-based preferential attachment. Frontiers in
Bioengineering and Biotechnology, 3:157, 2015.

[2] M. Agostini, M. Bressan, and S. Haddadan. Mixing time bounds for graphlet random walks.
Information Processing Letters, 152:105851, 2019.

[3] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient graphlet counting for large
networks. In Proc. of ICDM, pages 1–10, 2015.

26

[4] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular network
motif counting and discovery by color coding. Bioinformatics, 24(13):i241–249, Jul 2008.

[5] N. Alon, O. Gurel-Gurevich, and E. Lubetzky. Choice-memory tradeoff in allocations. The
Annals of Applied Probability, 20(4):1470–1511, 2010.

[6] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[7] T. Baroudi, R. Seghir, and V. Loechner. Optimization of triangular and banded matrix
operations using 2d-packed layouts. ACM TACO, 14(4):55:1–55:19, 2017.

[8] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. GUISE: Uniform sampling of
graphlets for large graph analysis. In Proc. of ICDM, pages 91–100, 2012.

[9] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi. Counting graphlets:
Space vs time. In Proc. of ACM WSDM, pages 557–566, 2017.

[10] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi. Motif counting beyond
five nodes. ACM TKDD, 12(4), 2018.

[11] M. Bressan, S. Leucci, and A. Panconesi. Motivo: Fast motif counting via succinct color
coding and adaptive sampling. Proc. VLDB Endow., 12(11):1651–1663, July 2019.

[12] V. T. Chakaravarthy, M. Kapralov, P. Murali, F. Petrini, X. Que, Y. Sabharwal, and
B. Schieber. Subgraph counting: Color coding beyond trees. In Proc. of IEEE IPDPS,
pages 2–11, 2016.

[13] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via param-
eterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367, 2006.

[14] X. Chen, R. Dathathri, G. Gill, and K. Pingali. Pangolin: An efficient and flexible graph
mining system on CPU and GPU. Proc. VLDB Endow., 13(8):1190–1205, Apr. 2020.

[15] X. Chen, Y. Li, P. Wang, and J. C. S. Lui. A general framework for estimating graphlet
statistics via random walk. Proc. VLDB Endow., 10(3):253–264, 2016.

[16] V. Dias, C. H. C. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy. Fractal: A general-
purpose graph pattern mining system. In Proc. of ACM SIGMOD, pages 1357–1374, 2019.

[17] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[18] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, 1975.

[19] I. Finocchi, M. Finocchi, and E. G. Fusco. Clique counting in MapReduce: Algorithms and
experiments. ACM J. Exp. Algorithmics, 20, Oct. 2015.

[20] G. Han and H. Sethu. Waddling random walk: Fast and accurate mining of motif statistics
in large graphs. Proc. of ICDM, pages 181–190, 2016.

[21] F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering for color-coding with ap-
plications to signaling pathway detection. Algorithmica, 52:114–132, 2007.

[22] S. Jain and C. Seshadhri. A fast and provable method for estimating clique counts using
Turán’s theorem. In Proc. of WWW, pages 441–449, 2017.

27

[23] S. Jain and C. Seshadhri. The power of pivoting for exact clique counting. In Proc. of ACM
WSDM, pages 268–276, 2020.

[24] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein
networks. Nature, 411(6833):41–42, May 2001.

[25] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Proc. of WWW, pages 495–505, 2015.

[26] D. Mawhirter and B. Wu. AutoMine: Harmonizing high-level abstraction and high perfor-
mance for graph mining. In Proc. of ACM SOSP, pages 509–523, 2019.

[27] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic Com-
putation, 60(0):94–112, 2014.

[28] R. Otter. The number of trees. Annals of Mathematics, pages 583–599, 1948.

[29] K. Paramonov, D. Shemetov, and J. Sharpnack. Estimating graphlet statistics via lifting.
In Proc. of ACM SIGKDD, pages 587–595, 2019.

[30] A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE: Efficiently counting all 5-vertex subgraphs.
In Proc. of WWW, pages 1431–1440, 2017.

[31] S. Ranu and A. K. Singh. GraphSig: A scalable approach to mining significant subgraphs
in large graph databases. In Proc. of IEEE ICDE, pages 844–855, 2009.

[32] G. M. Slota and K. Madduri. Fast approximate subgraph counting and enumeration. In
Proc. of ICPP, pages 210–219, 2013.

[33] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboulnaga.
Arabesque: A system for distributed graph mining. In Proc. of ACM SOSP, pages 425–440,
2015.

[34] N. H. Tran, K. P. Choi, and L. Zhang. Counting motifs in the human interactome. Nature
Communications, 4(2241), 2013.

[35] M. D. Vose. A linear algorithm for generating random numbers with a given distribution.
IEEE Trans. Software Eng., 17(9):972–975, 1991.

[36] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan. Efficiently estimating
motif statistics of large networks. ACM TKDD, 9(2):8:1–8:27, 2014.

[37] P. Wang, J. Tao, J. Zhao, and X. Guan. Moss: A scalable tool for efficiently sampling and
counting 4- and 5-node graphlets. CoRR, abs/1509.08089, 2015.

[38] P. Wang, X. Zhang, Z. Li, J. Cheng, J. C. S. Lui, D. Towsley, J. Zhao, J. Tao, and X. Guan. A
fast sampling method of exploring graphlet degrees of large directed and undirected graphs.
CoRR, abs/1604.08691, 2016.

[39] Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis, Z. Levnajic, V. Janjic, R. Karapandza, A. Sto-
jmirovic, and N. Pržulj. Revealing the hidden language of complex networks. Scientific
Reports, 4:4547 EP –, 04 2014.

28

[40] E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R. Y. Pinter, U. Alon, and
H. Margalit. Network motifs in integrated cellular networks of transcription–regulation and
protein–protein interaction. Proceedings of the National Academy of Sciences, 101(16):5934–
5939, 2004.

[41] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering.
In Proc. of ACM KDD, pages 555–564, 2017.

[42] H. Zhang, J. X. Yu, Y. Zhang, K. Zhao, and H. Cheng. Distributed subgraph counting: A
general approach. Proc. VLDB Endow., 13(12):2493–2507, August 2020.

[43] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe. Subgraph enumeration in large
social contact networks using parallel color coding and streaming. In Proc. of ICPP, pages
594–603, 2010.

[44] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. S. A. Kumar, and M. V. Marathe. SAHAD:
Subgraph analysis in massive networks using Hadoop. In Proc. of IEEE IPDPS, pages
390–401, 2012.

29

	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Preliminaries and notation.

	2 Color coding and the CC algorithm
	2.1 The build-up phase
	2.2 The sampling phase
	2.3 Statistical guarantees of the estimates

	3 Fast construction of a compact treelet database
	3.1 Treelets and counts
	3.2 Motivo: a general-purpose motif counter for k <= 16 nodes
	3.2.1 Succinct treelets and count table

	3.3 L8Motif: counting 8-graphlets in large graphs
	3.3.1 Integer treelet encoding (ITE)
	3.3.2 Round skipping via balanced treelet decomposition
	3.3.3 Variable-length counts

	3.4 Lower-level optimizations and architectural details
	3.4.1 Zero-rooting
	3.4.2 Greedy flushing
	3.4.3 Multi-threading
	3.4.4 Memory-mapped reads

	3.5 Biased coloring

	4 Sampling treelets from the database
	4.1 Adaptive Graphlet Sampling (AGS)
	4.2 Approximation guarantees of AGS
	4.3 Sampling efficiency of AGS
	4.3.1 Near-optimality of AGS
	4.3.2 A general lower bound

	4.4 Lower-level optimizations and architectural details
	4.4.1 Alias method sampling
	4.4.2 Neighbor buffering
	4.4.3 Graphlet manipulations

	5 Experimental results
	5.1 Computational efficiency
	5.2 Accuracy of the estimates and performance of AGS

	6 Conclusions

