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Fig. 1. A RAW input image subsampled on a color filter array and corrupted by sensor characteristics in low light (left) and its class prediction using
MobileNet-v1 along with conventional processing pipelines. Processing RAW data using conventional image processing pipelines (ISPs) does not necessarily
improve performance because conventional pipelines are optimized for human viewing, not for machine vision. Here, the image of a Samoyed dog is
missclassified as the much smaller Maltese dog with thinner coat and smaller snout. We propose an end-to-end architecture for joint demosaicking, denoising,
deblurring, and classification that makes classification robust in low-light scenarios. The proposed architecture learns a processing pipeline optimized for
classification, which enhances fine details relevant for this high-level task – at the expense of more noise as measured by conventional metrics, PSNR and
SSIM – and improves state-of-the art accuracy. Here, the dog’s snout, ears, fur and outline are enhanced in contrast at the loss of surrounding background
class regions. The proposed architecture has a principled and modular design and generalizes across light levels and cameras.

Real-world imaging systems acquire measurements that are degraded by
noise, optical aberrations, and other imperfections that make image pro-
cessing for human viewing and higher-level perception tasks challenging.
Conventional cameras address this problem by compartmentalizing imaging
from high-level task processing. As such, conventional imaging involves pro-
cessing the RAW sensor measurements in a sequential pipeline of steps, such
as demosaicking, denoising, deblurring, tone-mapping and compression.
This pipeline is optimized to obtain a visually pleasing image. High-level
processing, on the other hand, involves steps such as feature extraction,
classification, tracking, and fusion. While this silo-ed design approach al-
lows for efficient development, it also dictates compartmentalized perfor-
mance metrics, without knowledge of the higher-level task of the camera
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system. For example, today’s demosaicking and denoising algorithms are de-
signed using perceptual image quality metrics but not with domain-specific
tasks such as object detection in mind. We propose an end-to-end differen-
tiable architecture that jointly performs demosaicking, denoising, deblurring,
tone-mapping, and classification. The architecture does not require any in-
termediate losses based on perceived image quality and learns processing
pipelines whose outputs differ from those of existing ISPs optimized for
perceptual quality, preserving fine detail at the cost of increased noise and
artifacts. We show that state-of-the-art ISPs discard information that is
essential in corner cases, such as extremely low-light conditions, where con-
ventional imaging and perception stacks fail. We demonstrate on captured
and simulated data that our model substantially improves perception in low
light and other challenging conditions, which is imperative for real-world
applications like autonomous driving, robotics, and surveillance. Finally,
we found that the proposed model also achieves state-of-the-art accuracy
when optimized for image reconstruction in low-light conditions, validating
the architecture itself as a potentially useful drop-in network for recon-
struction and analysis tasks beyond the applications demonstrated in this
work. Our proposed models, datasets, and calibration data are available at
https://github.com/princeton-computational-imaging/DirtyPixels

CCS Concepts: •Computingmethodologies→Computer vision;
Image processing; Supervised learning by classification;Neu-
ral networks.

Additional Key Words and Phrases: computational photography, ma-
chine learning
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1 INTRODUCTION
Image sensor measurements are affected by various degradations in
the physical image formation process. Raw sensor readings suffer
from photon shot noise, optical aberration, read-out noise, spatial
subsampling in the color filter array (CFA), spectral cross-talk on
the CFA, motion blur, and other imperfections. The image signal
processor (ISP) is a hardware block that addresses these degrada-
tions by processing the RAW measurement in a sequential pipeline
of steps [Ramanath et al. 2005b] each targeting a sub-problem in
isolation, before displaying or saving the resulting output image.
The ISP performs an extensive set of operations, such as demosaick-
ing [Zhang et al. 2011], denoising, deblurring, and tone-mapping. All
of these low-level imaging tasks are ill-posed problems with recent
active research [Chen et al. 2018; Gharbi et al. 2016; Heide et al. 2014;
Zhang et al. 2016]. Existing image reconstruction algorithms are de-
signed to minimize an explicit or implicit reconstruction loss aligned
with human perceptions of image quality, as a prior to resolve the ill-
posedness of the sub-problems listed above. Explicit losses are based
on chart-based metrics [Phillips and Eliasson 2018], and emerging
domain-specific standards, such as CPIQ [Jin et al. 2017], DxOMark,
VCX Score for cellphone imaging and the emerging IEEE P2020 stan-
dard [Stead 2016] for autonomous vehicles. However, the approach
widely adopted by ISP manufacturers is to design and tune ISPs to
eliminate artifacts human experts find visually unpleasant, thereby
minimizing an implicit perceptual loss.
At the same time, applications in emerging domains, including

autonomous driving, robotics, and surveillance, consume images
directly by a higher-level analysis module without ever being viewed
by humans. Human expert assessment is not applicable to these
“image-free” cameras, and this gives rise to the question if low-level
processing is necessary, or if existing higher-level networks should
better be trained directly on RAW sensor data.

ISPs are useful in that they map data from diverse camera systems
into a common interface, a visually pleasing image, that most large-
scale computer vision datasets adopt, e.g., [Deng et al. 2009; Lin et al.
2014]. For downstream tasks, the real-world performance of a de-
ployed high-level network will be close to the performance on clean
images so long as the low-level pipeline can approximately recover
the latent clean image from RAW data. However, in challenging cap-
ture conditions, i.e., the corner cases of the ISP, recovering the latent
image is extremely challenging, such as low-light captures that are
heavily degraded by photon shot noise. For example, a denoising
block that is optimized for perceptual quality will remove apparent
chromatic noise, e.g., the Movidius Myriad 2 ISP includes a Chroma-
NLM stage for perceptual quality [Moloney et al. 2014], thereby
destroying high-frequency color detail that could be exploited in the
higher-level image analysis. Identical design trade-offs are found
other key processing blocks, such as demosaicking, tone-mapping,
and sharpening [Moloney et al. 2014].

An immediate solution for such failure modes appears to be re-
moving the ISP completely and training the perception model di-
rectly on RAW measurement data. That way no information will be
suppressed in the low-level image processing modules. Indeed, we
demonstrate that existing classifiers trained on RAW data perform
on-par with pre-processing from traditional ISPs, hand-crafted for
perceptual viewing instead of CNN feature extraction.
In this work, we depart from traditional ISPs, and investigate

learned architectures that perform end-to-end image processing
and classification jointly. We propose an end-to-end differentiable
model that uses RAW color filter array data as input and outper-
forms existing deep classification directly trained on this RAW input
streams by a more than 5% in top-5 accuracy on in-the-wild captures.
We validate that low light is indeed a failure mode for conventional
computer vision systems that combine existing ISPs with existing
high-level networks. We propose a novel neural architecture for
joint denoising and demosaicking, dubbed “Anscombe networks”,
that we learn jointly with a high-level network and that exploits
knowledge of the camera image formation model. We show that
fine-tuning an Anscombe network with a high-level model performs
better than training a high-level model directly on the RAW data or
on the output of traditional ISPs, or recent state-of-the-art learnable
ISP [Chen et al. 2018]. We demonstrate that the proposed Anscombe
network ISP generalizes across imaging setting akin to a traditional
ISP. Nevertheless, the output of the neural ISP differs from that of
traditional ISPs, scoring worse on traditional perceptual metrics
when trained for classification. However, when trained for human
viewing, and no downstream analytic task, the proposed architec-
ture achieves state-of-the-art image quality for low-light imaging,
highlighting the potential of domain-specific imaging pipelines.

The contributions of this paper are the following:

• Wedemonstrate that conventional perception pipelines, which
use a state-of-the-art ISP and classifier trained on a standard
JPEG dataset, perform poorly in low light.
• We introduce Anscombe networks, a light-weight neural
camera ISP for demosaicking and denoising that generalizes
across camera architecture and capture settings. We show
that Anscombe networks, by themselves, achieve state-of-the-
art image quality when trained for low-light imaging using a
perceptual loss for image quality.
• We demonstrate that jointly learning Anscombe networks
with classification networks outperform training the high-
level networks directly on RAW data or the output of state-
of-the-art software, hardware and learnable ISPs, both when
trained from scratch or fine-tuned.
• We evaluate the joint end-to-end model on synthetic and
captured RAW data. To this end, we introduce a dataset of
realistic noise and blurmodels calibrated frommobile cameras
and a dataset of annotated noisy RAW captures.
• We demonstrate a real-time smart-phone implementation of
the proposed end-to-end low-light classification model.

In the future, a large portion of our images will be consumed
by high-level perception stacks, not by humans. We propose to
reexamine the foundational assumptions of image processing (ISPs).
Existing approaches tackle this challenge either by discarding ISPs
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and retraining downstream networks directly on RAW data, or they
manually tune, or optimize the parameters of hardware ISPs for
a fixed network. Our work departs from both approaches and, to
the best of our knowledge, it is the first that jointly learns image
processing (ISP) and classification network parameters in an end-to-
end fashion. We note that specialized domain-specific processing is
the goal of the proposed approach. We do not dismiss traditional ISPs
for general imaging tasks with unknown downstream applications
but illustrate the potential of domain-specific camera processing.

2 RELATED WORK
Effects of Noise and Blur on High-level Networks. A small body of

work has explored the effects of noise and blur on deep networks
trained for high-level vision tasks. Dodge and Karam evaluated a
variety of recent classification networks under noise and blur and
found a substantial drop in performance [2016]. Vasiljevic et al. sim-
ilarly showed that blur decreased classification and segmentation
performance for deep nets, though much of the lost performance
was regained by fine-tuning on blurry images [2016]. Karahan et
al. showed that noise and blur degrade the performance of CNNs
trained for face recognition [2016]. Several authors demonstrated
that preprocessing noisy images with trained or classical denois-
ers improves the downstream performance [Agostinelli et al. 2013;
da Costa et al. 2016; Jalalvand et al. 2016; Tang and Eliasmith 2010;
Tang et al. 2012]. Chen et al. showed that training a model for de-
noising and separately classification can improve performance on
both tasks [2016] when tested on corrupted versions of the MNIST
and USPS datasets. Note that the models trained from scratch, in
Tables 1 and 2, are equivalent to Chen et al. [2016] approach, where
we optimize the classification network directly from RAW data.

Camera Image Processing Pipelines. Most digital cameras perform
low-level image processing such as denoising and demosaicking in a
hardware ISP pipelines based on efficient heuristics [Ramanath et al.
2005a; Shao et al. 2014; Zhang et al. 2011]. Modern imaging systems
for cellphone use-cases may acquire a burst of images or images
from multiple camera modules. Recently, Hasinoff et al. [2016] have
demonstrated high-quality imaging in low light using bursts, which
are then processed in a software ISP tuned for perceptual quality.
Cameras for driver assistant systems, autonomous cars or other
robotic purposes, however, have to react in real-time and there-
fore cannot acquire sequential exposures, leading to the emerge of
split-pixel sensors (OmniVision OV10640, OV10650) and domain
specific ISPs, such as the ARM Mali C71. Most conventional camera
ISPs are implemented as fixed-function ASIC blocks to handle high-
resolution image feeds at real-time rates [MT9P111 2015]. Only re-
cently, camera ISPs are starting to become more programmable (also
the case for software ISPs such as Hasinoff et al. [2016]). The Movid-
ius Myriad 2 [Moloney et al. 2014] hardware ISP offers configurable
pipelines with room for a few general-purpose blocks run on SIMD
Vector Processors, but still relies on a large number of fixed-function
hardware blocks. Hegarty et al. [2014] propose a domain-specific lan-
guage for camera ISP processing on FPGAs, which translates image
processing pipelines into efficient, low-power FPGA architectures.
Instead of designing pipelines, Heide et al. [2014] pose low-level

image processing as an optimization problem, achieving higher qual-
ity than previous ISPs for a variety of camera systems. However,
their iterative optimization method is computationally intensive
and an order of magnitude slower than real-time. Recently, Gharbi
et al. rely on deep convolutional architectures to perform low-level
vision tasks, such as demosaicking [2016] or tonemapping [2017].
While being computationally efficient, their architectures depend
on heavily engineered datasets for training their models, whereas
we use standard classification datasets. Liba et al. [2019] proposed a
system for capturing images in low-light conditions based on the
alignment and combination of multiple frames, and learning-based
white balance and tonemapping. Schwartz et al. [2019], Liang et
al. [2019], and Chen et al. [2018] proposed learnable ISPs based
on deep convolutional networks. The model proposed by Chen et
al. [2018] consists of convolutional network with CFA pixel packing
similar to [Gharbi et al. 2016]. While their results are perceptu-
ally on-par or better than naive post-filtering approaches, using
BM3D [Dabov et al. 2007] as an artifact suppression block, it re-
mains unclear if recent state-of-the-art ISPs using traditional de-
noising blocks on RAW data, i.e., not as post-processing artifact
suppression block, perform better as concluded in [Plotz and Roth
2017]. Our results described in Section 5 show that our proposed
Anscombe ISP improves accuracy of a classifier trained on top of
Chen et al. [2018]-preprocessed (and finetuned) images.

Traditional Image Processing Pipelines for Computer Vision. The
role of traditional hardware ISP components in vision systems was
examined in [Buckler et al. 2017; Tseng et al. 2019; Yahiaoui et al.
2019]. Buckler et al. [2017] suggested that ISPs should be config-
urable to switch between a human-viewable mode and computer
vision mode to produce data optimized for vision tasks. However,
ISP parameter tuning by visual inspection is extremely challenging
if performed manually, motivating simulation environments [Blasin-
ski et al. 2018]. Simulated environments, unfortunately, suffer from
a significant domain gap [Hoffman et al. 2017]. Recently Tseng
et al. [2019] proposed an automatic method for optimizing black-
box ISPs. They propose to model and learn a differentiable proxy
function that approximates the entire image processing pipeline. In
contrast to the proposed method, Tseng et al. rely on traditional
hardware ISPs and optimize only ISP hyperparameters, not the high-
level network. The efficacy of this approach relies on the accuracy
of the ISP approximation. As such, in our low-light scenario, the
approximator network from Tseng et al. failed, see Figure 5 Supple-
ment. We note that none of the above methods propose a jointly
end-to-end optimized ISP and downstream network.

Domain Adaptation. A common problem in deep neural networks
trained for high-level computer vision tasks is domain shift, meaning
the difference in image statistics between the training data and the
unknown real-world data, leading to poor performance of a trained
model in the final real-world scenario. The literature on domain
adaptation includes many methods for adapting models trained on
one distribution to a target distribution, ranging in sophistication
from simply fine-tuning the model on labeled data from the tar-
get distribution to more recent work that only requires sparsely
labeled or unlabeled data (e.g., [Ganin and Lempitsky 2015; Long
et al. 2015; Sun and Saenko 2016; Tzeng et al. 2017, 2014]). The
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Fig. 2. A RAW frame captured indoors using a Nexus 6 rear camera (after
demosaicking). The image was taken at ISO 3000 with a 32 ms exposure
time. The noise in the image is clearly visible.

domain adaptation literature has an implicit assumption, however,
that the mapping from the training domain to the target domain is
unknown. In our problem of classification under noise and blur, the
mapping from the clean training data to degraded real world data
can be modeled extremely accurately. We are thus able to map the
clean training data into the target domain through simulation, and
moreover to efficiently incorporate our a-priori knowledge of the
physical model into the classification architecture. We put this into
practice in the design of our efficient Anscombe networks, which,
as validated in Section 5.1, outperform existing image processing
layers when integrated and end-to-end trained.

3 CAMERA IMAGE FORMATION MODEL

3.1 Image formation
We consider the image formation I for a RAW sensor image as

𝑦𝑥 ∼ 𝛼P ©«
∑︁

𝑐∈{𝑅,𝐺,𝐵 }
S𝑐 (𝑘𝑐 ∗ E𝑐𝑥)/𝛼

ª®¬ + N(0, 𝜎2)
⇔ 𝑦𝑥 ∼ 𝛼P (A𝑥/𝛼) + N (0, 𝜎2)

𝑦 = I(𝑥) = Π [0,1] (𝑦𝑥 ),

(1)

where 𝑥 ∈ R3𝑁 is the vectorized latent color image, with 𝑁 being
the number of pixels,𝑦 ∈ R𝑁 is themeasured RAW image,𝛼 > 0 and
𝜎 > 0 are parameters in a Poisson and Gaussian distribution, respec-
tively, the operator E𝑐 extracts the color channel 𝑐 ∈ {𝑅,𝐺, 𝐵}, 𝑘𝑐
represents the lens point spread function (PSF) in the color channel
𝑐 , ∗ denotes the linear operator corresponding to 2D convolution on
the vectorized input, and Π [0,1] denotes projection onto the interval
[0, 1]. The matrix S𝑐 models the spatial sub-sampling for color filter
𝑐 on the color filter array of the sensor. This matrix is a diagonal
sub-sampling matrix defined as

S𝑐𝑖𝑖 =
{

1 if pixel 𝑡 has color filter 𝑖,
0 else, (2)

The image formation model from above is composed of a linear

part A𝑥 , modeling all optical effects in the capture process with
the matrix A, and a non-linear sampling process according to the
noise characteristics of the sensor. The measured image follows the
physically accurate Poisson-Gaussian noise model with clipping
described by Foi et al. [2009; 2008]. In the noise model, decreasing
the light level increases 𝛼 , but the dynamic range is kept constant
by increasing the ISO, represented by multiplying P(A𝑥/𝛼) by 𝛼 .

The image formation model from Eq. (1) is general and applicable
to a variety of different camera architectures, ranging from tradi-
tional Bayer CFA cameras to interlaced HDR sensors, each covered
by changing the linear forward model A according to the given
camera architecture. We refer the reader to [Heide et al. 2014] for a
variety of camera architectures this model supports. Note that, in
contrast to [Gharbi et al. 2016; Heide et al. 2014], we assume a more
accurate noise model, including the Poissonian component which
is critical for the model accuracy in the low-flux regime.

3.2 Calibration
We calibrated the parameters 𝛼 , and 𝜎 of the image formation model
from Sec. 3.1 by acquiring calibration captures of a charts containing
patches of different shades of gray (e.g., [ISO 12233:2014 2014]) at
various gains with auto-white-balance disabled. We then follow Foi
et al. [2009] to estimate the unknown noise parameters. The photo-
graph on the left in Fig. 3 shows our noise calibration setup. The
center plot in Fig. 3 shows plots of 𝑠 (𝑥) = std(𝑦) versus 𝐸 [𝑦] and
𝑠 (𝑥) = std(𝑦) versus 𝐸 [𝑦] for different ISO levels on a Nexus 6P rear
camera. The parameters 𝛼 and 𝜎 at a given light level are computed
from the 𝑠 (𝑥) and 𝑠 (𝑥) plots. The noise under our calibrated image
formation model can be high. Fig. 2 shows a typical capture of a
Nexus 6 rear camera in low light. This image was acquired for ISO
3000 and a 32 ms exposure time. The only image processing per-
formed on this image was bi-linear demosaicking. The severe levels
of noise present in the image demonstrate that low andmedium light
conditions represent a major challenge for imaging and computer
vision systems. Note that particularly inexpensive low-end sensors
will exhibit drastically worse performance compared to higher end
smartphone camera modules.
In addition, we calibrated the optical aberrations 𝑘 from Eq. 1

using a Bernoulli noise chart with checkerboard features, following
Mosleh et al. [2015] for spatially-varying PSF calibration. The right
plots in Fig. 3 show the PSF 𝑘 for entire field-of-view of a Nexus 5
rear phone camera optic. An in-depth description of our calibration
procedure is provided in the Supplemental Material. Alternative
approaches to learned data generation for image reconstruction
methods have been proposed in [Brooks et al. 2019; Jaroensri et al.
2019].

4 END-TO-END FRAMEWORK
In this section, we describe the proposed architecture for joint de-
noising, demosaicking, (deblurring,) and classification. We evaluate
the joint architecture in Sec. 5, as well as ablated models where only
the low-level or high-level pipeline is trained or a conventional ISP
pipeline is used. We assess the performance of the proposed model
both on the simulated data and on captured RAW images, to show
that our simulated results carry over to real data.
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Fig. 3. (Top left) The noise calibration setup. (Bottom left) The PSF calibration setup. (Center) 𝑠 (𝑥) = std(�̃�) versus 𝐸 [�̃� ] and 𝑠 (𝑥) = std(𝑦) versus 𝐸 [𝑦 ] for
different ISO levels on a Nexus 6P rear camera. The noise parameters 𝛼 and 𝜎 at a given light level are computed from the 𝑠 (𝑥) and 𝑠 (𝑥) plots. (Right) The
PSFs for the entire field-of-view of a Nexus 5 rear camera. Two center PSFs, an off-axis PSF, and a periphery PSF are magnified.

The architecture proposed in this work is illustrated in Fig. 4. It
combines jointly learned low-level and high-level processing units,
taking RAW sensor CFA data as input and outputting image la-
bels. We propose a single differentiable model that generalizes across
cameras and light levels. This allows our model to abstract away
the details of the camera for downstream applications, while being
flexible and applicable to novel camera architectures.
We base the low-level block, which we dub Anscombe network

unit, on an optimization algorithm Λ that solves the problem of
reconstructing an uncorrupted latent mid-level representation from
noisy, single-channel, spatially-subsampled RAW measurements.
In contrast to standard CNN models, the Anscombe layers in this
model make the approach light-level independent and the unrolled
optimization model achieves generalization across camera mod-
els (without retraining). We express the joint reconstruction and
perception problem as a bilevel optimization problem

min
𝜗,𝜈
L (Λ(𝑦, 𝜗), 𝑥, 𝜈)

s.t. Λ(𝑦, 𝜗) = argmin
𝑥
G (𝑥,𝑦, 𝜗) , (3)

where Λ minimizes here a lower-level objective G. The output layer
of this lower-level unit is an multi-channel mid-level representation
Λ(𝑦, 𝜗), which is input into the higher-level model component and
associated classification loss L. Here the model parameters 𝜈 of the
higher-level model are absorbed in L as a third argument.
For the nested objective G, we follow a Bayesian approach as

architecture backbone as it estimates a latent three-channel image 𝑥
exploiting both the probabilistic image formation model and allows
for priors expressed in a principled fashion. The Bayesian model
assumes that 𝑥 is drawn from a prior distribution Ω(𝜗), parameter-
ized by 𝜗 . We solve the Bayesian inference problem by unrolling
an iterative optimization algorithm, only parameterizing the im-
age prior with unknown, learned parameters, and truncating the
iterations yielding the operator Λ.
Any differentiable higher-level image analysis method can be

used in the proposed stack. In the following, we use the MobileNet-
v1 classification network [Howard et al. 2017] as a higher-level

network (which is replaced by a perceptual image loss when special-
izing the model for imaging for human vision 5.1). The higher-level
classification loss L is the standard cross-entropy classification loss.
We chose the MobileNet model family, since it is computationally ef-
ficient, running on modern smart-phone platforms in real-time, and
while achieving competitive classification performance [Howard
et al. 2017]. As the model is small, it can also be trained from scratch
without data-center-scale training resources. Note that the pro-
posed architecture can be adapted to other high-level computer
vision tasks such as segmentation, object detection, and tracking,
by replacing the classification network with another network for
the given task. This also includes no high-level model, which then
allows for the method to act as a learned ISP optimized for human
viewing with adequate loss L, which we demonstrate in Sec. 5.3.

4.1 Anscombe Networks
The proposed low-level image processing unit, Anscombe networks,
performs image reconstruction as a statistical estimation problem,
which estimates a feature-preserving mid-level image from cor-
rupted observations. We adopt a Bayesian approach and derive the
proposed Anscombe network model as a maximum-a-posteriori
(MAP) estimation method. As part of this model we introduce novel
Anscombe network layers in this section, which allow for an ef-
ficient, compact, and transferable model that hence behaves like
an ISP but is differentiable. Central to the design of our Anscombe
networks are our variance-stabilizing Anscombe transform layers.
Anscombe layers map Poisson-Gaussian distributed measurements
𝑦, to IID Gaussian noise [Foi and Makitalo 2013] with variance 𝜎 = 1.
Recall that the input to our Anscombe network, 𝑦, is the result of
the camera image formation model defined in Eq. (1) (see calibration
described in Section 3.2). We show in Section 5.1 that Anscombe
networks improve the accuracy of classifiers, trained with RAWdata,
that use conventional layers with capacity similar to our Anscombe
networks.

In the Bayesian model, an unknown latent image 𝑥 is drawn from
a prior distribution Ω(𝜗) with parameters 𝜗 . The linear transform
A from Eq. (1), modeling all optical processes, transforms 𝑥 to the
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Anscombe Network Architecture Zoom-in

Anscombe Networks (Differentiable, Low-Level Block) Differentiable, High-Level Block
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Fig. 4. The proposed end-to-end architecture (top) for joint denoising, demosaicking, (deblurring) and classification combines a novel low-level Anscombe
network block and a high-level task-specific network component in a single stack that takes in RAW CFA sensor data and outputs image labels. The Anscombe
network component (zoom-in on the bottom) exploits knowledge of the calibrated image formation model and a learned proximal operator in a recurrent
manner. The high-level model takes the output of the Anscombe network unit (either a feature tensor or an image) and feeds it into a standard classification
network trunk. This proximal operator in the Anscombe network is a recurrent residual U-Net model with dense skip connections across all operator “iterations”.
A partly unrolled network is show at the bottom.

incident signal on the sensor, which is then measured by this sensor
as an image 𝑦 drawn from a noise distribution 𝜔 (A𝑥). Recalling the
image formation model from Eq. (1), the transform A models both
the convolution with the kernel 𝑘 and subsampling on the CFA, and
𝜔 represents the calibrated Poisson-Gaussian noise.

Then the posterior probability of an unknown image 𝑥 yielding
an observation 𝑦 is

𝑃 (𝑥 |𝑦;𝜗) = 𝑃 (𝑦 |A𝑥)𝑃 (𝑥 ;𝜗)∫
𝑥
𝑃 (𝑦 |A𝑥)𝑃 (𝑥 ;𝜗)

(4)

with 𝑃 (𝑦 |A𝑥) being the probability of sampling 𝑦 from 𝜔 (A𝑥) and
𝑃 (𝑥 ;𝜗) be the prior probability of sampling 𝑥 from Ω(𝜗). Because
the posterior is proportional to 𝑃 (𝑦 |A𝑥)𝑃 (𝑥 ;𝜗) the MAP estimate
of 𝑥 is then given by

𝑥 = argmax
𝑥

𝑃 (𝑦 |A𝑥)𝑃 (𝑥 ;𝜗), (5)

or equivalently

𝑥 = argmin
𝑥

𝑓 (𝑦,A𝑥) + 𝑟 (𝑥, 𝜗)︸                 ︷︷                 ︸
G(𝑥,𝑦,𝜗)

, (6)

where the data term 𝑓 (𝑦,A𝑥) = − log 𝑃 (𝑦 |A𝑥) and prior 𝑟 (𝑥, 𝜗) =
− log 𝑃 (𝑥 ;𝜗) are negative log-likelihoods. These two terms define
the lower-level objective G (𝑥,𝑦, 𝜗) from Eq. (3).

Implicit Unrolled Proximal Optimization. The low-level unitΛmin-
imizes the loss G by solving Eq. (6). A large variety of algorithms
have been developed for solving problem (6) efficiently for different
convex data terms and priors, e.g., FISTA [Beck and Teboulle 2009b],
Chambolle-Pock [Chambolle and Pock 2011], ADMM [Glowinski
and Marroco 1975]). The majority of these algorithms are iterative
methods, in which a mapping Γ(𝑥𝑘 ,A, 𝑦, 𝜗) → 𝑥𝑘+1 is applied re-
peatedly to generate a series of iterates that converge to a solution
𝑥★, starting with an initial point 𝑥0.

While an algorithm implementation can only be derived for explic-
itly given 𝑓 and 𝑟 , we can define the algorithm itself with implicitly
defined objectives. Suppose 𝑓 and 𝑟 are convex in 𝑥 , and 𝑟 is dif-
ferentiable. Then, we can solve Eq. (6) with the proximal gradient
method [Beck and Teboulle 2009a,b; Diamond et al. 2017; Parikh
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Algorithm 1 Anscombe networks: Variance-stabilized implicit
proximal gradient network.
1: 𝑦, 𝜎 ← A(𝑦)
2: Recurrent vars: 𝑥0 = 𝐴𝑇𝑦, 𝛼𝑘 = 𝐶0𝐶−𝑘 , 𝐶0 > 0, 𝐶 > 0
3: for 𝑘 = 0 to 𝑁 − 1 do
4: 𝑥𝑘+1/2 ← CNN(𝑥𝑘 , 𝜗𝑘 ).
5: 𝑥𝑘+1 ← argmin𝑥 𝛼𝑘 𝑓 (𝐴𝑥,𝑦) + 1

2 ∥𝑥 − 𝑥
𝑘 − 𝑥𝑘+1/2∥22.

6: end for
7: 𝑥 ← A−1 (𝑥𝑁 , 𝜎)

and Boyd 2013], which consists of the following updates

𝑥𝑘+
1/2 = 𝑥𝑘 − 𝛼𝑘∇𝑥𝑟 (𝑥𝑘 , 𝜗) (7)

𝑥𝑘+1 = argmin
𝑥

𝑓 (𝑦,A𝑥) + 1
2𝛼𝑘
∥𝑥 − 𝑥𝑘+1/2∥22, (8)

where 𝛼𝑘 > 0 is a step length. Each update consists of a prior step (7)
and a data step (8). The data step (8) is known as the proximal
operator of 𝑓 , that is

prox 𝜆
𝛽
𝑓 (𝑦,A·) (𝑥) = argmin

𝑧

𝜆

𝛽
𝑓 (𝑦,A𝑧) + 1

2
∥𝑥 − 𝑧∥2 . (9)

Please see [Parikh and Boyd 2013] for a detailed review of proximal
operators and corresponding proximal optimization algorithms. One
central idea that we rely on in this work is that we can also implicitly
define steps of this algorithm. In particular, we propose to learn
the prior mapping without explicitly defining the objective 𝑟 , the
space of all representations interpretable by the higher-level block,
but rather parameterize the projection operator CNN(𝜈, 𝜃𝑘 ) = 𝜈 −
𝛼∇𝑥𝑟 (𝜈, 𝜗) with 𝜗 and 𝛼 being learned implicitly.

Solving Eq. (6) using an iterative optimization algorithm of the
reader’s choice would lead to an algorithm with a data-dependent
termination criterion and no obvious method to learn unknown
algorithm parameters since computing the derivatives of the out-
put with respect to the algorithm parameters 𝜗 is value-dependent.
An alternative approach is to execute a pre-determined number of
iterations 𝑁 , in other words unrolling the optimization algorithm.
This approach is motivated by the fact that for many imaging ap-
plications very high accuracy, e.g., convergence below tolerance of
10−6 for every local pixel state, is not needed in practice, as opposed
to optimization problems in, for instance, control. Instead, many
applications are runtime-constrained, and truncation allows for a
fixed runtime. Fixing the number of iterations allows us to view
the iterative method as an explicit function Γ𝑁 (·,A, 𝑦, 𝜗) → 𝑥𝑁

of the initial point 𝑥0. Parameters such as 𝜗 may be fixed across
all iterations or vary by iteration. The unrolled iterative algorithm
can be interpreted as a deep network, and, if each iteration of the
unrolled optimization is differentiable, the gradient of 𝜗 and other
parameters with respect to a loss function on 𝑥𝑁 can be computed
efficiently through backpropagation. The proposed network recipe
is given in Algorithm 1. Note that we allow all parameters to differ
across layers. The model is differentiable in its output with respect
to each layer’s free parameters.

Anscombe Layers. The network generated by Algorithm 1 is an
implicit unrolled proximal gradient network. However, rather than

working directly on themeasurements𝑦, which are Poisson-Gaussian
distributed according to Eq. (1), we embed the unrolled architecture
in variance-stabilizing Anscombe transform layers, converting the
Poisson-Gaussian noise into IID Gaussian noise [Foi and Makitalo
2013] with variance 𝜎 = 1. This has the benefit that the data step in
line 5 of Alg. 1 becomes a simple quadratic term, and image features
at all intensity levels are affected by the same noise degradations,
effectively regularizing the model to perform robustly independent
of the light level.
Specifically, we apply the generalized Anscombe transform [Foi

and Makitalo 2013] as a first layer, denoted by the operator A, to
the measured single channel RAW observation 𝑦, The transform
and its unbiased inexact inverse are defined as

A : 𝑥 ↦→ 2
√︃
𝑥 + 3

8 , (10)

A−1 : 𝑥 ↦→ 1
4
𝑥2 − 1

8
− 𝜎2 . (11)

However, RAW data input to this transform, without modifications,
results in peak signals that are not consistent across training ex-
amples. Hence, the gradient components of the unrolled proximal
gradient method are not normalized with respect to light level,
leading to poor network performance. To avoid this behavior, we
max-normalize the output of the forward Anscombe transform with
the multiplicative factor 𝑠A = 1/max(A𝑥). While this normalizes
the value range to the interval [0, 1], the unit-variance Gaussian
noise distributed A𝑥 becomes Gaussian-distributed with variance
𝜎 = 𝑠2A . As this parameter is known, we provide it to the network
as a separate channel, which is illustrated in Fig. 4. The output of
the unrolled proximal gradient network component followed by
the inverse generalized Anscombe transform A−1, which inverts
the shift and scaling, then applies the inverse transform. The noise
parameters are known from the ISO and the precalibrated noise
curves from Sec. 3.2.

Soft Projection Layers. The data step in Alg. 1 (line 5) is the “soft
projection” operator Π(·, 𝛾,A, 𝑦) given by

Π(𝑣,𝛾,A, 𝑦) = argmin
𝑧

1
2
∥𝑦 − A𝑧∥22 +

𝛾

2
∥𝑣 − 𝑧∥22 .

Recalling Eq. (9),Π(·, 𝛾, 𝐴,𝑦) is the proximal operator of the function
𝑓 . With the Anscombe layers present, this function, i.e. the neg-
ative log-likelihood − log 𝑃 (𝑦 |A𝑥) from Eq. (6), becomes a simple
quadratic now, that is

𝑓 (𝑦,A𝑥) = 1
2
∥𝑦 − A𝑥 ∥22 .

Hence, the operator Π can be computed efficiently as an uncon-
strained quadratic optimization problem. In the case of joint demo-
saicking and denoising, the operator A = S and Π becomes

Π(𝑣,𝛾, S, 𝑦) = S𝑇A𝑦 + 𝛾𝑧
S1 + 𝛾 ,

where division is elementwise. The soft projection parameter 𝛾 > 0
trades off closeness to the input 𝑣 with fidelity to the measurements
𝑦 (i.e., ensuring 𝑦 ≈ 𝐴𝑥). We dub this operator “soft projection”
because in the limit 𝛾 → 0, Π(𝑣,𝛾, 𝐴,𝑦) is the Euclidean projection
of 𝑣 onto the linear system 𝑦 = A𝑥 . Note that 𝛾 may be learned or
fixed.
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The soft projection data step is inspired by analysis in the Sup-
plemental Material. We found that substantially improved gener-
alization over naive residual CNN models could be achieved due
to applying soft projection in the proposed unrolled architecture,
in particular for tasks where the imaging operator A varies across
camera or example (for instance, different CFA patterns, optical
systems, or images that are blurred with different blur kernels). Intu-
itively, soft projection decouples the (approximate) inversion of the
physical image operator A from the prior step. Thus, the model does
not have to re-learn the (approximate) inversion of A depending
on sensor, optical parameters, or capture settings, and need instead
only learn prior parameters and algorithm hyper-parameters.

4.2 Residual U-Net Prior Parametrization
The purpose of the cascade of prior network units in our architecture
is to map estimates of the unknownmidlevel representation 𝑥 onto a
nearby point in themanifold of representations that are interpretable
by the higher-level network, or when optimizing for human viewing
(i.e. the space of perceivable natural images). The prior steps from
Algorithm 1 must therefore be flexible enough to learn the complex
statistics of natural images but also project on a subset according to
the higher-level loss L.
We use a CNN as learnable prior architecture, as CNNs are es-

tablished architectures for feature-encoding in the image domain
and are thus a natural choice for learning the mapping onto the
subset manifolds of natural images. Specifically, we propose a deep
residual U-Net [Ronneberger et al. 2015] variant with three lev-
els (see Figure 4), 3 × 3 convolution kernels, ReLU nonlinearities,
downsampling with 2 × 2 average pooling, upsampling by 2 × 2
deconvolution layers (transpose convolution), and batch normaliza-
tion in the intermediate layers to ease training [Ioffe and Szegedy
2015]. The number of channels in the first U-Net level increases by
a factor of 2. The channels are doubled in each of the three levels of
the U-Net. The U-Net prior at iteration 𝑘 in the unrolled stack takes
as input the output of the soft projection step 𝑘 − 1 concatenated
with the Anscombe noise parameter 𝜎 as a separate channel. In
order to handle the RAW color-filter array data, the very first layer
in the U-Net prior at iteration 0 uses a stride 2 convolution in the
very first convolutional layer. Further information on the U-Net
parametrization can be found in the supplement.

We note that the U-Net priors are trained end-to-end as part of the
complete architecture in Fig. 4 and a different prior is trained for each
iteration of the unrolled optimization stack. This allows each prior
step to specialize in removing correlated noise, i.e. reconstruction
artifacts, introduced by the preceding data step, such as inpainting
artifacts aligned with the CFA or inverse filtering ringing artifacts.

5 EVALUATION
Next, we describe the evaluation of our proposed methods. First, we
evaluate our joint imaging and perception model on classification
of low-light RAW images. Specifically, we captured a new dataset
over a range of low-light levels and also built a synthetic low-light
dataset based on ImageNet. We include ablated studies that show
the importance of our proposed low-level Anscombe network to
improve the high-level network accuracy. Second, we evaluate our

low-level model for image reconstruction in low-light for human
viewing (imaging without considering a high-level task, i.e. clas-
sification). For this evaluation, we use a recent publicly available
dataset [Chen et al. 2018], which consists of short and low exposure
images. Third, we demonstrate a real time mobile prototype imple-
mented using the Android Camera2 API and a remote Tensorflow
model server. The next sections describe the experimental setup
and results found over these evaluations.

5.1 Evaluation of Low-light Imaging and Perception –
Synthetic Data

We trained instances of the proposed joint architecture for four
challenging scenarios: 3 lux, 6 lux, the range 2 to 20 lux, and the
range 2 to 200 lux.While the first two settings allow us to analyze the
models in specific low-light conditions, the scenarios with ranges
of illuminance allow us to evaluate the generalization of the models
over a variety of different light levels. Specifically, we trained and
evaluated the models on a noisy version of ImageNet, constructed
using the image formation model from Sec. 3.1, calibrated for the
Nexus 5 rear camera for a given light-level (or a light-level sampled
randomly from a range). To evaluate the effect of noise separately
from optical aberrations, we ignore aberrations in the following
(see Supplemental Material). The results reported next correspond
to the ImageNet validation set of 50,000 images [Deng et al. 2009],
which consists of 1000 object classes, and 50 samples per class.

To evaluate over many different noise settings and to be able to
train deep nets completely from scratch (Table 1), we opt to use the
computational efficient MobileNet classification network in all the
following experiments. We refer the reader to the Supplementary
document for results using the much larger Inception-v4 classifier
on a smaller subset of the evaluations taking one month of training
time. We compare the proposed joint architecture (Joint Anscombe
Network and MobileNet-v1) to the following baselines:
• The conventional approach of combining a high-quality ISP,
optimized for human viewing, with an existing pretrained
MobileNet-v1 classifier.
• Using a trainable state-of-the-art ISP [Chen et al. 2018], fine-
tuned for image quality in each noise scenario, and aMobileNet-
v1 classifier finetuned on the learned ISP output.
• A MobileNet-v1 classifier directly trained from scratch on
RAW noisy data.
• As a deeper version of our classifier with higher model capac-
ity, we train the MobileNet-v2 (1.4) classifier [Sandler et al.
2018] from scratch, with 50% more parameters and about 40
million more FLOPS.

We train all the evaluated models until convergence with large
iteration buffer. Table 1 summarizes the results for the described low-
light scenarios. We next describe our findings from this evaluation.

Combining high-quality ISPs with pretrained high-level network
fails in low-light. In this experiment, we use the hardware ISP of
a Movidius Myriad 2 evaluation board, and the high-quality open-
source ISP Darktable [2018] both engineered and optimized for
visual image quality. We note that the Darktable uses a non-local
means block-matching denoiser (NLM) [Buades et al. 2005] that
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3 lux 6 lux 2 to 20 lux 2 to 200 lux Size and Complexity

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 # Params. (M) FLOPs (M)

From Scratch MobileNet-v1 (RAW input w/o ISP) 23.53% 44.13% 32.65% 55.94% 35.16% 58.14% 42.65% 66.13% 4.23 181
From Scratch deeper MobileNet-v2 (RAW input w/o ISP) 27.87% 50.82% 36.80% 61.31% 36.32% 59.40% 38.56% 61.58% 6.90 320

Movidius Myriad 2 ISP + Pretrained 0.22% 1.10% 1.69% 5.39% 9.12% 18.63% 17.78% 32.11% 4.23 181
Darktable ISP + Pretrained 0.22% 0.46% 0.46% 1.52% 7.12% 15.28% 18.20% 32.04% 4.23 181

Movidius Myriad 2 ISP + Finetuning 23.52% 44.69% 36.11% 60.27% 17.31 % 34.98 % 21.75% 40.93 % 4.23 181
Darktable ISP + Finetuning 20.02% 39.56% 34.73% 58.55% 16.45 % 33.13% 23.47% 43.77% 4.23 181

U-Net [Chen et al. 2018] + Finetuning 29.89 % 52.62 % 36.20% 60.23% 14.38% 30.44% 20.23% 39.35% 11.99 537
U-Net [Chen et al. 2018] + percep. loss + Finetuning 9.52% 20.84% 25.74% 45.81% 19.09% 36.26% 26.17% 46.78% 11.99 537

Proposed Joint Architecture (MobileNet-v1 Head) 30.50% 53.28% 43.63% 67.73% 40.87% 64.01% 48.46% 71.44% 4.28 282

Table 1. Classification results on simulated data. We compare the proposed joint architecture to classifiers that ingest (and are trained on) pre-processed
images output by conventional ISPs, including Darktable and the Movidius Myriad 2 ISP, and learnable deep ISPs [Chen et al. 2018]. Off-the-shelf MobileNet-v1
classifiers pretrained on Imagenet perform poorly on ISP-preprocessed data (Movidius Myriad 2 ISP + Pretrained and Darktable ISP + Pretrained). Fine-tuning
these classifiers on the ISP-processed data (Movidius Myriad 2 ISP + Finetuning, Movidius Myriad 2 ISP + Finetuning, and U-Net [Chen et al. 2018] deep ISP
models) results in substantially improved performance. While the parameters of the conventional ISPs have been expert-tuned, we train the deep U-Net ISP
from [Chen et al. 2018] on the clear/noisy training corpus, and we also report results when adding an perceptual loss [Johnson et al. 2016] (+ percep. loss).
However, none of the fine-tuned models, trained on top of traditional or learnable ISPs, does outperform networks that do not employ an ISP at all across all
settings, as evidenced by results of a MobileNet-v1 on unprocessed RAW data (From Scratch MobileNet-v1). Only the proposed joint architecture with a
learned Anscombe network outperforms both, traditional pipelines, as well as from-scratch-trained models in both Top-1 and Top-5 classification accuracy
across illumination conditions. The proposed approach even outperforms from-scratch-trained MobileNet-v2 models that are deeper networks with larger
network capacity compared to our architecture. Note that all other models compared in this table use the MobileNet-v1 architecture as classifier heads. We
highlight the best and second best models using bold and underlined text, respectively.

is prohibitively costly to implement in hardware. The parameters
of the darktable RAW developing tool and the Movidius Myriad 2
were hand-tuned by a human expert to maximize perceptual quality.
The results in Table 1, rows third and fourth, validate that the con-
ventional approach of combining a high-quality ISP, optimized for
human viewing, with an existing pretrained high-level network fails
in low-light scenarios. In all cases, this approach performs weakly
due to the severe noise present in the image data. This applies both
to efficient hardware ISP architectures, such as the Movidius Myriad
2 ISP, as well as to high-performance photography RAW processing
ISPs, such as Darktable. In fact, as detailed below, processing RAW
measurements with conventional image processing units, tuned for
perceptual quality, can decrease classification performance, com-
pared to almost unprocessed bi-linearly interpolated color images.
These findings also apply to image degradations introduced by opti-
cal aberrations. We refer the reader to the supplement for a study
on the effect of optical aberrations.

Finetuning a classifier on top of ISP-preprocessed images does not
do better than a model trained directly on RAW noisy data. Tradi-
tional ISP pipelines achieve acceptable performance only when the
networks are fine-tuned, i.e. specialized, to the degraded low-light
imaging data output by the respective ISP (fifth and sixth rows of
Table 1). However, the performance of these specialized networks
applied on the output of existing ISPs is exceeded by simply training
a network from scratch for the given imaging condition but without
an ISP at all, only using bilinearly demosaicked color images (first
row of Table 1). The classifier trained without ISP preprocessing ob-
tained higher Top-1 accuracy on three out of the four noise settings.
Overall, processing images with conventional ISP pipelines, that are
designed and tuned for human viewing, at best marginally increased

classification accuracy for models specialized to individual light lev-
els and in many cases substantially decreased performance. This
is especially apparent for varying low-light conditions (columns
2-to-20 lux and 2-to-200 lux), where classifiers finetuned on ISP
outputs obtain only half of the Top-1 accuracy of classifiers trained
from scratch. On a first glance, this result may argue for completely
removing traditional ISP pipelines and simply train standard CNN
classifiers with as little traditional preprocessing as possible.

Anscombe Networks outperform classifiers trained from scratch on
RAW data (even with larger model capacity). We compare the pro-
posed method to MobileNet-v1 trained directly on RAW data and
its deeper larger variant, MobileNet-v2; see first, second and last
rows of Table 1. The MobileNet-v2 variant introduces inverted resid-
ual blocks, in which shortcut connections are introduced between
bottleneck layers, and improves efficiency and accuracy relative to
MobileNet-v1. Specifically, we use MobileNet-v2 (1.4) [Sandler et al.
2018], that has larger capacity (1.4 width multiplier) than the stan-
dard version. We observe that this deeper model improves results in
almost all illumination conditions compared to MobileNet-v1. For
the larger 2-to-200 lux illumination range, we do observe worse
performance which we attribute to the larger architecture being
slightly more prone to overfitting as a result of memorization. We
note that our joint network obtains higher Top-1 and Top-5 accu-
racy compared to both models across all noise settings. Although
MobileNet-v2 has a substantial higher number of parameters, this
larger capacity does not translate into an improvement over our
joint models. Finally, note that for both MobileNet networks, there
is not explicit modeling of an intermediate image. These results
validate that the improvement obtained by our joint architecture
does not come from a larger capacity compared to the MobileNet-v1
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version, but from the design of our Anscombe network. As such,
we demonstrate that Anscombe Networks are highly effective at
recovering an intermediate image representation that are tailored
to the downstream task across different noise scenarios.

Anscombe Networks outperform classifiers trained on top of learn-
able deep ISP outputs. As a further comparison, we finetune a clas-
sifier network also on the outputs of existing learnable deep ISPs.
Specfically, we train the deep ISP network from Chen et al. [2018] for
image reconstruction with the loss settings proposed by the authors.
We then finetune a MobileNet-v1 network on a corpus of denoised
images. The results of this experiment are shown in the seventh
row of Table 1, validating that our network also outperforms this
approach for all noise scenarios. The margins are especially high
for varying light levels (2-to-20 lux and 2-to-200 lux).

In addition, we also provide results using a perceptual loss [John-
son et al. 2016] in the first stage of the deep ISP training in addition
to the ℓ1-loss proposed in [Chen et al. 2018]. We manually optimized
the weight ratios of both objective components. While this percep-
tual loss adds robustness across light level ranges, the proposed
model maintains a high margin over this baseline. These results
emphasize the efficiency and effectiveness of Anscombe Networks,
which have 2.5× and 2× fewer parameters and FLOPs, respectively,
compared to the learnable baselines.

Computational Complexity. The last two columns of Table 1 list
the computational complexity of all models. For the deep ISP [Chen
et al. 2018] with perceptual loss [Johnson et al. 2016], we do not
consider the additional parameters of the pre-trained classifier used
in the perceptual loss calculation, and for the Movidius and Dark-
table ISPs we only measure the MobileNet-v1 network compute
cost, although modern ASIC ISPs require tremendous engineering
efforts to be power efficient. For all models, we list complexity for
RAW input images of 128x128 size. We note that the proposed joint
architecture consists of only 0.1× additional parameters (Anscombe
network) relative to MobileNet-v1, and this represents 2.5× fewer
parameters than the deep ISP from [Chen et al. 2018]. Our joint
architecture runs at 60fps.

Robustness and Generalization. The results in Table 1 validate the
effectiveness of our proposed joint architecture to recover relevant
information from RAW data to improve accuracy for a high-level
task. We also emphasize our model’s outstanding generalization
across different light levels. We can see in Table 1 that while the
accuracy of the models that use state-of-the-art software, hardware,
and learnable ISPs drastically decrease over the 2-to-20 and 2-to-
200 lux ranges, the accuracy of our proposed model remains stable.
This again underlines the limitations of conventional models under
more realistic scenarios, where light levels are highly variable, and
the importance of building generalizable models. Our models also
shines when comparing computational complexity, enabling robust
real-time applications, as shown in Section 6.

Qualitative Interpretation. The results in Table 1 raise the question
of why the jointly training Anscombe networks was so much more
helpful to the classifier than conventional algorithms. The images
in Fig. 5 suggest an answer. Fig. 5 shows a low-light image that
was incorrectly classified by the pretrained MobileNet network

but correctly classified by the joint architecture1. The RAW input
image and a bilinearly demosaicked image is shown, as well as the
outputs of the conventional hardware and software ISPs, and the
intermediate mid-level representation produced by the Anscombe
network unit. The label assigned by the classifier is given in each
instance, as well as the PSNR and SSIM relative to the original image.

The images output by conventional ISPs for human viewing con-
tain less noise than unprocessed RAW data. Fine details of the target
class are blurred out, however. Comparing conventional and learned
ISP outputs with Anscombe network’s intermediates, we hypothe-
size that our joint Anscombe architecture tailors processing to the
classification task by selectively boosting contrast around structures
of the target class while removing noise in large smooth regions.
This selective processing seems to be key to recover the target class
structures independently of the noise or light level, which explains
the robustness of our model across different light levels.

As a result, by conventional metrics of restoration quality such as
SSIM and PSNR, the joint unit is, in fact, worse than conventional
algorithms. These metrics do not distinguish between scene content
necessary for a classification and background regions without task-
specific information. We can also see, though that it preserves and
amplifies detail that is useful to the classification network, the pro-
posed Anscombe network does perform denoising and deblurring of
the image. The qualitative results suggest traditional reconstruction
algorithms and metrics used to make images visually pleasing to
humans are not appropriate for high-level analytic tasks.

5.2 Evaluation in Low-light Imaging and Perception –
Captured RAW Data

We demonstrate generalization of the proposed models to real-world
low-light images. Using a Google Pixel phone rear camera, we col-
lected low-light image patches in the wild. Rather than adopting the
lengthy process of extracting these patches from objects at various
scales in arbitrary photographs, we acquire full-frame images that
directly correspond to classes in the ImageNet dataset and create
patches by subsampling. While not affecting per-pixel noise, this
process enables us to eliminate the effect of blur in the capture, al-
lowing us to make solid claims about the effect of noise in isolation.
The same applies to demosaicking which typically only considers
a small neighborhood of pixels. We collect a low-light dataset ap-
proximately corresponding to light levels between 1 lux and 200
lux. The dataset consists of 1103 images across 40 imagenet classes
respectively Table 2 lists results on the real-world dataset, includ-
ing ablations of our proposed architecture. The evaluated models
correspond to the 2 to 200 lux models in Table 1. These experiments
evaluate the generalization performance of the respective models
to real captured data. Absolute performance is worse than on the
simulated datasets, which is likely due to a mismatch between how
classes appear in ImageNet and how they appear in the wild. The
relative margins are consistent with the simulated results.

1Please see Supplemental document for additional visualizations of the finetuned
outputs of the deep ISP from [Chen et al. 2018].
2We do not count the parameters and FLOPS of the proprietary Pixel ISP here.
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Fig. 5. Synthetic and real low-light RAW images, and their corresponding classification results after processing with conventional ISPs (Darktable and
Movidius), bilinear demosaicking, and Anscombe Networks. The proposed joint architecture scores lower in terms of PSNR and SSIM. However, results suggest
that our proposed model does not only removes noise, but selectively amplifies structures of the target class, which seems to benefit the overall classification
accuracy of the model.
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Top-1 Top-5 #Parameters FLOPS

From Scratch MobileNet-v1 27.03% 52.45% 4.23 181
From Scratch MobileNet-v2 26.92% 56.45% 6.90 320

Pixel ISP 2+ Pretrained MobileNet-v1 1.4% 14.1% 4.23 181
U-Net + Anscombe layers + MobileNet-v1 28.80% 55.20% 11.99 537

Proposed Joint Architecture (no Anscombe layers) 28.53% 54.25% 4.28 282
Proposed Joint Architecture 33.13% 58.36% 4.28 282

Table 2. Results on data captured in the wild with a Google Pixel phone
rear camera for models trained on 2 to 200 lux. The exposure time was
fixed at 1/10000 and the ISO at 8000. Additional digital gain was applied to
normalize brightness. The best and second best methods are highlighted in
bold and underlined text, respectively.

Anscombe networks generalize well to real data. Table 2 confirms
that the highest classification accuracy was achieved by the pro-
posed joint model, with Top-1 and Top-5 accuracy up to 6% higher
than the fine-tuned models. The from-scratch tuned MobileNet-v1
and MobileNet-v2 models outperform the pretrained MobileNet
network on Pixel ISP substantially, by 10s of percent.

Ablations of the proximal operator and Anscombe layers. Table 2
also includes results of the joint architecture without the proximal
operator network (fourth row) and without the Anscombe trans-
form (fifth row). For additional comparison, the network without
the proximal operator uses the larger U-Net architecture described
by [Chen et al. 2018] while keeping the Anscombe transform at the
input and its inverse at the output of this network. These experi-
ments validate that the architecture that uses Anscombe transform
outperfoms the one that does not include this transform by around
5% in both Top-1 and Top-5 accuracy. Also, replacing the proximal
operator network with U-Net reduces the accuracy of our proposed
model by 4% and 3% in Top-1 and Top-5 accuracy, respectively. This
margin validates that the Anscombe network as a whole is key for
the performance of the overall joint model including the high-level
classification model.

Qualitative Results. Fig. 5 helps to explain the improvement in
classification accuracy of the proposed joint model as compared
to conventional+fine-tuned and from-scratch baselines. We show
image examples that each went through four different classification
pipelines: one without any processing except for bilinear demosaick-
ing for viewing, one processed with conventional ISPs before the
MobileNet network, and two other processed using jointly trained
models with and without Anscombe layer. As with the simulated
data, conventional ISPs produce visually pleasing images by remov-
ing severe noise to a certain extent. However, fine details are lost
in the process, leading to an incorrect classification result. The pro-
posed joint stack does preserve and amplifies fine detail necessary
for correct classification of the images.

5.3 Single-Image RAW Image Reconstruction in Low-Light
for Human Viewing

Next, we evaluate the proposed Anscombe network architecture
when trained as an ISP replacement for human viewing. Specifically,
we demonstrate joint demosaicking, denoising and tonemapping

PSNR SSIM

Darktable ISP 3 8.94 0.03
Chen et al. [2018] 28.88 0.79

Proposed 29.14 0.81

Table 3. Anscombe Networks for Single-Image Low-Light Photography
(w/o Classification). PSNR and SSIM comparison for Darktable ISP, Chen
et al. [2018]’s learned U-Net ISP, and the proposed method, using the same
training and test dataset proposed by [Chen et al. 2018].

for human viewing on a single capture in low light, using the train-
ing and validation data set from [Chen et al. 2018]. We employ the
identical Anscombe network architecture from Sec. 4 but, instead
of concatenating this model with a higher-level domain-specific
network, we minimize a loss L formulated directly on the output
image of the Anscombe network. This loss penalizes the difference
between the prediction for a noisy observation and the correspond-
ing clean long-exposure capture processed by a conventional ISP
(with settings for normal lighting conditions). We use an ℓ1-loss
after evaluating other alternative loss functions.

Anscombe Networks also achieve state-of-the-art low-light perfor-
mance for human viewing. The results in Table 3 show that our
proposed model also obtains state-of-the-art performance for low-
light image processing for human viewing. Our method outper-
forms the U-Net-based deep ISP [Chen et al. 2018] qualitatively and
quantitatively. We visualize RAW imaging results obtained by the
evaluated methods in Fig. 6. In the presented low-light scenario,
conventional ISPs fail due to the significant noise degradations af-
fecting the RAW sensor readings. In particular, the darktable ISP
produces severe chromatic artifacts in smooth image regions. Fur-
thermore, fine details at object boundaries are severely distorted
as a result of an edge-preserving denoising block. In contrast, the
plain U-Net model proposed in [Chen et al. 2018] produces visu-
ally pleasing images without chromatic artifact and free of residual
noise. Chen et al.’s method also over-smooths image regions, i.e.
noise is suppressed at the cost of texture loss. This behavior is par-
ticularly prevalent in areas with high intensity variations, around
depth and illumination edges. The proposed Anscombe network
model is tailored to intensity-dependent noise, and hence restores
fine detail without over-smoothing or re-introducing residual noise.
The results validate that Anscombe networks have the potential to
be not only a domain-specific replacement for conventional general-
purpose ISPs when considering non-traditional perception tasks
but also when specialized to processing images for human viewing.
We note that specialized domain-specific processing is the goal of the
proposed approach. We do not dismiss traditional ISPs when the
downstream application is unknown but highlight the potential of
domain-specific camera processing pipelines.

6 MOBILE PROTOTYPE
We have implemented our joint low/high-level classification archi-
tecture on a mobile smartphone prototype along with a remote
TensorFlow model server. The smartphone front-end application

3Traditional processing pipelines suffer also from severe color and white-balance
artifacts in low-light such that quantiative results offer little insight. See Figure 6 for
qualitative examples.
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Fig. 6. Anscombe Networks for Single-Image Low-Light Photography (w/o Classification). Qualitative low-light denoising results for human viewing using the
traditional Darktable ISP, the U-Net model proposed by [Chen et al. 2018], and the proposed Anscombe network. The proposed model and Chen et al. [2018]
have been trained on the same low-light dataset from the dataset proposed in [Chen et al. 2018]. All methods use the same single RAW image as input.

handles all dynamic camera control and the capture itself. While we
rely on the hardware ISP for control of white-balance and auto-focus,
we manually fix the exposure to ensure repeatable measurements
with consistent signal-to-noise ratio. We use the Android Camera2
API for capture control and acquisition of the raw measurements.
The captured raw date is transferred to a remote instance using Ten-
sorFlow’s high-performance protocol buffer serving system, which
then performs the inference on the transferred data. We use an
Amazon Web Services P2.1x GPU instance to host the servables for
our joint models, and baseline models for comparison. Fig. 7 shows
a photograph of the deployed application that classifies captures in
the wild.
We achieve an inference throughput of about 60 FPS, while the

vanilla MobileNet network performs at 80 FPS under the same condi-
tions. Note that this performance is achieved without any inference
optimization or integer-quantization, which frameworks such as
TensorRT offer. We leave an efficient embedded hardware imple-
mentation as future work and note that variants of the MobileNet
architecture already achieve interactive framerates on mobile de-
vices [Howard et al. 2017].

6.0.1 Ultra Low-light Classification. Themobile prototype performs
classification tasks robustly even in extreme low-light scenarios.
Fig. 7 shows two such challenging capture scenarios along with
classification results of the proposed and fine-tuned conventional

MobileNet model. Both scenes were captured in a closed room with-
out windows or other sources of ambient illumination. The only
light sources present at the capture were the phone screen’s illu-
mination and the photocopier’s dim LCD screen light. The scene
captures shown in the left row of Fig. 7 were captured with a Canon
Rebel T4 (f/4.5) with a long 2 second exposure at f/4.5. Note that
even these DSLR setup shots are severely degraded by noise due to
the low scene illumination. We acquired cellphone images with a
long exposure of 125ms which, however, still allows for interactive
frame-rates. The mobile prototype correctly performs classification
even in these extreme imaging scenarios, where the from-scratch
and fine-tuned MobileNet models fail. Please see the supplemental
video for additional low-light classification results in the wild.

7 DISCUSSION
In summary, we showed that the performance of conventional imag-
ing and perception stacks, combining a high-quality ISP for human
viewing with high-level networks trained on clean JPEG datasets,
fails in low-light capture scenarios (and with optical off-axis aberra-
tions of inexpensive mobile optics). Moreover, training classification
architectures from scratch without any ISP outperforms sequential
fine-tuned architectures that include an ISP, seemingly advocating
for the removal of an ISP for higher-level image analysis tasks.
In this work, we investigated learned processing architectures

that perform end-to-end image processing and perception jointly.
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Fig. 7. Extreme low-light cellphone classification. Two scenes acquired with-
out any light sources other than the cellphone screen (and printer LCD
screen). The left column shows scene captures acquired over a long 2 second
exposure using a Canon Rebel T4 DSLR camera. Note that these are still
severely degraded by noise. The right column shows the corresponding mo-
bile capture, acquired over a 125ms exposure, along with the classification
label under these extreme conditions.

The proposed Anscombe networks act as an ISP, using RAW color
filter array data as input, and is flexible to transfer to different sensor
architectures and capture settings without retraining or capture of
new training datasets. However, by making the model end-to-end
differentiable, the architecture can be trained jointly for a high-level
loss function, achieving state-of-the-art performance both for RAW
image processing for human viewing and perception tasks across
light levels from ultra-low light to well-lit scenes.

We demonstrated that the proposed architecture makes imaging
and perception robust to the extreme capture scenarios that can
be commonly found in real-world imaging. We highlighted major
qualitative differences between sequential approaches and our joint
end-to-end approach by visualizing intermediate representations in
the proposed architecture and the output of conventional pipelines
algorithms. We demonstrated that Anscombe networks generalize
across camera architectures, including different CFA patterns, opti-
cal systems and noise models, promising that analogue neural ISPs
can be developed for other sensors modalities across computational
imaging, such as time-of-flight cameras, multi-spectral cameras, and
sensor fusion systems.

Limitations and Future Work. While our proposed end-to-end
model handles all the processing and image analysis after a RAW

measurement has been acquired, a limitation of the method is that
it does not address the dynamic control aspect of the capturing
process, which is handled by the remaining trunk of the traditional
ISP. Our proposed model then does not perform camera-control
tasks, such as white-balance or auto-exposure. In the future, we
plan to include auto-exposure and white-balance control in the
proposed end-to-end model. These control tasks are particularly
suited to include as image analysis feedback could severely affect
the performance of these highly ill-posed problems.
In the future, we will also expand the proposed architecture to

model the camera optics and sensors as unknowns. Just as we opti-
mized the full perception and imaging stack, we aim to optimize the
optics, CFA pattern, and other elements of the imaging system for
the given high-level vision task, effectively learning not only the
processing but also the camera architecture itself.

8 CONCLUSION
In the future a large portion of the images taken by cameras and
other imaging systems will be consumed by high-level perception
stacks, not by humans. We must reexamine the foundational as-
sumptions of image processing in light of this momentous change.
Image reconstruction algorithms designed to produce visually pleas-
ing images for humans are not necessarily appropriate for a given
perception task. We have proposed one approach to redesigning
low-level processing pipelines in an end-to-end optimization frame-
work, in a way that incorporates and benefits from knowledge of
the physical image formation model and producing high-quality
perceptually pleasing images when optimized for human-viewing.
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