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ABSTRACT
Rapidly-changing cloud environments that consist of heavily in-
terconnected components are difficult to secure. Existing solutions
often try to correlate many weak indicators to identify and re-
construct multi-step cyber attacks. The lack of a true, causal link
between most of these indicators still leaves administrators with
a lot of false-positives to browse through. We argue that cyber
deception can improve the precision of attack detection systems,
if used in a structured, and automatic way, i.e., in the form of so-
called tripwires that ultimately span an attack graph, which assists
attack reconstruction algorithms. This paper proposes an idea for a
framework that combines cyber deception, automatic tripwire injec-
tion and attack graphs, which eventually enables us to reconstruct
multi-step cyber attacks in modern cloud environments.
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1 INTRODUCTION
Both academia and industry continue to work on systems that
detect cyber attacks. Promising results have been achieved for iden-
tifying vulnerabilities, malware, and malicious behavior, but, those
systems still struggle to distinguish between mere anomalies and
security-relevant incidents [4, 9]. Recent work focuses on correlat-
ing security alarms from various sources, to detect advanced threats
that consist of multiple steps and evolve over long time periods [6].
Especially in the domain of enterprise networks, such attacks are
popularly known as Advanced Persistent Threats (APTs) [1] and are
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often modelled by a cyber kill-chain [2]. Since cloud threats cannot
be represented well with this model we instead use the general
term multi-step cyber attack.

Although these approaches yield more interpretable alarms, they
still have troubles filtering out false-positives when applied in the
real world [9]. Furthermore, in the reconstruction of multi-step
attacks, common approaches correlate IP addresses, alarm types,
or time windows [6], however, no approach fundamentally knows
the true, causal link between alarms.

Securing cloud environments that consist of heavily intercon-
nected components is particularly difficult. Adversaries profit from
the broadened attack surface and increased number of attack vec-
tors. Cyber deception, e.g., deploying honeypots, which are purpose-
fully vulnerable entities that should attract adversaries, counteracts
their unfair advantage by slowing them down [8]. However, hon-
eypots are often configured and deployed manually, making them
scale poorly with rapidly-changing cloud environments.

We focus on three aspects to progress on these open issues:
(1) Cyber Deception. To improve the precision of detection

methods, we argue that it is important to have strong indicators of
compromise (IoCs), instead of correlating many weak indicators.
To achieve this, we introduce tripwires, which describe a deceptive
scenario, and combine honeypots and honeytokens [10].

(2) Automatic Tripwire Injection. To address the complex na-
ture of cloud environments, tripwires are automatically, and strate-
gically injected into existing applications. Our framework manages
their deployment and reacts to changes in the cloud environment.

(3) Attack Graph Reconstruction. A tripwire consists of mul-
tiple, related deceptive components, e.g., a private SSH key that acts
as the lure, and the SSH server that is the decoy. Thereby, tripwires
naturally form an attack graph [7], e.g., if the decoy is accessed,
we know that the adversary must have gotten the keys first, which
we deliberately placed on a different entity to trace the attack path.
Incoming alarms can then be projected onto the attack graph to
reconstruct multi-step attacks.

To this end, we ask the following research question: “Are auto-
matically injected tripwires suitable to reconstruct multi-step cyber
attacks in modern cloud environments?”. This paper proposes an
idea for a framework that can answer this question.

2 FRAMEWORK
Our framework is designed for cloud environments, i.e., applications
that are primarily exposed on the public internet. Applications have
in common that they often use libraries for common use cases such
asweb services or database communication.We automatically inject
tripwires into those libraries with the 7-component framework
depicted in Figure 1. These components interact as follows:
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Deploy Modules (DMs). Process hooks can identify used li-
braries and even inject code into applications at runtime. Thereby,
we can automatically inject deceptive components into applications,
e.g., additional HTTP endpoints on web applications. Likewise, a
process that runs on every host can deploy honeypots, or, create
and modify files. We call the component that injects lures or decoys,
and optionally sets up an alarm system, a DM. The associated alarm
system watches access attempts to the deployed lures or decoys.

DM Registry (DMR). After scanning the cloud environment
for injectable processes and hosts, many such DMs are instantiated.
Each of them registers itself in the DMR.

Tripwire Pool (TP). A tripwire is a manually-created definition
of a deceptive scenario. Many instances of these are stored inside
a TP. Take the AWS S3 bucket honeytoken1 as a concrete example
for the abstract model in Figure 2. There, we need at least two DMs:
One creates an empty bucket (the target2) and monitors accesses
attempts to it, while one or more other DMs deploy the access token
lure. Various DMs allow to inject access token strings (e.g., into
files, HTTP headers, cookies, REST endpoints).

Deployment Controller (DC). The DC first queries all avail-
able DMs from the DMR and then strategically decides which DMs
to use. Its goal is to cover the entire cloud environment with decep-
tive components and react to re-deployments of applications.

AttackGraph (AG).TheDC also populates the AG to keep track
of the deployment of deceptive components and their relationships,
i.e., which lure is required to access which decoy.

Alarm Store (AS). Every DM notifies the AS upon new alarms
that were caught by an alarm system. While the technical imple-
mentation might be different, we imagine that the AS stores alarms
in a condensed form, which makes querying the AS more efficient.

Attack Reconstruction (AR). The reconstruction algorithm
takes the AS and the AG as its input, and is tasked to reconstruct
attacks. Given this data, we intend to use common backward and
forward tracking algorithms [3, 5] or variations of them to recon-
struct multi-step cyber attacks.

3 CONCLUSION
We proposed an idea for a framework that strategically deploys de-
ceptive components in modern cloud environments. We described
both the general framework, as well as tripwires, which are a defini-
tion of managed, adaptive, automatically injected, and strategically
placed deceptive components, combining lures and decoys.

We envision that automatically injected deceptive components
that form an attack graph offer a way to find true, causal links
between alarms, thus improving the reconstruction of multi-step
cyber attacks. In future work, we plan to implement such a system
and evaluate various attack reconstruction algorithms.
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1For an implementation, see https://bitbucket.org/asecurityteam/spacecrab
2The terms lure and decoy in Figure 2 solely mean an abstract concept of them. They do
not represent a target. Eventually, a DM either creates a concrete instance, which then
becomes a target, or, a DM injects something into an existing target (e.g., applications,
files). The bucket tripwire specifies that it requires an empty bucket decoy to work.
A DM with access to the AWS API will ultimately create that concrete decoy.
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Figure 1: The framework describes the life cycle of tripwires
in cloud environments, from deployment, alarm and attack
graph storage, to attack reconstruction.
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Figure 2: A tripwire describes the relation between lures, de-
coys, their deployment on some target via a deploy module,
and its associated alarm system.
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