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ABSTRACT

Next-basket recommendation (NBR) is prevalent in e-commerce
and retail industry. In this scenario, a user purchases a set of items
(a basket) at a time. NBR performs sequential modeling and recom-
mendation based on a sequence of baskets. NBR is in general more
complex than the widely studied sequential (session-based) recom-
mendation which recommends the next item based on a sequence
of items. Recurrent neural network (RNN) has proved to be very
effective for sequential modeling, and thus been adapted for NBR.
However, we argue that existing RNNs cannot directly capture item
frequency information in the recommendation scenario.

Through careful analysis of real-world datasets, we find that
personalized item frequency (PIF) information (which records the
number of times that each item is purchased by a user) provides
two critical signals for NBR. But, this has been largely ignored
by existing methods. Even though existing methods such as RNN
based methods have strong representation ability, our empirical
results show that they fail to learn and capture PIF. As a result,
existing methods cannot fully exploit the critical signals contained
in PIF. Given this inherent limitation of RNNs, we propose a simple
item frequency based k-nearest neighbors (kNN) method to directly
utilize these critical signals. We evaluate our method on four pub-
lic real-world datasets. Despite its relative simplicity, our method
frequently outperforms the state-of-the-art NBR methods — includ-
ing deep learning based methods using RNNs - when patterns
associated with PIF play an important role in the data.
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1 INTRODUCTION

Recommendation systems have been applied in many different ap-
plications [1]. NBR is a type of recommendation problem that aims
to recommend a set of items to a user based on his/her historical pur-
chased baskets [36][45][44][46], which is prevalent in E-commerce
and retail industry. Unlike top-n recommendation (whose historical
record is a set of items) [33] and sequential recommendation (whose
historical record is a sequence of items) [31], the historical record of
the next-basket recommendation is a sequence of sets or sequential
sets (whose element is a set). Considering the historical records,
top-n recommendation and sequential/session-based recommenda-
tion can be seen as special cases of NBR when the NBR only has
one basket and has a sequence of baskets whose size are all of 1,
respectively. But in recommendation step, top-n recommendation
only recommends new items that are not contained in the user’s
historical records, whereas both sequential/session-based recom-
mendation and NBR recommend new and old items. Even though
sequential/session-based recommendation is similar to NBR, we
cannot directly apply sequential/session-based recommendation
method to do NBR without messing up the information existing in
the sequential sets!.

The challenging part in NBR is how to model the relation be-
tween the historical records and recommended items. Existing NBR
methods use different ways to model the information in the histori-
cal records as the user profile and capture user-item interactions
for predicting the next basket. RNNs have become one of the main-
stream choices as it is easy to be tweaked for sequential modeling.
However, we argue that existing RNNs cannot directly capture item
frequency information in the recommendation scenario.

Recently, repeated behaviors are found to bring considerable
performance improvement in both sequential/session-based recom-
mendation [42][35] and NBR [20]. It is based on the observation
that repeated purchases widely exist in the users’ records. How-
ever, our analysis shows that PIF contains more information than

!For example, we can convert each basket into a sequence and concatenate the se-
quences from different baskets in temporal order. This introduces a non-existing order
among items within the same basket.
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repeated purchase pattern. We observe that similar users’ PIF also
contains collaborative purchase pattern. This new pattern shows
that if a user repeatedly purchases a item, similar users are likely to
purchase the same item. Existing methods fail to fully utilize this
useful information contained in PIF.

In this paper, we propose a simple k-nearest neighbors (kNN)
based method which directly captures the two useful patterns asso-
ciated with PIF. To demonstrate the effectiveness, we also observe
and analyze the limitation of existing methods to capture the im-
portant patterns associated with PIF as they cannot learn the vector
addition well. In summary, our contributions are as follows:

e We analyze two patterns associated with PIF and the tar-
get basket. The collaborative purchase pattern that PIF can
contribute to the NBR in a collaborative way is discovered.

e We discover the difficulty of RNNs in learning vector addition
in recommendation setting. To our best knowledge, we are
the first to present and analyze this phenomenon.

e We propose a simple and effective kNN based method to
directly capture the two useful patterns associated with PIF.
The temporal dynamics is also considered in the proposed
method.

e We perform experiments on four real-world data sets to
demonstrate the effectiveness of the proposed method.

The rest of the paper is organized as follows: Section 2 presents
the preliminaries. In section 3, we describe our proposed method. In
section 4, we discuss the related work. In section 5, we evaluate our
method. Section 6 provides some concluding remarks and future
directions.

2 PRELIMINARIES

In this section, the NBR problem is first formally defined. Next,
we analyze the patterns associated with PIF for NBR. Our analysis
towards real-world data sets reveals that PIF contains two important
signals for the next target basket. Finally, we summarize the existing
methods, and discuss the their difficulty in learning PIF.

2.1 Problem Definition

Given the historical purchase records of a user {v1, va, ..., Vi, ..., V¢ },
where a set of items (a basket) at the i-th time step is represented
as a 0/1 vector v; whose entry ¢j (j € [0,d]) is set to 1 if the
corresponding item appears in the basket, our goal is to predict the
next set of items (next basket) Vi41.

Following the literature [36][46], we consider a fixed-size set
with s items as the recommendation for the next basket.

2.2 Relation between PIF and Target Basket

In this section, we discuss two important patterns associated with
PIF that can help predict the target next basket: repeated purchase
pattern and collaborative purchase pattern.

Repeated purchase behavior in grocery shopping and online
activities has been studied in the areas of economics and psy-
chology theoretically and empirically [2][5][9][22]. This pattern
has been used in recent sequential/session-based recommendation
method [35][42] and NBR method [20][41], and is shown to get con-
siderable performance gain. Specifically, a simple baseline which
recommends the user-specific most frequent items can sometimes

outperform many existing methods [20]. The good performance of
this baseline comes from the assumption that the next target basket
often contains items that have appeared in the user’s historical
records. And the higher PIF is associated with a higher probabil-
ity of the corresponding item to appear in the target basket again.
However, this assumption has a limitation that the PIF only helps
the target user. It ignores the collaboration among different users.
This is the core idea of collaborative filter [26]. A natural question
is whether PIF can help in a collaborative manner. To verify this,
we investigate the co-occurrence of the same item to simultane-
ously appear in the past baskets of the similar users and the next
basket of the target user on four real-world data sets (the details of
the data are in section 5.1.1). To compare with repeated purchase
pattern, we also investigate the co-occurrence of the same item to
simultaneously appear in the past baskets of the target user and
the next basket of the target user. We simply use the PIF vector
(PIFyector = Zle v;) to represent each user. For each user, his/her
top 300 nearest neighbors (the total number of users in all data sets
is no less than 10,000) are found based on the PIF vector. Denote
the set of all items in target user’s past baskets as P. Denote the
set of all items in the neighbors’ past baskets as set N. The target
basket is denoted as T. We calculate the following four ratios:

® Recallp: The average recall of using P to retrieve items in T.
|PAT|

IT|

captured by repeated purchase pattern.

o Recally: The average recall of using N to retrieve items in T.

Formally, Recalln = lN? |T‘ . It represents the ratio of items

Formally, Recallp = . It represents the ratio of items

captured by collaborative purchase pattern.
o Recallpnn: The average recall of using P N N to retrieve
_ |PANNT|
] . R
ratio of items captured by both repeated purchase pattern
and collaborative purchase pattern.

® Recallp : The average recall of using P NN to retrieve

. . ___ _ |PANNT|
items in T. Formally, Recall; & = T
the ratio of items not captured by repeated purchase pattern
and collaborative purchase pattern.

items in T. Formally, Recalln

. It represents the

. It represents

Table 1: The importance of two patterns.

Data Recallp Recally Recallpnny  Recallp 3
ValuedShopper 0.6570 0.9808 0.6490 0.0111
Instacart 0.5711 0.8338 0.5056 0.1007
Dunnhumby 0.2777 0.5580 0.2432 0.4075
TaFeng 0.1378 0.8614 0.1256 0.1262

From Table 1, we can make several observations. First, Recallp
indicates that the repeated purchase pattern plays a considerable
role in four data sets but varies dramatically across different data
sets. Second, Recally indicates that the collaborative purchase pat-
tern plays much more important role in all four data sets. It can
help retrieve more than half items in the target basket. Surprisedly,
this ratio can increase to more than 0.8 in three data sets. Note
that, here we only use 300 nearest neighbors. It is expected that
Recally will increase if we increase the number of neighbors. Third,



Recallpny indicates that these two patterns have overlap. Based
on Recallpn — Recallpnn, we can also infer that the collaborative
purchase pattern provides extra signal related to the target basket.
Fourth, Recallp 7 indicates that only a small part of items are not
covered by the two patterns. It implies that the unseen patterns
are only a small part in the next basket. Based on 1 — Recall; .
we find that combining both patterns can achieve better perfor-
mance than any single pattern. Note that above analysis is based on
complete P and N whose size is still large. In general, we only rec-
ommend a small number of items in NBR. Nonetheless this analysis

demonstrates the potential incorporating PIF in NBR.

2.3 Existing NBR Methods

MC based methods: Rendle et al. [36] propose the classical NBR
method which is based on factorization and Markov chain. Their
method models the personalized item-item transition matrix be-
tween any pair of consecutive baskets. Wang et al. [44] propose a
similar Markov chain model. Instead of using tensor factorization,
they propose to use pooling to aggregate the items in the recent
basket as the recent basket representation and predict the next
basket based on the aggregated representation. Ying et al. [45] en-
hance the structure in [44] and use attention mechanism to replace
the pooling operation. The attention mechanism can focus on the
most relevant items, which brings performance improvement. Also,
they partition historical items into two sets. The items in the recent
basket represent the short-term set and the items in the baskets
before the recent one represent the long-term set. Separated atten-
tion mechanisms are applied on both sets to generate the hybrid
user representation. The prediction is based on the hybrid user
representation and the item embedding.

RNN based methods: The assumption behind MC based methods
is that the next basket is mainly decided by the last (or few last) bas-
kets. However, MC based methods miss to capture the high-order
dependency from long time ago. In order to capture the whole his-
torical baskets, RNNs are used to model the whole history [46][20].
Both of them use the same structure as [44] at each time step. The
item embedding is first aggregated to generate the basket repre-
sentation and then a RNN is used to model the temporal relation
across all the baskets. The hidden state of the last step of RNN is
the user representation. And the next basket is predicted based
on the generated user representation and target item embedding.
Sets2Sets [20] also uses attention mechanism to focus on the most
relevant baskets.

2.4 Difficulty in Learning Item Frequency

As PIF contains critical information for NBR, an immediate question
is: can existing methods capture this information? We argue that
whether existing methods cannot capture this information, it will
be hard for them to exploit this critical information. Formally, we
investigate if existing methods can learn the result of vector addition
Zzt':l v; given the purchase recrods of a user. It is obvious that MC
based methods cannot capture PIF, which is a type of high-order
information, as MCs only record last or last few baskets. RNN
based methods have strong representation ability as RNNs can
approximate any computable function [40]. If RNNs can aggregate
the vectors in the same way that vector addition aggregates the

historical
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representation
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Figure 1: Existing RNN based NBR Module.

vectors, the last hidden state of the RNNs should contain the PIF
information?. In this section, we investigate if RNN can learn PIF.

In the following, we demonstrate that it is hard for RNNs to learn
PIF due to the difficulty in the optimization. Our demonstration
is as follows: First, we analyze that the phenomenon is related to
the difficulty of searching the global optimal solution for RNNs.
As many elements can lead to this problem, we approach this by
eliminating other possible causes. Second, we derive a closed-form
solution for RNNs to learn the vector addition. Based on these two
steps, we conclude that even though RNNs have the general ability
to learn, the training process sticks into a local minimum in current
recommendation setting. Finally, we discuss if we can overcome

this difficulty.

2.4.1 Difficulty in Learning Vector Addition. We use a synthetic
data set to illustrate this phenomenon. (1) We generate 2500 se-
quences of vectors as the training data set. The dimensionality of
all the vectors is 100. Each vector is a one-hot vector. The reason
we only generate one-hot vectors is that any g-hot vector can be
converted into q one-hot vectors. But if we generate g-hot vectors,
we cannot simulate the case of addition for one-hot vectors. Thus, it
is the simple but general case. Each sequence of vectors represents
the vectors to be summed up. For simplicity, we fix the length of
all the sequences as 10. Fixing the length to 10 can also avoid the
difficulty of RNNs in handling long-term dependency [34]. (2) To
make sure we obtain vectors that have repeated items, we randomly
select 2 out of the first 8 vectors as the last two vectors in each
sequence of vectors.

Existing RNN based method [20][46] use a common module to
aggregate the historical baskets as a user representation in Figure 1.
Each basket is first input into the set embedding layer and then
transformed into set embedding. After that, a RNN is used to ag-
gregate all the set embeddings at different time steps to generate
the final user representation as a summarized vector. This is the
only part that has the potential to learn PIF as it goes through all
the past records and aggregates them into a user representation.
So we apply this module to learn vector addition on the synthetic
data set. As only one-hot vectors are generated in the data, the
set embedding layer is reduced to an item embedding layer that is

%Vector addition is a more general case than two numbers addition which is shown
in https://machinelearningmastery.com/learn-add-numbers-seq2seq-recurrent-neural-
networks/. To our best knowledge, RNN is the most direct way for deep model to learn
this operation as the number of vectors varies and the operation is repeated.
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Figure 2: The training loss of using the component from Fig-
ure 1 to learn vector addition. The embedding size and RNN
units are set to 64 (as our item space is 100, 64 is the max
value we tried for compressed representation setting to han-
dle the sparsity in the input data). Batch size is set to 64.
The training loss is the average mean square error (MSE) be-
tween the output of the last step (the final predicted sum
vector) and the ground truth (the real sum vector). GRU is
used. Adam [25] is used for optimization. The learning rate
is set to 0.001. All the parameters of different layers are ran-
domly initialized by the default setting of Pytorch.

widely used existing deep learning based recommendation meth-
ods. Note that the item embedding, which is the input of the RNN,
and hidden state of RNN unit are usually of much smaller dimen-
sionality (usually is 2% € [8, 128], z € Z) compared to the original
one-hot vector (whose dimensionality is of at least several thou-
sands). This can help avoid the parameter exploding and resolve
the sparsity in the original one-hot vector space. So we need to
project user representation back to the original space to get the
predicted sum vector for Zle v;. The training process is shown
in Figure 2. The training loss converges to 4 which is far from
the optimal error 0. To further show this is a large training error,
we consider a very simple baseline that directly predicts all the
sum vectors as zero vectors. This baseline can achieve an average
MSE of 1=0%8+H2=07%2) _ 4 ¢ Gsually, we may speculate that
10 Y Y sp

the embedding results in information loss. Thus, we remove the
embedding layer and directly forward the one-hot vector as the
input of the RNN unit. Now the module shown in the Figure 1 is
simplified to a RNN. But this yields a similar training error. Consid-
ering that optimizer may also affect the results, we also check other
two widely-used optimizers SGD [7] and RMSprop®. However, the
training error does not change with different optimizers.

A common concern for the failure of deep learning methods
is that we do not have enough data for training. By increasing
the training set size, the training loss is expected to decrease. To
verify this, we double the data size. We generate 2500 additional
sequences of vectors and merge them with the previous training
data. However, the converged training error still remains the same.

Another common speculation for large training error is that the
model’s capability is not enough. We should continue to increase the
dimensionality. However, we argue small dimensionality is able to
learn the optimal solution as we will present a closed-form solution
that is not related to the dimensionality in the next subsection.

Shttp://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf
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Figure 3: Without nonlinear activation functions.

24.2  Closed-form Solution for Vector Addition with RNN. There are
many different variants of RNNs [12]. Vanilla RNN [32], long short-
term memory (LSTM) [19] and gated recurrent unit (GRU) [8] are
the most popular ones. LSTM and GRU are the extensions of vanilla
RNN for handling long-term dependency problem. For simplicity,
we focus on the vanilla RNN as other variants are built upon it. The
extension to LSTM and GRU will be similar. The formalization of
vanila RNN is as follows:

ht+1 = tanh(Wphy + Wixei1), (1
vyt = f(Wohy), (2)

where W), € R™*™M W, € R™" and W, € RX™ are the coeffi-
cient matrix. The activation function f is chosen according to the
task.

As the length of the historical records varies, the RNN that learns
the vector addition should output the cumulative sum at each step.
Thus, y; should be the predicted sum of input xj, ..., x;. The cor-
responding ground truth is Et: x;. As our goal is to learn a linear

i=1
operation addition, the nonlinear layer is not necessary. Thus, we

remove all the nonlinear layers and rewrite Formula 1 and 2 as
follows:

hyr1 = Whhy + Wixye, (3
y: = Wohy, 4)

If we recursively apply Equations 3 and 4, we obtain

t

Vi = WoWi Wixi, (5)

i=1

where hy is the initial state which is a zero vector. Thus, the closed-
form solution is WoWyx = I"™" = Xl and W}, = I"™*™_ This
closed-form solution indicates that the vanilla RNN can represent
the vector addition without too many parameters if we can meet
the constraints in the closed-form solution. A single layer RNN with
hidden state of small dimensionality has enough representation
ability. As the nonlinear activation function may affect the learning
process, we also re-conduct the experiments to learn the vector
addition with the simplified RNN version described by Equation 3
and 4. Other configurations are the same as before. The training
process is shown in Figure 3. The training error still converges
around 4. Thus, our results imply that the vanilla RNN has the ability
to learn vector addition in theory, but in practice the optimizers
cannot find this global minimal (or unable to do so in feasible time).
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Figure 4: Gap distribution of repeated purchase.

To this end, we demonstrate the RNN based methods fail to capture
PIF.

2.4.3 How to Overcome the Difficulty. The closed-form solution
provides a direct solution to overcome this difficulty by initializing
the parameters in the RNN with the optimal solution. However,
the closed-form solution forces the weighted matrices to be cor-
related to each others, which violates the effect of random and
orthogonal weight initializations. Recent literature shows that the
neural networks trained by stochastic gradient descent (SGD) from
random initialization almost never suffer from non-smoothness or
non-convexity, and can avoid local minima [11]. And orthogonal
weight initializations improve the convergence [21]. Even though
our closed-form solution is easy for the RNNs to learn the vector
addition, it brings difficulty in training the RNNs to learn other
objectives, e.g. temporal dynamics which is also important in NBR.
We believe the solution to overcome the difficulty in training RNNs
from the optimization perspective is not trivial. So we think PIF
should be carefully captured as it is hard to learn PIF with RNNs.

3 PROPOSED METHOD

Model-based methods have been considered as better solution
for traditional collaborative filter recommendation problem than
neighbor-based methods as model-based methods can better gen-
eralize to unseen patterns [33]. However, our empirical results in
section 2.2 show that the unseen patterns only account for a small
part in the target basket. Thus, we propose to resort to the classical
and direct neighbor-based methods. To our best knowledge, even
though kNN methods have been developed in collaborative filter for
top n recommendation [26][10] and sequential/session recommen-
dation [23], the kNN based method for NBR has not been explored.
We will leave the model-based methods as our future work.

In the following, we introduce a simple and effective kNN based
method called temporal-item-frequency-based user-KNN (TIFU-
KNN). The proposed method directly utilizes the two important
patterns associated with PIF. In addition, temporal dynamics is also
considered to help select the items.

3.1 Integrating Temporal Dynamics

PIF contains important information as we discuss in Section 2.2.
However, there is a limitation: it cannot provide discriminative in-
formation for items with the same item frequency. Consequently, it
is hard to distinguish items only with item frequency, which affects
both neighbors searching and items selection in kNN-based method.
To address this issue, we propose to consider the temporal dynamics

of the repeated purchase. Figure 4 shows the gap distribution of re-
peated purchase on four data sets used in our experiments. The gap
value means that after how many baskets, the next purchase for the
same item occurs again. We can observe that the short gaps domi-
nate the repeated purchase. However, the gap distribution varies
dramatically across different data sets. For ValuedShopper data set,
the percentage of different gaps decreases slowly while other three
data sets decreases faster. Generally, we can observe that recent
purchases have more impact to trigger a repeated purchase than
the behavior long time ago. Thus, we propose to assign decayed
weights to the same item appearing at different time steps. The
earlier the item appears, the smaller weight the item contributes to
the final frequency. We will describe the details in the next section.

3.2 Nearest Neighbors based Method

Our kNN method consists of two parts: the similarity calculation
(between the target user and other users) and the prediction (based
on the target user and his neighbors).

User Similarity Calculation: Considering each user’s historical
records are sequential sets of variable length, we propose to ag-
gregate the historical records into one vector which is easy for
similarity calculation. The direct way to aggregate the historical
records is to sum them up. But this way has a limitation that we
have shown in the last section. Also, it ignores that the users’ prefer-
ences for products are drifting over time [28]. This drifting suggests
that recent records have more impact than the records long time
ago. Thus, we make the items bought recently contribute more
in the similarity calculation than the items bought long time ago.
However, a single time decayed weight is not flexible to model
another property of temporal dynamics that consecutive steps have
small changes while steps far from each others have large changes.
To capture both temporal dynamics, we propose to use hierarchical
time decayed weights. Our user vector representation generation
process is as follows (which is shown in the Figure 5):

(1) We partition the historical ¢ baskets (vectors) into m groups
equally. Denote the group size as x = % The j-th vector (in tempo-
ral order) within each group is multiplied by a time-decayed weight
rX 7, where ry, is the time-decayed ratio within group. Then, we
calculate the average vector of the weighted vectors within each
group as the corresponding group vector Vgroup. If the vectors
cannot be equally partitioned, the group size x is calculated by [%]
except for the first group whose size is t — x - (m — 1).

(2) The i-th group vector Vgroup,; is multiplied by a time-decayed
weight r;"_i, where rg is the time-decayed ratio across the groups.
Then, we calculate the average vector of the weighted group vectors
as the user vector representation u.

After we obtain the user vector representation, we can use dif-
ferent methods [38] to calculate the similarity. Here we use the
Euclidean distance to help calculate the similarity between users.
The small(large) distance means large(small) similarity. We will
leave the exploration of other similarity functions as our future
work. We search the k nearest neighbors for each target user.
Prediction: Our prediction is a combination of following two parts:

e Repeated purchase component: Denote the user representa-
tion of the target user as uy. It is corresponding to repeated
purchase pattern.
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Figure 5: User vector representation generation process.

o Collaborative purchase component: Denote the set of target
user’s nearest neighbors vector representations as Upeighbor-
Denote the average vector of all vectors belong to Uyeighbor
as up. Uy, is corresponding to collaborative purchase pattern.

The final prediction is:
P=a-u+(1-0a)- up,

where the « is a hyper-parameter to balance two parts. The s items
corresponding to the largest s entries in P are recommended.

4 RELATED WORK

The related works include (1) Traditional collaborative recommen-
dation methods that model user preferences without considering
the temporal dynamics and have a set of items as the historical
record; (2) Sequential recommendation methods that deal with a
sequence of items or actions (each element is an item or action) as
the user profile; and (3) NBR methods that deal with a sequence of
baskets (each element is a set of items) as the user profile.
Traditional collaborative recommendation: Collaborative Fil-
tering (CF) [37] is the classical recommendation method. CF usually
learns from user-item ratings matrix and predict only based on this
matrix. Existing CF methods can be classified into two categories:
neighborhood- and model-based methods. Neighborhood-based
methods are widely studied in traditional collaborative recommen-
dation [33]. The neighborhood-based methods contain two ways:
user-based or item-based recommendation. User-based method like
GroupLens [26] predicts the interest of a target user for an item
using the ratings for this item by the most similar users. The item-
based method like itemKNN [10] predicts the user-item rating based
on the ratings of the target user for similar items. Model-based
approaches use these ratings to learn a predictive model [27][4].
Recently, neural networks-based methods are proposed to enhance
the CF methods [17][29][16] as more nonlinear relations can be
captured by neural networks.

Sequential recommendation: The goal of sequential recommen-
dation is to recommend the next item or action based on the past
sequence of items [14][24][13][47]. Due to the sequence structure
in the historical records, natural language processing methods, like
RNNS, attention mechanism, and Markov chain, can be applied to
model the data [14][24][18]. Session-based Recommendation also
belongs to this type as each session is a short sequence of behaviors

or items [30][23]. A kNN-based method shows competitive perfor-
mance when it is compared to RNN-based method GRU4rec [23].
Our kNN-based method is different from this method in both simi-
larity calculation step and prediction step. Also, their method cannot
be directly applied to NBR as discussed in the introduction.
Next-basket recommendation: NBR aims at predicting a set of
items based on a sequence of past baskets (sets) [36][44][46][45][3][20].
The summary can be found in section 2.3. Unlike traditional col-
laborative recommendation and sequential recommendation, the
study towards kNN-based method on NBR is lacked. There is no
clue if this type of methods can provide better performance. Our
proposed kNN-based method fills this gap.

Difficulty in Training RNNs: The vanishing and the explod-
ing gradient problems are the well-known difficulty in training
RNNs5s [34]. We present another phenomenon that it is difficult for
RNNs to learn a simple operation—vector addition. Even though we
know training a deep neural network is np-complete in the worst
case [6], the phenomenon discovered in this paper is different as we
provide a closed-form solution. There is a need for more theoretical
analysis to understanding this kind of difficulty in training RNNs.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the
following research questions:

RQ1: How is the effectiveness of the proposed methods? Can they
outperform the state-of-the-art NBR methods?

RQ2: How is the effectiveness of the temporal dynamics?

RQ3: How is the effectiveness of each component to predict the
target basket in the TIFU-KNN?

RQ4: How do the hyper parameters affect the performance? Does
each factor in the TIFU-KNN bring benefits?

5.1 Experimental Settings

5.1.1 Data sets. We use four public data sets: Dunnhumby*, Val-
uedShopper>, Instacart®, and TaFeng’. These data sets contain the
transactions about which items are bought by which customer at
which time. All the items bought in the same order are treated
as a basket. We remove all the customers who have baskets less

*https://www.dunnhumby.com/careers/engineering/sourcefiles
Shttps://www.kaggle.com/c/acquire-valued-shoppers-challenge/overview
®https://www.kaggle.com/c/instacart-market-basket-analysis
https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset



than 3 to ensure that temporal patterns exist in the past records. In
Dunnhumby, we use the 50k users sampled data. In ValuedShop-
per data set, we use the sampled transactions data. In Instacart
and TaFeng data sets, we remove the least frequent items. The left
items retain more than 95% item purchase of all the transactions.
The statistics of the data sets after pre-processing is shown in the
Table 2.

Table 2: Statistic information after pre-processing.

Data #items #users average average
basket size  #baskets
/user
ValuedShopper 7,907 10,000 8.71 56.85
Instacart 8,000 19,935 8.97 7.97
Dunnhumby 4,997 36,241 7.33 7.99
TaFeng 12,062 13,949 6.27 5.69

5.1.2  Evaluation Protocol. We use recall and NDCG to evaluate
our methods. Recall is a wildly-used measurement in the NBR [45].
NDCG is a ranking based measure which takes into account the
order of elements in a list [15]. We calculate the NDCG for each
basket based on the top s sorted elements list. All the measurements
are calculated across all predicted next set of items.

We use the past baskets of a given customer to predict his/her
last basket. All the data sets are partitioned across users. The data is
randomly partitioned into 5 folds across users. And 4 folds is used
for training and 1 fold is used for test. We reserve the data of 10%
users in the training set as the validation set for hyper parameters
searching in all the methods.

5.1.3 Compared Methods.
Simple baselines:

e Top-n frequent (TopFreq): It uses the most frequent s items
that appear in all the baskets of the training data as the
predicted next baskets for all persons.

e Personalized Top-n frequent (PersonTopFreq): It uses the
most frequent s items that appear in the past baskets of a
given person as the prediction for the next basket. It directly
use the PIF.

Tweaked methods:

e userKNN: It is classical collaborative filter based on kNN [26].
In order to apply this method, we merge all the items in
the historical baskets as a set of items. We recommend the
top s items as the next basket. This baseline can show the
difference between the proposed method and the existing
user-based kNN method.

o RepeatNet: The latest RNN-based model for session-based
recommendation which captures the repeated behaviors [35].
To apply this method to solve our problem, we transfer each
basket into a sequence based on the ID’s order. Then, we
concatenate the sequences from different baskets in temporal
order and get a sequence of items for each user.

Existing NBR methods:

o FPMC: The classical factorization based method for next bas-
ket recommendation. It use Markov chain and factorization
method to represent the past baskets [36]. Both sequential
behaviors and users’ personal tastes are taken into account
for prediction.

e DREAM: A deep model based on embedding and RNN for
next basket recommendation [46]. It considers personal dy-
namic interests at different time and the global interactions
of all baskets of the user over time.

e SHAN: A deep model based on hierarchical attention net-
works [45] . It partitions the historical baskets into long-
term and short-term parts to learn the long-term prefer-
ence and short-term preference based on the correspond-
ing items attentively. It can be directly applied in NBR and
sequential/session-based recommendation as it treats the
historical records as two sets.

o Sets2Sets: The state-of-the-art end-to-end method for follow-
ing multiple baskets prediction based on RNN [20]. Repeated
purchase pattern is also integrated into the method.

We focus on comparing with existing NBR methods. Other tech-
niques used in top n recommendation and sequential/session-based
recommendation are not the focus of this paper.

Table 3: Parameters of our methods in different data sets.

Data k m ry rg a

ValuedShopper 300 7 1 0.6 0.7
Instacart 900 3 0.9 0.7 0.9
Dunnhumby 900 3 0.9 0.6 0.2
TaFeng 300 7 0.9 0.7 0.7

We tune the hyper parameters in all the compared methods with
grid search to achieve their best performance. For userKNN, the
number of nearest neighbors is searched from the set of values [100,
300,500, 700, 900, 1100, 1300]. For FPMC, the dimension of factor
is searched from the set of values [16, 32, 64, 128]. For RepeatNet,
DREAM, SHAN, and Sets2Sets, the embedding size is searched from
the set of values [16, 32, 64, 128].

5.1.4 Configuration of the Proposed Method. We perform an ex-
tensive search over the parameter space to achieve the best per-
formance on the validation set. The number of nearest neighbors
k is chosen from the set of values [100, 300, 500, 700, 900, 1100,
1300]. The the within-basket time-decayed ratio rj, and the group
time-decayed ratio rg are chosen from the set of values [0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The fusion weight « is searched from
the set of values [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The
number of groups m is searched from the set of values [3, 7, 11, 15,
19, 23] in ValuedShopper data set and from the set of values [2, 3, 4,
5, 6, 7] in other data sets, respectively. The parameters associated
with the results reported in the methods comparison are shown in
the Table 3.

5.2 Performance Comparison (RQ1)

The comparisons with baselines and existing methods are shown
in the Table 4. Several observations can be made. First, the simple



Table 4: Comparison with different methods. The bold is the maximum in (a)-(b). The underline is the maximum in (c)-(h).

Data Metric (a) (b) (c) (d) (e) (f) (g) (h) (i) improvement vs.
TopFreq PersonTopFreq userKNN RepeatNet FPMC DREAM SHAN  Sets2Sets | TIFU-KNN (a)-(b)  (c)-(h)

recall@10 0.0982 0.2109 0.0988 0.1031 0.0951 0.0991 0.0847 0.1259 0.2162 2.5% 71.7%

ValuedShopper recall@20 0.0904 0.2969 0.1329 0.1485 0.1391 0.1448 0.1220 0.1774 0.3028 2.7% 70.6%
PP NDCG@10 0.0779 0.2128 0.1415 0.1439 0.1188 0.1231 0.1032 0.1626 0.2171 2.1% 33.5%
NDCG@20 0.0904 0.2544 0.1662 0.1693 0.1253 0.1287 0.1074 0.1884 0.2589 1.7% 37.4%

recall@10 0.0724 0.3426 0.0720 0.2107 0.0763 0.0866 0.0902 0.3021 0.3952 15.3% 30.8%

Instacart recall@20 0.1025 0.4652 0.1260 0.2637 0.1073 0.1128 0.1246 0.3654 0.4875 4.8% 33.4%
NDCG@10 0.0641 0.3618 0.1020 0.2285 0.0946 0.1063 0.1152 0.3487 0.3825 5.7% 9.6%

NDCG@20 0.0689 0.4155 0.1394 0.2513 0.0992 0.1157 0.1212 0.3626 0.4384 5.5% 20.9%

recall@10 0.0819 0.1853 0.1135 0.1324 0.0919 0.0915 0.1007 0.2068 0.2087 12.6% 0.9%

D humb recall@20 0.1077 0.2366 0.1648 0.1989 0.1186 0.1087 0.1201 0.2653 0.2692 13.7% 1.4%
unmiumY - NDCG@10  0.0601 0.1771 0.1707 01545 01025 01009 01149 02134 01983  11.9%  -7.0%
NDCG@20 0.0609 0.2016 0.2052 0.1732 0.1057 0.1022 0.1167 0.2385 0.2302 14.1% -3.5%

recall@10 0.0773 0.0704 0.1089 0.0645 0.0868 0.0902 0.0878 0.1190 0.1301 33.7% 9.3%

TaFen recall@20 0.1151 0.1203 0.1278 0.0919 0.1056 0.1149 0.1065 0.1767 0.1810 50.4% 2.4%

s NDCG@10 0.0519 0.0766 0.0832 0.0592 0.0667 0.0763 0.0813 0.0844 0.1011 31.9% 8.4%
NDCG@20 0.0608 0.0896 0.1064 0.0679 0.0743 0.0841 0.0892 0.1071 0.1206 34.5% 12.6%

top-n frequent baseline achieves reasonable performance compared ValuedShopper Instacart

to other existing methods in recall. It indicates that some popular
items are commonly purchased by different users. But this simple
baseline almost produces the worst performance across different
data sets. It implies that users also have their distinct items which
cannot be obtained through this simple baseline.

Second, personalized top-n frequent method achieves competi-
tive performance across all data sets. This verifies that the impact
of the repeated purchase pattern from the target users plays an
important role in the prediction.

Third, the existing NBR methods (excluding Sets2Sets) is sur-
passed by the baseline personalized top-n frequent method in Val-
uedShopper, Instacart, and Dunnhumby data sets by a large margin.
The reason is that existing methods (excluding Sets2Sets) cannot
capture PIF. Even though Sets2Sets captures PIF explicitly, it is still
worse than the personalized top-n frequent method in first two
data sets. We believe the reason is that the learned coefficients
cannot perfectly control Sets2Sets to rely on the PIF and RNN based
module.

Fourth, the tweaked top-n recommendation method userKNN
and session-based recommnedation method RepeatNet are worse
than the state-of-the-art method Sets2Sets. The reason is that they
ignore the important information existing in the sequential sets. For
userKNN, it discards the PIF. RepeatNet outperforms other method
without repeated purchase pattern when the repeated purchase
affects a lot in the data (excluding TaFeng data set). But it performs
worse than other methods with repeated purchase pattern (person-
alized top-n frequent baseline and Sets2Sets) as it also captures the
non-existing order among the items within each basket.

Fifth, the proposed TIFU-KNN is better than other methods
in ValuedShopper, Instacart and TaFeng data sets, which verifies
the superiority of the proposed method. There is an exception in
Dunnhumby data set that Sets2Sets achieves better NDCG while
the proposed method achieves a little better recall. We believe the
reason is that the embedding method used in Sets2Sets can help
generalize to some unseen user-item patterns in the training set

0.04 0.3

0.03 ~ s
0.02 1 I 0 \—/
00l —m8 — — _— T

0.00 —— T T —0.0 —— T T T

ratio
TaFeng

ratio

Dunnhumby
0.6 0.3

0.5_ //-——_—_—_
— 0.2 1 \/
0.4 1 /F_——-_-

0.3

0.1

0.2 1 T T —0.0 -— T T T
0.5 0.7 0.9 1 0.7 0.8 0.9 1

ratio ratio

—— 100 neighbors =~ —— 200 neighbors ~ —— 300 neighbors

Figure 6: Recall; 7 distribution on different data sets. The
rp and rg are set to the same ratio. Different lines represent

different numbers of neighbors.

beyond the repeated purchase pattern and collaborative purchase
pattern. It is consistent with our analysis in the section 2.2 that
Dunnhumby has much more unseen patterns than other three data
sets.

5.3 Effectiveness of Temporal Dynamics (RQ2)

In this section, we investigate if the temporal dynamics brings pos-
itive effectiveness. For simplicity, we set the time decayed weights
rp and ry to the same ratio. We denote the set of the nonzero en-
tries in repeated purchase component and collaborative purchase
component as P and N, respectively. Then, we use the items in
PN N to retrieve items in the target basket and calculate the recall

Recalls - Recalls 7 quantifies the amount of unseen patterns.



The small value means large coverage by the repeated purchase
pattern and collaborative purchase pattern. From Figure 6, we can
observe that without the temporal dynamics, which is represented
by ratio = 1, the proposed method usually has the largest number
of unseen patterns. It implies that the temporal dynamics can help
reduce the unseen patterns as better neighbors are searched.

5.4 Effectiveness of Different Components
(RQ3)

In this section, we investigate the contributions from two patterns

associated with PIF. The comparison between our full TIFU-KNN

and a single component as prediction is shown in the Table 5.

Obviously, the combination achieves the best performance, which
verifies the effectiveness of the combination of the target user’s
PIF and the most similar users’ PIF. Also, we observe that target
user’s repeated purchase pattern dominates the prediction. The
collaborative purchase pattern provides discriminative information
to further improve the prediction.

Table 5: The effect of each component in the TIFU-KNN.

recall@10 NDCG@10
Data ut up u&uy, ut up, u&uy,
ValuedShopper | 0.1801 0.1251 0.2161 | 0.1716 0.1287 0.2171
Instacart 0.3698 0.1290 0.3952 | 0.3686 0.1381 0.3825
Dunnhumby 0.2070 0.1344 0.2087 | 0.1968 0.1270 0.1983
TaFeng 0.0921 0.0904 0.1301 | 0.0891 0.0766 0.1011

5.5 Sensitivity of the Hyperparameters (RQ4)

In this section, we investigate how the hyper parameters affect the
performance. When we investigate on one or two parameters, we set
other parameters just as the value shown in Table 3. We report the
recall on the test set in Instacart data set when the predicted basket
size s = 20. The results are shown in the Figure 7. As the decayed
weights rj, and r; may have some correlation, we investigate them
together and the results are shown in the Table 6. We have several
observations. First, all the hyperparameters should be chosen with
a proper value in order to achieve the best performance. Second, the
parameters selected with the validation set are close to the optimal
configuration for the test set. Third, the two time decayed weights
rp and ry should both be smaller than 1 in order to achieve the best
performance. It verifies that our two-level decayed weight design
is better than any single decayed weight.

6 CONCLUSION

In this paper, we introduce a simple kNN-based method®. Despite
its simplicity, the proposed method generally outperforms the state-
of-the art deep learning based methods. We study the reason why
RNNSs cannot approximate vector addition well, which provides the
insight why our proposed method can outperform existing methods.
Even though the deep learning model has strong representation
power, there is no guarantee that we can find the solution which
meets our expectation due to the complexity of non-convex opti-
mization in RNNs. We believe this difficulty is different from the

8The code is available at https://github.com/HaojiHu/TIFUKNN.
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Figure 7: Sensitivity of hyperparameters: the number of
nearest neighbors k, the number of groups m, and the com-
bining weight o at Instacart data set.

Table 6: Sensitivity of hyperparameters: time-decayed ratio
rp, within each group and time-decayed ratio r; across the
groups at Instacart data set.

recall Ip

Ig 0.1 0.3 0.5 0.7 0.9 1

0.1 0.4504 0.4491 0.4474 0.4487 0.4497 0.4505

0.3 0.4754 0.4755 04751 04744 04694 0.4692

0.5 0.4786 0.4783 0.4783 0.4785 0.4782  0.4759

0.7 0.4837 0.4834 04832 04831 04841 0.4825

0.9 0.4869 0.4872 0.4874 0.4873 0.4878 0.4872
1 0.4780 0.4784 04778 04775 04772 0.4788

well-known vanishing and the exploding gradient problems [34].
More theoretical analysis is needed. A new optimizer that has the
theoretical guarantee to find the global optimal like [43] is also
needed for RNNs.

Beyond this work, we believe that there are two directions that

deserve to be explored. First, a direct extension is whether there are
other commonly-used functions which are hard to be learned by
existing widely-used deep models. This direction can help us better
understand how to apply deep learning based methods in recom-
mendation systems as we observe that recent publications [31] show
a worry about the unclear progress in sequential/session-based rec-
ommendation. We believe different types of methods should have
different advantages in different tasks and data sets. And a deep
understanding about the boundary of the deep learning methods
can bring benefits not only to recommendation systems but also to
other machine learning areas. Second, another direct extension is to
investigate if there are other patterns associated with PIF or other
patterns that are associated with different types of item frequency,
e.g., global item frequency, local item frequency (the item frequency
associated with a small group of users or a small group of items),
and inverse item frequency [39].
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