
STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths
Yue Yu

Georgia Institute of Technology

Atlanta, GA, USA

yueyu@gatech.edu

Yinghao Li

Georgia Institute of Technology

Atlanta, GA, USA

yinghaoli@gatech.edu

Jiaming Shen

University of Illinois at

Urbana-Champaign

Urbana, IL, USA

js2@illinois.edu

Hao Feng

University of Electronic Science and

Technology of China

Chengdu, Sichuan, China

is.fenghao@gmail.com

Jimeng Sun

University of Illinois at

Urbana-Champaign

Urbana, IL, USA

jimeng@illinois.edu

Chao Zhang

Georgia Institute of Technology

Atlanta, GA, USA

chaozhang@gatech.edu

ABSTRACT
Taxonomies are important knowledge ontologies that underpin

numerous applications on a daily basis, but many taxonomies used

in practice suffer from the low coverage issue. We study the tax-

onomy expansion problem, which aims to expand existing tax-

onomies with new concept terms. We propose a self-supervised

taxonomy expansion model named STEAM, which leverages nat-

ural supervision in the existing taxonomy for expansion. To gen-

erate natural self-supervision signals, STEAM samples mini-paths

from the existing taxonomy, and formulates a node attachment

prediction task between anchor mini-paths and query terms. To

solve the node attachment task, it learns feature representations for

query-anchor pairs from multiple views and performs multi-view

co-training for prediction. Extensive experiments show that STEAM

outperforms state-of-the-art methods for taxonomy expansion by

11.6% in accuracy and 7.0% in mean reciprocal rank on three pub-

lic benchmarks. The implementation of STEAM can be found at

https://github.com/yueyu1030/STEAM.

CCS CONCEPTS
• Computing methodologies→ Information extraction.
KEYWORDS
Taxonomy Expansion, Mini-Paths, Self-supervised Learning

ACM Reference Format:
Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang.

2020. STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3394486.3403145

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403145

1 INTRODUCTION
Concept taxonomies play a central role in a wide spectrum of

applications. On a daily basis, e-commerce websites like Amazon

heavily rely on their product taxonomies to support billions of

product navigations, searches, and recommendations [46]; scientific

taxonomies (e.g., MeSH
1
) make it much faster to identify relevant

information frommassive scientific papers, and concept taxonomies

in knowledge bases (e.g., Freebase [5]) underpin many question

answering systems [14]. Due to such importance, many taxonomies

have been curated in general and specific domains, e.g., WordNet

[28], Wikidata [41], MeSH [23], Amazon Product Taxonomy [17].

One bottleneck of many existing taxonomies is the low coverage
problem. This problem arises mainly due to two reasons. First, many

existing taxonomies are curated by domain experts. As the curation

process is expensive and time-consuming, the result taxonomies of-

ten include only frequent and coarse-grained terms. Consequently,

the curated taxonomies have high precision, but limited coverage.

Second, domain-specific knowledge is constantly growing in most

applications. New concepts arise continuously, but it is too tedious

to rely on human curation to maintain and update the existing tax-

onomies. The low coverage issue can largely hurt the performance

of downstream tasks, and automated taxonomy expansion methods

are in urgent need.

Existing taxonomy construction methods follow two lines. One

line is to construct taxonomies in an unsupervised way [24, 30, 42,

44]. This is achieved by hierarchical clustering [44], hierarchical

topic modeling [24, 42], or syntactic patterns (e.g., the Hearst pat-
tern [15]). The other line adopts supervised approaches [13, 19, 26],

which first detect hypernymy pairs (i.e., term pairs with the “is-a” re-
lation) and then organize these pairs into a tree structure. However,

applying these methods for taxonomy expansion suffers from two

limitations. First, most of them attempt to construct taxonomies

from scratch. Their output taxonomies can rarely preserve the ini-

tial taxonomy structures curated by domain experts. Second, the

performance of many methods relies on large amounts of annotated

hypernymy pairs, which can be expensive to obtain in practice.

We propose a self-supervised taxonomy expansion model named

STEAM
2
, which leverages natural supervision in the existing tax-

onomy for expansion. To generate natural self-supervision signals,

1
https://www.nlm.nih.gov/mesh/meshhome.html

2
Short for Self-supervised Taxonomy ExpAnsion with Mini-Paths.

ar
X

iv
:2

00
6.

10
21

7v
1

 [
cs

.C
L

]
 1

8
Ju

n
20

20

https://github.com/yueyu1030/STEAM
https://doi.org/10.1145/3394486.3403145
https://doi.org/10.1145/3394486.3403145

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang

Example of a situation where
EMI is a simple, but frequent

nuisance.

inflammable
product

dangerous
substance

Nuisance

toxic
substance

combustion
gases

Greenhouse
gas

Pollutant

Atmospheric
Pollutant

Dust

Seed	Taxonomy New	Concept

EMI

stratospheric
pollutant

economic
noise

carcinogenic
substance

Example of a situation where
EMI is a simple, but frequent

nuisance.

Example of a situation where
EMI is a simple, but frequent

nuisance.

Example of a situation where
EMI is a simple, but frequent

nuisance.

Corpus

inflammable
product

dangerous
substance

Nuisance

toxic
substance

combustion
gases

Greenhouse
gas

Pollutant

Atmospheric
Pollutant

Dust

Expanded	Taxonomy

EMI

stratospheric
pollutant

economic
noise

carcinogenic
substance

Figure 1: Illustration of the taxonomy expansion problem. Given an existing taxonomy, the task is to insert new concept terms
(e.g., EMI, stratospheric pollutant, economic noise, carcinogenic substance) into the correct positions in the existing taxonomy.

STEAM samples mini-paths from the existing taxonomy, and for-

mulates a node attachment prediction task between mini-paths

and query terms. The mini-paths, which contain terms in different

layers (e.g. “Pollutant”–“Atmospheric Pollutant”–“Dust” in Figure 1),

serve as candidate anchors for query terms and yield many train-

ing query-anchor pairs from the existing taxonomy. With these

query-anchor pairs, we learn a model (Section 3.1) to pinpoint the

correct position for a query term in the mini-path. Compared with

previous methods [35, 38, 40] using single anchor terms, STEAM

better leverages the existing taxonomy since the mini-paths contain

richer structural information from different levels.

In cooperation with mini-path-based node attachment, STEAM

extracts features for query-anchor pairs from multiple views, in-

cluding: (1) distributed features that capture the similarity between

terms’ distributed representations; (2) contextual features, i.e. infor-
mation from two terms’ co-occurring sentences; (3) lexico-syntactic
features extracted from the similarity of surface string names be-

tween terms. We find that different views can provide complemen-

tary information that is vital to taxonomy expansion. To fuse the

three views more effectively, we propose a multi-view co-training

procedure (Section 3.2). In this procedure, the three views lead to

different branches for predicting the positions of the query term,

and the predictions from these three views are encouraged to agree

with each other.

We have conducted extensive experiments on three taxonomy

construction benchmarks in different domains. The results show

that STEAM outperforms state-of-the-art methods for taxonomy

expansion by 11.6% in accuracy and 7.0% in mean reciprocal rank.

Moreover, ablation studies demonstrate the effect of mini-path for

capturing structural information from the taxonomy, as well as the

multi-view co-training for harnessing the complementary signals

from all views.

Our main contributions are: 1) a self-supervised framework that

performs taxonomy expansion with natural supervision signals

from existing taxonomies and text corpora; 2) a mini-path-based

anchor format that better captures structural information in tax-

onomies for expansion; 3) a multi-view co-training procedure that

integrates multiple sources of information in an end-to-end model;

and 4) extensive experiments on several benchmarks verifying the

efficacy of our method.

2 PROBLEM DESCRIPTION
We focus on the taxonomy expansion task for term-level taxonomies,

which is formally defined as follows.

Definition 2.1 (Taxonomy). A taxonomy T = (V, E) is a tree

structure where 1) V is a set of terms (words or phrases); and

2) E is a set of edges representing is-a relations between terms.

Each directed edge ⟨vi ,vj ⟩ ∈ E represents a hypernymy relation

between term vi and term vj , where vi is the hyponym (child) and

vj is the hypernym (parent).

The problem of taxonomy expansion (Figure 1) is to enrich an

initial taxonomy by inserting new terms into it. These new terms

are often automatically extracted and filtered from a text corpus.

Formally, we define the problem as below:

Definition 2.2 (Taxonomy Expansion). Given 1) an existing tax-

onomy T0 = (V0, E0), 2) a text corpus D, and 3) a set of candidate

terms C, the goal of taxonomy expansion is to insert the term q ∈ C
into the existing taxonomy T0 and expand it into a more complete

taxonomy T = (V, E) where V = V0 ∪ C, E = E0 ∪ R with R
being the newly discovered relations between terms in C andV0.

3 THE STEAMMETHOD
In this section, we describe our proposed method STEAM. We first

give an overview of our method, and then detail the two key mod-

ules: mini-path-based prediction andmulti-view co-training. Finally,

we discuss the model learning and inference procedures.

3.1 Self-Supervised Learning by Mini-Path
Attachment

The central task of taxonomy expansion is to attach a query term

q ∈ C into the correct position in the existing taxonomy T0. STEAM
learns to attach query terms using natural supervision signals

from the seed taxonomy. Its self-supervised learning procedure

aims to preserve the structure of the seed taxonomy by creating

a learning task that pinpoints the anchor positions for the terms

already seen in the seed taxonomy. The training data for this self-

supervised learning task can be easily obtained from the seed tax-

onomy, thereby facilitating learning a model that performs query

attaching at inference time.

STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

3.1.1 Query-Anchor Matching with Mini-Paths. To instantiate the

self-supervised learning paradigm [22, 35, 39], an intuitive idea

is to find the best hypernym for the query term q. Most existing

works [26, 35, 40] follow this idea and model the taxonomy ex-

pansion problem as finding the optimal hypernym pairs for test

terms. They usually design a binary classifier trained by determin-

ing whether ⟨pi ,pj ⟩ (pi ,pj ∈ V0) is a hypernymy pair.

Unlike the binary classification formulation, STEAM learns to

match query terms with anchors with richer structural informa-

tion. The core of STEAM’s self-supervised learning procedure is

mini-paths, which are snippets sampled from the seed taxonomy.

These mini-paths, containing the term pairs from different layers of

taxonomy, can preserve the hierarchical relations among different

terms. Below, we introduce the notion of mini-path and formulate

the self-supervised learning task based on mini-paths.

Definition 3.1 (Mini-path). A mini-path P = [p1,p2, . . . ,pL] con-
sists of several terms {p1,p2, . . . ,pL} ⊂ V0, where L is the length

of P . Each term pair ⟨pi ,pi+1⟩ (1 ≤ i ≤ L − 1) corresponds to an

edge in E0.

ANuisance

B C

D E F

dangerous
substance Pollutant

inflammable
product

toxic
substance

Atmospheric
Pollutant

Mini-paths

A

B

D

A

B

E

A

C

F

(a) An illustration of mini-paths.

Situation:
A

B

D

G

carcinogenic
substance

A

B

D

G
?

A

B

D

?
G

A

B

D G
?

A

B

D

G

None？

Insertion 1 2 3 4

(b) The classification target.

Figure 2: An illustration of the proposed self-supervised
data structure, including the construction ofmini-paths and
the learning target during the term-insertion process.

The mini-paths are fixed-length branchless sub-graphs of the

existing taxonomy T0, as shown in Figure 2(a), which maintain

part of the parent-child relationships between terms. To keep the

hierarchical information in the taxonomy with the self-supervised

training set, we design the training task as a multi-class classifica-

tion problem. As shown in Figure 2(b), given a 3-terms mini-path as

anchor and a new term as query, STEAM predicts the probabilities

of the query being attached to the three terms or none of them.

Compared with the simple task of binary hypernymy classi-

fication, matching query terms with mini-paths has two major

advantages: 1) When attaching a query term q into an anchor mini-

path P , we consider the collection of all terms pi ∈ P as a whole,

rather than attend to them separately. This not only provides richer

information for query attachment but also results in larger train-

ing data for self-supervised learning. 2) Compared with the binary

classification, this task is more challenging—the matching module

needs to judge not only whether q should be matched to P but

also which specific position to attach. Learning from this more

challenging self-supervised task allows STEAM to better leverage

the structural information of the existing taxonomy and perform

better for anchor term deduction and taxonomy expansion.

3.1.2 Sampling Mini-Paths from the Seed Taxonomy. To facilitate

the learning problem, we need to sample mini-paths from the exist-

ing taxonomies as anchors, as well as the query terms that should

be attached to different positions in anchor mini-paths. This can be

achieved by randomly sampling mini-paths in the seed taxonomy,

along with positive and negative query terms for each mini-path.

The detailed procedure for training data creation is described as

follows. Given one mini-path P ∈ P where P is the collection of

all mini-paths in the existing taxonomy, we first generate positive

training set Xpos
by sampling all the child terms ai,l ∈ A of P ∈ P,

where ai,l is the i-th child of the l-th anchor term pl ∈ P and A
contains all child terms attached to the mini-path, and a positive

pair is represented asX
pos

i,l = ⟨ai,l ,pj , l⟩. OnceXpos
is obtained, we

augment the training set by adopting the negative sampling strategy

to generate negative set Xneg
by randomly selecting |Xneg | = r ×

|Xpos | terms {ni } |X
neg |

i=1 with sampling ratio r , each constituting

a negative pair with one term that is not its parent in a anchor.

Since these negative terms do not directly associate with the mini-

path P , we assign a relative position L + 1 for them to indicate no

connection exists. Combining Xpos
and Xneg

together we obtain

the final training set X.

After obtaining query-anchor pairs, we need to learn a model

using such data. Given the set of training pairs X, we denote each

pair as X = ⟨q, P , l⟩ ∈ X where q is the query term, P is the mini-

path, andy is the relative position and aim to learn amodel f (q, P |Θ)
to identify the correct position (represented by the true label y).
The training objective is to optimize the negative log likelihood

ℓ = −∑
X
∑L+1
i=1 yi log ŷi where ŷ is the predicted position.

3.2 Multi-View Co-Training with Mini-Paths
Now the question is how to obtain feature representations for each

query-anchor pair (q, P). In STEAM, we learn feature representa-

tions for query-anchor pairs from three different views and inte-

grate them with a multi-view co-training procedure.

3.2.1 Multi-View Feature Extraction. STEAM learns representa-

tions of query-anchor pairs from three views: (1) the distributed rep-
resentation view, which captures their correlation from pre-trained

word embeddings; (2) the contextual relation view, which captures

their correlation from the sentences where the query term and

anchor terms co-occur; and (3) the lexico-syntactic view, which cap-

tures their correlation from the linguistic similarities between the

query and the anchor.

Each of the three views has its own advantages and disadvan-

tages: (1) Distributed features have a high coverage over the term

vocabulary, but they do not explicitly model pair-wise relations

between a query term and an anchor term; (2) Contextual features

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang

can capture the relation between two terms from their co-occurred

sentences, but have limited coverage over term pairs. For example,

only less than 15% of hypernym pairs have co-occurred in the sci-

entific corpus of the SemEval dataset; (3) Lexico-Syntactic features
encode linguistic information between terms and can work well

for matched term pairs, but these features are too rigid to cover all

the linguistic patterns, and may also have limited coverage.

Given a query termq and an anchormini-path P = [p1,p2, · · · ,pL],
we describe the details of how we learn representations for the

query-anchor pair (q, P) from the three different views.

(1) Distributed Features. The first view extracts distributed fea-

tures for both the queryq and the anchor mini-path P . For the query
term q and the anchor terms in the mini-path P , we use pre-trained
BERT embeddings [9] to initialize their distributed representations

due to its superior expressive power [16, 21]. While it is feasible

to directly use such initial embeddings for similarity computation,

recent work [35] shows that the neighboring terms of an anchor

term are also useful for taxonomy expansion. We follow [35] to use

a position-enhanced graph attention network (PGAT) to propagate

the embeddings for the terms in the seed taxonomy by considering

the taxonomy as a directed graph—this will lead to updated em-

beddings for the anchor terms in the mini-path P . For each anchor

term pl ∈ P , we use w(pl) to denote its PGAT-propagated embed-

ding and use w(q) to denote the embedding of the query term q,
then we concatenate these embeddings and obtain the distributed

representation for the query-anchor pair (q, P):

hd (q, P) = [w(q) ⊕ w(p1) ⊕ · · · ⊕ w(pL)]. (1)

(2) Contextual Features.When two terms co-occur in the same

sentence, the contexts of their co-occurrence can often indicate

the relation of the two terms. Our second view thus harvests the

sentences from the given corpus D to extract features for the query

term q and the mini-path P . Given the query term q and any anchor

term pl ∈ P , we fetch all the sentences where q and pl have co-
occurred from corpus D. Similar to [38], we process these sentences

to extract the dependency paths betweenq andpl in these sentences,
denoted as Dq,pl . For each dependency path dq,pl ∈ Dq,pl , it is a

sequence of context words that lead q to pl in the dependency tree:

dq,pl = {ve1 ,ve2 , · · · ,vek }, (2)

where k is the length of the dependency path. Each edge ve in the

dependency path contains 1) the connecting term vl , 2) the part-
of-speech tag of the connecting term vpos , 3) the dependency label

vdep , and 4) the edge direction between two subsequent termsvdir .
Formally, each edgeve is represented as:ve = [vl ,vpos ,vdep ,vdir].
Now in order to encode each extracted dependency path dq,pl ,
we feed the multi-variate sequence dq,pl into an LSTM encoder.

The representation of the LSTM’s last hidden layer, denoted as

LSTM(dq,pl), is then used as the representation the path dq,pl . As
the setD(q,pl) contains multiple dependency paths between q and

pl , we aggregate them with the attention mechanism to compute

the weighted average of these path representations:

α̂d = uT tanh

(
W · LSTM(dq,pl)

)
,

αd =
exp (α̂d)∑

d ′∈Dq,pl
exp (α̂d ′) ,

d(q,pl) =
∑

d ∈D(q,pl)
αd · LSTM(dq,pl),

(3)

where αd denotes attention weight for the dependency path dq,pl ;
W, u are trainable weights for the attention network.

The final contextual features between q and P is thus given by

hc (q, P) = [d(q,p1) ⊕ · · · ⊕ d(q,pL)]. (4)

(3) Lexical-Syntactic Features. Our third view extracts lexical-

syntactic features between terms. Such features encode the cor-

relations between terms based on their surface string names and

syntactic information [26, 30, 45]. Given a term pair (x ,y), we ex-
tract the following lexical-syntactic features between them:

• Ends with: Identifies whether y ends with x or not.

• Contains: Identifies whether y contains x or not.

• Suffix match: Identifies whether the k-length suffixes of x and

y match or not.

• LCS: The length of longest common substring of term x and y.
• Length Difference: The normalized length difference between

x and y. Let the length of term x and y be L(x) and L(y), then the

normalized length difference is calculated as
|L(x)−L(y) |

max(L(x),L(y)) .
• Normalized FrequencyDifference: The normalized frequency

of (x ,y) in corpusD withmin-max normalization. Specifically, fol-

low [13], we consider two types of normalized frequency based

on the noisy hypernym pairs obtained in [30]: (1) the normal-
ized frequency difference. Given a term pair (x ,y), their normal-

ized frequency is defined as nf (x ,y) = f r eq(x,y)
maxz∈V f r eq(x,z) where

f req(x ,y) defines the occurrence frequency between term (x ,y)
in the hypernym pairs given by [30] andV = V0∪C which is all

terms in the existing taxonomy and test set. Then the first normal-

ize frequence difference is defined as f (x ,y) = nf (x ,y)−nf (y,x).
(2) the generality difference. For term x , the normalized generality

score nд(x) = loд(1 + h), where h is defined as the logarithm of

the number of its distinct hyponyms. Then the generality differ-

ence of term pair д(x ,y) is defined as the difference in generality

between (x ,y) as д(x ,y) = nд(x) − nд(y).
Given the query term q and the mini-path P = [p1,p2, · · · ,pL],

we compute the lexico-syntactic features for each pair (q,pl) (1 ≤
l ≤ L), denoted as s(q,pl) and concatenate the features derived

from all the term pairs as the lexical-syntactic features for (q, P):
hs (q, P) = [s(q,p1) ⊕ · · · ⊕ s(q,pL)]. (5)

3.2.2 The Multi-View Co-Training Objective. As the three views
provide complementary information to each other, it is important

to aggregate the three views for the query-anchor matching. To this

end, one may simply stack three different sets of features and train

one unified classifier [26]. However, such feature-level integration

can lead to suboptimal results due to two reasons: (1) one view can

provide dominant signals over the other two, making it hard to

fully unleash the discriminative power of each view; (2) the three

views can have different dimensionality and distributions, making

learning a unified classifier from concatenated features difficult.

STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

embedding

embedding

embedding

embedding
embedding

embedding
surface
namesurface
name

dangerous
substance

Nuisance

word
embedding

dependency
path

lexico-
syntactic
features

distributed
view

contextual
view

lexico-
syntactic
view

MLP

MLP

MLP

prediction

prediction

prediction

Integrate

prediction

toxic
substance

Greenhouse
gas

Pollutant

Atmospheric
Pollutant

Dust

EMI

Corpus

GAT+
Linear

LSTM+
attention

ground
truth

query

L1

L2

L3

L3

L3

Figure 3: Illustration of the proposed co-training model architecture. The grey terms in the existing taxonomy on the left is
an anchor path to attach the new term to. L1, L2 and L3 corresponds to the log-likelihood loss and Euclidean loss calculated in
Equation (8), (9) and (10) respectively.

To more effectively harvest the information from the three dif-

ferent views, we propose a multi-view co-training procedure. This

co-training procedure (see Figure 3) uses the three views to learn

three different classifiers and then derives an aggregated classifier

from the three classifiers and also encourages their predictions to

be consistent. The entire model can be trained in an end-to-end

manner. Below, we first describe the base classifiers designed for

the three different views, and then present the co-training objective.

Base Classifiers from Multiple Views. Based on three sets of

feature hd , hc , hs derived from different views, we design three

neural classifiers for the query-anchor matching task, i.e., the multi-

class classification problem formulated in Section 3.1. For each of

the three views, we use a multi-layer perceptron (MLP) with one

hidden layer for this prediction task, denoted as fd , fs , and fr . Then
the predictions from the three views are given by:

yd = fd (hd) =Wd
2
(σ (Wd

1
hd + b

d
1
) + bd

2
),

yc = fc (hc) =Wc
2
(σ (Wc

1
hc + bc1) + b

c
2
),

ys = fc (hs) =Ws
2
(σ (Ws

1
hs + bs1) + b

s
2
),

(6)

where {Wk
1
,Wk

2
, bk

1
, bk

2
} k ∈ {d, s, c} are trainable parameters for

the three MLP classifiers, and σ (·) is the activation function for

which we use ReLU in our experiments.

TheCo-TrainingObjective. Figure 3 shows the co-trainingmodel

that integrates the three base classifiers. From the three base clas-

sifiers fd , fs , and fr , we design an aggregated classifier for the

final output. This aggregated classifier, which we denote as fagg,
integrates the three base classifiers by averaging over their predic-

tions
3
:

yagg = fagg
(
yd , yc , ys

)
= softmax

(
1

3

(
yd + ys + yr

))
. (7)

To jointly optimize the base classifiers as well as the aggregated

classifier, we develop a co-training procedure that not only learns

the classifiers to fit the self-supervised signals but also promotes

3
We have also tried to use attention mechanism to aggregate the score but didn’t see

an obvious performance gain.

consistency among these classifiers. The co-training objective in-

volves three types of supervision, as detailed below.

The first loss ℓ1 is defines for the aggregated classifier f agg,
which produces the final output. Let {(xi , yi }Ni=1 be the training
dataset, where xi is a query-anchor pair and yi is the label indicating
the correct position of the query term in the anchor mini-path. Then

ℓ1 is defined as the negative log-likelihood loss:

ℓ1 = −
N∑
i=1

C∑
j=1

yi j log y
agg

i j , (8)

whereC = L+ 1 is the number of labels for query-anchor matching.

The second loss ℓ2 is defined for three base classifiers corre-

sponding to the three views:

ℓ2 = −
∑

u ∈{d,c,s }

N∑
i=1

C∑
j=1

yi j log yui j . (9)

The third loss ℓ3 is a consistency loss that encourages the pre-

diction results from different views to agree with each other. We

use L2-distance to measure the difference between the classifiers

and define ℓ3 as:

ℓ3 =
∑

u,v ∈{d,s,r }

N∑
i=1

yui − yvi

2 . (10)

The overall objective of our model is then:

ℓ = ℓ1 + λℓ2 + µℓ3, (11)

where λ > 0, µ > 0 are two pre-defined balancing hyper-parameters.

3.3 Model Learning and Inference
During training, we learn the model parameter Θ by minimizing

the total loss ℓ using stochastic gradient optimizers such as Adam

[18]. During inference, given a new query term q ∈ C, we traverse
all the mini-paths P ∈ P and calculate the scores for all anchor

terms p ∈ P based on the aggregated final prediction score yPq,p in

Eq. (7). Specifically, for any anchor term p̂, we calculate its score of

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang

Table 1: The statistics of the three datasets for evaluation.

Dataset Environment Science Food

of Terms 261 429 1486

of Edges 261 452 1576

of Layers 6 8 8

being the parent of query q as

yp̂ =
1

| ˆP|

∑
P ∈ ˆP

yPq,p̂ , (12)

where
ˆP is the set of mini-paths which contain term p̂. Then, we

rank all anchor terms and select the term p∗ with the highest score

as the predicted parent of the query q:

p∗ = arg max

p∈V0

yp . (13)

3.4 Complexity Analysis
At the training stage, our model uses |P | training instances ev-

ery epoch and thus scales linearly to the number of mini-paths

in the existing taxonomy. From above we have listed the number

of mini-paths in our training, and the number of such mini-paths

is linear to O(|V0 |) (i.e. the number of terms in the existing tax-

onomy). At the inference stage, for each query term, we calculate

L|P | matching scores, where L is the length of the mini-path. To

accelerate the computation, we use GPU for matrix multiplication

and pre-calculate distributional and lexico-syntactic features and

store the dependency paths for faster evaluation.

4 EXPERIMENTS
In this section, we evaluate the empirical performance of our pro-

posed STEAM method. Our experiments are designed to answer

the following three research questions:

• RQ1: How well does STEAM perform for the taxonomy expan-

sion task compared with state-of-the-art methods?

• RQ2: How effective are the two key components in STEAM:

mini-path-based prediction and multi-view co-training?

• RQ3: What are the effects of different parameters on the perfor-

mance of STEAM?

4.1 Experiment Setup
4.1.1 Datasets. We evaluate the performance of our taxonomy con-

struction method using three public benchmarks. These datasets

come from the shared task of taxonomy construction in SemEval

2016 [6]. We use all the three English datasets in SemEval 2016,

which correspond to three human-curated concept taxonomies

from different domains: environment (EN), science (SCI), and food

(Food). The statistics of these three benchmarks are presented in

table 1. For each taxonomy, we start from the root term and ran-

domly grow in a top-down manner until 80% terms are covered.

We use the randomly-growed taxonomies as seed taxonomies for

self-supervised learning, and the rest 20% terms as our test data.

Our STEAMmethod and several baselines also require external text

corpora to model the semantic relations between concept terms.

4.1.2 Baselines. We compare with the following baselines:

• TAXI4 [30] is a taxonomy inductionmethod that reached the first

place in the SemEval 2016 task. It first extracts hypernym pairs

based on substrings and lexico-syntactic patterns with domain-

specific corpora and then organizes these terms into a taxonomy.

• HypeNet5 [38] is a strong hypernym extraction method, which

uses an LSTM-CNNmodel to jointly model the distributional and

relational information between term pairs.

• BERT+MLP is a distributional method for hypernym detection

based on pre-trained BERT embeddings. For each term pair, it

first obtains term embeddings from a pre-trained BERT model,

and then feeds them into a Multi-layer Perceptron to predict

whether they have the hypernymy relationship
6
.

• TaxoExpan7 [35] is state-of-the-art self-supervised method for

taxonomy expansion. It adopts graph neural networks to encode

the positional information and uses a linear layer to identify

whether the candidate term is the parent of the query term. For

a fair comparison, we also use BERT embeddings for TaxoExpan

instead of the word embeddings as in the original paper.

4.1.3 Variants of STEAM. We also compare with several variants

of STEAM to evaluate the effectiveness of its different modules:

Concat directly concatenates the three features and feeds it into

an MLP for prediction; Concat-D concatenates only the context

and lexico-syntactic views; Concat-C concatenates the distributed

and the lexico-syntactic features; Concat-L concatenates the dis-

tributed and the context features; STEAM-Co directly uses the ag-

gregated classifier for prediction instead of the co-training objective

(i.e., λ = µ = 0); STEAM-D co-trains without the distributed view;

STEAM-C co-trains without the contextual view and STEAM-L

co-trains without the lexico-syntactic view.

4.1.4 Implementation Details. All the baseline methods, except for

BERT-MLP, are obtained from the code published by the original

authors. The others (BERT-MLP, our model, and its variants) are

all implemented in PyTorch. When learning our model, we use

the ADAM optimizer [18] with a learning rate of 1e-3. On all the

three datasets, we train the model for 40 epochs as we observe the

model has converged after 40 epochs. To prevent overfitting, we

used a dropout rate of 0.4 and a weight decay of 5e-4. For encoding

context features, we follow [38] and set the dimensions for the

POS-tag vector, dependency label vector, and edge direction vector,

to 4, 5, and 1, respectively; and set the dimension for hidden units

in the LSTM encoder to 200. For the three base MLP classifiers,

we set the dimensions of the hidden layers to 50. For sampling

negative mini-paths, we set the size of negative samples r = 4. In

the co-training module, there are two key hyper-parameters: λ and

µ for controlling the strength for training base classifiers and the

consistency among classifiers. By default, we set λ = 0.1, µ = 0.1.

We will study how these parameters affect the performance of our

model later.

4.1.5 Evaluation Protocol. At test time, pinpointing the correct

parent for a query term is a ranking problem. Specifically, given

n test samples, let us use {ŷ1, ŷ2, · · · , ŷn } to denote their ground

4
https://github.com/uhh-lt/taxi

5
https://github.com/vered1986/HypeNET

6
For combining term embeddings, we experimented with Concat, Difference, and

Sum as different fusing functions and report the best performance.

7
https://github.com/mickeystroller/TaxoExpan

https://github.com/uhh-lt/taxi
https://github.com/vered1986/HypeNET
https://github.com/mickeystroller/TaxoExpan

STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

Table 2: Comparision of STEAM against the baseline meth-
ods on the three datasets (in %). To reduce the randomness,
we ran all methods for three times and report the average
performance. TAXI outputs an entire taxonomy instead of
ranking lists, so we are unable to obtain the MRRs for it.

Dataset Environment Science Food

Metric Acc MRR Wu&P Acc MRR Wu&P Acc MRR Wu&P

BERT+MLP 11.1 21.5 47.9 11.5 15.7 43.6 10.5 14.9 47.0

TAXI 16.7 – 44.7 13.0 – 32.9 18.2 – 39.2

HypeNet 16.7 23.7 55.8 15.4 22.6 50.7 20.5 27.3 63.2

TaxoExpan 11.1 32.3 54.8 27.8 44.8 57.6 27.6 40.5 54.2

STEAM 36.1 46.9 69.6 36.5 48.3 68.2 34.2 43.4 67.0

truth positions, {y1,y2, · · · ,yn } to denote model predictions. Fol-

low existing works [25, 35, 40], we use multiple metrics as follows:

(1) Accuracy (Acc) measures the exact match accuracy for terms

in the test set. It only counts the cases when the prediction equals

to the ground truth, calculated as

Acc =
1

n

n∑
i=1
I(yi = ŷi).

(2) Mean reciprocal rank (MRR) is the average of reciprocal

ranks of a query concept’s true parent among all candidate terms.

Specifically, it is calculated as

MRR =
1

n

n∑
i=1

1

rank(yi)
.

(3) Wu & Palmer similarity (Wu&P) calculates the semantic

similarity between the predicted parent term y and the ground

truth parent term ŷ as

ω (ŷ,y) = 2 × depth(LCA(ŷ,y))
depth(ŷ) + depth(y)

where “depth(·)” is the depth of a term in the taxonomy and “LCA(·, ·)”
is the least common ancestor of the input terms in the taxonomy.

Then, the overall Wu&P score is the mean Wu & Palmer similarity

for all terms in the test set written as Wu&P = 1

n
∑n
i=1 ω(yi , ŷi).

4.2 Experimental Results
4.2.1 Comparison with baselines. Table 2 reports the performance

of STEAM and the baseline methods on the three benchmarks. From

the results, we have the following observations:

• STEAM consistently outperforms all the baselines by large mar-

gins on the three datasets. In particular, STEAM improves the perfor-

mance of the state-of-the-art TaxoExpan model by 11.6%, 7.0% and

9.4% for Acc, MRR and Wu&P on average. Such improvements are

mainly due to the mini-path-based prediction and the multi-view

co-training designs in STEAM.

• Among the baselines, TaxoExpan achieves the strongest overall

performance. The key advantage of TaxoExpan compared with

other baselines is that it propagates the embeddings among neigh-

bors in the taxonomy via graph neural networks. From the results,

we can see that embedding propagation is effective in improving

the MRR, making it achieve close MRRs with STEAM. However,

Table 3: Overall results of all variants of our methods on
three datasets (in %).

Dataset Environment Science Food

Metric Acc MRR Wu&P Acc MRR Wu&P Acc MRR Wu&P

Concat 25.0 40.3 64.2 20.4 25.8 51.1 15.5 23.8 49.6

Concat-D 30.6 38.6 63.7 11.1 20.1 48.1 23.1 28.9 55.4

Concat-C 27.7 37.4 57.8 13.5 25.7 53.3 25.3 31.2 58.3

Concat-L 11.1 31.4 57.7 13.5 23.7 39.1 8.30 13.4 40.1

STEAM-Co 25.0 41.0 66.3 32.7 45.3 64.4 31.1 40.7 65.1

STEAM-D 13.8 32.0 54.3 23.1 32.9 60.0 20.1 31.5 60.8

STEAM-C 11.1 26.8 49.2 32.7 44.5 67.2 19.3 29.7 59.3

STEAM-L 11.1 27.5 51.6 23.1 36.5 62.1 12.7 22.6 56.7

STEAM 36.1 46.9 69.6 36.5 48.3 68.2 34.2 43.4 67.0

TaxoExpan is largely outperformed by STEAM in accuracy. This

phenomenon shows that while distributed features are useful for

finding relevant concepts, contextual and lexico-syntactic features

are important for pinpointing the exact hypernymy relationships.

• Pre-trained BERT embeddings have remarkable expressive power.

However, BERT embeddings alone can yield limited performance in

the taxonomy expansion task since BERT does not well capture the

contextual relations and between terms. STEAM is based on BERT

embedding, but it integrates contextual and pattern information,

which are highly useful for improving the performance.

• TAXI underperforms other methods on all three datasets. The ma-

jor drawback of TAXI and other taxonomy construction methods

is that they fail to use self-supervision signals in the existing taxon-

omy. This hinders them from learning the hierarchical and semantic

information. Moreover, they simply use lexico-syntactic patterns

and neglect other distributional features, which is important for

taxonomy expansion.

• HypeNet outperforms BERT and TAXI since it combines the con-

textual and distributed features. However, it neglects the structural

information during training and does not consider lexico-syntactic

features, rendering it less effective than STEAM.

4.2.2 Ablations Studies. We perform ablation studies to study the

effectiveness of the different components in STEAM: 1) mini-path-

based self-supervised learning; 2) the multi-view information; and

3) the co-training procedure.

The Effect of Mini-Paths. To study the effectiveness of mini-

path-based self-supervised expansion, we vary the length L of mini-

paths. Note that, when L = 1, the model is reduced to performing

hypernymy prediction. Figure 4 shows the performance of STEAM

on the three datasets when L varies. Generally, when L is small, the

performance of STEAM stably increases with L. Such results show

that mini-paths can effectively capture the structural information

in the seed taxonomy—apart from the ‘parent’ of the query term,

the grandparents and siblings contain additional information to

improve expansion performance. The mini-paths connect terms

from different layers of the taxonomy and carry such information

to make the model pinpoint the correct position. However, when L
increases from 3 to 4, we observe slight performance drops. This is

because the size of the training data shrinks for smaller taxonomies

whenL becomes larger. Take the environment dataset as an example:

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang

Acc MRR Wu&P
0.0

0.2

0.4

0.6
L=1
L=2
L=3
L=4

(a) Environment

Acc MRR Wu&P
0.0

0.2

0.4

0.6
L=1
L=2
L=3
L=4

(b) Science

Acc MRR Wu&P
0.0

0.2

0.4

0.6
L=1
L=2
L=3
L=4

(c) Food

Figure 4: The result for different length ofmini-paths L over
three datasets.

It contains 185 training samples when L = 3 while 83 when L = 4.

As a result, the final performance decreases by 3.2% for accuracy.

The Effect of Multi-view Information.We study the contribu-

tions of different views by comparing STEAM with its variants

(STEAM-D, STEAM-C, STEAM-L). Table 3 shows the results on the

three datasets. As shown, it is clear that all three types of features

contribute significantly to the overall performance. When elimi-

nating one of the three views, the average performance drops by

6.07%, 8.10% and 4.67% for the three metrics.

The Effect of Co-training.Nowwe proceed to study the effective-

ness of the co-training procedure. While integrating multiple views

is important, how to integrate multi-view information is equally

important. From the results in Table 2, one can see STEAM out-

performs Concat by 15.3%, 16.2% and 13.3% for three metrics on

average. This verifies the effectiveness of co-training comparedwith

concatenation: the simple concatenation strategy cannot fully har-

vest the information from each view and could make the learning

problem more difficult. Interestingly, the performance for Concat

is even worse than Concat-D and Concat-C in accuracy on Food

and Environment, which implies that simple concatenation can

even hurt the performance with more views.

The co-training objective in STEAM involves two loss terms that

encourage better learning of the base classifiers and the consis-

tency among them. From Table 2, the performance gap between

STEAM and STEAM-Co shows the effectiveness of these two terms.

STEAM-Co only uses the aggregated classifier for prediction and

underperforms STEAM by large margins. The reason is that these

terms explicitly require every base classifier is sufficiently trained

andmutually enhances each other; without them, certain viewsmay

not be fully leveraged, which limit the effectiveness in leveraging

multi-view information for training.

4.2.3 Parameter Studies. In this subsection, we study the effects

of different parameters on the performance of STEAM. We have

already studied the effect of the path length in the ablation study,

now we study the effects of two key parameters in the co-training

procedure: 1) the weight of the prediction loss of the three base

classifiers λ, and 2) the weight of the consistency loss µ. When

evaluating one parameter, we fix other parameters to their default

values and report the results. Due to the space limit, we only re-

port the results on parameters on Science dataset as the tends and

findings are similar for the three datasets.

Effect of λ. Figure 5(a) shows the effect of λ on the Science dataset.

We can observe that as λ increases, the performance improves for all

0.00 0.05 0.10 0.15 0.20 0.25
0.3

0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

Acc MRR Wu&P

(a) λ

0 0.02 0.05 0.1 0.15 0.2
0.3

0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

Acc MRR Wu&P

(b) µ

Figure 5: The performance of our model when varying dif-
ferent parameters.

Gold Parent: Physics

View Score Rank

Distributed 0.812 11

Contextual 0.947 12

Lexico-syntactic 0.640 15

STEAM Output 0.799 1

Gold Parent: Fruit Juice

View Score Rank

Distributed 0.720 25

Contextual 0.921 14

Lexico-syntactic 0.656 15

STEAM Output 0.765 1

(a) term Electrostatics (SCI) (b) term Nectar (Food) (c) term Whale Marine (EN)

Gold Parent: Mammal

View Score Rank

Distributed 0.416 116

Contextual 0.987 1

Lexico-syntactic 0.615 31

STEAM Output 0.672 1

Gold Parent: Medicine

View Score Rank

Distributed 0.741 51

Contextual 0.959 2

Lexico-syntactic 0.614 14

STEAM Output 0.771 1

Gold Parent: Red Wine

View Score Rank

Distributed 0.468 169

Contextual 0.493 24

Lexico-syntactic 0.329 228

STEAM Output 0.430 43

(d) term Podiatry (SCI) (e) term Chianti (Food) (f) term Inshore Grounds (EN)

Gold Parent: Sea Bed

View Score Rank

Distributed 0.387 35

Contextual 0.568 22

Lexico-syntactic 0.483 127

STEAM Output 0.479 37

Figure 6: Prediction result for several test terms from differ-
ent datasets.

three metrics. This is because larger λ will add more weight to learn-

ing base classifiers and enforce each base classifier to achieve good

prediction performance. As the base classifiers become stronger,

the derived aggregated classifier can also become stronger. How-

ever, when λ ≥ 0.15, the performance decreases with λ. We suspect

the reason is each single view can be one-sided and noisy to yield

biased predictions, when λ is too large, the biased information from

each single view can no longer be effectively eliminated during

integration, which can hurt the overall performance.

Effect of µ. Figure 5(b) shows the effect of µ. Similarly, as µ in-

creases, the performance of STEAM first increases and then de-

creases when µ is too large. The reason for this phenomenon is

that: 1) when µ is too small, the three models cannot regularize

each other well, which hinders them from sharing the result with

others; 2) when the µ is too large, then the output will be close to

optimizing Equation 11. When one model does not perform well, it

will negatively affect the other two models, which will deteriorate

the performance of the overall model.

4.3 Case Studies and Error Analysis
Figure 6 shows multiple cases to illustrate the efficacy of STEAM.

It reports the final prediction score of STEAM for the ground-truth

parent, as well as the prediction scores from the three base classi-

fiers. Based on the scores, we calculate the rank of the ground truth

parent. From Figure 6(a), (b), we can find that there are cases when

the predictions from all the three views are inadequate, but the final

prediction can integrate the weak signals to rank the ground-truth

STEAM: Self-Supervised Taxonomy Expansion with Mini-Paths KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

to the top. Such cases verify the power of multi-view co-training

in STEAM, which can utilize the complementary signals from all

views and improve the final performance. Besides, Figure 6(c), (d)

shows two cases when the predictions of one specific view are poor

(e.g. Distributed view for term Whale Marine), yet STEAM can rec-

tify the mistakes by leveraging the information from the other two

views. Figure 6(e) and (f) show two random examples on which our

model fails to provide the correct predictions. Through in-depth

analysis, we found that one common case when our model cannot

perform well is that all views cannot make accurate predictions. In

such cases, the information from the three views is insufficient to

capture the hypernymy relationships between the test term and its

parent.

5 RELATEDWORK
Taxonomy Construction. There have been many studies on au-

tomatic taxonomy construction. One line of works constructs tax-

onomies using cluster-based methods. They group terms into a hi-

erarchy based on hierarchical clustering [1, 34, 44] or topic models

[10, 24]. These methods can work in an unsupervised way. How-

ever, they cannot be applied to our taxonomy expansion problem,

because they construct topic-level taxonomies where each node is a

collection of topic-indicative terms instead of single terms. More

relevant to our work are the methods developed for constructing

term-level taxonomies. Focused on taxonomy induction, these meth-

ods organize hypernymy pairs into taxonomies. Graph optimization

techniques [3, 8, 13, 19] have been proposed to organize the hy-

pernymy graph into a hierarchical structure, and Mao et al. [26]

utilize reinforcement learning to organize term pairs by optimizing

a holistic tree metric over the training taxonomies. Very recently,

Shang et al. [33] design a transfer framework to use the knowledge

from existing domains for generating taxonomy for a new domain.

However, all these methods attempt to construct taxonomies from
scratch and cannot preserve the structure of the seed taxonomy.

Hypernymy Detection. Hypernym detection aims at identifying

hypernym-hyponym pairs, which is essential to taxonomy con-

struction. Existing methods for hypernymy detection mainly fall

into two categories: pattern-based methods and distributed methods.

Pattern-based methods extract hypernymy pairs via pre-defined

lexico-syntactic patterns [15, 30, 32]. One prominent work in this

branch is the Hearst patterns [15], which extract hypernymy pairs

based on a set of hand-crafted is-a patterns (e.g., “X is a Y”). Pattern-

based methods achieve good precision, but they suffer from low

recall [43] and are prone to idiomatic expressions and parsing er-

rors [20]. Distributed methods detect hypernymy pairs based on

the distributed representations (e.g. word embeddings [9, 27, 31]) of

terms. For a term pair ⟨x ,y⟩, their embeddings are used for learning

a binary classifier to predict whether it has the hypernymy relation

[4, 7, 12, 37]. As embeddings are directly learned from the corpora,

distributed methods eliminate the needs of designing hand-crafted

patterns and have shown strong performance. However, their per-

formance relies on a sufficient amount of labeled term pairs, which

can be expensive to obtain.

Taxonomy Expansion. Taxonomy expansion is less studied than

taxonomy construction. Most existing works on taxonomy expan-

sion aims to find new is-a relations and insert new terms to their

hypernyms. For example, Aly et al. [2] refine existing taxonomy by

adopting hyperbolic embeddings [29] to better capture hierarchical

lexical-semantic relationships, [36, 40] design various semantic pat-

terns to determine the position to attach new concepts for expand-

ing taxonomies, and Fauceglia et al. [11] use a hybrid method to take

advantage of linguistic patterns, semantic web and neural networks

for taxonomy expansion. However, the above methods only model

the ‘parent-child’ relations and fail to capture the global structure

of the existing taxonomy. To better exploit self-supervision signals,

Manzoor et al. [25] study expanding taxonomies by jointly learning

latent representations for edge semantics and taxonomy concepts.

Recently, Shen et al. [35] propose position-enhanced graph neural

networks to encode the relative position of terms and improve the

overall quality of taxonomy. However, the above two approaches

only consider distributional features such as word embeddings

but neglect other types of relationships among terms. Compared

with these methods, STEAM is novel in two aspects. First, it inserts
new terms with mini-path-based classification instead of simple

hypernym attachment, which models different layers to better pre-

serve the holistic structure. Second, it considers multiple sources

of features for expansion and integrates them with a multi-view

co-training procedure.

6 CONCLUSION
We proposed STEAM, a self-supervised learning framework with

novel mini-path-based prediction and a multi-view co-training ob-

jective. The self-supervised learning nature enables our model to

optimize the utilization of the knowledge in the existing taxonomy

without labeling efforts. Compared with the traditional node-to-

node query-anchor pairs, the adoption of mini-paths captures more

structural information thus facilitates the inference of a query’s

attachment position. The multi-view co-training objective effec-

tively integrates information frommultiple input sources, including

PGAT-propagated word embeddings, LSTM-embedded dependency

paths and lexico-syntactic patterns. Comprehensive experiments

on three benchmarks show that STEAM consistently outperforms

all baseline models by large margins, which demonstrates its supe-

riority for taxonomy expansion.

ACKNOWLEDGEMENT
This work was in part supported by the National Science Founda-

tion award IIS-1418511, CCF-1533768 and IIS-1838042, the National

Institute of Health award 1R01MD011682-01 and R56HL138415.

APPENDIX–EXTERNAL SOURCES OF CORPUS
STEAM (our method) and several baselines require external text

corpora to model the semantic relations between concept terms. For

all the three benchmarks, we collect the following public corpora:

1) the Wikipedia dump
8
, 2) the UMBC web-based corpus

9
; 3) the

One Billion Word Language Modeling Benchmark
10
.

We directly match the terms with the corpus with tools available

online (i.e.WikiExtractor
11
) and only preserve the sentences that

8
We use the 20190801 version of wikidump during our experiments.

9
https://ebiquity.umbc.edu/resource/html/id/351

10
https://www.statmt.org/lm-benchmark/

11
https://github.com/attardi/wikiextractor

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang

term pairs co-occur. In this way, for each dataset, we obtain a

tailored corpus which preserves the co-occurrence between terms.

The information for these corpora are summarized as:

• Environment: The corpus size is 824MB with 1.51M sentences.

• Science: The corpus size is 1.36GB with 2.07M sentences.

• Food: The corpus size is 2.00GB with 3.42M sentences.

REFERENCES
[1] Daniele Alfarone and Jesse Davis. 2015. Unsupervised Learning of an IS-A

Taxonomy from a Limited Domain-Specific Corpus. In IJCAL. 1434–1441.
[2] Rami Aly, Shantanu Acharya, Alexander Ossa, Arne Köhn, Chris Biemann, and

Alexander Panchenko. 2019. Every Child Should Have Parents: A Taxonomy

Refinement Algorithm Based on Hyperbolic Term Embeddings. In ACL. 4811–
4817.

[3] Mohit Bansal, David Burkett, Gerard De Melo, and Dan Klein. 2014. Structured

learning for taxonomy induction with belief propagation. In ACL. 1041–1051.
[4] Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh Shan. 2012.

Entailment above the word level in distributional semantics. In EACL. 23–32.
[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: A Collaboratively Created Graph Database for Structuring Human

Knowledge. In SIGMOD. ACM, 1247–1250.

[6] Georgeta Bordea, Els Lefever, and Paul Buitelaar. 2016. SemEval-2016 Task 13:

Taxonomy Extraction Evaluation (TExEval-2). In SemEval-2016. ACL, 1081–1091.
[7] Haw-Shiuan Chang, Ziyun Wang, Luke Vilnis, and Andrew McCallum. 2018. Dis-

tributional Inclusion Vector Embedding for Unsupervised Hypernymy Detection.

In NAACL. 485–495.
[8] Anne Cocos, Marianna Apidianaki, and Chris Callison-Burch. 2018. Comparing

constraints for taxonomic organization. In NAACL. 323–333.
[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL-HLT. 4171–4186.
[10] Doug Downey, Chandra Bhagavatula, and Yi Yang. 2015. Efficient methods for

inferring large sparse topic hierarchies. In the ACL. 774–784.
[11] Nicolas Rodolfo Fauceglia, Alfio Gliozzo, SarthakDash,Md FaisalMahbub Chowd-

hury, and Nandana Mihindukulasooriya. 2019. Automatic Taxonomy Induction

and Expansion. In EMNLP-IJCNLP Demo. 25–30.
[12] Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014.

Learning semantic hierarchies via word embeddings. In ACL. 1199–1209.
[13] Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. 2017. Taxonomy

induction using hypernym subsequences. In CIKM. 1329–1338.

[14] Sanda M Harabagiu, Steven J Maiorano, and Marius A Paşca. 2003. Open-domain

textual question answering techniques. Natural Language Engineering 9, 3 (2003),

231–267.

[15] Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text corpora.

In COLING. ACL, 539–545.
[16] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and

Tuo Zhao. 2020. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural

Language Models through Principled Regularized Optimization. In ACL.
[17] Giannis Karamanolakis, Jun Ma, and Xin Luna Dong. 2020. TXtract: Taxonomy-

Aware Knowledge Extraction for Thousands of Product Categories. arXiv preprint
arXiv:2004.13852 (2020).

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[19] Zornitsa Kozareva and Eduard Hovy. 2010. A semi-supervised method to learn

and construct taxonomies using the web. In EMNLP. 1110–1118.
[20] Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008. Semantic Class Learning

from the Web with Hyponym Pattern Linkage Graphs. In ACL. 1048–1056.
[21] Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and

Chao Zhang. 2020. BOND: Bert-Assisted Open-Domain Named Entity Recogni-

tion with Distant Supervision. In SIGKDD. ACM.

[22] Weixin Liang, James Zou, and Zhou Yu. 2020. Beyond User Self-Reported Likert

Scale Ratings: A Comparison Model for Automatic Dialog Evaluation. arXiv
preprint arXiv:2005.10716 (2020).

[23] Carolyn E Lipscomb. 2000. Medical subject headings (MeSH). Bulletin of the
Medical Library Association 88, 3 (2000), 265.

[24] Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. 2012. Automatic

taxonomy construction from keywords. In SIGKDD. 1433–1441.
[25] Emaad Manzoor, Dhananjay Shrouty, Rui Li, and Jure Leskovec. 2020. Expanding

Taxonomies with Implicit Edge Semantics. In The Web Conference.
[26] Yuning Mao, Xiang Ren, Jiaming Shen, Xiaotao Gu, and Jiawei Han. 2018. End-

to-end reinforcement learning for automatic taxonomy induction. In ACL. 2462–
2472.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.

Distributed Representations of Words and Phrases and Their Compositionality.

In NIPS. 3111–3119.

[28] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (Nov. 1995), 39–41.

[29] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning

hierarchical representations. In NIPS. 6338–6347.
[30] Alexander Panchenko, Stefano Faralli, Eugen Ruppert, Steffen Remus, Hubert

Naets, Cédrick Fairon, Simone Paolo Ponzetto, and Chris Biemann. 2016. TAXI at

SemEval-2016 Task 13: a Taxonomy Induction Method based on Lexico-Syntactic

Patterns, Substrings and Focused Crawling. In SemEval-2016. ACL, 1320–1327.
[31] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:

Global Vectors for Word Representation. In EMNLP. ACL, 1532–1543.
[32] Stephen Roller, Douwe Kiela, and Maximilian Nickel. 2018. Hearst Patterns

Revisited: Automatic Hypernym Detection from Large Text Corpora. In ACL.
358–363.

[33] Chao Shang, Sarthak Dash, Md Faisal Mahbub Chowdhury, Nandana Mihinduku-

lasooriya, and Alfio Gliozzo. 2020. Taxonomy Construction of Unseen Domains

via Graph-based Cross-Domain Knowledge Transfer. In ACL. ACL.
[34] Jingbo Shang, Xinyang Zhang, Liyuan Liu, Sha Li, and Jiawei Han. 2020. NetTaxo:

Automated Topic Taxonomy Construction from Large-Scale Text-Rich Network.

In The Web Conference.
[35] Jiaming Shen, Iris Shen, Chenyan Xiong, Chi Wang, Kuansan Wang, and Jiawei

Han. 2020. TaxoExpan: Self-supervised Taxonomy Expansion with Position-

Enhanced Graph Neural Network. In The Web Conference.
[36] Jiaming Shen, Zeqiu Wu, Dongming Lei, Chao Zhang, Xiang Ren, Michelle T

Vanni, Brian M Sadler, and Jiawei Han. 2018. Hiexpan: Task-guided taxonomy

construction by hierarchical tree expansion. In SIGKDD. 2180–2189.
[37] Yu Shi, Jiaming Shen, Yuchen Li, Naijing Zhang, Xinwei He, Zhengzhi Lou, Qi

Zhu, Matthew Walker, Myunghwan Kim, and Jiawei Han. 2019. Discovering

Hypernymy in Text-Rich Heterogeneous Information Network by Exploiting

Context Granularity. In CIKM. ACM, 599–608.

[38] Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016. Improving Hypernymy

Detection with an Integrated Path-based and Distributional Method. In ACL.
ACL, 2389–2398.

[39] Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki. 2017.

Self-supervised learning of motion capture. In NIPS. 5236–5246.
[40] Nikhita Vedula, Patrick K Nicholson, Deepak Ajwani, Sourav Dutta, Alessandra

Sala, and Srinivasan Parthasarathy. 2018. Enriching taxonomies with functional

domain knowledge. In SIGIR. 745–754.
[41] Denny Vrandečiundefined. 2012. Wikidata: A New Platform for Collaborative

Data Collection. In WWW Companion. ACM, 1063–1064.

[42] Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen,

Thrivikrama Taula, and Jiawei Han. 2013. A phrase mining framework for

recursive construction of a topical hierarchy. In SIGKDD. 437–445.
[43] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. 2012. Probase: A

probabilistic taxonomy for text understanding. In SIGMOD. 481–492.
[44] Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen, Meng Jiang, Brian Sadler,

Michelle Vanni, and Jiawei Han. 2018. Taxogen: Unsupervised topic taxonomy

construction by adaptive term embedding and clustering. In SIGKDD. 2701–2709.
[45] Hao Zhang, Zhiting Hu, Yuntian Deng, Mrinmaya Sachan, Zhicheng Yan, and

Eric Xing. 2016. Learning Concept Taxonomies from Multi-modal Data. In ACL.
1791–1801.

[46] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. 2014. Tax-

onomy discovery for personalized recommendation. In WSDM. 243–252.

	Abstract
	1 Introduction
	2 Problem Description
	3 The STEAM Method
	3.1 Self-Supervised Learning by Mini-Path Attachment
	3.2 Multi-View Co-Training with Mini-Paths
	3.3 Model Learning and Inference
	3.4 Complexity Analysis

	4 Experiments
	4.1 Experiment Setup
	4.2 Experimental Results
	4.3 Case Studies and Error Analysis

	5 Related Work
	6 Conclusion
	References

