
ar
X

iv
:1

91
2.

12
61

0v
1

 [
cs

.D
B

]
 2

9
D

ec
 2

01
9

The Impact of Negation on the Complexity of the
Shapley Value in Conjunctive�eries

Alon Reshef
Technion

Haifa, Israel
alonre@cs.technion.ac.il

Benny Kimelfeld
Technion

Haifa, Israel
bennyk@cs.technion.ac.il

Ester Livshits
Technion

Haifa, Israel
esterliv@cs.technion.ac.il

ABSTRACT

The Shapley value is a conventional and well-studied function for

determining the contribution of a player to the coalition in a co-

operative game. Among its applications in a plethora of domains,

it has recently been proposed to use the Shapley value for quanti-

fying the contribution of a tuple to the result of a database query.

In particular, we have a thorough understanding of the tractability

frontier for the class of Conjunctive Queries (CQs) and aggregate

functions over CQs. It has also been established that a tractable

(randomized) multiplicative approximation exists for every union

of CQs. Nevertheless, all of these results are based on the mono-

tonicity of CQs. In this work, we investigate the implication of

negation on the complexity of Shapley computation, in both the

exact and approximate senses. We generalize a known dichotomy

to account for negated atoms. We also show that negation funda-

mentally changes the complexity of approximation. We do so by

drawing a connection to the problem of deciding whether a tuple

is “relevant” to a query, and by analyzing its complexity.

ACM Reference Format:

Alon Reshef, BennyKimelfeld, and Ester Livshits. 2020. The Impact of Nega-

tion on the Complexity of the Shapley Value in Conjunctive Queries. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

25 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Various formal measures have been proposed for quantifying the

contribution of a fact f to a query answer. Meliou et al. [23] adopted

the quantity of responsibility that is inversely proportional to the

minimal number of endogenous facts that should be removed to

make f counterfactual (i.e., removing f transitions the answer from

true to false). Following earlier notions of formal causality byHalpern

and Pearl [15], Salimi et al. [27] proposed the causal effect: assum-

ing endogenous facts are randomly removed independently and

uniformly, what is the difference in the expected query answer be-

tween assuming the presence and the absence of f ?A recent frame-

work has proposed to adopt the Shapley value to the task [20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

The Shapley value [29] is a formula for wealth distribution in

a cooperative game, and it has been applied in a plethora of do-

mains that require to attribute a share of an outcome among a

group of entities [2, 3]. The use cases include bargaining founda-

tions in economics [14], takeover corporate rights in law [25], pol-

lution responsibility in environmental management [19, 26], influ-

ence measurement in social network analysis [24], the utilization

of Internet Service Providers (ISPs) in networks [22], and adver-

tisement effectiveness on the Web [5]. In data management, the

Shapley value has been used for assigning a level of inconsistency

to facts in inconsistent knowledge bases [13, 17, 30], and to de-

termine the relative contribution of features in machine-learning

predictions [18, 21].

In the framework of Livshits et al. [20], query answering is viewed

as a cooperative game where the players are the database facts

and the utility function is the query answer, in the case of aggre-

gate queries, or 0/1 in the case of Boolean queries. They showed

that the (precise or approximate) evaluation of the Shapley value

on common aggregate queries amounts to the evaluation of the

Shapley value for a Boolean query. Hence, in this paper, we focus

on Boolean queries. To illustrate the Shapley value on a Boolean

Conjunctive Query (which we refer to simply as a CQ hereafter),

consider the following query asking whether there is a farmer m

who exports a product p to a country c where p does not grow.

q() :- Farmer(m),Export(m,p, c),¬Grows(c,p) (1)

Different Farmer facts may have different Shapley values, depend-

ing on how crucial they are to the query—which products they ex-

port, whether they grow in the destination countries, and whether

alternative Farmer facts export the same products. Similarly, each

Grows(c,p) fact has its Shapley value. However, while the Shapley

value of Farmer facts can be either positive or zero (since they can

only help in satisfying the query), the Shapley value ofGrows facts

can be either negative or zero (since they can only help in violat-

ing the query). As explained by Livshits et al. [20], understanding

the complexity of the Shapley value for Boolean queries such as (1)

is also necessary and sufficient for understating the complexity of

the Shapley value for aggregate queries such as

Count{c | Farmer(m),Export(m,p, c),¬Grows(c,p)}

that counts the countries that import one or more products that

they do not grow.

As in previous work on quantification of contribution of facts [20,

23, 27], we view the database as consisting of two types of facts: en-

dogenous facts and exogenous facts. Exogenous facts are taken as

given (e.g., inherited from external sources) without questioning,

http://arxiv.org/abs/1912.12610v1
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

and are beyond experimentation with hypothetical or counterfac-

tual scenarios. On the other hand, wemay have control over the en-

dogenous facts, and these are the facts for which we reason about

existence and marginal contribution. The exogenous and endoge-

nous facts are analogous to the observations and hypotheses in the

study of abductive diagnosis [10, 11] that we refer to later on. In

our context, the Shapley value considers only the endogenous facts

as players in the cooperative game.

Livshits et al. [20] have studied the complexity of computing

the Shapley value, and their work is restricted to positive CQs and

UCQs (and aggregates thereof). In this paper, we study the impact

of negation on this complexity. Negation transforms the query into

a non-monotonic query and, as the reader might expect, the impact

is fundamental. As a first step, we generalize their dichotomy in the

complexity for CQs without self-joins into the class of CQs with

negation and without self-joins (Theorem 3.1).

The dichotomy of Livshits et al. [20] classifies the CQs precisely

as in CQ inference in probabilistic tuple-independent databases [8]:

if the CQ is hierarchical, then the problem is solvable in polyno-

mial time, and otherwise, it is FP#P-complete (i.e., complete for

the intractable class of polynomial-time algorithms with an oracle

to, e.g., a counter of the satisfying assignments of a propositional

formula). For illustration, the CQ of (1) falls on the hardness side.

However, that classification does not take into account the assump-

tion that some relations may contain only exogenous data. For ex-

ample, in (1) we might consider the Grows relation as consisting

of only exogenous information. This assumption is very signifi-

cant, as it makes our example CQ a tractable one for the Shapley

value, in contrast to the dichotomy. In this paper, we establish a di-

chotomy that accounts for both negation and exogenous relations

(Theorem 4.3).

An approximation of the Shapley value of a database fact f to

a Boolean query can be computed via a straightforward Monte-

Carlo (average-over-samples) estimation of the expectation that

Shapley defines. This estimation guarantees an additive (or abso-

lute) approximation. However, our interest is in a multiplicative

(or relative) approximation, for two main reasons. First, we seek to

understand the contribution of f relative to other facts, even if it is

the case that the Shapley value is small. Second, in order to get an

approximation of the contribution of a fact to an aggregate query,

a multiplicative approximation is required [20].

In the case of a UCQ, a multiplicative approximation of the Shap-

ley value is tractable, that is, there is amultiplicative Fully Polynomial-

Time Approximation Scheme (FPRAS). This holds true for a simple

reason: an additive FPRAS is also a multiplicative FPRAS, due to

the following gap property: if the Shapley value is nonzero, then

it must be “large”—at least the reciprocal of a polynomial. Never-

theless, once the CQ includes negated atoms, the gap property is

no longer true. In Fact, we show in Theorem 5.1 that every natu-

ral CQ with negation violates the gap property, since the Shapley

value can be exponentially small. This phenomenon explains why

negated atoms make the Shapley value fundamentally more chal-

lenging to approximate.

In itself, the violation of the gap property shows that the ap-

proach of an additive FPRAS fails to provide amultiplicative FPRAS.

Yet, it does not show that multiplicative FPRAS is computation-

ally hard, since there might be an alternative way of obtaining a

multiplicative FPRAS in polynomial time. In order to prove hard-

ness of approximation, we investigate the problem of determining

whether a fact f is relevant to a query in the following sense: in the

presence of all exogenous facts and some subset of the endogenous

facts, adding f can change the query answer (from false to true or

from true to false). In the case of a positive CQ, being relevant to

the query coincides with being an “actual cause” in the framework

of causal responsibility [23]. It is also similar to being a relevant

hypothesis in the context of abductive diagnosis [6, 10, 11]. We re-

fer the reader to Bertossi and Salimi [4] who have established the

connection between causal responsibility and abductive diagnosis.

The connection between the relevance to the query and the

Shapley value is direct: if a fact f is polarity consistent in the sense

that it occurs in a relation of only positive or only negative atoms,

then f is relevant if and only if its Shapley value is nonzero (i.e.,

strictly positive or strictly negative). Therefore, a multiplicative

FPRAS can decide on the relevance with high probability. In the

contrapositive, if we prove that the relevance to the query is an

intractable decision problem, then we also establish the intractabil-

ity of an FPRAS approximation. Yet, the relevance is tractable for

positive CQs, and hardness results are known only for Datalog pro-

grams with recursion [4, 11]. We prove here the existence of a CQ

and a polarity-consistent fact f such that the decision of relevance

to the query (and, hence, the multiplicative approximation of the

Shapley value) is intractable.

Nevertheless, the above approach for proving hardness of the

multiplicative FPRAS of the Shapley value fails if we assume that

the CQ itself is polarity consistent, that is, every relation symbol

(and not just the one of f) occurs either only positively or only neg-

atively. We prove that the relevance problem is solvable in polyno-

mial time for polarity-consistent CQs. The question of whether the

Shapley value has a multiplicative FPRAS for polarity-consistent

CQs (and in particular CQs without self-joins) remains an open

problem for future investigation.

We also consider the relevance problem for UCQs with negation.

We prove that the tractability of the relevance problem generalizes

to polarity-consistent UCQs. Nevertheless, the tractability does not

generalize to unions of polarity-consistent CQs—we show the ex-

istence of such a UCQ where the relevance problem is intractable,

and so is the Shapley zeroness (and multiplicative approximation).

In other words, if every relation symbol occurs either only pos-

itively or only negatively in a UCQ, then the relevance problem

is solvable in polynomial time. Yet, the assumption that this con-

sistency holds just in every individual disjunct is (provably) not

enough.

The rest of the paper is organized as follows. In the next section

we introduce some basic terminology that will be used throughout

the paper. In Section 3, we study the complexity of computing the

Shapley value for self-join-free CQswith negation, and in Section 4

we explore the impact of exogenous relations on this complexity.

We consider the approximate computation of the value in Section 5.

We summarize our results and discuss directions for future work in

Section 6. For lack of space, some proofs apprear in the Appendix.

2

2 PRELIMINARIES

We first define themain concepts that we use throughout the paper.

Databases and Queries

A relational schemaS is a finite collectionof relation symbolsR(A1, . . . ,Ak),

where each Ai is an attribute of R, and k is the arity of R, denoted

by arity(R). We assume a countably infinite set Const of constants

that are used as database values. A database D (over a schema

S) associates with each relation symbol R in S a finite relation

RD ⊆ Constarity(R). If (c1, . . . , ck) is a tuple in RD , then we refer

to R(c1, . . . , ck) as a fact of D. We then identify a database D by

the set of its facts. We assume that a database D consists of two

disjoint subsets of facts: the set Dx of exogenous facts and the set

Dn endogenous facts. Hence, we have D = Dx ∪ Dn .

Example 2.1. The database of our running example is depicted

in Figure 1. The relations Stud and TA store the names of graduate

students and teaching assistants in the university, respectively. The

relation Course contains information about courses given in dif-

ferent faculties of the university. The relationReg associates gradu-

ate students with the courses they take, and the relation Adv asso-

ciates students with their academic advisor. For example, Adam is

a student and a teaching assistant in the university. He is registered

to two courses—OS is given in the Electrical Engineering faculty

and AI in the Computer Science faculty. Michael is the academic

advisor of Adam. �

A Boolean conjunctive query over a schema S is an expression

of the form:

q() :- R1(®t1), . . . ,Rn (®tn)

where each Ri is a relation symbol of S and each ®ti is a tuple of

variables and constants (where the arity of ®ti matches that of Ri).

We refer to a Boolean conjunctive query simply as a CQ. We re-

fer to each Ri (®ti) as an atom of q. We denote by Rα the relation

corresponding to the atom α of q. A self-join in a CQ q is a pair

of distinct atoms of q over the same relation symbol. If q does not

contain any self-joins, then we say that q is self-join-free. A homo-

morphism from q to D is a mapping of the variables in q to the

constants of D such that every atom in q is mapped to a fact of

D. We denote by D |= q the fact that D satisfies q (i.e., there is a

homomorphism from q to D) and by D 6 |= q the fact that D violates

q (i.e., there is no such homomorphism).

Let q be a CQ. For every variable x of q, we denote by Ax the

set of all atoms Ri (®ti) of q such that x occurs in ®ti . We say that

q is hierarchical [7] if at least one of the following holds for all

variables x andy ofq: (1)Ax ⊆ Ay , (2)Ay ⊆ Ax , or (3)Ax ∩Ay = ∅.

It is known [8] that if q is not hierarchical, then there exist three

atoms αx , αy , and αx,y in q such that the variable x occurs in αx
but not in αy , the variable y occurs in αy but not in αx and both

variables occur in αx,y . We refer to each such triplet of atoms as a

non-hierarchical triplet of q.

A CQ with safe negation, or CQ¬ for short, has the form

q() :- R1(®t1), ...,Rn(®tn),¬R
′
1(
®t ′1), ...,¬R

′
m(
®t ′m)

where every variable that occurs in a negated atom also occurs

in an atom without negation. We refer to the atoms of q appear-

ing without negation as the positive atoms of q and to the atoms

that appear with negation as the negative atoms of q. We denote

by Pos(q) and Neg(q) the sets of positive and negative atoms of q,

respectively. For a CQ¬, we denote by D |= q the fact that there

is a homomorphism mapping the variables of q to constants of D

such that every positive atom and none of the negative atoms of q

is mapped to a fact of D. The extension to the definition of hierar-

chical CQs to CQ¬s is straightforward.

Example 2.2. We use the following queries in our examples:

q1() :-Stud(x),¬TA(x), Reg(x,y)

q2() :-Stud(x),¬TA(x), Reg(x,y),¬Course(y, CS)

q3() :-Adv(x,y),Adv(x, z),¬TA(y),¬TA(z),Reg(y, IC),Reg(z, DB)

q4() :-Adv(x,y),Adv(x, z),TA(y),¬TA(z),Reg(z,w),¬Reg(y,w)

Each of these queries is a CQ¬ . The queries q1 and q2 are self-

join-free, while the queries q3 and q4 have self-joins (e.g., the rela-

tion Adv occurs twice). The query q1 is hierarchical since Ay ⊆

Ax , but the others are not, since each of them contains a non-

hierarchical triplet (e.g., Adv(x,y),Adv(x, z),¬TA(z)). �

A Union of Conjunctive Queries (UCQ) is an expression of the

form q() :- q1()∨ · · ·∨qn()where each qi is a CQ, and it is satisfied

by a database D if D |= qi for at least one i ∈ {1, . . . ,n}. A union

of CQ¬s is called a UCQ¬ for short.

The Shapley Value

Given a setAof players, a cooperative game is a functionv : P(A) →

R that maps every subset B of A to a rational number v(B), such

thatv(∅) = 0. The valuev(B) represents a value jointly obtained by

the players of B when they cooperate. The Shapley value [29] mea-

sures the share of each player a ∈ A in the value v(A) jointly ob-

tained by all players. Intuitively, the Shapley value is the expected

contribution of a in a random permutation of the players, where

the contribution of a is the change of v due to the addition of a.

More formally, the Shapley value is defined as

Shapley(A,v,a) :=
1

|A|!

∑
σ ∈ΠA

(v(σa ∪ {a}) −v(σa))

where ΠA is the set of all possible permutations over the players in

A, and for each permutation σ , we denote by σa the set of players

that appear before a in the permutation.

Let S be a schema, D a database over S, q a CQ or CQ¬ , and f

an endogenous fact of D. Following Livshits et al. [20], the Shap-

ley value of f w.r.t. q, denoted Shapley(D,q, f), is the value of

Shapley(A,v,a) where:

• A = Dn.

• v(E) = q(E ∪ Dx) − q(Dx) for all E ⊆ Dn.

• a = f .

That is, we consider a cooperative game where the endogenous

facts are the players and the wealth function v(E) measures the

change to the result of the query due to the addition of the facts of

E to the exogenous facts. Here, we view a Boolean CQ q as a nu-

merical query such that q(D) = 1 if D |= q and q(D) = 0 otherwise.

Example 2.3. Consider again the database of our running exam-

ple. We assume that all the facts in Stud, Course and Adv are

3

Stud

name

f s1 Adam

f s2 Ben

f s3 Caroline

f s4 David

TA

name

f t1 Adam

f t2 Ben

f t3 David

Course

course faculty

f c1 OS EE

f c2 IC EE

f c3 DB CS

f c4 AI CS

Reg

name course

f r1 Adam OS

f r2 Adam AI

f r3 Ben OS

f r4 Caroline DB

f r5 Caroline IC

Adv

advisor student

f a1 Michael Adam

f a2 Michael Ben

f a3 Naomi Caroline

f a4 Michael David

Figure 1: The database of the running example

exogenous, while the facts in TA and Reg are endogenous. Con-

sider the query q1 asking if there is a student who is not a TA and

is registered to at least one course. Note that facts from Reg can

only have a positive impact on the query result (i.e., they can only

change it from false to true), while the facts of TA can only have

a negative impact on the result (i.e., they can only change it from

true to false). Clearly, it holds that Dx 6 |= q, as no fact of Reg ap-

pears in Dx. The answer to q1 on Dx ∪ E for some E ⊆ Dn is true

if at least one of the following holds: (1) f r4 or f r5 appear in E, (2)

f r1 or f r2 appear in E, but f t1 does not, or (3) f r3 appears in E, but f t2
does not.

We can immediately see that f t3 can never affect the query result,

since David does not appear in Reg; hence, we have that Shapley(D,q1, f
t
3) =

0. Adding the fact f t2 in a permutation would change the query

result from true to false if f r3 has been added before, and none of

conditions (1) or (2) holds. Thus, the following subsets of facts may

appear before f t2 in a permutation where it changes the query re-

sult: { f r3 }, { f
r
3 , f

t
1 }, { f

r
3 , f

r
1 , f

t
1 }, { f

r
3 , f

r
2 , f

t
1 }, and { f

r
3 , f

r
2 , f

r
1 , f

t
1 }.

Note that we can add f t3 to each of these subsets; thus, we have the

following:

Shapley(D,q1, f
t
2) = −

1! · 6! + 2 · 2! · 5! + 3 · (3! · 4! + 4! · 3!) + 5! · 2!

8!

and we conclude that Shapley(D,q1, f
t
2) = −

2
35 . Similarly, the fact

f t1 changes the query result from true to false when at least one of

f r1 or f r2 appears earlier in the permutation, and none of conditions

(1) or (3) holds. That is, the fact f t1 should appear after one of the

following subsets of facts: { f r1 }, { f
r
2 }, { f

r
1 , f

r
2 }, { f

r
1 f t2 }, { f

r
2 , f

t
2 },

{ f r1 , f
r
2 f t2 }, { f

r
1 , f

r
3 , f

t
2 }, { f

r
2 , f

r
3 , f

t
2 }, { f

r
1 , f

r
2 f r3 , f

t
2 }. We can again

add f t3 to each of the subsets. Thus, the following holds:

Shapley(D,q1, f
t
1) = −

2 · 1! · 6! + 5 · 2! · 5! + 6 · 3! · 4! + 4 · 4! · 3! + 5! · 2!

8!

and Shapley(D,q1, f
t
1) = −

3
28 . As it holds that |Shapley(D,q1, f

t
1)| >

|Shapley(D,q1, f
t
2)|, we deduce that the fact that Adam is not a TA

has a greater negative impact on q1 than the fact that Ben is not a

TA. This is expected, since Adam is registered to more courses.

As for the facts in the relation Reg, we have that:

Shapley(D,q1, f
r
1) = Shapley(D,q1, f

r
2) =

37

210

Shapley(D,q1, f
r
3) =

27

140

Shapley(D,q1, f
r
4) = Shapley(D,q1, f

r
5) =

13

42

We elaborate on these calculations in the Appendix. Note that the

sum over the Shapley values of all the endogenous facts is 1. �

3 EXACT EVALUATION

In this section, we investigate the complexity of computing the

Shapley value for CQ¬s without self-joins, and establish the fol-

lowing dichotomy in the data complexity of the problem.

Theorem 3.1. Let q be a CQ¬ without self-joins. If q is hierarchical,

then Shapley(D,q, f) can be computed in polynomial time, given D

and f . Otherwise, its computation is FP#P-complete.1

For illustration, the theorem states that the Shapley value can be

computed in polynomial time for the query q1 of Example 2.2, but

computing it for the query q2 is FP
#P-complete. Interestingly, the

classification criteria is the same as the one for self-join-free CQs

without negation [20]. Hence, the added negation does not change

the complexity picture for the exact computation of the Shapley

value. (However, as we will show later, the addition of negation

has a significant impact on the approximate computation of the

value.) Next, we discuss the proof of Theorem 3.1.

Livshits et al. [20] introduced an algorithm for computing the

Shapley value for hierarchical self-join-free CQs. This algorithm

relies on a reduction from the problem of computing the Shap-

ley value to that of computing the number of subsets of size k

of Dn that, along with Dx, satisfy q. We denote this problem as

|Sat(D,q,k)|. As the reduction does not assume anything about q

other than the fact that it is a Boolean query, the same reduction

applies to CQ¬s. Hence, it is only left to show that |Sat(D,q,k)| can

be computed in polynomial time for a hierarchical CQ¬ .

Lemma 3.2. Let q be a hierarchical CQ¬ without self-joins. There is

a polynomial-timealgorithm for computing the number |Sat(D,q,k)|

of k-subsets E of Dn, such that (Dx ∪ E) |= q, given D and k .

The algorithm CntSat [20] for computing |Sat(D,q,k)| for self-

join-free CQs without negation is a recursive algorithm that re-

duces the number of variables in the querywith each recursive call,

based on the hierarchical structure of the query. The treatment of

the base case, when no variables occur in q, is the only part of the

algorithm that does not apply to queries with negation, and we

explain how it should be modified in the Appendix.

In the remainder of this section, we focus on the proof of the

negative side of the theorem. We start by proving hardness for the

four simplest non-hierarchical CQ¬s:

qRST() :- R(x), S(x,y),T (y)

q¬RS¬T() :- ¬R(x), S(x,y),¬T (y)

qR¬ST() :- R(x),¬S(x,y),T (y)

qRS¬T() :- R(x), S(x,y),¬T (y)

1Recall that FP#P is the class of problems that can be solved in polynomial time with
an oracle to a #P-complete problem.

4

The proof for qRST is given in [20]; hence, we show the following.

Lemma 3.3. If q is one of q¬RS¬T, qR¬ST, or qRS¬T, then computing

Shapley(D,q, f) is FP#P-complete.

Proof. (Sketch) The proof of the lemma for q¬RS¬T and qR¬ST
is by a reduction from the problemof computing Shapley(D, qRST, f).

We show that for every database D and a fact f ∈ D we have that

Shapley(D, qRST, f) = −Shapley(D, q¬RS¬T, f), as f changes the

result of qRST in a permutation σ from false to true if and only if f

changes the result of q¬RS¬T in σR (which is the reverse permuta-

tion of σ) from true to false. As for the query qR¬ST, the idea is the

following. Given an input database D to the first problem, we con-

struct a databaseD′ to our problem by taking the “complement” of

the relation SD . That is, we add a fact f over the domain of D to

SD
′
if and only if this fact is not in SD . This transformation does

not affect the Shapley value since we can assume that every fact of

S is exogenous (as the database constructed in the proof of hard-

ness for qRST satisfies this property [20]). We will use this idea of

the “complement” of a relation in our proofs in the next sections.

Most intricate is the proof of hardness for the query qRS¬T. This

is due to its non-symmetrical structure that prevents us from con-

structing a direct reduction from the problemof computing Shapley(D, qRST, f).

Similarly to the proof of hardness for qRST [20], we construct a

reduction from the problem of computing the number of indepen-

dent sets |IS(д)| in a bipartite graph д, which is known to be #P-

complete. Given an input bipartite graph д = (A ∪ B,E), we con-

struct n + 1 input instances (Di , f) for our problem (where n =

|A| + |B |), that provide us with an independent system of n + 1

linear equations over the numbers |S(д,k)|, defined as follows.

For each k = 0, . . . ,n, the set S(д,k) contains every subset E ⊆

(A ∪ B) of size k , such that for every a ∈ (E ∩ A), and for every

(a,b) ∈ E, we have that b ∈ E; that is, for every vertex a on the

left-hand side of д added to E, we also add to E every neighbor of

a in the graph. More formally,

S(д) := {A′ ∪ B ′ |A′ ⊆ A,B ′ ⊆ B,∀(a,b) ∈ E[a ∈ A′ ⇒ b ∈ B ′]}

Note that a subsetA′∪B ′ in S(д)may contain vertices in B ′ that are

not connected to any vertex in A′. Then, we denote by S(д,k) the

collection of subsets of size k in S(д). We claim that |S(д)| = |IS(д)|.

This holds since a subset A′ ∪B ′ of vertices of д is an independent

set if and only if the subset A′ ∪ (B \ B ′) belongs to S(д).

Each input instance (Di , f) to our problem is obtained from the

bipartite graph д by adding one vertex to the right-hand side of д

and i vertices to its left-hand side. We connect every new vertex on

the right-hand side to the new vertex on the left-hand side. Then,

we add to Di an endogenous fact R(a) for every vertex a on the

left-hand side of д, an endogenous fact T (b) for every vertex b on

the right-hand side of д, and an exogenous fact S(a,b) for every

edge (a,b) in д. We then compute, for each one of the instances,

the Shapley value of the fact corresponding to the new vertex on

the right-hand side of д, and obtain an equation over the numbers

|S(д,k)|. We show that the equations are independent; hence, we

can compute |IS(д)| =
∑n
k=0
|S(д,k)|. �

Using Lemma 3.3, we can prove the whole hardness side of The-

orem 3.1. We adapt the reduction to the one used for the case

of non-hierarchical self-join-free CQs without negation [20]. Re-

call that every non-hierarchical self-join-free CQ¬ contains three

atoms αx ,αy ,αx,y , such that x and y are two variables of q, the

variable x occurs in αx while y does not, the variable y occurs in

αy while x does not, and both variables occur in αx,y . Furthermore,

since q is safe, we can always choose αx ,αy ,αx,y such that if two

of the atoms are negative, the negative ones are αx and αy . Hence,

for every such q, we can construct a reduction from computing

the Shapley value for one of the queries qRST,q¬RS¬T , qR¬ST or

qRS¬T (depending on the polarity of αx , αy , and αx,y) to comput-

ing Shapley(D,q, f), where the atoms over the relations R, S and

T are represented by the atoms αx ,αx,y and αy , respectively.

Remarks. Weconclude the sectionwith two comments. First, Livshits

et al. [20] have shown how their dichotomy for CQs can be ex-

tended to arbitrary summations over CQs, using the linearity of

expectation. Our dichotomy here can be extended to aggregate

functions over CQ¬s in a similar way. For example, Theorem 3.1

implies that the Shapley value of a fact can be efficiently computed

for the following aggregate query that sums up all the profits r of

exports of products p to countries c where p does not grow:

Sum{{r | Export(p,c),¬Grows(c,p),Profit(c,p, r)}}

Second, the proof of Theorem 3.1 heavily relies on the assumption

that the query is self-join-free. However, our hardness results for

the basic non-hierarchical queries qRST, q¬RS¬T, qR¬ST and qRS¬T
can be generalized to certain CQ¬s with self-joins, by replacing

the atom over the relation T with another atom over the relation

R (e.g., we can prove hardness for the query ¬R(x), S(x,y),¬R(y)).

This can be proved using a reduction from the corresponding self-

join-free query (e.g., the query ¬R(x), S(x,y),¬T (y)) by assuming,

without loss of generality, that the values in the domain of RD and

the values in the domain ofTD are disjoint. In fact, this result can

be generalized to a larger class of CQ¬s with self-joins, and we give

this result in the Appendix (Theorem B.5).

4 ACCOUNTING FOR EXOGENOUS
RELATIONS

In the previous section, we showed that computing the Shapley

value is FP#P-complete for every non-hierarchical self-join-free CQ¬ .

Yet, this hardness result does not take into account the reasonable

assumption that some of the relations in the database contain only

exogenous facts. For example, Meliou et al. [23] discussed the case

where all the relations in the database are exogenous, except for

one (e.g., “Director” or “Movie”); this one relation may be a sus-

pect of containing erroneous data, or the one that holds the sin-

gle type of entities of whom contribution we wish to quantify. In

this section, we show that accounting for such relations signifi-

cantly changes the complexity picture and, in particular, it makes

some of the intractable queries according to Theorem 3.1 tractable.

In fact, we generalize Theorem 3.1 to account for exogenous rela-

tions and therefore establish the precise class of CQ¬s that become

tractable. Throughout this section, we underline the relations con-

taining only exogenous facts and their associated query atoms.

Example 4.1. Livshits et al. [20] demonstrated their work on

a database from the domain of academic publications. They rea-

soned about the contribution of researchers to the total number of

5

citations and assumed that the information about the publications

is exogenous. In particular, they considered the query:

q() :- Author(x,y) , Pub(x, z) , Citations(z,w)

Since q is not hierarchical, their result classifies it as intractable.

However, in this section, we show that there is a polynomial-time

algorithm for computing the Shapley value for q, under the as-

sumption that Pub and Citations contain only exogenous facts.

Furthermore, we show that even if we had that prior knowledge

about the relation Citations alone, we would still able to compute

the Shapley value efficiently. This is due to the fact that we can re-

duce the problem of computing Shapley(D,q, f) to that of comput-

ing Shapley(D,q′, f) for the hierarchical queryq′() :- Author(x,y) , Pub(x, z),

by removing from the relation Pub in D every fact Pub(a,b) such

that there is no fact Citations(b, c) in D and then removing the

relation Citations from the query.

Next, consider the database of our running example (Figure 1).

We have assumed that the information about the students and courses

in the faculty is exogenous, and our goal was to understand how

much the fact that a student takes or teaches a course affects the

result of different queries. For example, consider again the query

q2 from Example 2.2.

q2() :- Stud(x) , ¬TA(x), Reg(x,y) , ¬Course(y, CS)

Theorem 3.1 classifies this query as intractable for computing the

Shapley value, as it is not hierarchical. Yet, again, the Shapley value

can be computed in polynomial time, using an algorithm that takes

into consideration the assumption that every fact in stud and course

is exogenous. Note that when negation is added to the picture, we

cannot simply remove exogenous atoms, as removing an exoge-

nous atom may turn a query with safe negation into a query with

negation that is not safe (e.g., q′() = R(x) , ¬S(x,y),T (y)). �

4.1 Generalized Dichotomy

We start by formally defining the problem that we study in this sec-

tion. We define an exogenous relation R to be a relation that consists

only of exogenous facts.We fix a schemaS, a setX of exogenous re-

lations inS, and a self-join-free CQ¬ q. We denote bySX a schema

with the set X of exogenous relations. Note that we do not assume

anything about the facts in the relations outside X and they may

contain both endogenous and exogenous facts. Then, our goal is to

compute Shapley(D,q, f), given a database D over SX and a fact

f ∈ D.

Clearly, the assumption that some of the relations of S are ex-

ogenous does not change the fact that we can compute the Shap-

ley value in polynomial time for any hierarchical CQ¬. To under-

stand the impact of this assumption on the complexity of non-

hierarchical CQs, consider the query qR¬ST defined in Section 3. If

we assume that only S is exogenous, then the query remains hard,

as S already contains only exogenous facts in the proof of hard-

ness for qR¬ST (Lemma 3.3). We can generalize this example and

show that having a non-hierarchical triplet (αx ,αx,y ,αy) where

Rαx < X and Rαy < X is a sufficient condition for FP#P-hardness,

as the hardness proofs of the previous section can be easily gener-

alized to this case. Is having such a triplet a necessary condition

for hardness? Next, we answer this question negatively. Consider

w

y

zx

v

(a)

z

r

uw

y

x

t

(b)

Figure 2: The Gaifman graphs of the queries q (left) and q′

(right) of Example 4.2.

the following queries:

q() :- ¬R(x,w), S(z,x),¬P(z,w),T (y,w)

q′() :- ¬R(x,w), S(z,x),¬P(z,y),T (y,w)

In both queries, the exogenous relation are S and P , and they differ

only in one variable that occurs in the atom of P . While the two

queries are very similar and are both classified as intractable by

Theorem 3.1, we will show that in the model considered in this sec-

tion, Shapley(D,q, f) can be computed in polynomial time for ev-

ery endogenous fact f , while computing Shapley(D,q′, f) is FP#P-

complete. This holds true aswhile in both cases the non-exogenous

atoms are connected via the exogenous atoms, they are connected

in different ways. While the connection in q between the variable x

in ¬R(x,w) and the variable y inT (y,w) goes through the variable

w , in q′ the connection between x and y is possible through the

variable z as well, and we need to be able to distinguish between

these two cases. In the terminology we set next, we say that x and

y are connected via a non-hierarchical path in q′ (but not in q).

Let SX be a schema. The Gaifman graph G(q) of a CQ¬ q is the

graph that contains a vertex for every variable in q and an edge

between two vertices if the corresponding variables occur together

in an atom of q. We say that a CQ¬ q has a non-hierarchical path if

there are two atoms αx ,αy and two variables x,y in q such that: (1)

Rαx < X and Rαy < X , (2) the variable x occurs in αx but not in αy ,

while the variable y occurs in αy and not in αx , and (3) the graph

obtained from G(q) by removing every vertex corresponding to a

variable occurring in αx or in αy , contains a path between x and y.

In this case, we say that the non-hierarchical path of q is induced

by the atoms αx and αy .

Example 4.2. Consider the query:

q() :- ¬R(x),Q(x,v), S(x, z),U (z,w),¬P(w,y),T (y,v)

The Gaifman graph G(q) is illustrated in Figure 2a. We claim that

q has a non-hierarchical path induced by the atoms ¬R(x) and

T (y,v). Note that there is a path x − v − y in G(q) between x

and y; however, this is not enough to determine that q has a non-

hierarchical path, as we need to find a path that does not pass

through the variables of ¬R(x) and T (y,v). And indeed, if we re-

move from G(q) the variable v occurring in the atom T (y,v) and

every edge connected to it (i.e., every dotted line in the graph of

Figure 2a), there is a path x − z − w − y between the variables x

and y in the resulting graph, and we conclude that q has a non-

hierarchical path.

6

Next, consider the query:

q′() :-U (t , r),¬T (y),Q(y,w),

¬V (t),R(x,y),¬S(x, z),O(z), P(u,y,w)

The reader can easily verify, using the graph of Figure 2b, that q′

does not have a non-hierarchical path. This is because the variables

of U (t , r) and the variables of ¬T (y) or Q(y,w) are not connected

in G(q′). Moreover, every variable in ¬T (y) also appears inQ(y,w);

hence, no non-hierarchical path can be induced by these two atoms.

�

We prove the following generalization of Theorem 3.1 that ac-

count for exogenous relations.

Theorem 4.3. Let SX be a schema and let q be a CQ¬ without self-

joins. Ifq has a non-hierarchical path, then computing Shapley(D,q, f)

is FP#P-complete. Otherwise, Shapley(D,q, f) can be computed in

polynomial time, given D and f .

The proof of the hardness side of Theorem 4.3 is very similar to

the proof of hardness for Theorem 3.1. Given a self-join-free CQ¬

that has a non-hierarchical path, we construct a reduction from the

problem of computing Shapley(D,q′, f) where q′ is one of qRST,

q¬RS¬T, or qRS¬T to that of computing Shapley(D,q, f). The main

difference between the proofs is that while in the proof of Theo-

rem 3.1 we used the atom αx,y to represent the atom S(x,y) in q′,

here we use the entire non-hierarchical path (or, more precisely,

the atoms along the edges of the non-hierarchical path) to repre-

sent this atom. The atoms inducing the non-hierarchical path are

used to represent the atoms over the relations R and T in q′, and

their polarity determines the specific q′ we reduce from. (The full

proof is in the Appendix.) In the remainder of this section, we dis-

cuss the proof of the positive side of Theorem 4.3.

4.2 Algorithm for the Tractable Cases

We will show that computing the Shapley value for a self-join-free

CQ¬ that does not have a non-hierarchical path can be reduced to

computing the Shapley value for a hierarchical query q′ without

self-joins. Our reduction consists of three steps that will form the

basis to our algorithm. Since the Shapley value can be computed

in polynomial time for hierarchical CQ¬s (Theorem 3.1), and the

same algorithm works for the model that we consider in this sec-

tion, we will conclude that the Shapley value can be computed in

polynomial time for such queries.

For the remainder of this section, we fix a schema SX and a

self-join-free CQ¬ q that does not have a non-hierarchical path.

We first introduce some definitions and notations that we will use

throughout the proof. We denote by Atoms(q) and Vars(q) the sets

of atoms and variables of q, respectively. We say that an atom α

of q is an exogenous atom if Rα ∈ X . We say that a variable x

of q is an exogenous variable if it occurs only in exogenous atoms

of q. We denote the sets of all exogenous atoms and variables of q

by Atomsx(q) and Varsx(q), respectively. We denote by Atoms\x(q)

the set (Atoms(q)\Atomsx(q)) of non-exogenous atoms in q and by

Vars\x(q) the set (Vars(q) \ Varsx(q)) of non-exogenous variables.

Next, we define the exogenous atom graph дx(q) of q to be the

graph that contains a vertex for every exogenous atom in q and an

edge between two vertices if the corresponding two atoms share an

exogenous variable. The following lemma draws a connection be-

tween the properties ofдx(q) and the existence of a non-hierarchical

path in G(q). In particular, we prove that if a query q does not

have a non-hierarchical path, then for every connected compo-

nent C of дx(q) there is a non-exogenous atom α of q such that

Vars\x(C) ⊆ Vars(α). This property is of high significance, as our

reduction strongly relies on it.

Lemma 4.4. For every connected component C of дx(q) there is an

atom α ∈ Atoms\x(q) such that Vars\x(C) ⊆ Vars(α).

Proof. Let C be a connected component of дx(q). Assume, by

way of contradiction, that there is no α ∈ Atoms\x(q) such that

Vars\x(C) ⊆ Vars(α), and let α ∈ Atoms\x(q) be an atom of q such

thatVars\x(C)∩Vars(α) is maximal among all atoms in Atoms\x(q).

Since Vars\x(C) , ∅ and every non-exogenous variable occurs in

a non-exogenous atom, there exists x ∈ (Vars\x(C) ∩ Vars(α)).

Moreover, since Vars\x(C) * Vars(α), there exists y ∈ Vars\x(C)

that does not occur in α . Since y is not an exogenous variable,

there is another α ′ ∈ Atoms\x(q) such that y ∈ Vars(α ′). It can-

not be the case that x ∈ Vars(α ′) (as otherwise, we get a contra-

diction to the maximally of Vars\x(C) ∩ Vars(α)); hence, we con-

clude that x ∈ (Vars(α) \ Vars(α ′)), y ∈ (Vars(α ′) \ Vars(α)), and

x,y ∈ Vars(C).

We claim that α and α ′ induce a non-hierarchical path in G(q).

Since x,y ∈ Vars(C), there exist two atoms β1, β2 ∈ C such that

x ∈ β1 and y ∈ β1. Since β1 and β2 belong to the same connected

component, there exists a path in дx(q) between β1 and β2, such

that the edges along the path correspond to exogenous variables

of q. Therefore, there is a path x − v1 − · · · − vn − y in G(q), such

that eachvi is an exogenous variable (hence, vi < Vars(α) andvi <

Vars(α ′)). This path is a non-hierarchical path by definition. �

Example 4.5. Consider the query q′ of Example 4.2. We have

already established that q′ does not have a non-hierarchical path.

Figure 3a illustrates both the exogenous atom graph of q′ and the

result of Lemma 4.4. The atoms in the white rectangles are the

exogenous atoms of q′, and the atoms in the gray circles are the

non-exogenous atoms. Every gray rectangle containing a set of ex-

ogenous atoms represents a connected component inдx(q
′). For ex-

ample, the atoms R(x,y) and ¬S(x, z) share the exogenous variable

x and the atoms ¬S(x, z) and O(z) share the exogenous variable z.

Hence, all three atoms form a connected componentC in the graph.

The only non-exogenous variable in C is y and, indeed, there is a

non-exogenous atom ¬T (y) that uses y. In fact, there are two such

atoms, and in the next step we can arbitrary select one of them.

The exogenous atom P(u,y,w) is a connected component on its

own, as its only exogenous variable u does not occur in any other

atom. And, again, there is a non-exogenous atomQ(y,w) that uses

both non-exogenous variables y and u of P(u,y,w). �

Next, we discuss the first step of our reduction. We prove that

we can replace every connected componentC ofдx(q)with a single

exogenous atom in q, obtained by “joining” all the atoms ofC (and

the corresponding relations of D), without affecting the Shapley

value. Since some of the atoms in a connected component C may

be negated, and it is not clear how to combine positive and negative

atoms into a single atom, we first replace themwith positive atoms

7

¬V (t)

¬S(x, z) O(z)R(x,y)

P(u,y,w)

¬T (y)

Q(y,w)

U (t , r)

(a) Original query.

Q(y,w)

P(u,y,w)

R(x,y,z)V (t)

¬T (y)U (t , r)

(b) Joining exogenous rela-

tions.

T ′(y)

Q ′(y,w)

U ′(t , r)

¬T (y)

Q(y,w)

U (t , r)

(c) Removing exogenous vari-

ables and adding variables

from the containing atom.

Figure 3: Illustration of the execution of the algorithm

ExoShap on the query q′ from Example 4.2.

and compute the complement of the corresponding relations. For-

mally, given a negated atom α , we denote by α the atom obtained

from α by removing the negation. Then, we denote by RDα the re-

lation obtained from RDα by adding every fact over the domain of

D if and only if it does not appear in RDα . That is, if the arity of Rα

is k , then we add to RDα a fact Rα (c1, . . . , ck), where each ci is a

constant from the domain of D, if and only if Rα (c1, . . . , ck) < R
D
α .

Hence, we obtain a query q′ by replacing every negated exogenous

atom α of q with the atom α , and we construct a database D′ by re-

placing every exogenous relation RDα corresponding to a negated

atom of q with the complement relation RDα . The same idea has

been used in the proof of hardness for the query qR¬ST in the pre-

vious section (Lemma 3.3), and we prove that this transformation

of the database and the query does not affect the Shapley value (i.e.,

Shapley(D,q, f) = Shapley(D′,q′, f) for every f) in the Appendix.

From now on, we assume that every exogenous atom of q is

positive. We use that assumption to prove the following.

Lemma 4.6. Computing Shapley(D,q, f), givenD and f , can be ef-

ficiently reduced to computing Shapley(D′,q′, f) for a CQ¬ q′ with-

out self-joins such that: (1) every exogenous variable of q′ occurs is a

single atom, and (2) q′ does not have any non-hierarchical path.

In the proof of Lemma 4.6, given in the Appendix, we show

that we can combine all the atoms α1, . . . ,αk of a connected com-

ponent C in дx(q) into a single atom αC such that Vars(αC) =

∪i ∈{1, ...,k }Vars(αi), while simultaneously replacing all the rela-

tions Rα1
, . . . ,Rαk in D with a single relation RαC obtained by

joining thek relations according to the variables of the correspond-

ing atoms, without affecting the Shapley value. We repeat this pro-

cess with every connected component of дx(q) and obtain a query

q′ satisfying the first property of Lemma 4.6. As for the second

property, we show that the existence of a non-hierarchical path

x − v1 − · · · − vn − y in q′ induced by the atoms αx and αy im-

plies the existence of a non-hierarchical path in q induced by the

same atoms, since every two consecutive variables vi ,vi+1 in the

path either occur together in a non-exogenous atom of q or in a

connected component of дx(q).

Onemay suggest that it is possible to avoid replacing the negated

exogenous atoms ofqwith positive atoms before combining exoge-

nous atoms, by simply constructing the relation RαC inD using the

query qC (®x) :- α1, . . . ,αk , where α1, . . . ,αk are the original (possi-

bly negated) atoms in the connected componentC , and ®x contains

every variable of C . The problem with this approach is that the re-

sulting qC may have non-safe negation, as a non-exogenous vari-

able ofC may appear only in negated atoms ofC (and in a positive

atom outsideC). Thus, it is essential to replace the relations corre-

sponding to negated exogenous atoms of q with their complement

relations, before combining the atoms of C into a single one.

Example 4.7. Consider again the query q′ illustrated in Figure 3.

Since the atom¬S(x, z) in the topmost connected component {R(x,y),¬S(x,z),O(z)}

is negated, we first replace it with a positive atom S(x, z). Then,

we combine all three atoms into a single atom R(x,y,z), as illus-

trated in Figure 3b, and replace these atoms in the query with the

new atom. The new relation in the database will contain every an-

swer to the query qC (x,y,z) :- R(x,y),S(x, z),O(z) onD. Note that

¬V (t) is a connected component on its own, but we still replace it

with a positive atomV (t). �

Next, we use the results of Lemmas 4.4 and 4.6 to reduce the com-

putationof Shapley(D,q, f) to the computationof Shapley(D′,q′, f)

for a query q′ where every exogenous atom corresponds to a non-

exogenous atom such that the two have the exact same variables.

Lemma 4.8. Computing Shapley(D,q, f) can be efficiently reduced

to computing Shapley(D′,q′, f) for a CQ¬ q′ without self-joins such

that: (1) for every α ∈ Atomsx(q
′) there exists α ′ ∈ Atoms\x(q

′)

for which Vars(α) = Vars(α ′), and (2) q′ does not have any non-

hierarchical path.

Recall that Atomsx(q) and Atoms\x(q) are the sets of exogenous

and non-exogenous atom inq, respectively. To establish Lemma 4.4,

we first observe that we can remove every exogenous variable from

q without affecting the Shapley value, as Lemma 4.6 implies that

we can assume that every exogenous variable occurs in a single ex-

ogenous atom. Then, Lemma 4.4 implies that for every exogenous

atom α there exists a non-exogenous atom β such that Vars(α) ⊆

Vars(β). Hence, for each such α , we select such an atom β and re-

place the atomα inqwith the atomRα ′(x1, . . . ,xn), where {x1, . . . ,xn }

is the set of variables in β . In the database, we replace the rela-

tion corresponding to the atom α with a new relation Rα ′ that

8

Algorithm 1: ExoShap(D,q, f)

forall negated α ∈ Atomsx(q) do
Replace α in q with α

Replace RDα with RDα
forall {α1, . . .αk } ∈ ConnectedComponents(дx(q)) do
{x1, . . . , xn } ← variables occurring in α1, . . . αk
q′(x1, . . . ,xn) :- α1, . . . ,αk
Replace α1, ...,αk in q with Rα (x1, . . . , xn)

Replace RDα1
, ...,RDαk with RDα = q

′(D)

forall α ∈ Atomsx(q) do
Let β ∈ Atoms\x(q) s.t. Vars\x(α) ⊆ Vars(β)

{x1, . . . , xn } ← variables occurring in β

{y1, . . . ,ym} ← non-exogenous variables occurring in α

q′(y1, . . . ,ym) :- α

Replace α in q with Rα ′(x1, . . . ,xn)

Replace RDα with

RD
α ′
= q′(D) × {(c1, ..., cn−m) | ci ∈ Dom(D)}

return Shapley(D,q, f)

contains every fact obtained from the Cartesian product of: (1) the

projection of RDα to the attributes corresponding to non-exogenous

variables in α , and (2) every possible combination of |Vars(β)| −

|Vars\x(α)| values from the domain of D. The fact that q′ does not

have a non-hierarchical path is rather straightforward based on the

fact that every pair {u1,u2} of variables of q
′ occurring together in

an atom of q′ necessarily occur together in a non-exogenous atom

of q′ that is also an atom of q.

Example 4.9. Figure 3c illustrates the implications of Lemma 4.8

on the query q′ of Example 4.2. We replace the relation R(x,v,z)

with the relation T ′(v) obtained from it by removing the exoge-

nous variables x and z. As for the atom V (t), it does not contain

any exogenous variables, but the non-exogenous atomU (t , r) con-

taining all the variables of V (t) also uses the variable r ; hence, we

add this variable and obtain a new atomU ′(t , r). �

Our final observation is that a query q′ satisfying the proper-

ties of Lemma 4.8 is hierarchical. This holds true since Atoms\x(q
′)

does not contain a non-hierarchical triplet (otherwise, the original

q would contain a non-hierarchical path). Adding an atom α to a

hierarchical query q such that Vars(α) = Vars(α ′) for some atom

α ′ in q cannot change the non-hierarchical structure of the query.

We summarize the section with the algorithm ExoShap(D,q, f)

(Algorithm 1) for computing the Shapley value for a self-join-free

CQ¬ that does not have a non-hierarchical path. The algorithm

starts bymodifyingq andD according to the steps described through-

out this section. First, it replaces the negated exogenous atoms

of q with positive atoms, and the corresponding relations in D

with their complement relations. Then, it combines the exogenous

atoms in every connected component of дx(q) into a single atom

while joining the corresponding relations of D. Finally, it removes

the exogenous variables of q, and adds to every exogenous atom

the missing variables from the non-exogenous atom containing it.

The final database is constructed from the Cartesian product of

the projection of every exogenous relation RDα to the attributes

corresponding to the non-exogenous variables of α , and the set

{c1, . . . , cr | ci ∈ Dom(D)}, where r is the number of non-exogenous

variables we have added to α . Then, the algorithm invokes an al-

gorithm for computing the Shapley value for hierarchical queries.

4.3 Application to Probabilistic Databases

We conclude by observing that our results in this section also apply

to the problem of query evaluation over tuple-independent proba-

bilistic databases [8]. Fink and Olteanu [12] have studied this prob-

lem for queries with negation. They considered the class RA− of

queries that includes the CQ¬s. When restricting to CQ¬s, they es-

tablished that query evaluation is possible in polynomial time for

hierarchical CQ¬s, and it is FP#P-complete otherwise. The proofs

of this section immediately provide a generalization of their result

to account for deterministic relations, where the probability of ev-

ery fact is 1. The only difference is that instead of using the algo-

rithm for computing the Shapley value for hierarchical CQ¬s, we

will use the algorithm for query evaluation over tuple-independent

probabilistic databases for hierarchical CQ¬s. Hence, we obtain the

following result (where X is the set of deterministic relations).

Theorem4.10. LetSX be a schema and let q be a CQ¬ without self-

joins. If q has a non-hierarchical path, then its evaluation over tuple-

independent probabilistic databases is FP#P-complete. Otherwise, the

query can be evaluated in polynomial time.

5 APPROXIMATION

As seen in the previous sections, computing the exact Shapley value

is often hard. Hence, in this section, we consider its approximate

computation. There exists a Multiplicative Fully-Polynomial Ran-

domized Approximation Scheme (FPRAS) for computing the Shap-

ley value for any CQ and, in fact, for any union of CQs [20]. Here,

we show that the addition of negation changes the complexity pic-

ture completely. Recall that an FPRAS for a numeric function f is

a randomized algorithm A(x, ϵ, δ), where x is an input for f and

ϵ, δ ∈ (0, 1). The algorithm returns an ϵ-approximation of f (x)

with probability at least 1 − δ in time polynomial in x , 1/ϵ and

log(1/δ). More formally, for an additive (or absolute) FPRAS we

have that:

Pr [f (x) − ϵ ≤ A(x, ϵ, δ) ≤ f (x) + ϵ)] ≥ 1 − δ ,

and for a multiplicative (or relative) FPRAS we have that:

Pr [f (x)/(1 + ϵ) ≤ A(x, ϵ, δ) ≤ (1 + ϵ)f (x)] ≥ 1 − δ .

5.1 Additive vs. Multiplicative Approximation

We start by showing that there exists an additive FPRAS for com-

puting the Shapley value for CQ¬s. The additive FPRAS for CQ¬s

is a generalization of the additive FPRAS for CQs. We observe that

when negated atoms are allowed along with self-joins, a fact f

may change the query result from false to true in one permutation,

while changing the query result from true to false in another per-

mutation. For a random permutationσ of the facts inDn, the result

of q(Dx∪σf ∪{ f })−q(Dx∪σf) is a random variable x ∈ {−1, 0, 1}.

By using the Hoeffding bound for sums of independent random

variables in bounded intervals [16], we get an additive FPRAS for

computing Shapley(D,q, f) by taking the average value of x over

O
(
log(1/δ)/ϵ2

)
samples of random permutations.

9

For CQs, an additive FPRAS is also a multiplicative FPRAS [20].

This is due to the gap property: there exists a polynomialp such that

for all databases D and facts f ∈ D it holds that Shapley(D,q, f) is

either zero or at least 1/p(|D |). We will now show that this prop-

erty does not hold when negation is added to the picture; hence,

this approach for obtaining a multiplicative approximation of the

Shapley value is no longer valid. As an example, consider the query

q() :- R(x), S(x,y),¬R(y)

and the databaseD constructed as follows. For every i ∈ {0, . . . , 2n}

we add to D an exogenous fact S(cix , c
i
y). Moreover, for every i ∈

{1, . . . ,n}we add toD an exogenous fact R(cix) and an endogenous

fact R(ciy), and for every i ∈ {0,n + 1, . . . , 2n} we add an endoge-

nous fact R(cix). We will show that the fact f = R(c0x) does not

satisfy the gap property.

First, note that Dx |= q since for every i ∈ {1, . . . ,n}, there is

a homomorphism h from q to D, where h(x) = cix and h(y) = ciy .

For the fact f to change the query result from false to true, we first

need to add all the endogenous facts of the form R(ciy) in D to a

permutation. Moreover, the first endogenous fact of the form R(cix)

that will be added to the permutation will change the query result

from false to true, and no fact could change it back to false; hence,

the fact f has to appear before all these facts in a permutation.

Overall, there is exactly one subset E ⊆ Dn , such that (Dx ∪E) 6|= q

and (Dx ∪ E ∪ { f }) |= q. We have that |E | = n and |Dn | = 2n + 1;

thus, we conclude the following.

|Shapley(D,q, f)| =
n!n!

(2n + 1)!
≤

1

2n
= 2−Θ(|D |)

We can generalize this result and show that the gap property

does not hold for any “natural” CQ with negation and without con-

stants.

Theorem 5.1. Let q be a satisfiable CQ¬ with at least one negated

atom. Assume that q has no constants, and that q is positively con-

nected. There is a sequence {Dn}
∞
n=1 of databases and a fact f such

that |Dn | = Θ(n) and 0 < |Shapley(Dn ,q, f)| ≤ 2−Θ(n).

Note that by “positively connected” we mean that the positive

atoms of q are connected (i.e., every two variables of q are con-

nected in the Gaifman graph through positive atoms). The proof

of Theorem 5.1 is nontrivial and, as usual, we give it in the Appen-

dix.

Theorem 5.1 implies that we need at least 2Θ(|D |) sample per-

mutations (and, in particular, exponential time) to obtain a multi-

plicative approximation from the additive one. This does not mean

that there is no multiplicative approximation for CQ¬s; however,

we will show that there are CQ¬s for which a multiplicative ap-

proximation does not exist at all (under conventional complexity

assumptions).

5.2 Hardness of Multiplicative Approximation

We now explore the complexity of computing a multiplicative ap-

proximation for the Shapley value through a connection to the

problem of relevance to the query.

Definition 5.2 (Relevance). Let q be a Boolean query andD a data-

base. A fact f ∈ Dn is relevant to q if q(Dx ∪ E) , q(Dx ∪ E ∪ { f })

for some E ⊆ Dn ; we then say that f is positively (resp., negatively)

relevant to q if q(Dx ∪ E ∪ { f }) is true (resp., false).

This problem of determining whether a fact is relevant to a

query is strongly related to the approximation problem, as we can-

not obtain a multiplicative approximation in cases where we can-

not decide if the Shapley value is zero or not. In turn, deciding on

zeroness is related to the relevance problem.Clearly, if Shapley(D,q, f) ,

0, then f is relevant to q. However, it may be the case that f is rele-

vant to q but Shapley(D,q, f) = 0, as the following example shows.

Example 5.3. Consider the query q() :- R(x,y),¬R(y,x) and the

database {R(1, 2),R(2, 1)} where both facts are endogenous. The

fact R(1, 2) is positively relevant for E = ∅, and it is negatively

relevant for E = {R(2, 1)}. Therefore, the number of permutations

where f changes the query result from false to true is equal to the

number of permutations where f changes the result from true to

false and we have that Shapley(D,q, f) = 0. �

Nevertheless, there are cases where the relevance problem co-

incides with the problem of deciding whether the Shapley value

is zero. The Shapley value of a relevant fact f can be zero if and

only if f is both positively and negatively relevant. This may be

the case if and only if f belongs to a relation that appears both as

a positive and a negative atom in the query. We call a relation sym-

bol polarity consistent if it appears in q only in positive atoms or

only in negative atoms. A fact over a polarity-consistent relation

symbol is relevant to q if and only if Shapley(D,q, f) , 0.

Example 5.4. Consider again the queries of our running example

(Example 2.2). Clearly, in the queriesq1 and q2, every relation is po-

larity consistent, as the queries are self-join-free. The same holds

for the queryq3, asAdv and Reg occur only in positive atomswhile

TA occurs only in negative atoms. The query q4, on the other hand,

contains both polarity-consistent relations (i.e., Adv) and relations

that occur in both positive and negative atoms (i.e., TA and Reg).

In this case, a fact f in the relationAdv is relevant to q4 if and only

if Shapley(D,q4, f) > 0. However, for a fact f in TA it may be the

case that f is relevant to q4 while Shapley(D,q4, f) = 0. �

It is straightforward to show that the relevance to a CQ with-

out negation can be decided in polynomial time. The problem is

known to be NP-complete for Datalog programswith recursion [4].

We now show that there exists a CQ¬ q containing a polarity-

consistent relation T , such that the relevance of a T -fact to q is

NP-complete. (Hence, so is the problem of deciding if the Shapley

value is zero.)

Consider the following CQ¬:

qRST¬R() :- T (z),¬R(x),¬R(y),R(z),R(w), S(x,y,z,w)

We prove the following.

Proposition 5.5. Deciding whether f ∈ TD is relevant to qRST¬R,

given D and f , is NP-complete.

Proof. (Sketch) The proof, given in theAppendix, is by a reduc-

tion from the satisfiability problem for (2+, 2−, 4+−)-CNF formulas,

which are formulas of the form c1∧· · ·∧cm where each clause ci is

either of the form (xj ∨xk) or (¬xj ∨¬xk) or (xj ∨xk ∨¬xr ∨¬xp).

We prove that this problem is NP-complete in the Appendix. We

10

R

c

a

1

2

3

4

S

1 2 a a

b b 1 3

3 4 1 2

d d c c

T

c

a

1

2

3

4

Figure 4: The database constructed in the proof of Proposi-

tion 5.5 for (x1 ∨ x2) ∧ (¬x1 ∨ ¬x3) ∧ (x3 ∨ x4 ∨ ¬x1 ∨ ¬x2).

reduce this problem to the relevance problem for a fact f in the re-

lation T . Figure 4 illustrates the database constructed in the proof

of Proposition 5.5 for the formula (x1 ∨ x2) ∧ (¬x1 ∨ ¬x3) ∧ (x3 ∨

x4∨¬x1∨¬x2). The gray facts are exogenous. We now explain the

general idea of the proof using this example. Given a formulaφ, we

first add to D an endogenous fact R(i) and an exogenous fact T (i)

for every i ∈ {1, . . . , n} (where n is the number of variables used

in φ). Then, for every clause of the form (xi ∨xj) we add an exoge-

nous fact S(i, j, a, a) to D (e.g., the fact S(1, 2, a, a) in the database

of Figure 4 represents the clause (x1 ∨ x2)). For every clause of the

form (¬xi ∨ ¬xj) we add an exogenous fact S(b, b, i, j) to D (e.g.,

the fact S(b, b, 1, 3) in the database of Figure 4 represents the clause

(¬x1 ∨¬x3)). For every clause of the form (xk ∨xr ∨¬xi ∨¬xj)we

add an exogenous fact S(k, r , i, j) to D (e.g., the fact S(3, 4, 1, 2) in

the database of Figure 4 represents the clause (x3∨x4∨¬x1∨¬x2)).

We also add to D the exogenous facts R(a) and T (a).

Next, we add an endogenous fact f = T (c) to D and our goal

is to decide whether f is relevant . For f to change the query re-

sult in any permutation, we also add the exogenous facts R(c) and

S(d, d, c, c); thus, for every E ⊆ Dn, it holds that (Dx ∪ E ∪ { f }) |=

qRST¬R. We show that f is relevant to qRST¬R if and only the for-

mula φ is satisfiable. First, note that Dx |= qRST¬R. In the exam-

ple of Figure 4, this is due to the existence of the facts S(1, 2, a, a),

R(a) and T (a) and the absence of the fact T (c) in Dx. We can as-

sume that every (2+, 2−, 4+−)-CNF formula has a clause of the form

(xi ∨ xj) (hence, an exogenous fact of the form S(i, j, a, a) always

exists in D), since the satisfiablity problem is trivial for formu-

las that do not contain such a clause—the zero assignment satis-

fies all of them. Hence, for the fact f to change the query result

in a permutation, we first need to add a subset E of endogenous

facts of the form R(i) such that (Dx ∪ E) 6|= qRST¬R. We show

that the existence of a satisfying assignment z implies that such

a subset E exists (formally, E = {R(i) | z(xi) = 1}). On the other

hand, ifφ is not satisfiable, then such E does not exist. The formula

of our example is satisfiable (e.g., by the assignment z such that

z(x1) = z(x4) = 0 and z(x2) = z(x3) = 1), and the reader can verify

that indeed for E = {R(2),R(3)} we have that (Dx ∪ E) 6|= qRST¬R
while (Dx ∪ E ∪ { f }) |= qRST¬R. �

Corollary 5.6. Given a database D and a fact f ∈ TD , deciding

whether Shapley(D, qRST¬R, f) = 0 is NP-complete.

The existence of amultiplicative FPRAS for Shapley(D, qRST¬R, f)

would imply the existence of a randomized algorithm that, for ev-

ery δ ∈ (0, 1), returns zero if Shapley(D, qRST¬R, f) = 0 and a value

v , 0 otherwise, with probability at least 1−δ . Hence, we could ob-

tain a randomized algorithm for deciding if Shapley(D, qRST¬R, f) =

Algorithm 2: IsPosRelevant(D,q, f)

for h : Vars(q) → Dom(D) do

if h maps an atom α ∈ Neg(q) to some f ′ ∈ Dx then
continue

if h maps an atom α ∈ Pos(q) to some f ′ < D then
continue

P = { f ′ ∈ Dn | h maps an atom α ∈ Pos(q) to f ′}

N = { f ′ ∈ Dn | h maps an atom α ∈ Neg(q) to f ′}

if f < P then
continue

if (Dx ∪ (P \ { f }) ∪ (Negq (Dn) \ N)) 6|= q then
return true

return false

0 from amultiplicative FPRAS for Shapley(D, qRST¬R, f), in contra-

diction to the result of Corollary 5.6.

Note that in Proposition 5.5 (and Corollary 5.6) we consider a

fact that belongs to a polarity-consistent relation; however, the

query is not polarity-consistent as it contains a relation that ap-

pears both in a positive and a negative atom of q (i.e., the rela-

tion R). What about the cases where every relation of q is polarity-

consistent? We show that the problem of deciding whether the

Shapley value is zero can always be solved in polynomial time for

polarity-consistent queries. Hence, we conclude that having a non

polarity-consistent relation is a necessary condition for hardness

of this problem.

Proposition 5.7. Let q be a polarity-consistent CQ¬. Given a data-

base D and a fact f , the following decision problems are solvable in

polynomial time:

• Is f relevant to q?

• Is Shapley(D,q, f) = 0?

Since q is polarity-consistent, the relevance to q is the same

as the Shapley value being nonzero. Hence, to prove the propo-

sition, we introduce the algorithm IsPosRelevant (depicted as Al-

gorithm 2) for deciding whether a fact f is positively relevant to q.

The algorithm IsNegRelevant for deciding whether a fact is nega-

tively relevant is very similar, and we give it in the Appendix. In

the algorithms, we denote by Dom(D) the set of constants used in

the facts of D. Moreover, we denote by Negq(Dn) the set of facts

in Dn that appear in relations associated with negative atoms of q.

In IsPosRelevant, our goal is to decide if there is a subset E ⊆ Dn

such that (Dx∪E) 6|= q while (Dx∪E∪{ f }) |= q. Hence, we go over

all possible mappings h from the variables of q to the constants of

D, that map at least one positive atom ofq to f . Each suchmapping

defines a set P of facts f ′ ∈ Dn such that h maps a positive atom

of q to f ′, and a set N of facts f ′ ∈ Dn such that h maps a negative

atom ofq to f ′. For a mapping h to be an evidence for the relevance

of f , it has to map every positive atom of q to a fact of D (and at

least one such atom to f itself) and none of the negative atoms of

q to a fact of Dx (otherwise, h is not a homomorphism from q to

D). Moreover, it should be the case that every fact in P \ { f } and

none of the facts in N appears in the set E (the set of facts added

before f in a permutation). This ensures that (Dx ∪ E ∪ { f }) |= q.

However, this is not enough, as it may be the case that (Dx∪E) |=

q as well. To make sure that this is not the case, there must exist

11

a set F of facts corresponding to negative atoms of q such that

(Dx ∪ (P \ f) ∪ F) 6|= q and F does not contain any fact of N . Then,

for E′ = (E∪F)we have that (Dx∪E
′) 6|= qwhile (Dx∪E

′∪{ f }) |= q.

The main observation here is that since q is polarity consistent, ev-

ery fact corresponds to either positive or negative atoms of q, but

not both; hence, we can add all the facts in Negq(Dn) \ N to F ,

and check whether the resulting set satisfies the conditions. If this

is not the case, then no subset of F satisfies this condition, and h

cannot be the evidence to the relevance of f . The proof of correct-

ness of the algorithm is in the Appendix. The algorithm terminates

in polynomial time since the number of mappings from the vari-

ables of q to the constants ofD is polynomial in the size ofD when

considering data complexity.

Interestingly, while the relevance problem can be solved in poly-

nomial time for any polarity-consistent CQ, this is no longer the

case when considering a union of polarity-consistent CQs. Specif-

ically, we show that the relevance to the UCQ¬ qSAT() :- q1() ∨

q2() ∨ q3() ∨ q4() is NP-complete, where:

q1() :- C(x1, x2,x3,v1,v2,v3),T (x1,v1),T (x2,v2),T (x3,v3)

q2() :- V (x),¬T (x, 1),¬T (x, 0)

q3() :- T (x, 1),T (x, 0)

q4() :- R(0)

In particular, we show that it is hard to decide whether the fact

R(0) is relevant to qSAT.

Proposition 5.8. Given a database D and the fact f = R(0), decid-

ing whether f is relevant to qSAT is NP-complete.

The proof of the proposition is by a reduction from the satisfi-

ability problem for 3CNF formulas. Given an input formula φ, we

construct an input databaseD to our problem by adding a factV (i)

and two facts T (i, 1) and T (i, 0) for every variable xi , and a fact

C(i, j,k,vi ,vj ,vk) for every clause (li ∨ lj ∨ lk) in φ, where lr is

either xr or ¬xr for every r ∈ {i, j,k}. If lr = xr then vr = 0 and if

lr = ¬xr then vr = 1. Intuitively, the purpose of the first query is

to ensure that the assignment satisfies every clause, the purpose of

the second query is to ensure that the assignment assigns at least

one value to each variable, and the purpose of the third query is

to ensure that the assignment assigns at most one value to each

variable. Hence, we show that there exists a satisfying assignment

if and only if the fact R(0) is (positively) relevant to qSAT.

Since the relation R is polarity-consistent and only occurs as a

positive atom in qSAT, we again conclude the following.

Corollary 5.9. Given a database D and a fact f ∈ RD , deciding

whether Shapley(D, qSAT, f) = 0 is NP-complete.

Note thatwhile every individual CQ¬ in the query qSAT is polarity-

consistent, the whole query is not, as the relation T appears as a

positive atom in q1 and q3 and as a negative atom in q2. If a UCQ
¬

q is such that the whole query is polarity-consistent, then the rel-

evance problem is solvable in polynomial time. This is due to the

fact that a fact f is relevant to such a UCQ q if and only if it is

relevant to at least one of the CQs in q. Hence, we can use our

algorithms IsPosRelevant and IsNegRelevant for every individual

CQ¬ in q to decide whether a fact f is relevant to q. In this case, we

cannot preclude the existence of a multiplicative approximation.

6 CONCLUDING REMARKS

We have investigated the complexity of computing the Shapley

value for CQs and UCQs with negation. In particular, we have gen-

eralized a dichotomy by Livshits et al. [20] to classify the class of

all CQs with negation and without self-joins. We further general-

ized this dichotomy to account for exogenous relations that are

allowed to contain only exogenous facts. We have also studied the

complexity of approximating the Shapley value in a multiplicative

manner. The presence of negation makes this approximation fun-

damentally harder than themonotonic case, since the gap property

(that unifies the additive and multiplicative FPRAS task) no longer

holds. We have shown the hardness of approximation by making

the connection to the problem of deciding relevance to a query,

and by establishing hardness results for that problem.

This work leaves open several immediate directions for future

research. In particular, we do not yet have a dichotomy for the

class of CQs with self-joins (with or without negation). We know

from past research that self-joins may cast dichotomies consider-

ably more challenging to prove [9]. In addition, we have not yet

studied the implication of the constraint of endogenous relations

as an analogue of the exogenous relations; we believe that this

problem tightly relates to the problem of model counting for con-

junctive queries that has only recently been resolved [1]. Finally,

we leave open some fundamental questions about the algorithmic

and proof techniques for Shapley approximation. Is there a mul-

tiplicative FPRAS in the absence of the gap property? Are there

cases where the relevance problem is tractable but a multiplicative

approximation is computationally hard (beyond some ratio)?

REFERENCES
[1] Antoine Amarilli and Benny Kimelfeld. 2019. Model Counting for Conjunctive

Queries Without Self-Joins. CoRR abs/1908.07093 (2019).
[2] Robert J Aumann and Roger B Myerson. 2003. Endogenous formation of links

between players and of coalitions: An application of the Shapley value. In Net-
works and Groups. Springer, 207–220.

[3] Haris Aziz and Bart de Keijzer. 2014. Shapley meets Shapley. In STACS. 99–111.
[4] Leopoldo E. Bertossi and Babak Salimi. 2017. Causes for query answers from

databases: Datalog abduction, view-updates, and integrity constraints. Int. J.
Approx. Reasoning 90 (2017), 226–252.

[5] Omar Besbes, Antoine Désir, Vineet Goyal, Garud Iyengar, and Raghav Singal.
2019. Shapley Meets Uniform: An Axiomatic Framework for Attribution in On-
line Advertising. InWWW. ACM, 1713–1723.

[6] Luca Console and Pietro Torasso. 1991. A spectrum of logical definitions of
model-based diagnosis. Computational Intelligence 7 (1991), 133–141.

[7] Nilesh N. Dalvi, Christopher Ré, and Dan Suciu. 2009. Probabilistic databases:
diamonds in the dirt. Commun. ACM 52, 7 (2009), 86–94.

[8] Nilesh N. Dalvi and Dan Suciu. 2004. Efficient Query Evaluation on Probabilistic
Databases. In VLDB. Morgan Kaufmann, 864–875.

[9] Nilesh N. Dalvi and Dan Suciu. 2012. The dichotomy of probabilistic inference
for unions of conjunctive queries. J. ACM 59, 6 (2012), 30:1–30:87.

[10] Thomas Eiter and Georg Gottlob. 1995. The Complexity of Logic-Based Abduc-
tion. J. ACM 42, 1 (1995), 3–42.

[11] Thomas Eiter, Georg Gottlob, and Nicola Leone. 1997. Abduction from Logic
Programs: Semantics and Complexity. Theor. Comput. Sci. 189, 1-2 (1997), 129–
177.

[12] Robert Fink and Dan Olteanu. 2016. Dichotomies for Queries with Negation in
Probabilistic Databases. ACM Trans. Database Syst. 41, 1 (2016), 4:1–4:47.

[13] John Grant and Anthony Hunter. 2006. Measuring inconsistency in knowledge-
bases. J. Intell. Inf. Syst. 27, 2 (2006), 159–184.

[14] FarukGul. 1989. Bargaining foundations of Shapley value. Econometrica: Journal
of the Econometric Society (1989), 81–95.

[15] Joseph Y. Halpern and Judea Pearl. 2001. Causes and Explanations: A Structural-
Model Approach: Part 1: Causes. In UAI. 194–202.

[16] Wassily Hoeffding. 1994. Probability Inequalities for sums of Bounded Random
Variables. Springer New York, New York, NY, 409–426.

12

[17] Anthony Hunter and Sébastien Konieczny. 2010. On the measure of conflicts:
Shapley Inconsistency Values. Artif. Intell. 174, 14 (2010), 1007–1026.

[18] Christophe Labreuche and Simon Fossier. 2018. Explaining Multi-Criteria De-
cision Aiding Models with an Extended Shapley Value. In IJCAI. ijcai.org, 331–
339.

[19] Zhenliang Liao, Xiaolong Zhu, and Jiaorong Shi. 2015. Case study on initial
allocation of Shanghai carbon emission trading based on Shapley value. Journal
of Cleaner Production 103 (2015), 338–344.

[20] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. 2020.
The Shapley Value of Tuples in Query Answering. (2020). To appear in ICDT.

[21] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In NIPS. 4765–4774.

[22] Richard TB Ma, Dah Ming Chiu, John Lui, Vishal Misra, and Dan Ruben-
stein. 2010. Internet Economics: The use of Shapley value for ISP settlement.
IEEE/ACM Transactions on Networking (TON) 18, 3 (2010), 775–787.

[23] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
2010. The Complexity of Causality and Responsibility for Query Answers and
non-Answers. PVLDB 4, 1 (2010), 34–45.

[24] Ramasuri Narayanam and Yadati Narahari. 2011. A shapley value-based ap-
proach to discover influential nodes in social networks. IEEE Transactions on
Automation Science and Engineering 8, 1 (2011), 130–147.

[25] Tatiana Nenova. 2003. The value of corporate voting rights and control: A cross-
country analysis. Journal of financial economics 68, 3 (2003), 325–351.

[26] Leon Petrosjan and Georges Zaccour. 2003. Time-consistent Shapley value allo-
cation of pollution cost reduction. Journal of economic dynamics and control 27,
3 (2003), 381–398.

[27] Babak Salimi, Leopoldo E. Bertossi, Dan Suciu, and Guy Van den Broeck. 2016.
Quantifying Causal Effects on Query Answering in Databases. In TAPP.

[28] Thomas J Schaefer. 1978. The complexity of satisfiability problems. In Proceed-
ings of the tenth annual ACM symposium on Theory of computing. ACM, 216–226.

[29] Lloyd S Shapley. 1953. A Value for n-Person Games. In Contributions to the
Theory of Games II, Harold W. Kuhn and Albert W. Tucker (Eds.). Princeton Uni-
versity Press, Princeton, 307–317.

[30] Bruno Yun, Srdjan Vesic, Madalina Croitoru, and Pierre Bisquert. 2018. Inconsis-
tency Measures for Repair Semantics in OBDA. In IJCAI. ijcai.org, 1977–1983.

13

A DETAILS FOR SECTION 2

We now provide the missing computations for Example 2.3. If the

fact f r3 appears in a permutation before f t2 and conditions (1) and

(2) do not hold, then f r3 changes the query result from false to true.

Thus, there are five possible subsets of the endogenous facts that

can appear before f r3 in a permutation where f r3 affects the query

result: ∅, { f t1 }, { f
r
1 , f

t
1 }, { f

r
2 , f

t
1 }, { f

r
1 , f

r
2 , f

t
1 }. To each one of those

subsets we can add the fact f t3 ; hence, overall, we have ten possible

subsets and we conclude that:

Shapley(D,q1, f
r
3) =

7! + 2 · 1! · 6! + 3 · 2! · 5! + 3 · 3! · 4! + 4! · 3!

8!
=

27

140
As for the fact f r1 , it changes the query result from false to

true if both f r2 and f t1 appear later in the permutation, and none

of the conditions (1) or (3) holds. Hence, the subsets of the en-

dogenous facts that can appear before f r1 in a permutation are:

∅, { f t3 }, { f
t
2 }, { f

r
3 , f

t
2 }, { f

r
3 , f

t
2 , f

t
3 }, and we have that:

Shapley(D,q1, f
r
1) =

7! + 2! · 6! + 2! · 5! + 3! · 4!

8!
=

27

140

The same calculations hold for the fact f r2.

Finally, adding f r4 to a permutation before f r5 would change the

query result from false to true, unless conditions (2) or (3) hold.

In this case, there is a much larger number of subsets of facts that

can appear before f r4 in a permutation where it changes the query

result. We divide these subsets to four groups:

• Subsets without any fact from Reg, that is, all subsets of

{ f t1 , f
t
2 , f

t
3 }.

• Subsets where the only possible facts from Reg are f r1 , f
r
2 . In

this group we have: { f r1 , f
t
1 }, { f

r
2 , f

t
1 }, { f

r
1 , f

r
2 , f

t
1 }. To each

of these subsets we can add a subset of the facts { f t2 , f
t
3 }.

• Subsets that include only the fact f r3 fromReg. Here we have

the subset { f r3 , f
t
2 }, and we can add to it every subset of

{ f t1 , f
t
3 }.

• Subsets that contain the fact f r3 and at least one of f r1 , f
r
2 ,

that is, { f r3 , f
t
2 , f

r
1 , f

t
1 }, { f

r
3 , f

t
2 , f

r
2 , f

t
1 }, and { f

r
3 , f

t
2 , f

r
1 , f

r
2 , f

t
1 }.

To each one of these subsets we can add the fact f t3 . Overall we

have thirty possible subsets, and we conclude that:

Shapley(D,q1, f
r
4) =

7! + 3 · 1! · 6! + 6 · 2! · 5! + 8 · 3! · 4! + 7 · 4! · 3! + 4 · 5! · 2! + 6! · 1!

8!
=

13

42
The same calculations hold for Shapley(D,q1, f

r
5).

B DETAILS FOR SECTION 3

In this section, we provide the proofs of the lemmas used in the

proof of hardness of Theorem 3.1. For convenience, we give the

theorem here again.

Theorem 3.1. Let q be a CQ¬ without self-joins. If q is hierarchi-

cal, then Shapley(D,q, f) can be computed in polynomial time, given

D and f . Otherwise, its computation is FP#P-complete.2

We start by proving the positive side of the theorem.

2Recall that FP#P is the class of problems that can be solved in polynomial time with
an oracle to a #P-complete problem.

Lemma 3.2. Letq be a hierarchical CQ¬ without self-joins. There is

a polynomial-timealgorithm for computing the number |Sat(D,q,k)|

of k-subsets E of Dn, such that (Dx ∪ E) |= q, given D and k .

Proof. The algorithm CntSat of Livshits et al. [20] for comput-

ing |Sat(D,q,k)| is a recursive algorithm that reduces the number

of variables in the query with each recursive call. If there is a vari-

able x that occurs in every atom of q (i.e., a root variable), then the

problem is solved using dynamic programming, by considering ev-

ery possible value of x . If no variable occurs in all atoms, then the

query can be split into two disjoint sub-queries, in which case the

problem is solved separately for each one of them. The treatment

of these two cases applies to any hierarchical CQ¬ as it only relies

on the hierarchical structure of the query; however, the treatment

of the base case, when no variables occur in q, does not apply to

queries with negation, and we now explain how it should be mod-

ified.

If at least one atom of q does not correspond to any fact of D,

then CntSat will return 0, as D 6 |= q. This will also be the case if

k < |A| or k > |Dn |, where A = Atoms(q) ∩ Dn. In any other

case, the algorithm will return
(Dn−|A |
k−|A |

)
which is the number of

possibilities to select k − |A| facts among those in Dn \A (as every

fact of A should be selected to satisfy q). By modifying the base

case in the following way, we ensure that the algorithm returns

|Sat(D,q,k)| for a CQ¬. The algorithm will return 0 in one of the

following cases: (a) at least one of the positive atoms of q does

not appear as a fact of D, (b) at least one of the negative atoms

of q appears as a fact of D, or (c) k < |A+ | or k > |Dn | where

A+ = Pos(q)∩Dn. In any other case, the result will be
(Dn−|A

+ |
k−|A+ |

)
. It

is rather straightforward that the modified algorithm will indeed

return |Sat(D,q,k)| in polynomial time, based on the correctness

and efficiency of CntSat. �

Next, we prove the hardness side of the theorem. First, we prove

hardness for the basic non-hierarchical self-join-free queries, and

thenwe reduce these problems to the problemof computing Shapley(D,q, f)

for any non-hierarchical self-join-free CQ¬ q. We start by proving

the following.

Lemma 3.3. Ifq is one of q¬RS¬T, qR¬ST, or qRS¬T, then computing

Shapley(D,q, f) is FP#P-complete.

We prove the lemma separately for each one of the queries. We

start with the query q¬RS¬T.

Lemma B.1. Computing Shapley(D, q¬RS¬T, f) is FP
#P-complete.

Proof. We construct a reduction from the problem of comput-

ing Shapley(D, qRST, f) to that of computing Shapley(D, q¬RS¬T, f).

We make the following assumptions on the input database D to

the first problem: (a) every fact in S is exogenous, and (b) for ev-

ery S(a,b) in D, it holds that both R(a) and T (b) are in D as well.

The database used in the proof of hardness for qRST [20] satisfies

these properties; hence, computing Shapley(D, qRST, f) for such an

input is FP#P-complete.

Let D be such database, and let f ∈ Dn. Assume, without loss of

generality, that f = R(0) (the proof for a fact f in T is symmetric).

Let:

P1 = {σ | σ ∈ ΠDn
, (σf ∪ Dx) 6|= qRST, (σf ∪ Dx ∪ { f }) |= qRST}

14

P2 = {σ | σ ∈ ΠDn
, (σf ∪Dx) |= q¬RS¬T, (σf ∪Dx∪{ f }) 6|= q¬RS¬T}

Recall that ΠDn
is the set of all possible permutations of the en-

dogenous facts, and σf is the set of facts that appear before f in the

permutation σ . That is, P1 and P2 are the sets of all permutations

where f changes the query result from false to true w.r.t. qRST and

q¬RS¬T, respectively. We claim that |P1 | = |P2 | due to a bijection

that exist between the two sets.

Let д be a function defined as follows:

д : P1 −→ P2, д(σ) = σR

where σR is the permutation σ in reversed order (i.e., σi = σn−i+1
for all i = {1, 2, ...,n}, where n = |Dn |). First, we prove that if σ ∈

P1 thenд(σ) ∈ P2. If f changes the query result from false to true in

σ , then for every S(a,b) ∈ Dx, at least one of the facts R(a),T (b) is

not inDx∪σf , and there is at least one factT (c) inDx∪σf such that

S(0, c) ∈ Dx. According to our assumption, for every S(a,b) ∈ Dx

both R(a) and T (b) exist in D; hence, at least one of those is in σR
f
.

Moreover, there is at least one fact T (c), which is not in Dx ∪ σ
R
f
,

such that S(0, c) ∈ Dx. We conclude that (Dx ∪ σf) |= q¬RS¬T
because S(0, c) satisfies q¬RS¬T and T (c) < (Dx ∪ σf). Moreover,

since for every fact S(a,b) for a , 0 at least one of R(a) or T (b) is

in Dx ∪σf , we have that (Dx ∪σf ∪ { f }) 6|= q¬RS¬T, and д(σ) ∈ P2.

Next, we prove that the function is injective and surjective.

• Injectivity: Let σ1,σ2 ∈ P1 such that σ1 , σ2. It follows

directly that σR1 , σR2 .

• Surjectivity: Let σ ∈ P2. Since (Dx ∪ σf) |= q¬RS¬T, it holds

that for every S(a,b) ∈ Dx such that a , 0, at least one of

R(a),T (b) is in Dx ∪σf . In addition, since (Dx∪σf ∪ { f }) 6|=

q¬RS¬T, there is a fact S(0, c) ∈ Dx such that T (c) is not in

Dx∪σf . Observe that σR ∈ P1, as for every S(a,b) ∈ Dx such

that a , 0, at least one of R(a),T (b) is not in Dx ∪ σ
R
f
, and

there is a fact S(0, c) ∈ Dx such thatT (c) is in Dx∪σ
R
f
. Thus

f changes the query result from false to true w.r.t. qRST in

σR . Since σR
R
= σ , we get that д(σR) = σ .

Thus, by the definition of the Shapley value we obtain that:

Shapley(D, qRST, f) =
|P1 |

n!
=

|P2 |

n!
= −Shapley(D, q¬RS¬T, f)

and that concludes our proof. �

Next, we give the proof of hardness for qR¬ST.

Lemma B.2. Computing Shapley(D, qR¬ST, f) is FP
#P-complete.

Proof. We show a reduction from the problem of computing

Shapley(D, qRST, f) to that of computing Shapley(D, qR¬ST, f). As

in the proof of the previous lemma, we make the assumption that

every fact in S is exogenous, while preserving the hardness of the

original problem. Let D be a database, and let f ∈ Dn. Assume,

without loss of generality, that f = R(0). Let D′ be a database over

the same schema as D, where the relations R and T of D′ consist

of the exact same set of facts as the relations R and T in D. As for

the relation S in D′, it will contain the following set of facts:

SD
′
= {S(a,b) | R(a),T (b) ∈ D, S(a,b) < D}

Observe that D′n = Dn. we define two sets of permutations:

P1 := {σ ∈ ΠDn
| (Dx ∪ σf) 6|= qRST, (Dx ∪ σf ∪ { f }) |= qRST}

P2 := {σ ∈ ΠDn
| (D′x ∪ σf) 6|= qR¬ST, (D

′
x ∪ σf ∪ { f }) |= qR¬ST}

We prove that P1 = P2 by showing a mutual inclusion between the

sets:

P1 ⊆ P2: Let σ ∈ P1. Since (Dx ∪ σf) 6|= qRST, for every pair of

facts R(a),T (b) in σf , we have that S(a,b) < Dx. Moreover, since

(Dx ∪ σf ∪ { f }) |= qRST, there is a fact S(0, c) ∈ Dx such that

T (c) ∈ σf . By the definition of SD
′
, we have that S(a,b) ∈ D′x for

every pair of facts R(a),T (b) in σf ; hence, (D
′
x ∪ σf) 6|= qR¬ST. We

also have that S(0, c) < D′x (whileT (c) ∈ σf), and we conclude that

(Dx ∪ σf ∪ { f }) |= qR¬ST.

P2 ⊆ P1: Let σ ∈ P2. For every R(a),T (b) ∈ σf , there is a fact

S(a,b) ∈ D′x, and there is also a factT (c) ∈ σf such that S(0, c) < D
′
x.

Thus, it holds that for every pair of facts R(a),T (b) ∈ σf , the fact

S(a,b) does not belong to Dx by the definition of SD
′
, so R(a),T (b)

cannot be a part of any answer to qRST, and overall (Dx ∪ σf) 6|=

qRST. Moreover, S(0, c) ∈ Dx, so the set of facts {R(0), S(0, c),T (c)}

satisfies qRST, and we conclude that (D′x ∪ σf ∪ { f }) |= qRST.

Finally, we deduce that:

Shapley(D, qRST, f) =
|P1 |

n!
=

|P2 |

n!
= Shapley(D′, qR¬ST, f)

where n = |Dn | = |D
′
n |. �

Next, we prove hardness for the query qRS¬T. This proof of hard-

ness is the most intricate one due to the non-symmetrical structure

of the query.

Lemma B.3. Computing Shapley(D, qRS¬T, f) is FP
#P-complete.

Proof. We construct a reduction from the known #P-complete

problem of computing |IS(д)|—the number of independent sets in

a bipartite graph д. Given an input graph д = (A ∪ B,E), where A

and B are the disjoint sets of vertices in д, we define the following

set:

S(д) := {A′ ∪ B ′ |A′ ⊆ A,B ′ ⊆ B,∀(a,b)∈E (a ∈ A
′ ⇒ b ∈ B ′)}

That is, S(д) contains all subsets of the vertices in д, such that if a

vertex from A is in the subset, all of its neighbours from B are in

the subset as well. Note that a subset in S(д)may include additional

vertices from B that not connected to any vertex from A in the

subset.We denote by S(д,k) the set of all E ∈ S(д) such that |E | = k .

Given a bipartite graph д = (A ∪ B,E) where |A| = m, |B | = n,

and N = m + n such that none of the vertices in д is isolated, we

build a database D0 which consists of the following facts: an en-

dogenous fact R(a) for every vertex a ∈ A, an endogenous factT (b)

for every vertex b ∈ B, an exogenous fact S(a,b) for every edge

(a,b) ∈ E, and another endogenous fact T (0) for a fresh constant

0. In addition, for every a ∈ A, D0 will contain the exogenous fact

S(a, 0). We will compute the Shapley value for the fact f = T (0).

(In fact, we will compute 1 − Shapley(D0, qRS¬T, f).)

There are two types of permutations σ ∈ ΠD0
n
for which it holds

that qRS¬T(D
0
x ∪ σf) = qRS¬T(D

0
x ∪ σf ∪ { f }) (i.e., permutations

where f does not change the result of qRS¬T):

15

(1) (D0
x ∪ σf) 6|= qRS¬T and (D0

x ∪ σf ∪ { f }) 6|= qRS¬T. In this

case, no fact from R is in σf . Otherwise, there is R(a) ∈ σf
such that R(a), S(a, 0) is an answer to qRS¬T, based on the

construction ofD0, in which case (D0
x∪σf) |= qRS¬T. Adding

f cannot form a new answer to the query. The number of

permutations that satisfy this property is P0→0 =
(N + 1)!

m + 1
,

since each of them+1 facts in RD ∪{ f } has an equal chance

to be the first (among these facts) to appear in a permutation,

and we are interested in the permutations where f appears

before any fact in RD .

(2) (D0
x∪σf) |= qRS¬T and (D

0
x∪σf ∪{ f }) |= qRS¬T. Here, we ob-

serve that F = {a | R(a) ∈ σf } ∪ {b | T (b) ∈ σf } is a subset

of vertices inд such that F < S(д). Otherwise, we get that for

every S(a,b) ∈ D0
x if R(a) ∈ σf then T (b) ∈ σf , by the def-

inition of S(д). Therefore, none of the pairs R(a), S(a,b) ∈

(Dx ∪ σf) is an answer to qRS¬T, since T (b) ∈ σf as well.

Hence, every pair of facts from R and S that satisfies qRS¬T
is of the form R(a), S(a, 0), but when we add f to the permu-

tation, none of these pairs satisfies the query anymore, in

contradiction to the fact that (D0
x ∪ σf ∪ { f }) |= qRS¬T. We

denote the number of permutations that satisfy this prop-

erty as P1→1.

Next, we denote by P1→0 the number of permutations inΠD0
n
where

f changes the result of qRS¬T from true to false. We have N + 1 en-

dogenous facts in D0
n , so we conclude that:

P0→0 + P1→1 + P1→0 = (N + 1)!

Therefore, it holds that

P1→0 = (N + 1)! − (P0→0 + P1→1)

By the definition of the Shapley value for database facts (Defini-

tion 2) we obtain that:

Shapley(D0
, qRS¬T, f) =

P0→0 · 0 + P1→1 · 0 + P1→0 · (−1)

(N + 1)!

=

(N + 1)! − (P0→0 + P1→1)

(N + 1)!
= 1 −

P0→0 + P1→1

(N + 1)!

Hence, we are able to compute P1→1 from the Shapley value of f

in the following way:

P1→1 = (1 − Shapley(D
0
, qRS¬T, f)) · (N + 1)! −

(N + 1)!

m + 1

In the next step, we build N + 1 instances (Dr
, f) for every

r ∈ {1, ...,N + 1} as follows: the database Dr will contain an en-

dogenous fact R(a) for every vertex a ∈ A, an endogenous fact

T (b) for every vertex b ∈ B, an exogenous fact S(a,b) for every

edge (a,b) ∈ E, and the endogenous fact T (0). In addition, for ev-

ery i ∈ {1, ..., r }, the database Dr will contain an endogenous fact

R(0i) and the exogenous fact S(0i , 0). Once again, we consider the

two types of permutations σ ∈ ΠDr
n
, where f does not change the

result of qRS¬T from true to false:

(1) (Dr
x ∪ σf) |= qRS¬T and (Dr

x ∪ σf ∪ { f }) |= qRS¬T. In this

case, the set F = {a | R(a) ∈ σf ,a , 0i } ∪ {b | T (b) ∈ σf } of

vertices in д is such that F < S(д). Otherwise, we have that

the only pairs of facts from R and S satisfying qRS¬T are

of the form R(0i), S(0i , 0), which is a contradiction to the

fact that (Dr
x ∪ σf ∪ { f }) |= qRS¬T, since f is “cancelling”

each of these pairs (i.e., {R(0i), S(0i , 0),T (0)} 6|= qRS¬T). The

number of permutations satisfying this property is: Pr1→1 =

P1→1 ·mr , wheremr =
(N+r+1

r

)
·r !, as the r endogenous facts

of the form R(0i) can be added to every such permutation

in every possible position without affecting the result of the

query.

(2) (Dr
x ∪ σf) 6|= qRS¬T and (Dr

x ∪ σf ∪ { f }) 6|= qRS¬T. To en-

sure that (Dr
x ∪ σf) 6|= qRS¬T, none of the facts R(0i) can

appear in σf (or, otherwise, the pair R(0i), S(0i , 0) would

satisfy the query). Furthermore, The set F = {a | R(a) ∈

σf ,a , 0i } ∪ {b | T (b) ∈ σf } must be such that F ∈ S(д)

or, otherwise, there is S(a,b) ∈ Dr
x such that R(a) ∈ σf

and T (b) < σf , which implies that (Dx ∪ σf) |= qRS¬T, in

contradiction to our assumption. The number of such per-

mutations is: Pr0→0 =
∑N
k=0
|S(д,k)| · k! · (N − k + r)!.

Hence, we have that:

Shapley(Dr
, qRS¬T, f) = 1−

Pr0→0 + P
r
1→1

(N + r + 1)!
= 1−

P1→1 ·mr + P
r
0→0

(N + r + 1)!

We get that:

Pr0→0 = (1 − Shapley(D
r
, qRS¬T, f)) · (N + r + 1)! − P1→1 ·mr =

N∑
k=0

|S(д,k)| · k! · (N − k + r)!

(Recall that P1→1 can be computed from the Shapley value of the

factT (0) in the instance D0.) As a consequence, we get a system of

N + 1 equations:

©­­­«

0!(N + 1)! 1!N ! ... N !1!

0!(N + 2)! 1!(+1)! ... N !2!

: : : :

0!(2N + 1)! 1!(2N)! ... N !(N + 1)!

ª®®®
¬
©­­­«

|S(д, 0)|

|S(д, 1)|

:

|S(д,N)|

ª®®®
¬

=

©­­­
«

(1 − Shapley(D1
, qRS¬T, f)) · (N + 2)! − P1→1 ·m1

(1 − Shapley(D2
, qRS¬T, f)) · (N + 3)! − P1→1 ·m2

:

(1 − Shapley(DN+1
, qRS¬T, f)) · (2N + 2)! − P1→1 ·mN+1

ª®®®¬
This is the same system of equations that Livshits et al. obtained

in the hardness proof for qRST [20]. There, they prove that the de-

terminant of the coefficient matrix is not zero; hence, this system

is solvable in polynomial time, providing us the with the value of

|S(д)| =
∑N
k=0
|S(д,k)|.

Finally, it is left to prove that |S(д)| = |IS(д). For that purpose,

we define a bijection between the two sets, h : IS(д) → S(д), as

follows: Let (A′∪B ′) ∈ IS(д). Then, h(A′∪B ′) = A′∪(B \B ′). Note

that for every (a,b) ∈ E we have that if a ∈ A′ then b < B ′; hence,

for every (a,b) ∈ E it holds that if a ∈ A′ then b ∈ (B \ B ′). Hence,

if (A′ ∪ B ′) ∈ IS(д), then (A′ ∪ (B \ B ′)) ∈ S(д).

Injectivity: Let I1 = (A
′
1 ∪B

′
1) and I2 = (A

′
2 ∪B

′
2) be two distinct

independent sets of д (i.e., I1, I2 ∈ IS(д)). At least one of the follow-

ing holds: A′1 , A′2, or B
′
1 , B ′2. Clearly in both cases we have that

h(I1) , h(I2) as well.

Surjectivity: Let E = (A′ ∪ B ′) be a subset of vertices in S(д).

Consider the subset I = (A′ ∪ (B \ B ′)). By the definition of S(д),

for every (a,b) ∈ E we have that if a ∈ A′ then b ∈ B ′. Therefore,

16

for every (a,b) ∈ E it holds that if a ∈ A′ then b < (B \ B ′). Then,

we conclude that I ∈ IS(д) by definition. It holds that h(I) = (A′ ∪

(B \ (B \ B ′)) = (A′ ∪ B ′) = E; thus, the function h is surjective.

To conclude, we constructed a reduction from the problem of

computing |IS(д)| to that of computing Shapley(D, qRS¬T, f); hence,

computing Shapley(D, qRS¬T, f) is FP
#P-complete. �

Finally, we show that for any non-hierarchical self-join-free CQ¬

q computing Shapley(D,q, f) is FP#P-complete, using a reduction

from the problem of computing Shapley(D,q′, f) where q′ is one

of queries qRST,q¬RS¬T,qR¬ST, or qRS¬T, depending on the polarity

of the atoms in the non-hierarchical triplet in q.

Lemma B.4. If q is a non-hierarchical CQ¬ without self-joins, then

computing Shapley(D,q, f) is FP#P-complete.

Proof. Every non-hierarchical self-join-free CQ¬ contains three

atoms αx ,αy ,αx,y where x,y ∈ Vars(q), such that αx ∈ Ax \ Ay ,

αy ∈ Ay \ Ax , αx,y ∈ Ax ∩ Ay . We argue that q satisfies another

property: if there is a non-hierarchical triplet αx ,αy ,αx,y where

αx,y and at least one of αx orαy are negative, then there is another

non-hierarchical triplet α ′x ,α
′
y ,α
′
x,y where either α ′x,y is positive

or both αx and αy are positive. Assume, without loss of general-

ity, that αx is negative. Since q is safe, there is a positive atom

α ′x such that α ′x ∈ Ax . If there exists such an atom α ′x such that

α ′x ∈ (Ax ∩Ay), the triplet αx ,α
′
x ,αy satisfies the property. Other-

wise, if αy is positive, the triplet α ′x ,αx,y ,αy satisfies the property.

Finally, if every α ′x is such that α ′x ∈ Ax \ Ay and αy is negative,

since q is safe, we have another positive atom α ′y ∈ Ay \ Ax and

α ′x ,αx,y ,α
′
y is a non-hierarchical triplet satisfying the property.

Let αx ,αx,y ,αy be a non-hierarchical triplet of q that satisfies

the above property. We construct a reduction from the problem

of computing Shapley(D′,q′, f ′) where q′ is one of qRST, q¬RS¬T,

qR¬ST, or qRS¬T to computing Shapley(D,q, f). We have already

established that computing Shapley(D′,q′, f ′) for each of these

queries is FP#P-complete; hence, we conclude that Shapley(D,q, f)

is FP#P-complete for any non-hierarchical self-join-free CQ¬ . We

present the four reductions simultaneously, as they all work in a

very similar way.

Depending on the polarity of the atoms in the non-hierarchical

triplet of q satisfying the property indicated above, we select one

of the four reductions (if there are multiple triplets satisfying this

property, we choose one randomly):

(1) If all three atoms are positive, we reduce from computing

Shapley(D′, qRST, f
′).

(2) If αx,y is positive while the other two atoms are negative,

we reduce from Shapley(D′, q¬RS¬T, f
′).

(3) If αx,y is negative while the other two atoms are positive,

we reduce from Shapley(D′, qR¬ST, f
′).

(4) If αx,y is negative, and exactly one of αx ,αy is negative, we

reduce from Shapley(D′, qRS¬T, f
′).

The idea is very similar to the corresponding proof in [20]. The

main difference is in the construction of the database D′, as q may

contain negative atoms. We use the atom αx to represent the atom

R(x) (or ¬R(x)) in q′, the atom αy to represent the atom T (y) (or

¬T (y)) in q′, and the atom αx,y to represent the atom S(x,y) (or

¬S(x,y)) in q′. For every fact R(a) in D (which is the input to the

first problem), we insert to the relation Rαx in D′ (the input to our

problem) a fact obtained by mapping the variable x in αx to a and

the rest of the variables to a constant ⊙. Similarly, for every fact

T (b) in D, we insert to the relation Rαy in D′ a fact obtained by

mapping the variable y in αy to b and the rest of the variables to

a constant ⊙. Each such fact f ′ ∈ D′ will be endogenous if and

only if the fact f it was generated from is endogenous. Finally, for

every fact S(a, b) and a positive atom α in q that is not one of αx ,

αy , or αx,y , we insert to the relation Rα in D′ every exogenous

fact obtained by mapping the variable x in α to a, the variable y

to b, and the rest of the variables to ⊙. We also add to the relation

Rαx ,y in D′ every exogenous fact obtained by such a mapping of

the variables in αx,y .

Note that |Dn | = |D
′
n |; hence, the total number of permutations

of the endogenous facts is equal for both databases, and we only

need to show that for every fact f ∈ Dn, the number of permuta-

tions of the facts in Dn where f changes the result of q′ is equal

to the number of permutations of the facts in D′n where f ′ (which

is the fact generated from f) changes the result of q. We can then

conclude that Shapley(D,q′, f) = Shapley(D′,q, f ′).

When considering the fact S(a, b) in the construction of D′, we

have created amappingh from the variables ofq such thath(x) = a,

h(y) = b, and h(w) = ⊙ for the rest of the variables, and we have

added all the resulting facts, associated with positive atoms that

are not one of αx , αy , or αx,y , to D′ (as exogenous facts). More-

over, the relations inD′ associated with negative atom of q (except

αx,y) are empty and do not affect the query result. Finally, it holds

that S(a, b) ∈ Dx if and only if the fact f obtained from it using the

atom αx,y is in D′x. Hence, a subset E of Dn is such that there is a

homomorphismmapping every positive atom and none of the neg-

ative atoms of q′ to E ∪Dx (that is, (E ∪Dx) |= q
′) if and only if the

subset E′ ofD′n that contains for each fact f ∈ E the corresponding

fact f ′ ∈ D′ is such that there is a homomorphism mapping every

positive atom and none of the negative atoms of q to E′ ∪D′x (that

is, (E′∪D′x) |= q). Therefore, a permutationσ of the facts inDn and

a fact f ∈ Dn satisfies q′(Dx ∪ σf) , q
′(Dx ∪σf ∪ { f }) if and only

if the corresponding permutation σ ′ of the facts in D′n and the cor-

responding fact f ′ ∈ D′n satisfies q(D
′
x ∪σf ′) , q(D

′
x ∪σf ′ ∪ { f

′}),

and that concludes our proof. �

Next, we provide an insight into the complexity of the problem

for CQ¬s with self joins. Theorem 3.1 does not provide us with any

information about the complexity of computing the Shapley value

for the queryUnemployed(x),Married(x,y),Unemployed(y) ask-

ing whether there is a married couple where both spouses are un-

employed, or for the query¬Citizen(x),Married(x,y),¬Citizen(y)

asking if there are two married people such that none of them is

a citizen. The following result implies that computing the Shapley

value for both queries is FP#P-complete.

TheoremB.5. Let q be a polarity-consistent CQ¬ containing a non-

hierarchical triplet (αx ,αx,y ,αy) such that the relation Rαx ,y occurs

only once in q. Then, computing Shapley(D,q, f) is FP#P-complete.

To prove the theorem, we construct a reduction from the prob-

lem of computing Shapley(D,q′, f)where q′ is one of qRST, q¬RS¬T
or qRS¬T (depending on the polarity of the atoms αx and αy) un-

der the following assumptions: (1) all the facts of S are exogenous,

and (2) for every fact S(a, 1) in D, both facts R(a) and T (1) are in

17

D. The instances constructed in the proofs of hardness for all three

queries satisfy these conditions; hence, the problems remain hard

under these assumptions. We also assume for simplicity that the

set of values used in the facts of RD and the set of values used in

the facts ofTD are disjoint.

The idea is very similar to the construction in the proof of Lemma B.4,

with the main difference being the treatment of the negative atoms

in q. We again use the atom αx to represent the atom (¬)R(x) in q′,

the atom αy to represent the atom (¬)T (y) in q′, and the atom αx,y
to represent the atom S(x,y) in q′. We use the assumption that the

relation Rαx ,y occurs only once in q to ensure that we do not cre-

ate new connections between values of x and values of y. If αx and

αy are both positive, the reduction is from the problem of comput-

ing Shapley(D, qRST, f), if both atoms are negative, the reduction

is from computing Shapley(D, q¬RS¬T, f), and if one atom is posi-

tive while the other is negative, the reduction is from computing

Shapley(D, qRS¬T, f).

Formally, given an input database D to the first problem, we

build a database D′ in the same way we built it in the proof of

Lemma B.4 except for the treatment of the atom αx,y . Since the

atom S(x,y) is always positive in q′, if αx,y is negative, then we

insert to the relation Rαx ,y in D′ an exogenous fact f obtained by

mapping the variables x and y in αx,y to some values c1 and c2
(from the domain of D′), respectively, and the rest of the values to

⊙ if and only if S(c1, c2) < D. If αx,y is positive, then we insert f

to D′ if and only if S(c1, c2) ∈ D.

We will now prove that for every endogenous fact f inD and its

corresponding fact f ′ in D′ (i.e., the fact that was generated from

f) it holds that Shapley(D,q′, f) = Shapley(D′,q, f ′) (recall thatq′

is one of qRST, q¬RS¬T, qRS¬T). We start by proving the following.

Lemma B.6. Let E ⊆ Dn and let E
′ be the set of corresponding facts

in D′n . If (Dx ∪ E) |= q
′ then (D′x ∪ E

′) |= q.

Proof. Since (Dx ∪ E) |= q
′ there is a mapping h from the vari-

ables of q′ to the domain of D where h(x) = a for some value a

from the domain of RD and h(y) = 1 for some value 1 from the

domain of TD such that h maps every positive atom and none of

the negative atoms of q′ to a fact ofDx ∪E. We claim that the map-

ping h′ such that h′(x) = h(x), h′(y) = h(y), and h′(w) = ⊙ for

the rest of the variables, maps every positive atom and none of the

negative atoms of q to facts of D′x ∪ E
′; hence (D′x ∪ E

′) |= q.

As in the proof of Lemma B.4, from the construction of D′, we

have that every positive atom of q is mapped by h′ to a fact of

D′x ∪ E′. The relations associated with negative atom of q, except

for Rαx , Rαy , and Rαx ,y are empty and do not affect the result of

the query (recall that q is polarity-consistent; hence, a relation that

appears as a negative atom cannot appear as a positive atom as

well). Moreover, the relation Rαx ,y contains the fact obtained from

αx,y using the mapping h′ is in D′x if and only if S(a, q) ∈ Dx.

It is only left to show that there is no negative atom of q that

is mapped by h′ to a fact in D′n. Let us assume, by way of contra-

diction, that a negative atom β of q is mapped by h′ to a fact f in

D′n , and assume, without loss of generality, that f belongs to the

relation Rαx in D′. Since q is polarity-consistent, the atom αx is

a negative atom as well. Moreover, in this case, the relation R ap-

pears as a negative atom in q′. From the construction of D′, every

endogenous fact f in the relation Rαx in D′ is obtained by a ho-

momorphism from the variables of αx to the constants of f that

maps the variable x to a value from the domain of RD , the variable

y to a value from the domain of TD , and the rest of the variables

to ⊙. If h′ maps β to f , then there is also a homomorphism from β

to αx (and from αx to β) where x is mapped to itself. We conclude

that h′ maps the atom αx to the fact f . From the construction of

D′, we have that R(a) ∈ E, which is a contradiction to the fact that

R appears as a negative atom in q′ and (Dx ∪ E) |= q
′. �

Next, we prove the following.

LemmaB.7. Let E ⊆ Dn and let E
′ be the set of corresponding facts

in D′n. If (Dx ∪ E) 6|= q
′ then (D′x ∪ E

′) 6|= q.

Proof. Let us assume, by way of contradiction, that (D′x∪E
′) |=

q. Then, there is a mapping h from the variables of q to the do-

main of D′ that maps every positive atom and none of the nega-

tive atoms of q to a fact in D′x ∪ E
′. In particular, the atom αx,y , is

mapped to a fact ofD′x∪E
′ if and only if it is positive. From the con-

struction of D′ and the uniqueness of the atom (i.e., the fact that

its relation does not appear in another atom of q), we have that if

αx,y is positive, then h maps αx,y to a fact of D′x if and only there

exists a fact S(a, 1) in D such that h(x) = a and h(y) = 1. If αx,y
is negative, then h does not map αx,y to a fact of D′x if and only if

there exists a fact S(a, 1) in D such that h(x) = a and h(y) = 1.

We claim that the mapping h is such that every positive atom

and none of the negative atoms of q′ is mapped to a fact of Dx ∪ E,

which is a contradiction to the fact that (Dx ∪ E) 6|= q. We have

already established, that there exists an exogenous fact S(a, 1) in

D and it holds that h(x) = a and h(y) = 1. It is only left to show

that the fact R(a) belongs to E if and only if R occurs as a positive

atom in q′, and, similarly, the fact T (1) belongs to E if and only if

T occurs as a positive atom in q′.

If αx is a positive atom, then there is a fact f in the relation Rαx
in D′ obtained from αx by mapping the variable x to the value a

and the rest of the variables to the value ⊙, such that f ∈ E′. In this

case, the relation R also appears in q′ as a positive atom and the

fact f ′ = R(a) corresponding to f appears in E. If αx is a negative

atom (in which case, the relation R occurs in q′ as a negative atom),

then the fact f does not appear in E′ (or, otherwise,D′x∪E
′ will not

satisfy q), which implies that the fact f ′ does not appear in E. We

can similarly show that the fact T (1) appears in E if and only if its

corresponding fact appears in E′, and that concludes our proof. �

Lemmas B.6 and B.7 imply that the fact f changes the result of

q′ in a permutation σ of Dn if and only if the fact f ′ changes the

result of q in a permutation σ ′ of D′n. Since the total number of

permutations of the facts in Dn and D′n is equal, we conclude that

indeed Shapley(D,q′, f) = Shapley(D′,q, f ′).

C DETAILS FOR SECTION 4

We start by proving the hardness side of the theorem. Let SX be

a schema and let q be a self-join-free CQ¬ that contains a non-

hierarchical path. Similarly to the proof of Theorem B.5, we con-

struct a reduction from the problemof computing Shapley(D,q′, f)

where q′ is one of qRST, q¬RS¬T or qRS¬T to that of computing

Shapley(D,q, f). We again assume that in the input to the first

problem all the facts of S are exogenous, and for every fact S(a, 1)
18

in D, both facts R(a) andT (1) are inD. We also assume that the set

of values used in the facts of RD and the set of values used in the

facts of TD are disjoint.

Since q has a non-hierarchical path, there exist two atoms αx
and αy in q and two variables x,y, such that Rαx < X and Rαy < X ,

the variable x occurs in αx but not in αy and the variable y occurs

in αy but not inαx . Moreover, there exists a path x−v1−· · ·−vn−y

in the graph obtained from the Gaifman graph G(q) of q by re-

moving every variable in (Vars(αx) ∪ Vars(αy)) \ {x,y}. The idea

is the following. We use the atoms αx and αy to represent the

atoms (¬)R(x) and (¬)T (y) in q′, respectively, and we use the non-

hierarchical path to represent the connections between them (i.e.,

the atom S(x,y)). If αx and αy are both positive, the reduction is

from the problem of computing Shapley(D, qRST, f), if both atoms

are negative, the reduction is from computing Shapley(D, q¬RS¬T, f),

and if one atom is positive while the other is negative, the reduc-

tion is from computing Shapley(D, qRS¬T, f).

Formally, given an input database D to the first problem, we

build a database D′ in the following way. For every fact f = R(a)

we assign the value a to the variable x in αx and the value ⊙ to

the rest of the variables, and we add the corresponding fact f ′ to

the relation Rαx in D′. The fact f ′ will be endogenous if and only

if f is endogenous. Similarly, for every fact f = T (1) we assign

the value 1 to the variable y in αy and the value ⊙ to the rest of

the variables, and we add the corresponding fact f ′ to the relation

Rαy in D′. Again, the fact f ′ will be endogenous if and only if f

is endogenous. Next, for every fact S(a, 1) in D and atom α in q

that is not one of αx or αy , we assign the value a to the variable

x , the value 1 to the variable y, the value 〈a, 1〉 to the variables

v1, . . . ,vn along the non-hierarchical path, and the value ⊙ to the

rest of the variables, and we add the corresponding exogenous fact

to the relation Rα inD′ if we have not added this fact toD′ already.

Note that |Dn | = |D
′
n |.

Now, given the database D′ we construct a database D′′ which

will be the input to our problem in the followingway.We first copy

all the endogenous facts from D′ to D′′. Then, for every relation R

in D′ corresponding to a positive atom of q, we copy every exoge-

nous fact from RD
′
to RD

′′
. For every relation R in D′ correspond-

ing to a negative atom of q, we add to RD
′′
every exogenous fact

over the domain of D′ if and only if it does not occur in RD
′
(i.e.,

RD
′′
= RD

′
). Note that since we did not change the endogenous

facts, we have that |Dn | = |D
′
n | = |D

′′
n |.

We will now prove that for every endogenous fact f1 in D and

its corresponding fact f2 in D′′ it holds that Shapley(D,q′, f1) =

Shapley(D′′,q, f2) (recall that q
′ is one of qRST, q¬RS¬T, qRS¬T).

We start by proving the following.

Lemma C.1. Let E ⊆ Dn and let E′′ be the set of corresponding

facts in D′′n . If (Dx ∪ E) |= q
′ then (D′′x ∪ E

′′) |= q.

Proof. Since (Dx ∪ E) |= q
′ there is a mapping h from the vari-

ables of q′ to the domain of D where h(x) = a for some value a

from the domain of RD and h(y) = 1 for some value 1 from the do-

main ofTD such that h maps every positive atom and none of the

negative atoms of q′ to a fact ofDx∪E. We claim that the mapping

h′ such that h′(x) = a, h′(y) = 1, h′(z) = 〈a, 1〉 for every vari-

able along the non-hierarchical path, and h′(w) = ⊙ for the rest of

the variables, maps every positive atom and none of the negative

atoms of q to facts of D′′x ∪ E
′′; hence (D′′x ∪ E

′′) |= q.

When considering the fact S(a, 1) in the construction of D′, we

have created a mapping h′ from the variables ofq such thath′(x) =

a,h′(y) = 1,h′(z) = 〈a, 1〉 for every variable along the non-hierarchical

path, andh′(w) = ⊙ for the rest of the variables, andwe have added

all the resulting facts (associated with atoms that are not one of αx
or αy) to D

′ (as exogenous facts). When constructing D′′ we have

removed every such fact if it was generated from a negative atom

of q. Hence, h′ is a mapping from the the variables of q\{αx ,αy }
(which is the query obtained from q by removing the atoms αx and

αy) to the domain ofD′′ such that every positive atom and none of

the negative atoms of q appears as a fact in D′′x . Moreover, it holds

that R(a) ∈ Dn if and only h′(αx) ∈ D
′′
n and similarly T (1) ∈ Dn if

and only if h′(αy) ∈ D′′n . There, (D
′′
x ∪ E′′) indeed satisfies q and

that concludes our proof. �

Next, we prove the following.

Lemma C.2. Let E ⊆ Dn and let E′′ be the set of corresponding

facts in D′′n . If (Dx ∪ E) 6|= q
′ then (D′′x ∪ E

′′) 6|= q.

Proof. Assume, by way of contradiction, that D′′x ∪ E′′ satis-

fies q. Hence, there is a mapping h from the variables of q to the

domain of D′′ such that every positive atom and none of the neg-

ative atoms of q is mapped into a fact in D′′x ∪ E′′. We now look

at the non-hierarchical path x − v1 − · · · − vn − y in the Gaifman

graph of q. From the construction of D′, every fact f ∈ D′ in a

relation corresponding to an atom α that uses both x and v1 is ob-

tained from α by mapping the variable x to some value c1 and the

variable v1 to some value 〈c1, c2〉 such that S(c1, c2) is in D. If α is

positive, then D′′ also contains only such facts, and if α is nega-

tive, then D′′ does not contain only such facts. Using an atom α ′

containing the variables y and vn , we can show, in a similar way,

that h(vn) = 〈d1,d2〉 for some values d1,d2 such that S(d1,d2) is

in D. Finally, every two consecutive variables vi ,vi+1 in the non-

hierarchical path occur together in at least one atom α of q, and

from the construction of D′′, it holds that if α is positive, then Rα
contains only facts where bothvi andvi+1 are mapped to the same

value, and if α is negative, then these are the only facts that are not

in Rα ; hence, we have that h(vi) = h(vi+1) and we conclude that

c1 = d1 and c2 = d2, and the mapping h assigns some value 〈a, 1〉

to every variable along the non-hierarchical path, such that S(a, 1)

is in D.

When constructing the database D′, we have only assigned the

value 〈a, 1〉 to variables if there exists an exogenous fact S(a, 1) in

D. Hence, we have established that such a fact exists in D. More-

over, it holds that R(a) ∈ E if and only if h(αx) ∈ E
′′ and similarly

T (1) ∈ E if and only if h(αy) ∈ E′′. In all cases, the restriction of

h to the variables x and y maps every positive atom and none of

the negative atoms of q′ to Dx ∪ E; thus, (Dx ∪ E) |= q
′, which is a

contradiction to our assumption. �

The remainder of the proof is rather straightforward based on

these two lemmas. The total number of permutations of the facts

in Dn and D′′n is equal, and the lemmas prove that the number of

permutations where f changes the result of q′ in D is equal to the

number of permutations where it changes the result of q in D′;

hence, we conclude that Shapley(D,q′, f) = Shapley(D′,q, f).
19

Next, we provide the missing proofs for the lemmas used in the

proof of the positive side of Theorem 4.3. First, we prove that we

can replace every negated atom of q corresponding to an exoge-

nous relation of D by a positive atom and the corresponding rela-

tion inD by its complement relation, without affecting the Shapley

value.

LemmaC.3. Letq be a self-join-free CQ¬, and letα ∈ (Atomsx(q)∩

Neg(q)). Then, computing Shapley(D,q, f) can be reduced to com-

puting Shapley(D′,q′, f), where q′ is obtained from q by substitut-

ing α with α , and D′ is obtained from D by substituting RDα with

RDα .

Proof. Note that the difference between D and D′ is restricted

to the exogenous facts; thus, we have that Dn = D′n. Moreover, for

every E ⊆ Dn, it holds that (Dx ∪ E) |= q if and only if (D′x ∪ E) |=

q′. This is rather straightforward from the construction of D′. If

(Dx ∪ E) |= q, then there is a homomorphism h from the variables

of q to the constants of D that does not map α to any fact of RDα

(since α is a negated atom); hence, it maps α to a fact of RDα . Every

other atom β of q also occurs in q′ and we have not changed the

relations corresponding to other atoms; thus, h maps β to a fact

of (Dx ∪ E) if and only if it maps β to a fact of (D′x ∪ E), and we

conclude thathmaps every positive atom and none of the negative

atoms of q′ to a fact of (D′x ∪ E).

The proof of the second direction is very similar. If (D′x∪E) |= q
′,

then there is a homomorphism h from the variables of q′ to the

constants of D′ that maps α to a fact of RDα ; hence, it does not map

α to a fact of RDα . Again, since the rest of the atoms are unchanged

in q′, we conclude that h maps every positive atom and none of

the negative atoms of q to a fact of (Dx ∪ E). We conclude that the

total number of permutations is equal in both databases, and the

number of permutations where f changes the query result is equal

as well; hence, Shapley(D,q, f) = Shapley(D′,q′, f). �

Next, we prove that we can combine all the exogenous atoms of

q in a connected component of дx(q) into a single exogenous atom,

without affecting the Shapley value. Recall that from now on we

assume (based on Lemma C.3) that every atom of q corresponding

to an exogenous relation of D is positive.

Lemma 4.6. Computing Shapley(D,q, f), given D and f , can

be efficiently reduced to computing Shapley(D′,q′, f) for a CQ¬ q′

without self-joins such that: (1) every exogenous variable of q′ occurs

is a single atom, and (2) q′ does not have any non-hierarchical path.

Proof. Let C be a connected component of дx(q), and let the

set {α1, ...,αk } be the set of (exogenous) atoms in C . Let q′ be the

query obtained from q by replacing all the atoms ofC with a single

atom αC , such that Vars(αC) = ∪i ∈{1, ...,k }Vars(αi). Observe that

since C is a connected component of дx(x), none of the exogenous

variables occurring in αC also occurs in another atom of q′. Let D′

be the database obtained from D by replacing the exogenous rela-

tions Rα1
, ...,Rαk with a single exogenous relation RαC consisting

of the set of answers to the query qC (®x) :- α1, . . . ,αk on the data-

baseD (where every variable of α1, . . . ,αk occurs in ®x). That is, the

facts in the relation RD
′

αC are obtained by an inner join between the
relations RDα1

, . . . ,RDαk , where the relations are joined according to

the variables of the corresponding atoms.

Since we have only changed the exogenous relations in D to

obtain D′, we have that D′n = Dn. We now prove that for every

E ⊆ Dn it holds that (Dx ∪ E) |= q if and only if (D′x ∪ E) |= q′,

which implies that Shapley(D,q, f) = Shapley(D′,q′, f) for every

endogenous fact f . Let E ⊆ Dn . If (Dx ∪ E) |= q, then there is a

homomorphism h from q to Dx ∪ E. Note that the only negative

atoms of q are atoms corresponding to non-exogenous relations;

hence, if h does not map any negative atom of q to a fact ofDx ∪E,

it also does not map any negative atom of q′ to a fact of D′x ∪ E.

As for the positive atoms, the homomorphism h maps every posi-

tive atom of q, and, in particular, the atoms α1, . . . ,αk of the con-

nected component C , to facts of Dx ∪ E. Assume that h(v) = cv
for every variable in α1, . . . ,αk . By the definition of qC , the tu-

ple (cv1
, . . . , cvn) (where v1, . . . ,vn are the variables occurring in

α1, . . . ,αk) is an answer toqC and appears in RD
′

αC . Hence, the atom

αC in q′ is mapped to a fact of D′x. Every positive atom of q that is

not one of α1, . . . ,αk also occurs in q′ and it is mapped to a fact of

Dx ∪ E that also appears in D′x ∪ E; hence, we conclude that h is a

homomorphism from q′ to D′ ∪ E.

Similarly, if we assume that (D′x ∪ E) |= q′, then there is a ho-

momorphism h from q′ to D′x ∪ E. Every atom α ∈ (Atoms(q) \

{α1, . . . ,αk }) occurs in both q and q′, and the relation Rα is the

same in D and D′; thus, every such α is mapped to a fact of Dx ∪E

if and only if it is mapped to a fact ofD′x∪E. Since every fact in R
D′
αc

is an answer toqC on the databaseD, if the atomαC ofq′ is mapped

by h to a fact RαC (cv1
, . . . , cvn) in D′x, then every atom αi in q is

mapped by h to a fact Rαi (cvi1 , . . . cvik
) in D where {vi1 , . . . ,vik }

is the set of variables occurring in αi , as if such a fact did not exists,

we would never obtain the tuple (cv1
, . . . , cvn) as an answer to qC

on D. Hence, we have that (Dx ∪ E) |= q, as evidenced by h.

The above argument holds for every connected component of

дx(q); hence, we can replace every connected component with a

single atom in q and change the database D accordingly. This will

result in a query q′ where every exogenous variable occurs exactly

once and that concludes our proof.We finish this proof by showing

that q′ does not have a non-hierarchical path.

Let us assume, by way of contradiction, that the query q′ has a

non-hierarchical path induced by the atoms αx and αy . Hence, in

the Gaifman graph of q′, there is a path x −v1 − · · · −vn − y that

does not pass through the variables of αx and αy . We claim that

there is also a non-hierarchical path induced by αx and αy in q, in

contradiction to the fact that q does not have a non-hierarchical

path. Let vi ,vi+1 be two consecutive variables in the path. If vi
and vi+1 occur together in a non-exogenous atom of q′, then they

occur together in the same non-exogenous atom of q, and vi ,vi+1
are also connected in the Gaifman graph of q. Otherwise, vi ,vi+1
occur together in an exogenous atom of q′. This exogenous atom

represents a connected component {α1, . . . ,αk } in дx(q). Let αj be

the atom where the variable vi occurs and let αr be the variable

where the variablevi+1 occurs. By the definition ofдx(q), there is a

pathu1−· · ·−um betweenαj and αr such thatu1 ∈ αj ,um ∈ αr and

every ut is an exogenous variable (hence, it does not occur in αx
or αy). We conclude that the Gaifam graph of q contains the path

vi − u1 − · · · − um −vi+1 that does not pass through the variables

of αx or αy . Therefore, there is a non-hierarchical path between x

and y in q, and that concludes our proof. �

20

In the next lemma we will use the following notation. For an

atom α ∈ Atoms(q), a variable v ∈ Vars(α) and a fact f ∈ RDα , we

denote by f [v] the value of the fact f in the attribute of RDα corre-

sponding to the position of v in α . For example, for α = R(x,y,z),

we denote by f [y] the value of the fact f in the second attribute of

RD .

Lemma 4.8. Computing Shapley(D,q, f) can be efficiently reduced

to computing Shapley(D′,q′, f) for a CQ¬ q′ without self-joins such

that: (1) for every α ∈ Atomsx(q
′) there exists α ′ ∈ Atoms\x(q

′)

for which Vars(α) = Vars(α ′), and (2) q′ does not have any non-

hierarchical path.

Proof. As shown in Lemma 4.6, we can reduce the problem of

computing Shapley(D,q, f), given D and f , to that of computing

Shapley(D′,q′, f) where q′ is such that every exogenous variable

occurs in a single atom ofq′. Thismeans that every connected com-

ponent of дx(q
′) contains a single atom. Moreover, we have that q′

does not have a non-hierarchical path. For convenience, from now

on, we refer to the query q′ simply as q and to the databaseD′ sim-

ply asD, as we do not rely on the original query and database in our

proof. We show that we can further reduce the problem of comput-

ing Shapley(D,q, f) to that of computing Shapley(D′,q′, f), where

for every α ∈ Atomsx(q
′) there is α ′ ∈ Atoms\x(q

′) such that

Vars(α) = Vars(α ′). We will do that by first removing the exoge-

nous variables of q and then adding to each exogenous atom all the

variables occurring in the non-exogenous atom that “contains” it.

Let α ∈ Atomsx(q). Lemma 4.4 implies that there exists β ∈

Atoms\x(q) such that Vars\x(α) ⊆ Vars(β). We generate the query

q′ in two steps. First, we remove from α every exogenous variable,

and obtain a new atom α ′ = Rα ′(x1, . . . ,xn), where x1, . . . ,xn
are the non-exogenous variables in α . Then, we replace the rela-

tion Rα in D with the relation Rα ′ consisting of the set of answers

to the query q(x1, . . . , xn) :- α on D. In the next step, we obtain

an atom α ′′ by adding to α ′ every variable in Vars(β) \ Vars\x(α).

That is, if {v1, . . . ,vm } is the set of variables occurring in β but

not in α , then α ′′ = Rα ′′(x1, . . . ,xn ,v1, . . . ,vm). Then, we obtain

the relation RDα ′′ from RDα ′ in the following way. From every f =

Rα ′(c1, . . . , cn) in RDα ′ , we generate |Dom(D)|m facts of the form

f = Rα ′′(c1, . . . , cn ,d1, . . . ,dm), where d1, . . . ,dm ∈ Dom(D), and

add all of them to RDα ′′ . We denote by q′ the query obtained from q

by replacing the atom α with the atom α ′′, and by D′ the database

obtained fromD by replacing the relation Rα with the relation Rα ′′ .

Note that Dn = D′n .

We now prove that for every E ⊆ Dn it holds that (Dx ∪ E) |= q

if and only if (D′x ∪ E) |= q′. Let E ⊆ Dn such that (Dx ∪ E) |= q.

Thus, there is a homomorphism h from q do Dx ∪ E. In particu-

lar, h maps the atom α to a fact f ∈ RDα . Assume that h(v) = cv
for every variable v of q. Hence, for every non-exogenous vari-

able xi in α we have that h(xi) = cxi and for every variable vj in

Vars(α ′) \ Vars\x(α) we have that h(vj) = cvj . From the construc-

tion of D′, if h maps the atom α to a fact f in RDα , there is a fact

Rα ′′(cx1 , . . . , cxn , cv1
, . . . , cvm) in D′ and h maps the atom α ′′ in

q′ to this fact. Every other atom β of q′ also appears in q and we

have not changed any other relation of D; hence, h maps β to a
fact of Dx ∪ E if and only if it maps β to a fact of D′x ∪ E. There-

fore, h is a homomorphism from q′ to D′x ∪ E, as we conclude that

(D′x ∪ E) |= q
′.

Next, let E ⊆ Dn such that (D′x ∪ E) |= q′, as evidenced by a

homomorphismh. Again, every atom β of q′ that is not α ′′ also ap-

pears in q, and hmaps β to a fact ofDx∪E if and only if it maps β to

a fact ofD′x∪E. As for the atomα ′′, the homomorphismhmaps it to

a fact f ′ ∈ RD
′

α ′′ . Assume that f ′ = Rα ′′(cx1 , . . . , cxn , cv1
, . . . , cvm).

From the construction of D′, we have that there exists a fact f in

RDα such that f [xi] = cxi for every i ∈ {1, . . . ,n}. Assume that the

exogenous variables in α are u1, . . . ,ur and f [uj] = d j for every

j ∈ {1, . . . , r }. Then, if we extend the mapping h to a mapping h′

such that h′(x) = h(x) for every non-exogenous variable x in α

and h′(uj) = d j for every exogenous variable uj in α , then h′ will

map the atom α in q to the fact f . Note that this extension does

not affect any other atom of q since the exogenous variables of α

do not occur in any other atom of q. Hence, the mapping h′ is a

homomorphism from q to Dx ∪ E, and (Dx ∪ E) |= q.

We can repeat this process for every exogenous atom of q and

obtain a query q′ satisfying the property of the lemma, such that

Shapley(D,q, f) = Shapley(D′,q′, f) for every f ∈ Dn . Finally,

we prove that q′ does not have a non-hierarchical path. Let us as-

sume, by way of contradiction, that q′ has a non-hierarchical path

induced by the atoms αx and αy . Hence, in the Gaifman graph of

q′, there is a path x −v1 − · · · −vn −y that does not pass through

the variables of αx and αy . We claim that the same path exists in

the Gaifman graph of q, in contradiction to the fact that q does not

have a non-hierarchical path. Let vi ,vi+1 be two consecutive vari-

ables in the path. Ifvi andvi+1 occur together in a non-exogenous

atom of q′, then they occur together in the same non-exogenous

atom of q, and vi ,vi+1 are also connected in the Gaifman graph

of q. Otherwise, vi ,vi+1 occur together in an exogenous atom of

q′. Since there are no exogenous variables in q′, both vi and vi+1
occur in non-exogenous atoms of q. Moreover, since for every ex-

ogenous atom α in q there exists a non-exogenous atom α ′ of q

such that Vars(α) = Vars(α ′), we again conclude that vi and vi+1
occur together in the same non-exogenous atom of q, and vi ,vi+1
are also connected in the Gaifman graph of q. �

D DETAILS FOR SECTION 5

We now prove that the “gap property” does not hold for CQ¬s.

Theorem 5.1. Let q be a satisfiable CQ¬ with at least one negated

atom. Assume that q has no constants, and that q is positively con-

nected. There is a sequence {Dn}
∞
n=1 of databases and a fact f such

that |Dn | = Θ(n) and 0 < |Shapley(Dn ,q, f)| ≤ 2−Θ(n).

Proof. Since q is satisfibale, there exists a minimal database D

such that D |= q. Now, we start adding facts to the relations corre-

sponding to negated atom of q, one by one. Clearly, at some point,

we will obtain a database D′ that does not satisfy the query. Let f

be the last fact added toD′. We have that (D′\{ f }) |= q butD′ 6 |= q.

LetDq be aminimal database that satisfies this property.We create

n copies D1, . . . ,Dn of Dq , such that (Dom(Di) ∩ Dom(Dj)) = ∅

for all i, j ∈ {1, . . . ,n} (this is possible since q has no constants).

We denote by fi the fact for which (Di \ { fi }) |= q for every

i ∈ {1, . . . ,n}. Next, letD′q be aminimal database such thatD′q |= q

and let f ′ be a fact in D′q . Since D′q is minimal, we have that

(D′q \ { f
′}) 6|= q. We create n + 1 copies D0,Dn+1, . . . ,D2n of D′q ,

21

such that (Dom(Di) ∩ Dom(Dj)) = ∅ for all i, j ∈ {0, . . . , 2n}. We

again denote by fi the fact for which (Di \ { fi }) 6|= q for every

i ∈ {0,n + 1, . . . , 2n}. Finally, we construct a database D by taking

the union of the databases D0, . . . ,D2n . Every fact in D except for

{ f0, . . . , f2n} will be exogenous. We will show that the fact f0 does

not satisfy the gap property.

Note that Dx |= q since there is a homomorphism h from q to

D1 \ { f1} (and, in fact, to every Di \ { fi } for i ∈ {1, . . . ,n}), and

we claim that the same h is a homomorphism from q to D. Since q

has safe negation, every variable in every negated atom of q also

occurs in a positive atom of q. Hence, if h maps a negated atom of

q to a fact f ∈ Dx, every value v in f is such that v ∈ Dom(D1),

and we have that f ∈ (D1 \{ f1}). This is a contradiction to the fact

that h is a homomorphism from q to D1 \ { f1}.

Next, we prove that (Dx ∪ { f1, . . . , fn }) 6|= q. Assume, by way

of contradiction, that this is not the case. Then, there is a homo-

morphism h from q to Dx ∪ { f1, . . . , fn}. Assume that h maps the

positive atoms of q to the facts д1, . . . ,дm . Clearly, it cannot be the

case that {д1, . . . ,дm } ⊆ Di for some i ∈ {1, . . . ,n}. This holds

true since Di 6 |= q; hence, h maps a negated atom of q to a fact of

Di which is also in Dx ∪ { f1, . . . , fn }. Moreover, it cannot be the

case that {д1, . . . ,дm } ⊆ (Di \{ fi }) for some i ∈ {0,n + 1, . . . , 2n},

since (Di \ { fi }) 6|= q. Hence, h again maps a negated atom of q to

a fact of Di \ { fi } which is also in Dx ∪ { f1, . . . , fn }.

Therefore, the only possible case is that there exist дi ,дj such

thatдi ∈ Dk andдj ∈ Dr for somek , r . Let α be the positive atom

of q mapped by h to дi and let β be the positive atom of q mapped

by h to дj . Since q is positively connected, the atoms α and β are

connected. Thus, there is a path x −v1− · · ·−vt −y in the Gaifman

graph of q from every variable x in α to every variable y in β such

that all the atoms along the edges of the path are positive. Let x,y

be arbitrary such variables. Since дi ∈ Dk , it holds that h(x) = cx
such that cx ∈ Dom(Dk). Moreover, Since дj ∈ Dr , it holds that

h(y) = cy such that cy ∈ Dom(Dr). Since every two consecutive

variablesvi ,vi+1 in the path occur together in some positive atom,

from the construction ofD, we have thath(vi) andh(vi+1) are both

in Dom(Dp) for some p ∈ {0, . . . , 2n}. Let vi be the first variable

in the path such that h(vi) < Dom(Dk). There exists such vi since

h(y) < Dom(Dk). Then, we have that h(vi−1) ∈ Dom(Dk) and

h(vi) < Dom(Dk) and we get a contradiction.

We have established that (Dx ∪ { f1, . . . , fn}) 6|= q. We will now

prove that (Dx ∪E) |= q for every E ⊂ Dn such that { f1, . . . , fn} *

E. Let fi < E such that i ∈ {1, . . . ,n}. Let h be a homomorphism

from q toDi \ { fi } (recall that (Di \ { fi }) |= q). We claim that h is a

homomorphism fromq toDx∪E. If this is not the case, thenhmaps

a negated atom of q to a fact of Dx ∪ E. Since q has safe negation,

if h maps a negated atom of q to a fact f ∈ (Dx ∪ E), every value v

in f is such that v ∈ Dom(Di), and we have that f ∈ (Di \ { fi }).

This is a contradiction to the fact that h is a homomorphism from

Di \ { fi } to q.

Finally, we show that for each E ⊆ Dn , { f0, fn+1, . . . , f2n } ∩

E , ∅ we have that (Dx ∪ E) |= q. Let fi ∈ E such that i ∈

{0,n + 1, . . . , 2n}. SinceDi |= q, there is a homomorphismh fromq

toDi . We claim thath is a homomorphism fromq toDx∪E. Clearly,

every positive atom of q is mapped by h to a fact of Dx ∪ E (since

Di ⊆ (Dx ∪ E)). Again, since q has safe negation, we have that if h

maps a negated atom of q to a fact f ∈ (Dx ∪ E), then f ∈ Di and
we get a contradiction to the fact that h is a homomorphism from

q to Di .

We conclude that the fact f0 must be added in a permutation be-

fore any of the facts fn+1, . . . , f2n and after all the facts f1, . . . , fn
to affect the query result. Hence, there is exactly one subset E of

endogenous facts in D, containing n facts, that should appear be-

fore f in a permutation where it changes the query result from

false to true; hence, the number of such permutations is n!·n!
(2n+1)!

(as

the total number of endogenous facts is 2n + 1).

Finally, since we consider data complexity, we can assume that

the size of eachDi is bounded by some constant k . Hence, the data-

base D contains θ(n) facts. Therefore, we have that n = θ(|D |) and

the Shapley value of f w.r.t. q and D is n!n!
(2n+1)!

<
1
2n . Overall, we

have that:

0 < Shapley(D,q, f) ≤ 2−n = 2−θ (|D |)

and that concludes our proof.

�

Next, we prove the following proposition.

Proposition 5.5. Decidingwhether f ∈ TD is relevant to qRST¬R,

given D and f , is NP-complete.

The following lemma states theNP-completeness of (2+, 2−, 4+−)-

SAT. (We found it easier to prove it directly rather than show-

ing that it falls on the negative side of Schaefer’s dichotomy the-

orem [28].) As a preface to our proof, we define the (3+, 2−)-SAT

problem: given a monotone 3CNF formula φ where every literal

is positive, and a monotone 2CNF formula φ′ where every literal

is negative, defined over the same variables as φ, is φ ∧ φ′ satis-

fiable? We first prove that this problem is NP-complete using a

reduction from the 3-colorability problem.3 Next, we define the

(2+, 2−, 4+−)-SAT problem, where the input is a conjunction of

clauses of the following forms: (1) (xi ∨ xj), (2) (¬xi ∨ ¬xj), or (3)

(xi ∨ xj ∨ ¬xk ∨ ¬xl). We prove that this problem is NP-complete

using a reduction from the (3+, 2−)-SAT problem. Then, we will

construct a reduction from the (2+, 2−, 4+−)-SAT problem to that

of deciding whether f is relevant.

Lemma D.1. The (2+, 2−, 4+−)-SAT problem is NP-complete.

Proof. Given an undirected graphG = (V , E) and a set of three

colours C = {c1, c2, c3}, we will build a (3+, 2−)-CNF formula de-

noted as φ. For every v ∈ V and every ci ∈ C , we introduce

a variable x
ci
v . For every vertex v ∈ V , we introduce a clause

x
c1
v ∨ x

c2
v ∨ x

c3
v . For every edge (u,v) ∈ E and for every ci ∈ C ,

we introduce a clause ¬xciu ∨ ¬x
ci
v . Finally, for every two colours

ci , cj and every v ∈ V , we introduce a clause ¬xciv ∨ ¬x
c j
v . We

say that G has a valid 3-colouring h, if h is a mapping h : V → C ,

such that every vertex in V is mapped to a single color in C , and

every edge (u,v) in G satisfies that h(u) , h(v).

The correspondence of the reduction is rather clear. If G has a

valid 3-colouring h, the assignment z assigning the value 1 to ev-

ery variable xciv such that h(v) = ci and the value 0 to the rest of

the variables satisfies every clause in φ. Every clause of the form

3This proof is inspired by a proof given inhttps://cs.stackexchange.com/questions/16634/complexity-of-monotone-2-sat-problem.

22

https://cs.stackexchange.com/questions/16634/complexity-of-monotone-2-sat-problem

(xc1v ∨ x
c2
v ∨ x

c3
v) is satisfied since h assigns a color to each ver-

tex. Every clause of the form (¬xciu ∨ ¬x
ci
v) is satisfied since in

a valid colouring, two adjacent vertices cannot be mapped to the

same color. In addition, h maps every vertex to a single color in C ;

therefore, each clause of the form (¬xciv ∨¬x
c j
v) is satisfied as well.

Overall, we have that φ is satisfiable.

Next, assume that φ is satisfiable, and let z be a satisfying as-

signment. We claim that the coloring h defined by h(v) = ci if

z(x
vi
c) = 1 is a valid 3-coloring of G. Since all the clauses of the

form (xc1v ∨ x
c2
v ∨ x

c3
v) are satisfied, for every vertex v , the assign-

ment z assigns the value 1 to at least one variable xciv . Moreover,

since the clauses of the form (¬xciv ∨ ¬x
c j
v) are satisfied, for every

v the assignment z assigns the value 1 to at most one variable xciv .

Hence, we conclude that z assigns the value 1 to exactly one vari-

able of the form x
ci
v for every v ∈ V , and h is indeed a coloring.

Finally, since the clauses of the form (¬xciu ∨ ¬x
ci
v) are satisfied, it

cannot be the case that z(xciu) = z(x
ci
v) = 1; hence, h does not map

two vertices connected by an edge in G to the same color.

Next, we reduce the (3+, 2−)-SAT problem to the (2+, 2−, 4+−)-

SAT problem. Given an input φ to the first problem, we build an

input φ′ to the second problem in the following way. Every clause

in φ of the form (¬xi ∨ ¬xj) remains the same in φ′. Every clause

of the form (xi ∨ xj ∨ xk) in φ is replaced by three clauses in φ′:

(1) (xi ∨ xj ∨¬y ∨¬y), (2) (xk ∨y), and (3) (¬xk ∨¬y), where y is

a new unique variable introduced for every clause in φ. We claim

that the clause (xi ∨xj ∨xk) is satisfiable if and only if the formula

(xi ∨ xj ∨ ¬y ∨ ¬y) ∧ (xk ∨ y) ∧ (¬xk ∨ ¬y) is satisfiable. This

holds true since in every satisfying assignment z to the original

clause, we either have that z(xk) = 1, in which case we satisfy the

new formula by defining z(y) = 0, or we have that z(xk) = 0, in

which case z(xi) = 1 or z(xj) = 1 and by defining z(y) = 1 we

again satisfy the new formula. Now, given a satisfying assignment

to the new formula, we either have that z(xi) = 1 or z(xj) = 1 in

which case the original formula is clearly satisfied, or we have that

z(y) = 0 in which case z(xk) = 1 (otherwise, the clause (xk ∨ y)

is not satisfied) and again, the original formula is satisfied. Since

we use different variables y for different clauses, we can assign the

required value to each one of these variables, and that concludes

our proof. �

Next, we give a reduction from (2+, 2−, 4+−)−-SAT to the prob-

lem of deciding whether a fact f ∈ TD is relevant to qRST¬R. Given

a formula φ ∈ (2+, 2−, 4+−), we build the input database D to our

problem as following: for every variable xi in φ we add an endoge-

nous fact R(i), and an exogenous fact T (i) to D. For every clause

(xi∨xj) inφ, we add an exogenous fact S(i, j, a,a)where a is a fresh

constant. For every clause (¬xi ∨ ¬xj) we add an exogenous fact

S(b,b, i, j) where b is a new constant. For every (xi ∨xj ∨¬xk¬xl)

in φ we add an exogenous fact S(i, j,k, l). In addition, we add the

exogenous facts S(d,d, c, c),R(a),R(c),T (a)where c and d are fresh

constants, and an endogenous fact T (c) which we denote as f .

We now show that Shapley(D,q, f) , 0 if and only if φ is sat-

isfiable. In fact, we show that Shapley(D,q, f) > 0 if and only

if φ is satisfiable, since T appears only as a positive atom in q

and f can only be positively relevant to q. Observe that Dx |= q

since every (exogenous) fact S(i, j,a,a), along with the exogenous

facts R(a),T (a) satisfies q. We assume here that every φ contains

at least one clause of the form (xi ∨xj) (otherwise, there is no fact

S(i, j, a,a) in D). We can assume that since the satisfiability prob-

lem is trivial for (2+, 2−, 4+−) formulas that do not contain at least

one clause of the form (xi ∨xj) (as all such formulas are satisfied by

the assignment z where z(x) = 0 for every variable x). Hence, the

(2+, 2−, 4+−)-SAT problem remains hard under this assumption.

Assume that φ is satisfiable by an assignment z, and consider

the set E = {R(i) | z(xi) = 1}. We claim that (Dx ∪ E) 6|= q. For

every exogenous fact S(i, j,a,a), at least one of facts R(i) or R(j) is

in E, since the clause (xi ∨ xj) is satisfied; hence, S(i, j,a,a), T (a)

and R(a) cannot jointly satisfy q. Moreover, for every S(b,b, i, j),

at most one of the facts R(i) and R(j) are in E, since the clause

(¬xi ∨¬xj) is satisfied as well. Finally, for every S(i, j,k, l), it holds

that if both R(k) and R(l) are in E, then at least one of R(i) and R(j)

is in E as well, since the clause (xi ∨ xj ∨ ¬xk ∨ ¬xl) is satisfied.

On the other hand, it holds that (Dx ∪ E ∪ f) |= q, since the facts

S(d,d, c, c),R(c) and T (c) are in (Dx ∪ E ∪ f) while the fact R(d) is

not. Therefore, we conclude that f is relevant to qRST¬R.

Now, assume that φ is not satisfiable. Let E ⊆ (Dn \ { f }). Recall

that the only endogenous facts in Dn \ { f } are the facts R(i) for

i ∈ {1, . . . ,n}. We now define the assignment z such that z(xi) = 1

if and only if R(i) ∈ E. Since z is not a satisfying assignment, at

least one clause c in φ is not satisfied. If c is of the form (xi ∨ xj),

then none of R(i),R(j) is in E, in which case the exogenous facts

S(i, j, a,a),R(a) and T (a) satisfy q. If c is of the form (¬xi ∨ ¬xj),

then both R(i) and R(j) are in E, and they satisfy q jointly with

the facts S(b,b, i, j) and T (i) (as the fact R(b) is not in D). Other-

wise, c is of the form (xi ∨ xj ∨ ¬xk ∨ ¬xl), in which case none of

R(i) or R(j) is in E, while both R(k),R(l) are in E; hence, the facts

S(i, j,k, l),T (k),R(k) and R(l) jointly satisfy q. In all of these cases,

we conclude that (Dx ∪ E) |= q; thus, adding f in a permutation

after the facts of E would not affect the query result, and f is not

relevant to qRST¬R. This concludes our proof of Proposition 5.5.

We nowprove the correctness of IsPosRelevant and IsNegRelevant

for deciding whether a fact is positively or negatively relevant to

q. We start with IsPosRelevant and prove the following.

Lemma D.2. Let q be a polarity-consistent CQ¬. Then, the algo-

rithm IsPosRelevant(D,q, f) returns true, givenD and f , if and only

if f is positively relevant to q.

Proof. Assume that f is positively relevant to q. Thus, there

exists E ⊆ Dn such that (Dx ∪ E) 6|= q while (Dx ∪ E ∪ { f }) |=

q. Hence, there is a homomorphism h from the variables of q to

the constants of D such that every positive atom and none of the

negative atoms of q is mapped to a fact of Dx ∪ E ∪ { f }. We claim

that the algorithm will return true in the iteration of the for loop

whenh is selected. By the definition ofhwe have that P ⊆ (E∪{ f }),

while for every f ′ ∈ N it holds that f ′ < (E∪{ f }). Moreover, since

(Dx ∪ E) 6|= q, the homomorphism h maps a positive atom of q to

f ; hence f ∈ P . Since q is polarity consistent, by adding a set of

facts corresponding to negative atoms of q we cannot change the

query result from false to true. Therefore, the fact that (Dx ∪ E) 6|=

q implies that (Dx ∪ E ∪ (Negq (Dn) \ N)) 6|= q. Since no fact of

N appears in E, the set Dx ∪ (P \ { f }) ∪ (Negq(Dn) \ N) can be

obtained from Dx ∪ E ∪ (Negq (Dn) \N) by removing a set of facts

corresponding to positive atoms of q, and, again, since q is polarity

consistent, we conclude that (Dx∪(P \{ f })∪(Negq(Dn)\N)) 6|= q.
23

Algorithm 3: IsNegRelevant(D,q, f)

for h : Vars(q) → Dom(D) do

if h maps an atom α ∈ Neg(q) to some f ′ ∈ Dx then
continue

if h maps an atom α ∈ Pos(q) to some f ′ < D then
continue

P = { f ′ ∈ Dn | h maps an atom α ∈ Pos(q) to f ′}

N = { f ′ ∈ Dn | h maps an atom α ∈ Neg(q) to f ′}

if f ∈ P then
continue

if (Dx ∪ P ∪ (Negq (Dn) \ N) ∪ { f }) 6|= q then
return true

return false

Next, assume that the algorithm returns true. Thus, there exists

a mapping h from the variables of q to the constants of D such

that (Dx ∪ (P \ { f }) ∪ (Negq (Dn) \ N)) 6|= q. Let E = ((P \ { f }) ∪

(Negq (Dn) \ N)). We will now show that (Dx ∪ E ∪ { f }) |= q and

since (Dx ∪ E) 6|= q, this will conclude our proof. By the definition

of N and since h does not map any negative atom of q to a fact in

Dx, we have that h does not map any negative atom of q to a fact

of Dx ∪ (Negq (Dn) \ N). Moreover, since h maps every positive

atom of q to a fact in D, we have that every positive atom of q is

mapped byh to a fact inDx∪P∪{ f }. Therefore, we conclude thath

is a homomorphism mapping every positive atom and none of the

negative atoms of q to facts ofDx∪(P \{ f })∪(Negq (Dn)\N)∪{ f }

and we have that (Dx ∪ E ∪ { f }) |= q.

�

We nowmove on the the algorithm IsNegRelevant and prove its

correctness. The algorithm is very similar to IsPosRelevant, except

for the fact that we now look for a homomorphism that does not

maps any positive atom of q to f , and in the last test, we check

whether the query is not satisfied by Dx∪P ∪(Negq (D) \N)∪ { f }.

Lemma D.3. Let q be a polarity-consistent CQ¬. Then, the algo-

rithm IsNegRelevant(D,q, f) returns true, givenD and f , if and only

if f is negatively relevant to q.

Proof. Assume that f is negatively relevant to q. Thus, there

exists E ⊆ Dn such that (Dx ∪ E) |= q while (Dx ∪ E ∪ { f }) 6|=

q. Hence, there is a homomorphism h from the variables of q to

the constants of D such that every positive atom and none of the

negative atoms of q is mapped to a fact ofDx∪E, whilehmaps f to

a negative atom of q. We claim that the algorithm will return true

in the iteration of the for loop when h is selected. By the definition

of h we have that P ⊆ E, while for every f ′ ∈ N it holds that

f ′ < E. Moreover, since (Dx ∪ E ∪ { f }) 6|= q, the homomorphism

h does not map any positive atom of q to f ; hence f < P . Since

q is polarity consistent, by adding a set of facts corresponding to

negative atoms of q we cannot change the query result from false

to true. Therefore, the fact that (Dx ∪ E ∪ { f }) 6|= q implies that

(Dx∪E∪ { f } ∪ (Negq (Dn) \N)) 6|= q. Since no fact of N appears in

E, the setDx∪P ∪{ f }∪(Negq(Dn)\N) can be obtained from Dx∪

E∪{ f }∪(Negq (Dn) \N) by removing a set of facts corresponding

to positive atoms of q, and, again, since q is polarity consistent, we

conclude that (Dx ∪ P ∪ { f } ∪ (Negq(Dn) \ N)) 6|= q.
Next, assume that the algorithm returns true. Thus, there exists

a mapping h from the variables of q to the constants ofD such that

(Dx∪P ∪(Negq (Dn) \N)∪ { f }) 6|= q. Let E = (P ∪(Negq (Dn) \N)).

We will now show that (Dx ∪E) |= q and since (Dx ∪E ∪ { f }) 6|= q,

this will conclude our proof. By the definition ofN and sinceh does

not map any negative atom of q to a fact inDx, we have that h does

not map any negative atom of q to a fact of Dx ∪ (Negq (Dn) \ N).

Moreover, since h maps every positive atom of q to a fact in D,

we have that every positive atom of q is mapped by h to a fact in

Dx∪P . Therefore, we conclude thath is a homomorphismmapping

every positive atom and none of the negative atoms of q to facts of

Dx ∪ P ∪ (Negq (Dn) \ N) and we have that (Dx ∪ E) |= q. �

Finally, we prove that the relevance problem is hard for the UCQ

qSAT. Recall that qSAT() :- q1 ∨ q2 ∨ q3 ∨ q4 where:

q1() :- C(x1,x2,x3,v1,v2,v3),T (x1,v1),T (x2,v2),T (x3,v3)

q2() :- V (x),¬T (x, 1),¬T (x, 0)

q3() :- T (x, 1),T (x, 0)

q4() :- R(0)

Proposition 5.8. Given a database D and the fact f = R(0),

deciding whether f is relevant to qSAT is NP-complete.

Proof. We construct a reduction from the satisfiability problem

for 3CNF formulas. The input to the satisfiability problem is a for-

mula φ = (c1 ∧ · · · ∧ cm) over the variables x1, . . . xn , where each

ci is a clause of the form (l1 ∨ l2 ∨ l3), and each lj is either a pos-

itive literal xk or a negative literal ¬xk for some k ∈ {1, . . . ,n}.

Given such an input, we build an input database D to our problem

as follows. For every variable xi we add an exogenous fact V (i),

and two endogenous factsT (i, 1) andT (i, 0). In addition, for every

clause (li ∨ lj ∨ lk) where lt = xt or lt = ¬xt for each t ∈ {i, j,k},

we add an exogenous fact C(i, j,k,vi ,vj ,vk), such that vt = 1 if

lt = ¬xt and vt = 0 if lt = xt . Finally, we add the endogenous fact

R(0) which we denote as f . We claim that f is relevant to q if and

only if φ is satisfiable.

Observe that E |= q for every E ⊆ D such that f ∈ E, since

f satisfies the query q4 by itself. Hence, f is relevant (and, more

precisely, positively relevant) if and only if there exist E ⊆ Dn

such that (Dx ∪ E) 6|= q. Now, assume that φ is satisfiable by the

assignment z. We will show that f is relevant to q. Consider the

subset E ⊆ Dn that contains every fact T (i,vi) such that z(xi) =

vi . Since z is a truth assignment, it assigns a single value to each

variable; hence, it is straightforward that (Dx ∪ E) 6|= q2 and (Dx ∪

E) 6|= q3. Regarding the query q1, since z is a satisfying assignment,

for every clause inφ there is at least one literal li such thatz(xi) = 0

if li = ¬xi and z(xi) = 1 if li = xi . Therefore, the fact T (xi ,z(xi)

does not appear in E, and we have that (Dx ∪ E) 6|= q. We conclude

that (Dx ∪E) 6|= q while (Dx ∪E ∪ { f }) |= q and that concludes our

proof of the first direction.

As for the other direction, given a subset E ⊆ Dn such that

(Dx ∪ E) 6|= q while (Dx ∪ E ∪ { f }) |= q, we define an assignment

z such that z(xi) = 1 if T (i, 1) ∈ E and z(xi) = 0 if T (i, 0) ∈ E.

Since (Dx ∪ E) 6|= q, it cannot be the case that E contains two facts

T (i, 1 and T (i, 0) (or, otherwise, (Dx ∪ E) |= q3) and it cannot be

the case that none of T (i, 1 and T (i, 0) belongs to E for some xi
(as otherwise, (Dx ∪ E) |= q2). Hence, z is a truth assignment. It is

24

only left to show that z is a satisfying assignment. Assume, by way

of contradiction, the a clause (li , lj , lk) is not satisfied. In this case,

z(xt) = 0 if lt = xt and z(xt) = 1 if lt = ¬xt for each t ∈ {i, j,k}.

Since E contains a fact T (t , z(xt)) for every variable xt , this will

imply that the factsT (i,z(xi)),T (j, z(xj)) andT (k,z(xk)) satisfy q1

jointly with the exogenous fact (i, j,k,z(xi),z(xj), z(xk)), which is

a contradiction to the fact that (Dx ∪ E) 6|= q.

Since the satisfiablity problem is NP-complete for 3CNF formu-

las, we conclude that the relevance problem for the given UCQ is

NP-complete as well. �

25

	Abstract
	1 Introduction
	2 Preliminaries
	3 Exact Evaluation
	4 Accounting for Exogenous Relations
	4.1 Generalized Dichotomy
	4.2 Algorithm for the Tractable Cases
	4.3 Application to Probabilistic Databases

	5 Approximation
	5.1 Additive vs. Multiplicative Approximation
	5.2 Hardness of Multiplicative Approximation

	6 Concluding Remarks
	References
	A Details for Section 2
	B Details for Section 3
	C Details for Section 4
	D Details for Section 5

