
A ScalableQuerying Scheme for
Memory-efficient Runtime Models with History
Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger Giese

<first-name>.<last-name>@hpi.de

Hasso Plattner Institute, University of Potsdam, Germany

ABSTRACT

Runtime models provide a snapshot of a system at runtime at a

desired level of abstraction. Via a causal connection to the modeled

system and by employing model-driven engineering techniques,

runtime models support schemes for (runtime) adaptation where

data from previous snapshots facilitate more informed decisions.

Nevertheless, although runtimemodels andmodel-based adaptation

techniques have been the focus of extensive research, schemes that

treat the evolution of the model over time as a first-class citizen

have only lately received attention. Consequently, there is a lack of

sophisticated technology for such runtime models with history.

We present a querying scheme where the integration of tempo-

ral requirements with incremental model queries enables scalable

querying for runtime models with history. Moreover, our scheme

provides for a memory-efficient storage of such models. By integrat-

ing these two features into an adaptation loop, we enable efficient

history-aware self-adaptation via runtime models, of which we

present an implementation.

KEYWORDS

runtime models, model queries, temporal requirements, temporal

logic, self-adaptation, incremental pattern matching

1 INTRODUCTION

A runtime model provides a view on a running system at a desired

level of abstraction that can be used for monitoring, analyzing,

or adapting the system through a causal connection between the

model and the system [58], i.e., any relevant change of the sys-

tem is reflected in the model and vice versa [13]. Runtime models

typically capture snapshot-based representations of the modeled

system in its current state [8]. Thereby, they provide an abstract

view on a current system configuration that, via causal connection

and employing model-driven engineering techniques, can support

online (model-based) adaptation schemes [13, 28] which mitigate

the difficulty of managing complex interconnected systems [44].

Capturing the evolution of runtime models [1] has been shown

to be a promising direction to cope with the increasing complexity

of software systems and their dynamic environments [9]. Further-

more, it is often desired, and sometimes required by application

domains, e.g., healthcare [17], that model-based schemes recollect

previous observations and utilize these historical data in future ac-

tivities: For instance, more informed adaptations can be enabled via

expanding runtime models to capture the history of system changes

and interactions [24], which can be utilized to address emergent

circumstances [52] or predict potential future changes [45].

Although runtime models, model queries, and adaptation based

on runtime model changes have been the focus of extensive re-

search (cf. [10]), schemes that treat the evolution of the runtime

model over time, referred to as Runtime Model with History (RTM
H
)

in the following, as a first-class citizen have only lately received at-

tention (cf. [26]). Moreover, in order to utilize the history of complex

systems that operate in highly dynamic environments for online

adaptations, RTM
H
technology should be capable of consolidating

numerous changes into the RTM
H
, often arriving at a high pace [16]

and in the form of events [22], as well as provide facilities for storing

and querying the historical event data in a scalable manner.

Runtime models have been utilized in (self-)adaptation schemes

where incremental model queries are employed to detect issues

requiring system adaptation, e.g., failures, in an efficient manner

(cf. [29]). However, the history of system changes is not captured

and adaptation decisions are only made based on the current system

state. The idea of runtime models enriched with history in the form

of past event data where queries impose temporal requirements on

matched patterns has been, so far, treated only preliminarily and ad

hoc, e.g., by a manual translation of a single example of a restricted

form that supports only past requirements [49]. In this paper, we

extend the scheme envisioned in [49] and present a version which

lifts the restrictions, supports complex queries with both past and

future requirements, and their systematic operationalization. We

extend the scheme further to support a full online adaptation cycle

employing incremental model queries, which enables history-aware

adaptations where real-time, efficient storage and querying for data

generated by events are key.

Our contributions are as follows. First, we present a scalable

online scheme for the incremental processing of pattern-based

model queries which support temporal logic operators. The ap-

proach automatically maps a temporal graph logic formula to a

network of simple graph sub-queries. Secondly, our scheme allows

for memory-efficient RTM
H
via an automated, a priori analysis

of the model queries that only keeps data in the RTM
H
that are

necessary to evaluate the model queries correctly. By integrating

these two contributions into a self-adaptation loop, we enable effi-

cient history-aware self-adaptation via runtime models. Finally, we

present an implementation of the querying scheme embedded in

an adaptation loop, evaluate it on simulated real and synthetic logs

from the medical domain, and compare it to a baseline acquired by

a relevant state-of-the-art tool.

The rest of the paper is organized as follows. Section 2 discusses

the building blocks of our scheme. An overview of the scheme and

its utilization to enable history-aware self-adaptation is presented

in Section 3. The incremental matching of patterns with temporal

requirements is presented in Section 4, while Section 5 details the

query analysis that enables memory-efficient RTM
H
. We evaluate

the performance of our prototypical implementation in Section 6,

discuss related work in Section 7, and conclude the paper as well

as discuss future work in Section 8.

ar
X

iv
:2

00
8.

04
23

0v
2

 [
cs

.S
E

]
 1

4
A

ug
 2

02
0

MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Sakizloglou et al.

w:W

cts=8
dts=9

x:X z:Z

cts:long
dts:long

X
cts:long
dts:long

Z

W

x:X
x:X

y:Y𝑛! :

cts:long
dts:long

x1:X
cts=5
dts=9

z1:Z
cts=6
dts=8

y1:Y

w1:W

z2:Z
cts=8
dts=9 w2:W

dts=7
cts=6
dts=8

cts=5
HTG

𝑛!.! 	: 𝑛!.# 	:

y:Y

cts:long
dts:long

Figure 1: Type graph TG of Σ, the RTMH H , and n patterns

2 FOUNDATIONS

2.1 Runtime Models for Self-adaptation

A runtime model captures a snapshot-based representation of the

current state of the modeled system at a desired level of abstrac-

tion [8]. Self-adaptation can be generally achieved by adding, remov-

ing, and re-configuring components as well as connectors among

components in the system architecture [42], therefore, software

architecture is typically considered an appropriate abstraction level,

e.g., [27, 28]. Runtime models may be used for adapting the system

through a causal connection between the model and the system [58].

Model queries are employed to retrieve data from a runtime model.

The established practice of representing the runtime model as a

graph captures architectural components as vertices, connectors

between components as edges, and information about the com-

ponents as attributes [57]. The model conforms to a metamodel
that specifies a language for runtime models and defines types of

vertices, edges, and attributes.

Formally, a graph-based runtime model can be represented as

a typed attributed graph where a graph is typed over a type graph,
in the same manner a runtime model conforms to its metamodel.

For an example, see Fig. 1 for the type graph TG of an abstract

elementary system Σ. A graph-based representation allows for the

utilization of established formalisms, such as typed, attributed graph
transformation [23], for the maintenance and adaptation of the

model, whereby graph transformation rules are employed to capture

model queries as well as perform in-place model transformations.

In short, let G be a graph representation of the runtime model

(effectively, the system architecture), and ρ a graph transformation

rule. A rule ρ is characterized by a left-hand side (LHS) and a right-

hand side (RHS) graph pattern which define the precondition and

postcondition of an application of ρ respectively. In this context,

the LHS describes a structural fragment of the architecture and the

RHS the corresponding model transformation. A matchm of LHS
inG corresponds to an occurrence of LHS inG and identifies a part

of the runtime model where the transformation should occur. The

LHS of a rule can also be used to characterize a graph query, which
is the equivalent graph-based notion of a model query.

To realize architectural self-adaptation, a system is equipped

with a MAPE-K feedback loop that monitors and analyzes the

system and, if needed, plans and executes an adaptation of the

system via making architectural changes, i.e., adding and remov-

ing components as well as connectors among components in the

system architecture [27]. All four MAPE activities are based on

knowledge [39]. The feedback loop maintains a runtime model as

part of its knowledge to represent the current state of the architec-
ture. Rule-based self-adaptation schemes employ adaptation rules

++

y:Y w:W x:Xz:Zx:X x:X

𝑁!

𝜃:𝑛! , 𝑛!.! ∧¬𝑛!.#
++

++
++

++

++
++ ++

𝑁!.! 𝑁!.#

++𝑛!

𝑛!.#𝑛!.!

𝑁!.! 𝑁!.# 𝑁!

Figure 2: Example: GDN (left) and Marking Rules for θ

to capture events (during monitoring phase), check whether the

events triggered any adaptation issues (during analysis) and plan

for and execute an adaptation (during planning and execution re-

spectively) [41]. The graph-based representation of runtime models

allows for a realization of adaptation rules in form of graph trans-

formation rules where analysis is performed via model queries and

the system is adapted via in-place model transformations [28].

2.2 Efficient Pattern Matching for Queries

The process of finding matches of LHS patterns inG is called graph
pattern matching and corresponds to the execution of a graph query

specified by the pattern LHS. In certain cases however, simple pat-

terns are not sufficient as a language for specifying more sophisti-

cated application conditions of adaptation rules, for instance if the

existence of certain model elements should be prohibited. In those

cases, LHS patterns and thus graph queries are enhanced with a set

of application conditions ac which every matchm should satisfy.

In the following, a graph query q is characterized by a pattern n
and application conditions ac , denoted q(n,ac).

A graph query is a declarative means to express a sought pattern

and its application conditions. The query itself does not specify a

method for its operationalization, i.e., instructions on how to exe-

cute the query over a graph. In this work, for the operationalization

of queries, we build on [11], which supports ac formulated as Nested
Graph Conditions (NGCs) [34]. NGCs support the nesting of pat-

terns to bind graph elements in outer conditions and relate them to

inner (nested) conditions. Moreover, NGCs support the first-order

logic operators negation (¬), existential quantification (∃), and con-

junction (∧) and thus have the expressive power of first-order logic
on graphs [46] and constitute, as such, a natural formal foundation

for pattern-based queries. The approach in [11] presents a formal

framework for the decomposition of a query with an arbitrarily

complex NGC as ac into a suitable ordering of simpler sub-queries,

which is called a generalized discrimination network (GDN). A GDN

is a directed acyclic graph where each graph node represents a

(sub-)query. To avoid confusion, we refer to the GDN as a network.
Dependencies between sub-queries are represented by edges from

child nodes, i.e. the nodes whose results are required, to the parent

node, i.e. the node which requires the results. Dependencies can

either be positive, i.e. the sub-query realized by the parent node

requires the presence of matches of the child node, or negative,
i.e., the sub-query of the parent node forbids the presence of such

matches. The query is executed bottom-up: the execution starts

with leaves and proceeds upwards in the network. The terminal

node computes the overall result of the query.

In [11], a GDN is realized as a set of graph transformation rules

where each GDN node, i.e., each (sub-)query, is associated with one

transformation rule. The LHS of the rule searches for matches of

A Scalable Querying Scheme for Memory-efficient Runtime Models with History MODELS ’20, October 18–23, 2020, Montreal, QC, Canada

the corresponding query in a given graphG. The RHS of the rule
creates for each match amarking node inG andmarking edges from
the marking node to each element of the match—marking nodes

are not to be confused with regular graph nodes in G (which, in

this context, represent system components) thus we use the term

vertex for the latter. In order to be able to create marking nodes

and edges, the transformation rules of a GDN are typed over an

extended type graph which adds the required types for marking

nodes and edges to the initial type graph. The LHS of queries with
dependencies have ac that require the existence of marking nodes

of their positive dependencies and forbid the existence of marking

nodes of their negative dependencies.

As an example, assume the following graph query q(n1,θ)where
θ B n1, (n1.1 ∧ ¬n1.2), which captures the following (structural)

requirement: all matches of n1 can be extended to a pattern n1.1 but
not to a pattern n1.2 The patterns are based on the TG of system Σ
(introduced in Section 2.1) and are shown in Fig. 1 (bottom). The

nesting of patterns implies a binding of the vertex of type X from

inner patterns, i.e., all patterns refer to the same element inH . Note

that, for presentation purposes, we adopt a simplified grammar

for NGCs that omits existential quantifiers for patterns as well as

the operator true which is always satisfied and marks the end of a

nested condition, e.g., in θ , we write n1.1 instead of ∃(n1.1, true).
The GDN for q is shown in Fig. 2 (left), where each square rep-

resents a GDN node. Each node is associated with a marking rule.

The GDN consists of three nodes, i.e., rules: the node N1.1 for the

query searching for n1.1, the node N1.2 for pattern n1.2 and the

topmost node N1 for pattern n1. Node N1 computes its matches by

matching its pattern and checking whether both of its dependencies

are satisfied (conjunction in θ). The negative dependency which

captures the negation in θ (drawn by a dashed line) is satisfied

when a match for N1 can not be extended by a match for N1.2. All

nodes are realized by transformation rules whose LHS matches

a pattern and whose RHS creates marking nodes and edges that

mark the matches of the LHS. The rules for nodes N1.1, N1.2, N1

are shown in Fig. 2, where (i) vertices are shown by rectangles, (ii)

marking nodes by circles, and (iii) the marking nodes and edges

added by a rule are annotated with "++". For presentation purposes,

the illustrations of rules contain both LHS and RHS.
A GDN is capable of being executed incrementally and thus

enables efficient, incremental pattern matching. Changes inG can

propagate through the network, whose nodes only recompute their

results if the change concerns them or one of their dependencies.

2.3 Runtime Models with History

A Runtime Model with History (RTM
H
) [49] consolidates the evo-

lution of a runtime model in a single graph and as such it consti-

tutes the cornerstone of our scheme. An RTM
H
can be obtained by

an adjustment to the system metamodel such that each element

is equipped with a creation and deletion timestamp, cts and dts
respectively—see TG in Fig. 1. Based on monitoring data, when

an element is created or deleted in the represented system, its cts,
respectively dts, is updated accordingly in the RTM

H
. At the time

of creation, the dts of an element is set by default to ∞. For an

example of a RTM
H
, see H in Fig. 1, where the cts and dts of each el-

ement reflects the latest monitoring data. Note that, some elements,

e.g., the edge y1, have been removed from the modeled system yet

featured in the RTM
H
. By featuring removed elements, i.e., compo-

nents whose dts is in the past or present, an RTM
H
transcends the

traditional notion of causal connection.

2.4 Queries over RTM
H

We introduce graph queries that, via their ac , express temporal

requirements on patterns. Such queries provide a powerful means

to query the history or evolution of a system execution, as the latter

is reflected in RTM
H
. An example is the following requirement:

“For all matches of n1 in H at a time point t , at least one match of n1.2
should be found at some time point t ′ ∈ [t , t+2], that is at most 2 time
units later. In addition, at each time point t ′′ ∈ [t , t ′) in between, at
least one match for n1.1 should be present.”, where all patterns refer
to the same vertex of type X in H. The specification of such require-

ments is enabled by Metric Temporal Graph Logic (MTGL) [31, 50].

MTGL builds on NGCs andMetric Temporal Logic [40] to enable the
specification of Metric Temporal Graph Conditions (MTGCs) which

support metric, i.e, interval-based, temporal operators: the future

until (UI , where I is a time interval
1
) and eventually (♢I), and their

dual past operators since (SI) and once (♦I).
MTGL reasons over a sequence of graphs, which in this context

represents consecutive snapshots of the runtime model. However,

as shown in [31], a graph sequence can be uniquely folded into a

graph with history. In a graph with history, each node and edge is

associated with a creation timestamp cts and a deletion timestamp

dts. To store these values, the type graph is extended by appropriate

attributes. MTGCs can also be equivalently checked over a graph

with history, which here corresponds to an RTM
H
.

The exemplary requirement above is captured by the MTGC

ζ B n1, (n1.1 U[0,2] n1.2). The intuition behind until is reversed for

the past operator since, e.g. (n1.1 S[0,2] n1.2), which requires that

when n1.1 is matched at time point t , a match for n1.2 has existed
at some time point t ′ ∈ [t − 2, t], and that at every time point

t ′′ ∈ (t ′, t] in between, a match for n1.1 is present in the graph.

The operators eventually (♢I) and once (♦I) are abbreviations of
until and since: ♢I n1 = trueUI n1 and ♦I n1 = true SI n1. The query
q(n1, ζ) computes all matches of n1 in H that satisfy the MTGC ζ .

3 INTEMPO: A QUERYING SCHEME

EXTENDED FOR SELF-ADAPTATION

In the following, we present the basic modules of our querying

scheme named InTempo (from Incremental queries with Temporal
requirements) together with the extensions that are integrated in

an adaptation engine (Fig. 3) to realize self-adaptation based on the

case-study. The engine consists of the standard MAPE activities,

plus the novel and optional maintain activity (in gray), sensing and

affecting an adaptable software via an RTM
H
.

3.1 Overview of InTempo for Adaptation

InTempo consists of three basic modules. The C module (for con-

struction) is executed prior to the adaptation loop (during setup of

the engine) and takes a graph query with temporal requirements

1
A (time) interval I is a set I = {t | t ∈ IR

+
0
∧ τ ≤ t ≤ τ ′ }, where τ , τ ′ ∈ IR

+
0
,

and τ , τ ′ is the lower, respectively upper, bound of the interval. An interval I is also
denoted by [τ , τ ′] and its lower and upper bound by ℓ(I), respectively u(I).

MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Sakizloglou et al.

Sensors Effectors

Adaptation Engine

RTMH

Adaptable Software

Monitor

M
Analyze Plan

T
ExecuteP

C

LoopSetup

P
Maintain

MTGC use
order

Figure 3: Overview of Adaptation Engine

captured by an MTGC as input and constructs a temporal GDN
by decomposing the query into simpler sub-queries. The module

extends the GDN construction presented in Section 2.2 by introduc-

ing concepts for capturing and handling structural matches whose

validity is based on the creation and deletion time point of their

elements. TheM module (for matching) operates within the adapta-

tion loop (cf. Fig. 3) and executes the temporal GDN, i.e., it searches

for matches of queries. The module ensures that only (sub-)queries

whose matches are affected by changes are re-executed and takes

into account temporal requirements on matches. This module is

executed in the analysis activity of the loop. The P module (for

pruning) is executed both in setup and within the loop. In setup, it

analyzes the query to derive an upper bound on the time window

within which elements of the RTM
H
could be used in the evaluation

of the query. Then, during the maintain activity of the loop, the

module uses these derived cut-off points to decide whether to prune
elements from the RTM

H
that have been removed from the system

and are not usable by future query executions.

The previously presented modules form a (stand-alone) scal-

able querying scheme which enables the incremental matching of

patterns with temporal requirements. The T module (for transfor-

mation) is an extension that enables self-adaptation via realizing

the execution activity of the loop. It processes the query matches,

which in this context represent issues requiring adaptation, and

performs in-place model transformations, i.e., adaptation actions.

3.2 Case-Study: Smart Healthcare System

Our case-study is based on a service-based simulated Smart Health-

care System (SHS). The SHS is based on smartmedical environments

[48] where sensors periodically collect physiological measurements

of patients, i.e., data such as temperature, heart-beat, and blood pres-

sure, and certain medical procedures are automated and performed

by devices, such as a smart pump administering medicine, based

on the collected patient measurements—as otherwise a clinician

would be doing. The metamodel of the SHS (Fig. 4) is influenced

by the exemplar of a self-adaptive service-based medical system

in [59] and captures an RTM
H
as an instance of the Architecture

class. To meet the requirements for an RTM
H
, all other elements

elements inherit from MonitorableEntity, i.e., are equipped with a

creation and deletion timestamp.

In our SHS, services are invoked by a main service called SHSSer-
vice to collect measurements (from patient sensors) or take medical

cts : ELong
dts : ELong

MonitorableEntity

status : EString

Probe

AdaptationAction
[0..*]

Issue

Effector

SHSService

DrugService

Architecture

PMonitoringService

pID : EInt

Service

Annotations

handledBy

[1..1]
handles

[0..*]

[0..1]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]
executes

effector
[1..*]

[0..*]

modifies

modifiedBy

[0..*]

[0..*]

affects[1..1]

[0..*]

affectedBy

Figure 4: Metamodel of the SHS (excerpt)

actions (via patient effectors, e.g. pump), the former called PMonitor-
ingService and the latter DrugService. Invocations are triggered by

effectors (Effector) and invocation results are tracked via monitoring

probes (Probe) that are attached on Services. Probes are generated
periodically or upon events in the real world. Each Probe has a
status attribute whose value depends on the type of Service. Each
Service has a patientID attribute which identifies the patient for

whom the Service is invoked.

3.3 History-Aware Self-Adaptation

In the following, we build on our SHS to envisage a (self-)adaptation

scenario that enacts a medical instruction. The instruction imposes

temporal requirements on the operation of the SHS which are

checked and enforced by the five activities of the adaptation loop

which are described below. The scenario is based on the medical

guideline on the treatment of sepsis [47], a possibly life-threatening

condition. We focus on the basic instruction that reads: “between ER
Sepsis Triage and IV Antibiotics should be less than 1 hour”, where

ER Sepsis Triage and IV Antibiotics are procedure actions for sepsis
documented in real records of patients in a hospital [43]. Based on

the SHS metamodel and the available hospital data, we envisage

the procedure described in the guideline performed by the SHS.

In detail, an ER Sepsis Triage event is simulated as a Probe with a

status equal to sepsis, generated for a PMonitoringService pm which

has been invoked by a SHSService s. An IV Antibiotics event is
simulated as a Probe with status antibiotics from a Drug Service d
which has also been invoked by s. To make sure these two actions

are referring to the same patient, we require that the patientID of d
and pm are equal. The pattern fragments capturing the occurrence

of these events in our SHS are depicted in patterns p1 and p1.2
in Fig. 5. Based on p1 and p1.2, the instruction is formulated in

MTGL by the MTGC ψ B (p1, (♢[0,3600] p1.2)), that is, for every
match of p1 which identifies a (previously untreated) patient with

sepsis, eventually in the next hour there is a match for pattern p1.2
which identifies the administration of antibiotics to that patient.

The system is assumed to track time in seconds. We describe the

adaptation activities in detail.

Monitor. During the monitoring activity, the recent events (new

readings captured by Probes since the last invocation of the loop)

together with their cts and dts values are reflected in the RTM
H
,

A Scalable Querying Scheme for Memory-efficient Runtime Models with History MODELS ’20, October 18–23, 2020, Montreal, QC, Canada

issue
<<create>>

<<create>>

Analysis (RHS)

affects

pm
:PMonitoringService

a
:Annotations

i:Issue

Planning (LHS+RHS)

<<create>>

a
:Annotations

issues

<<create>>
action

:AdatationAction adaptationAction

p:Probe
status=sepsis

pm:PMonitoringService
patientID=id

s:SHS

p:Probe
status=antibiotics

pm:PMonitoringService s:SHS d:DrugService
patientID=id

p1
p1.2

<<create>>
i:Issue

handledBy<<create>>

i:Issue

Figure 5: Illustrated Patterns for Case-study

which is an instantiation of theArchitecture. Therefore, the RTMH
is

updated to represent the current architectural system configuration

enriched with the relevant temporal data.

Analyze. The analysis activity detects the potential adaptation is-

sues, which in this context are captured by violations of ψ , i.e.,
the existence in the RTM

H
of structural patterns that reflect sepsis

cases (p1) without associated antibiotics (p1.2) within one hour. The

detection is based on the execution of the temporal GDN by the

M module of InTempo. The temporal GDN is obtained by the C
module during the setup of the adaptation loop.

We remark that we aim to detect violations ofψ . Therefore, in
order for matches to constitute violations of sepsis cases that can

be adapted, we execute the following graph query: q(p1,ϕ1), where
ϕ1 B p1,¬(♢[0,3600] p1.2). Furthermore, in order to challenge our

scheme with a more complicated scenario, we also search for viola-

tions for a variation ofψ . Namely, that no patient with sepsis should

be released from the medical environment prior to being treated, a

requirement that resembles conformance checks of medical proce-

dures (cf. [43]). Once more, we rely on the real hospital data and

specifically the Release event. The structural pattern corresponding

to Release is patternp1.1, a minormodification of patternp1.2, where
the probe attached to a monitoring service has the value release.
The requirement is captured by ϕ2 B p1,¬(¬p1.1 U[0,3600] p1.2).
Note that an important aspect of analysis is the handling of poten-
tial violations, i.e., the matching of a sepsis pattern p1 that is not
yet associated to an antibiotics pattern p1.2 at the current RTM

H

although there is still time for the requirement to be fulfilled in the

future. The planning activity only detects these cases as violations if

the time difference between the lower bound of the validity interval

of the match and the current time point is greater than the until

interval in the MTGC, which, in this case, is 3600 seconds.

The matches detected by the M module constitute adaptation is-

sues, and similar to [29], adaptation-related classes (in gray in Fig. 4)

are employed to facilitate the adaptation. During analysis, the mon-

itoring service involved in detected issues is annotated with an

instance of the Issue class. Therefore, to ensure that only new vio-

lations are matched, p1 contains an Issue node i (Fig. 5) surrounded
by a box which designates a negative pattern that should not be

matched. Issue nodes and other adaptation-related classes are cre-

ated by ordinary transformation rules.

Plan and Execute. In planning, the engine searches for sepsis probes

annotated with an issue. Upon finding them, it attaches an Effector
on the service to which the probe is attached. In execution, the T
module searches for effectors and upon finding them takes an adap-

tation action, i.e., administer antibiotics to the patient via a drug

service. This adaptation action is also reflected in the RTM
H
by cre-

ating an AdaptationAction which is associated to the handled Issue.

𝜆!"#$
αU

y:Y x:X

𝜆%.%
kernel

multi-rule

α1.1

U

x:X
α1.2

α1.1

𝜆%.'(

𝜆%.%(U

α1.1 α1.2
++++

++
++

++

𝑁%.%∗ 𝑁%.'∗

𝑁%∗

𝜆%.%(

U[",$] 𝑛&

𝑛&.& 𝑛&.$

{ {

{

𝜁:𝑛% , 𝑛%.%U[+,']𝑛%.'

𝑁%.%∗

++
++

Figure 6: Temporal GDN: Network and Marking Rules for ζ

Note that the adaptation has to respect the encoding of the RTM
H
,

which means setting the cts of created elements appropriately.

Maintain. Duringmaintenance, the P module uses the cut-off points

derived after the analysis of the MTGC during setup and prunes the
RTM

H
, i.e., it removes all elements that have a dts in the past and

cannot be used in future query evaluations. Following the removal

of elements, the GDN is re-executed to update matches.

4 INCREMENTAL MATCHING OF PATTERNS

WITH TEMPORAL REQUIREMENTS

In this section we present the inner workings of the matching mod-

ule of InTempo. The module incrementally searches for matches of

a query whose ac is formulated in MTGL in a RTM
H
. The matching

relies on a decomposition of an MTGC into simpler queries based

on a temporal GDN and the subsequent incremental, bottom-up

execution of the latter.

4.1 Matches and Their Lifespan

In the following, we refer to the framework in [11] (see Section 2.2)

as base approach. The base approach builds on graph queries where

application conditions are formulated as NGCs but does not support

the temporal operators until and since of MTGL. Building on the

base approach, we present our extensions, collectively referred to as

temporal approach or temporal GDN, which allows for the encoding

of temporal operators of MTGL by a GDN, and thus enable the

incremental matching of patterns with temporal requirements.

The temporal approach differs from the base approach (see Sec-

tion 2.2) in two key aspects: First, vertices and edges of a RTM
H

encode data on their creation and deletion (via the cts and dts at-
tributes respectively), i.e. their lifetime, which introduces the notion
of a lifespan of a match, i.e. the time span for which the lifetimes of

all nodes and edges of the match overlap; Secondly, ac that express
temporal requirements for structural patterns (enabled by MTGL)

extend the notion of a (structural) match with a period of tempo-
ral validity. For instance, in ζ from Section 2.4, a match for n1 is
not valid (although present in the graph) unless a match for n1.2

is found within the specified interval. Note that, although in the

following we consider both vertices and edges, our implementation

aligns with recent approaches and focuses on matching vertices,

as, in the general case, edges can be encoded as vertices.

4.2 Marking Rules for Matches

The intersection of two intervals is always an interval, whereas the

union of two intervals i1 and i2 can only sometimes be encoded

as an interval. In this case, we say that i1 and i2 are adjacent, i.e.

MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Sakizloglou et al.

adjacent(i1, i2) = ∃i∪ ∈ I : i∪ = i1 ∪ i2, where I is the set of all

intervals. To encode unions that result in disjoint intervals, i.e. dis-

connected sets of time points, we define the fragmented interval
I = {i | i ∈ I}. Note that in the following, if we perform set opera-

tions on fragmented intervals, we consider the set of time points

encoded by the fragmented interval rather than the intervals in I.
To capture the lifespan of matches, we equip the types of marking

nodes in the type graph with an attribute λ of type fragmented in-

terval. We extend the marking rules of the base approach to set the

attribute λ of the created marking nodes to the lifespan of the match

m, where the latter is defined as the intersection of the lifetimes of

the matched elements E:

λm =
⋂
e ∈E

de (1)

where de is given by e .λ if e is a marking node, and by [e .cts, e .dts]
otherwise. The functionality of the rule remains otherwise un-

changed. We name this extended marking rule MR
∗
.

4.3 Marking Rules for Aggregating Matches

The requirements of until in ζ from the example in Section 2.4

stipulate that at least a single match for n1.1 is present in the graph

until at least one n1.2 is matched. In order to evaluate this, we need

to keep track of the lifespans of all matches for n1.1 and n1.2. The
number of these matches might vary in every GDN update, a prop-

erty which is not covered by conventional graph transformation

rules as presented in Section 2.1. To allow for a marking node to

possibly be associated with a varying number of graph elements,

as required by until and since, we introduce the concept of an amal-
gamated marking rule (αMR). The latter stems from amalgamated

graph transformations [12], where an arbitrary number of parallel

transformations are amalgamated, i.e., merged, into a single rule

applied to the same model in one transformation step. The LHS of
αMR contains a kernel of graph elements that are bound by the

enclosing operator (in ζ , that would be a vertex of type X) and a

multi-rule which matches an arbitrary number of instances of a

certain marking node type. An αMR thus groups the marking nodes

matched by the multi-rule by matches of the kernel. Hence, the

αMR corresponds to a GDN node with a single dependency to the

node that creates the marking nodes which the αMR groups.

Similar to MR
∗
, the RHS of an αMR creates an α marking node

which is connected to themarking nodes of its dependency (matched

by the multi-rule) and the elements of its pattern in the kernel

marked by those marking nodes. If the dependency is positive, the

lifespan of the marking node αMR is computed by intersecting

the lifespan of the match of the kernelmK with the union of the

lifespans of the marking nodes EM matched by the multi-rule:

λαPAC = λ
mK ∩

⋃
e ∈EM

λe (2)

If the dependency is negative, the relative complement is computed

instead of the intersection:

λαNAC = λ
mK \

⋃
e ∈EM

λe (3)

See Fig. 6 (middle) for an example of αMR for n1.1 from ζ . Note that
the depiction of marking rules for the temporal GDN is illustrated

by a split marking node: The bottom compartment contains the

lifespan of the marking node.

4.4 Marking Rules for Temporal Operators

Finally, we introduce two dedicatedmarking rules for until and since,
named UMR and SMR respectively, whose LHS patterns contain

elements that are bound by its enclosing query. The UMR and SMR

have a dedicated dependency for both their left and right operand

and perform a special computation for the lifespan of the marking

nodes they create. Let λα
ℓ
, λαr be the lifespan of left, respectively

right, operand of until. An example of the UMR for ζ is shown

in Fig. 6 (right). The computation of the lifespan of UMR is the

following: for every right interval i ∈ λαr and every adjacent left

interval j ∈ Ji , where Ji = {j | j ∈ λα
ℓ
∧ adjacent(i, j)}, we compute

the right pivot interval ν of i and the left pivot interval µ of j.

ν (i) = [ℓ(i) − u(IU),u(i) − ℓ(IU)] (4)

µ(j) = [ℓ(j),u(j) − ℓ(IU)] (5)

Considering only adjacent intervals ensures the satisfaction of the

requirement of until that there is a match of the left operand con-

tinuously until there is a match of the right operand. The pivot

intervals allow us to check whether the matches of the left and

right operand occur with appropriate timing with respect to the

relative interval IU defined by the until operator in the formula, i.e.

the interval [0, 2] in ζ . The intersection of ν (i) and µ(j) then marks

an interval where until is satisfied. The total satisfaction λsat
U

is

computed as the union of all satisfaction intervals:

λsat
U
=

⋃
i ∈λαr

⋃
j ∈Ji

ν (i) ∩ µ(j) (6)

The computation of the lifespan for a SMR is similar to a UMR.

They only differ in the computation of ν and µ which for since are:

ν (i) = [ℓ(i) + ℓ(IS),u(i) + u(IS)] (7)

µ(j) = [ℓ(j) + ℓ(IS),u(j)] (8)

where IS is the specific interval of the since operator. For the oper-
ators eventually and once, where the left-hand operand is always

true, their λα
ℓ
is equal to IR

+
0
.

The case where ℓ(IU) = 0 (or, in the case of since, ℓ(IS) = 0)

is special, because according to the specification of MTGL, the

formula can be satisfied without any occurrence of a match for the

left operand. Therefore, the computation of λsat
U

is slightly adapted:

λsat
U0

= λsat
U

∪ λαr (9)

The computation is analogously adapted for since.

4.5 GDN Construction and Example

In the previous section, we were concerned with marking nodes

created by the GDN rules. In this section, we focus on GDN nodes

which form the components of the network and represent rule

applications. Regarding the construction of a temporal GDN from

an MTGC, there are two extensions to the base approach: First,

we represent UMR and SMR with two new types of GDN nodes

for until and since respectively. For each such node, we add depen-

dencies to the GDN nodes realizing the left and right operands of

the corresponding temporal operator. Secondly, instead of adding

A Scalable Querying Scheme for Memory-efficient Runtime Models with History MODELS ’20, October 18–23, 2020, Montreal, QC, Canada

time5 6 7 8 9
𝜆!.!, 𝜆!.!#

𝜆!.$#
𝜆!.$

𝜆!.$

𝜆%!
&'(, 𝜆%# , 𝜆!

4

𝜈!
𝜇! , 𝜆%&'(

Figure 7: Computed Intervals for ζ over RTM
H H

direct dependencies from a GDN node β to another GDN node

γ , where both β and γ realize a part of the MTGC, we construct

an intermediate α node, i.e., a GDN node realized by an αMR. We

add a dependency from α to γ , which is negative iff the original

dependency is negative, and a positive dependency from β to α .
Note that this means that in a temporal GDN, only α nodes may

have negative dependencies.

See Fig. 6 (left) for the temporal GDN of ζ , where the novel α
nodes are in dark gray. The patterns n1.1 and n1.2 are represented
by nodes N ∗

1.1 and N ∗
1.1 respectively. These nodes are both depen-

dencies of their respective α nodes. The U node is dependent on the

two α nodes. Finally, node N ∗
1
, the one created for n1, is dependent

on an α node with dependency U. For more complex constructions,

the instructions in [11] apply. We now present an example of an

execution of the query q(n1, ζ) over the RTMH H in Fig. 1. In the

example, we assume the query is executed at time point t = 9. The

execution consists of seven phases. The computed intervals are

illustrated in Fig. 7.

I An MR
∗
rule for n1.1 is applied (node N

∗
1.1 in the GDN in Fig. 6).

One match is found and thus one marking node is created with

λ1.1 = [5, 7], i.e., the lifespan of the match, based on Equation 1.

II The αMR of node α1.1 is applied. One vertex of type X is

matched and one marking node of type N ∗
1.1. The marking

node created by αMR groups the lifespans of its dependencies

(in this case, only one equal to [5, 7]) based on Equation 2 and

stores the result into its attribute λα
1.1.

III The MR
∗
of node N ∗

1.2 is applied. Two matches are found and

two marking nodes are created with lifespans [6, 8] and [8, 9]
respectively.

IV The αMR of node α1.2 is applied. One match of type X is found

and two marking nodes of type N ∗
1.2. One marking node is

created whose result groups the lifespans of its dependencies

and stores it in λα
1.2 = [6, 9].

V The UMR of node U is applied. One match for a vertex of type X

is found and two marking nodes for the left and right operand

respectively. The lifespans of the right marking node λα
1.2 are

checked on whether they are adjacent to any of the intervals in

the lifespan of the left marking node λα
1.1. This is true for two

lifespans. The right pivot ν1 = [4, 7] and left pivot µ1 = [5, 7]
for these two lifespans are computed based on Equation 4 and

Equation 5 respectively. The lower bound of until is 0 so we

have the special case where the satisfaction interval of until is
computed by Equation 9 as the union between the intersections

of µ and ν and the λα
1.2 which is [5, 9].

VI The αMR of node αU is applied. The lifespan of the created

marking node is computed to be λα
U
= [5, 9].

VII TheMR
∗
of nodeN ∗

1
is applied. One vertex of type X is matched

and one marking node of type αU. The lifespan of the match is

their intersection: [5, 9].
Finally, the executed query returns a match for n1 and the (possi-

bly fragmented) interval during which, besides being structurally

present in the graph, the match satisfies the temporal requirements

expressed by the MTGC ζ . Employed for self-adaptation, the tem-

poral GDN incrementally computes in each execution step all new

matches, i.e., adaptation issues, as soon as possible and marks them

with a marking node. These marking nodes, together with the graph

elements they mark, remain in the RTM
H
in subsequent steps.

5 MEMORY-EFFICIENT RTM
H

In this section we present the query analysis of the P module that

allows for memory-efficient RTM
H
. By deletion timestamps, an

RTM
H
retains information about elements that have been possi-

bly removed from the represented system. This wealth in insight

comes with a price: the perpetual accumulation of historical data

causes the RTM
H
to constantly grow in size. A possible remedy

is to utilize external, domain-specific retention policies of patient

records, such as the ones publicly available for national healthcare

systems, e.g., [53]. Based on such policies, a process can perform

periodical garbage-collection, where obsolete elements are pruned

from the model and thus memory is freed.

Although such generic removal policies provide a certain upper

bound for memory consumption, cluttering the model with obsolete

data may lead to deteriorating performance of the pattern match-

ing as more elements have to be considered. A more fine-grained

solution than generic policies is to derive this information by the

considered queries and their temporal requirements.

We define a function that computes a cut-off point for elements

in the RTM
H
based on an MTGC χ1 as follows:

κ(χ1) =



t ′ +max (κ(χ1.1),κ(χ1.2)) if χ1 = χ1.1U[t,t ′]χ1.2
t ′ +max (κ(χ1.1),κ(χ1.2)) if χ1 = χ1.1S[t,t ′]χ1.2
max (κ(χ1.1),κ(χ1.2)) if χ1 = χ1.1 ∧ χ1.2

κ(χ1.1) if χ1 = ¬χ1.1
κ(χ1.1) if χ1 = ∃(n1, χ1.1)
0 if χ1 = true

(10)

Recall that all MTGCs reduce to true (Section 2.4) but for presen-

tation purposes, their syntax has been simplified. Moreover, here

we assume that cut-off points need to be calculated for only one

query. In case multiple queries are executed at once over the RTM
H
,

Equation 10 has to be adjusted to calculate the upper bound based

on all queries in question.

The cut-off point κ(χ1) corresponds to an upper bound for the

maximum number of time units after which a deleted graph element

can still be part of a match that may contribute to the satisfaction

of the formula χ1 at the time of checking it. For each graph element

e , we can hence derive an upper bound of its relevance window, i.e.
the window during which an element could be used in checking the

ac of queries, by temax = e .dts + κ(χ1). By deriving the maximum

time point that deleted elements can be reused in checking the ac ,
we ensure that no element has been pruned prior to the end of its

relevance window, and thus that completeness of query results is

MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Sakizloglou et al.

2456 530
170353

1862

19872483

56589
2450

163

170334

482

19872318
31439

6 4 19 18
165 86

363 1362
25064

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Real -
INTEMPO

Real -
MINTEMPO

x10 -
INTEMPO

x10 -
MINTEMPO

x100 -
INTEMPO

x100 -
MINTEMPO

Ti
m

e
(m

s)

Input Log - Variant

Full Loop Analyze Plan & Execute Maintain

IT↻ IT↻ + P IT↻ IT↻ + P IT↻ IT↻ + P
Input Log - Variant

Figure 8: Cumulative Time of Loop Activities for ϕ1

not affected. For the formula ζ from Section 2.4, the derived cut-off

is 2, i.e., elements need to be retained in the RTM
H H for 2 time

units after their deletion.

Pruning could reduce the size of the matching search space and

thus improve the matching time. On the other hand, due to the

re-computation of matches after one or more removals have oc-

curred, pruning could potentially incur an increase in the overall

adaptation time. Provided such considerations have been made, this

step renders an RTM
H
memory-efficient, in that, it is sustainable re-

gardless of whether external memory-saving measures are present

or too coarse, e.g., the ones in healthcare mentioned above.

6 EVALUATION

Our implementation of InTempo embedded in the adaptation en-

gine (cf. Section 3) is based on the Eclipse Modeling Framework

(EMF) [25, 54], which is a widespread MDE technology for creating

metamodels of architectures. For pattern matching, we employ the

Story Diagram Interpreter (SD) [30] optimized according to [2]. SD

uses local search to start the search from a specific element of the

graph and thus reduces the pattern matching effort [38]. For com-

putations on intervals we employ an open-source library [33]. For

the removal of elements from the runtime model, we transparently

replace the native EMF method, via a Java agent, with an optimized

version which reduces the potentially expensive shifting of cells in

the underlying array list and renders the removal more scalable.

To evaluate our implementation, we developed a simulator of

the adaptable SHS presented in Section 3.2. Our simulations replay

events, based on real as well as synthesized patient data on a RTM
H
.

The logs are described in Section 6.1. Based on the processed log

event, a corresponding structural fragment is added to the RTM
H
,

for instance, an ER Sepsis Triage corresponds to the pattern p1
(Fig. 5) being added to the model. We implemented two variants of

InTempo: IT⟳ which contains the construction (C), the matching

(M) and the transformation (T) module and IT⟳+P which contains

all of the above plus the pruning (P) module—the left circle arrow

symbolizes the loop-based adaptation. In Section 6.2, we compare

the time-scalability of the two variants based on multiple logs with

a varying arrival rate of events.
2
We compare the performance of

IT⟳ and IT⟳+P in the detection of adaptation issues, i.e., analysis

activity, to a baseline acquired by MonPoly, a state-of-the-art

event-based monitoring tool. Besides time- and memory-scalability,

the comparison touches on aspects of usability and monitorability.
Finally, we discuss threats to validity in Section 6.4.

2
All experiments and simulations have been conducted on a QuadCore Intel i7 and an

OpenJDK8 JVM. Memory measurements are based on values reported by the JVM.

2592

568

188289

2745

23239836

63488

2588 228

188276

1137

23239668
36646

4 4 13 16
168 41

336
1592 26801

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Real -
INTEMPO

Real -
MINTEMPO

x10 -
INTEMPO

x10 -
MINTEMPO

x100 -
INTEMPO

x100 -
MINTEMPO

Ti
m

e
(m

s)

Input Log - Variant

Full Loop Analyze Plan & Execute Maintain

IT↻ IT↻ + P IT↻ IT↻ + P IT↻ IT↻ + P
Input Log - Variant

Figure 9: Cumulative Time of Loop Activities for ϕ2

6.1 Input Logs

The log used in our experiments (in the following, real log) contains
1049 trajectories of sepsis patients admitted to a hospital within 1.5

years [43]. Each trajectory comprises a sequence of events, among

which, we are interested in the ER Sepsis Triage (ER), IV Antibiotics
(IV), and Release (RE) events. A trajectory starts with an ER event,

and IV and RE events might follow. The inter-arrival time (IAT)
between two ER events defines the arrival rate of trajectories (as an

ER initiates a trajectory). We use statistical probability distribution

fitting to find the best-fitting distribution that characterizes the

inter-arrival times between: two ER events (IATE), an ER and an

IV (IATI), and an ER and an RE (IATR). Then, we use statistical

bootstrapping [19] to generate two synthetic logs, x10 and x100,
with IATE values that are 10 and 100 times smaller respectively

than IATE values of the real log, while IATI and IATR remain as

in the real log. As a result, x10 and x100 cover the same period of

time as the real log, and increase the trajectory density (approx.)

10 and 100 times respectively, allowing us to test the scalability of

InTempo without compromising the statistical characteristics of

the real log.

6.2 Implementation Variants IT⟳ and IT⟳+P
Although pruning the RTM

H
is required for memory-efficiency, we

implemented a variant of InTempo without the maintain activity,

i.e., without pruning. Besides serving as a baseline for IT⟳+P , IT⟳
could be useful in application domains where it is known that

queries of interest change often and thus cut-off points cannot

be derived a priori, as historical data might be useful for another

query in the future. Moreover, in certain cases, the incurred cost of

pruning on the loop execution time might be undesirable.

We evaluate IT⟳ and IT⟳+P with respect to their reaction time
(or loop time) over an increasing amount of log events and model

sizes. In this context, the reaction time is equal to the required time

for a loop, i.e., the time from when an issue is detected to when

a corresponding adaptation action has been performed. Thus the

reaction time consists of times for analysis, planning, execution

and, for IT⟳+P , maintenance time. The time spent in monitoring,

i.e., processing an event and adding the corresponding fragment to

the RTM
H
, is negligible and thus not measured. A loop is invoked

periodically based on a predefined but modifiable frequency. In our

experiments, based on the IATE of the logs, we set the invocation

frequency to one hour, to avoid frequent invocations where there

are no events to be processed. The invocation frequency coincides

with the maximum delay of a violation detection, i.e., in the worst

A Scalable Querying Scheme for Memory-efficient Runtime Models with History MODELS ’20, October 18–23, 2020, Montreal, QC, Canada

0
1500
3000
4500
6000

0 2000 4000 6000 8000 10000

An
aly

ze
 (m

s)

Simulation Time (hrs)

INTEMPO MINTEMPOIT↻ IT↻+P

Figure 10: Analysis Time for Engine Variants (ϕ1 - x100)

case, a violation will occur just after the loop and will be detected

at the next invocation which in this case is exactly after one hour.

The C module of InTempo as well as the function κ (Section 5),

that derives the cut-off points used by P module of IT⟳+P , are
executed only once during the setup of the loop. Each experiment

proceeds as follows: Events from the logs are processed and changes

are made to the RTM
H
; The loop is invoked at the predefined in-

tervals which includes the analysis activity, where the M module

executes queries that search for violations of ϕ1 and ϕ2 (see Sec-
tion 3.2) that constitute adaptation issues, and the T module per-

forms transformations corresponding to adaptation actions; Then,

for IT⟳+P , maintenance is done and matches are recomputed.

The experiments simulate the data in real, x10, and x100 logs.
Each experiment entails the execution of one variant measured

for one performance aspect (time or memory). Fig. 8 and Fig. 9

depict the cumulative time (in logarithmic scale) for each of the

measured loop activities and the reaction, i.e. total, time for ϕ1 and
ϕ2. As expected, the results are mainly influenced by the analysis

activity, which is when issues are detected. Two parameters in the

conducted experiments increase simultaneously: first, the number

of processed events (total number and per loop) and, second, the

size of the RTM
H
over which the queries are executed. The analysis

time of IT⟳ increases with respect to these two parameters but at

a smaller pace. Thanks to pruning, IT⟳+P’s analysis time increases

yet at a considerably smaller pace compared to IT⟳. However,

since pruning forces a re-computation of the results, the time it

requires is non-negligible. The analysis time for each loop of the

two variants for the x100 log is shown in Fig. 10. The pruning of

RTM
H
allows the analysis time of IT⟳+P to remain constant.

6.3 Comparison to State-of-the-art Tool

During the analysis activity, InTempo processes a sequence of

events which represents an ongoing system execution and checks

whether the observed sequence (captured in the RTM
H
) satisfies a

formal specification (captured by one or more MTGCs). This mon-

itoring approach is also known as Runtime Monitoring (RM) [3]

and we therefore employ a prominent RM tool in order to acquire

a baseline for the performance of IT⟳ and IT⟳+P in detecting

issues during analysis. We compare to MonPoly [5, 6], a mature

Table 1: Memory Consumption (max) for ϕ1 (MB)

real x10 x100

IT⟳ 43 174 1544

IT⟳+P 29 30 33

MonPoly 20 31 165

1.00E-01

1.00E+01

1.00E+03

1.00E+05

0 2000 4000 6000 8000 10000 12000 14000

To
ta

l T
im

e
(s

)

Simulation Time (hrs)

MONPOLY INTEMPO MINTEMPOMONPOLY IT↻ IT↻+P

Figure 11: Total Experiment Time vs. MonPoly for ϕ1

command-line tool which notably combines an adequately expres-

sive specification language with an efficient incremental monitor-

ing algorithm and has been the reference point in evaluations of

other RM tools [20, 36] and among top-performers in an RM com-

petition [4]. Its specification language is the Metric First-Order

Temporal Logic [5] (MFOTL) which employs first-order relations
to capture system entities and their relationships. The usage of a

temporal logic facilitates the translation of temporal requirements

between MonPoly and our implementation. For the encoding of

the SHS metamodel by relations we translate each edge following

standard practices (cf. [46]) and each vertex into a relation with an

arity that depends on the number of class attributes. Based on this

encoding, we translate each log event into a series of relations.

Encoding a graph pattern in MFOTL requires an explicit defi-

nition of the expected temporal ordering of the events that corre-

sponds to the order of creation of the elements in the simulation.

To emulate pattern matching, we would therefore have to build

an MFOTL formula that would consider all possible events as a

start for matching the pattern and then search in the past of the

execution or in the present for the rest of the events.
3
Leveraging

the knowledge of the actual order in which events occur in the sim-

ulation, we simplify the formulas for MonPoly by formulating only

the correct ordering. This creates an advantage for MonPoly in the

comparison with our implementation. The difficulties in emulating

pattern matching with MonPoly indicate the tool is sub-optimal

for graph-based models and pattern matching. We map ϕ1 in a

straightforward manner to its MFOTL equivalent, i.e., the temporal

operators remain intact and relation fragments are used instead of

patterns. This is not possible for ϕ2, as MonPoly restricts the use of

negation in this case. It does so for reasons of monitorability, as the

tool assumes an infinite domain of values, and the negation of p1.1
at a given time point when it does not exist is satisfied by infinite

values and thus non-monitorable. In the following, we compare to

MonPoly only for ϕ1.
We acquire the baseline by executing MonPoly only once at the

end of each simulation. The latest MonPoly version (1.1.9) was

used and run on the same machine as the implementation variants.

The results for the execution time (in seconds) for x100, which
emphasizes the trends of smaller logs, are shown in Fig. 11. The

results are compared to the total experiment time (not only analysis

time) of our variants as other adaptation-related activities could

affect their analysis times. Issue detection with MonPoly is faster

than IT⟳, however, IT⟳+P , due to pruning, outperformsMonPoly.

Table 1 shows similar results for memory consumption.

3
Since MonPoly outputs the time point of a violation, forward-looking matching, i.e.,

matching a relation in the past and subsequently searching for other relations in its

future, would not produce the desired result as it would always only output the time

point the first violating relation was matched.

MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Sakizloglou et al.

6.4 Threats to Validity

Threats to internal validity concern the experimental setting. We

systematically evaluated IT⟳, IT⟳+P , and MonPoly by using a

controlled simulation of an SHS. Our focus was the effects of incre-

mental pattern matching and pruning on the time- and memory-

scalability of the variants measured during the analysis activity of

the adaptation loop. To solely focus on these effects, the two vari-

ants share identical monitoring, planning, and execution activities

and they use the same architectural metamodel. MonPoly is evalu-

ated only on the analysis. The experiments draw from an example

where instructions are deterministic. Moreover, the experiments

simulate multiple input logs with different properties to allow for

testing the variants in different circumstances such as increasing

system load. The logs used are either real data or data extracted

from real data employing sophisticated statistical bootstrapping.

Threats to external validity may restrict the generalization of

our evaluation results outside the scope of our experiments. We

evaluated our querying scheme on simulated real and synthetic data

while enacting an instruction from a real medical guideline [47]. Our

SHS metamodel is influenced by a peer-reviewed self-adaptation

artifact. As a result, we have confidence that our evaluation, to a

certain extent, holds for real scenarios. While our experiments can

serve as an indication to the scalability of our querying scheme,

quantitative claims on scalability require more extensive simulation

scenarios taking into consideration real IoT device properties, such

as memory. MonPoly is not built for pattern matching and our em-

ulation of the latter might have room for improvement. MonPoly’s

semantics is point-based while the semantics of MTGL (and thus of

our implementation) is interval-based. This fundamental difference

did not impact our experiments but might influence more extensive

comparisons. For the property that MonPoly could not monitor,

there might exist equivalent, monitorable MFOTL formulas which,

however, would not correspond to the MTGC straightforwardly.

7 RELATEDWORK

The efficient storage of historical data from the system execution in

a (graph-based) model has been the focus of extensive research, e.g.

temporal graphs [35], the same is not true however for the scalable

querying and the sustainability of runtime models [10]. Recent

works build on a database, either graph- [26] or map-based [32]

to store model versions which are queried by means of an OCL

extension that supports temporal primitives. Neither [26] nor [32]

consider an online setting where query matches can be utilized

while the system is running. In an online setting, storing multiple

versions of the model and accesses to a database storage take a sig-

nificant toll on real-time querying performance (the latter indicated

by the evaluation in [32]), especially for far-reaching past queries.

To improve performance, the authors in [26] provide the capability

to a priori manually annotate such queries, such that their matches

are pre-computed while the system evolves, which, however, is au-

tomatically achieved by the temporal GDN of InTempo. Moreover,

InTempo uses an in-memory representation of the model, as shared

memory space generally makes the real-time querying faster, which

is key for the online setting and the (adaptive) systems of interest

in this work. Finally, a solution for the perpetual accumulation of

historical data is missing from both [26] and [32].

The setting of our case-study resembles streaming [18] and active
model transformations [7] where the model and query results are

assumed to be continuously updated by a stream of model elements

or events that are mapped to model elements. These paradigms

increase demands on the performance of the pattern matching,

which previous approaches have met via employing incremental

query evaluation frameworks [56] (similarly to InTempo) and the

distribution of pattern matching [55]. The approach in [21, 22]

generates events when patterns are matched and then employs

complex event processing to check whether generated events occur

within a given time window, thus capturing, albeit compositely and

to a certain extent, temporal requirements on matched patterns.

Contrary to these approaches, InTempo natively encompasses the

history of model evolution in the model representation, the query

specification language, as well as during pattern matching.

As previously mentioned, our setting is also related to Runtime

Monitoring (see Section 6.3). Besides MonPoly however, other

approaches provide no or only partial support for key features of

InTempo such as events containing data, temporal requirements, or

metric temporal operators: The work in [20] concerns propositional

events, i.e., containing no data, and is thus unsuitable for the use-

cases discussed in this paper; In [14, 15] an event-based scheme for

the incremental matching of graph patterns in a runtime model is

presented which however does not support the integration of model

queries and temporal requirements; the tool in [36, 37] employs

relations and discards unusable data (similar to pruning) but its

logic supports only past operators without intervals.

In [49] we presented a preliminary version of InTempo that is

based on an ad hoc, manual translation of a single, syntactically

restricted past MTGC that does not account for the aggregation of

matches and also presents an ad hoc, manual derivation of cut-off

points. The InTempo version presented here translates MTGCs and

derives cut-off points automatically. Moreover, it introduces the

required concepts and facilities for aggregating matches, supports

both past and future operators, and enables a complete adaptation

loop. In [51] we presented the formal foundation for the transla-

tion of a syntactically restricted MTGC to an NGC which is then

checked against an event-based execution aggregated in an RTM
H
-

like graph. However, the approach does not consider model queries,

rather a non-incremental satisfaction check of the MTGC, nor does

it consider past operators or a means to limit data accumulation.

8 CONCLUSION AND FUTUREWORK

We have introduced a querying scheme where graph-based model

queries are integrated with temporal requirements on patterns,

formulated in a temporal graph logic. Our scheme enables the

incremental execution of queries over runtime models with history.

Building on self-adaptive systems, in our case-study query matches

capture adaptation issues in the runtime model which are handled

by in-place model transformations. Our scheme offers the option to

retain in the model only information that are relevant to the query

executions.We present an implementation which we evaluate based

on a simulation of both real as well as synthetic data and compare

its efficiency in detecting issues to a relevant monitoring tool.

As future work, we plan to present a formalization of our ap-

proach, integrate more sophisticated decision-making schemes in

A Scalable Querying Scheme for Memory-efficient Runtime Models with History MODELS ’20, October 18–23, 2020, Montreal, QC, Canada

the planning phase, improve the performance of our implemen-

tation by employing indexing structures that can index matches

based on their intervals, and evaluate the performance of other

incremental query evaluation frameworks such as RETE networks.

ACKNOWLEDGMENTS

This work is partially supported by the German Research Founda-

tion (DFG) under GI 765/8-1.

REFERENCES

[1] Alessandro Artale, Christine Parent, and Stefano Spaccapietra. 2007. Evolving

objects in temporal information systems. Annals of Mathematics and Artificial
Intelligence 50, 1-2 (2007), 5–38.

[2] Matthias Barkowsky and Holger Giese. 2020. Hybrid search plan generation

for generalized graph pattern matching. J. Log. Algebraic Methods Program. 114
(2020), 100563. https://doi.org/10.1016/j.jlamp.2020.100563

[3] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E. Fainekos,

Oded Maler, Dejan Nickovic, and Sriram Sankaranarayanan. 2018. Specification-

Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and

Applications. In Lectures on Runtime Verification - Introductory and Advanced
Topics, Ezio Bartocci and Yliès Falcone (Eds.). Lecture Notes in Computer Science,

Vol. 10457. Springer, 135–175. https://doi.org/10.1007/978-3-319-75632-5_5

[4] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann

Decker, Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger,

Grigore Rosu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang.

2019. First international Competition on Runtime Verification: rules, benchmarks,

tools, and final results of CRV 2014. STTT 21, 1 (2019), 31–70. https://doi.org/10.

1007/s10009-017-0454-5

[5] David Basin, Felix Klaedtke, Samuel MÃĳller, and Eugen ZÄČlinescu. 2015. Mon-

itoring Metric First-Order Temporal Properties. J. ACM 62, 2 (May 2015), 1–45.

https://doi.org/10.1145/2699444

[6] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. 2017. The MonPoly

Monitoring Tool. In RV-CuBES 2017. An International Workshop on Competi-
tions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Ver-
ification Tools, September 15, 2017, Seattle, WA, USA (Kalpa Publications in
Computing, Vol. 3), Giles Reger and Klaus Havelund (Eds.). EasyChair, 19–28.

http://www.easychair.org/publications/paper/62MC

[7] Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and Jean-Marc Jézéquel. 2010.

Active operations on collections. In International Conference on Model Driven
Engineering Languages and Systems. Springer, 91–105.

[8] Nelly Bencomo, Robert B France, Betty HC Cheng, and Uwe Aßmann. 2014.

Models@ run. time: foundations, applications, and roadmaps. Vol. 8378. Springer.
[9] Nelly Bencomo, Sebastian Götz, and Hui Song. 2019. Models@run.time: a guided

tour of the state of the art and research challenges. Software & Systems Modeling
(2019).

[10] Nelly Bencomo, Sebastian Götz, and Hui Song. 2019. Models@run.time: a guided

tour of the state of the art and research challenges. Software and Systems Modeling
18, 5 (2019), 3049–3082. https://doi.org/10.1007/s10270-018-00712-x

[11] Thomas Beyhl, Dominique Blouin, Holger Giese, and Leen Lambers. 2016. On the

Operationalization of Graph Queries with Generalized Discrimination Networks.

InGraph Transformation - 9th International Conference, ICGT 2016, Vienna, Austria,
July 5-6, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9761), Rachid
Echahed and Mark Minas (Eds.). Springer, 170–186. https://doi.org/10.1007/978-

3-319-40530-8_11

[12] Enrico Biermann, Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Gabriele

Taentzer. 2010. Parallel Independence of Amalgamated Graph Transformations

Applied to Model Transformation. In Graph Transformations and Model-Driven
Engineering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday
(Lecture Notes in Computer Science, Vol. 5765), Gregor Engels, Claus Lewerentz,
Wilhelm Schäfer, Andy Schürr, and Bernhard Westfechtel (Eds.). Springer, 121–

140. https://doi.org/10.1007/978-3-642-17322-6_7

[13] Gordon Blair, Nelly Bencomo, and Robert B. France. 2009. Models@run.time.

Computer 42, 10 (2009), 22–27. https://doi.org/10.1109/MC.2009.326

[14] Márton Búr, Gábor Szilágyi, András Vörös, and Dániel Varró. 2020. Distributed

graph queries over models@run.time for runtime monitoring of cyber-physical

systems. Int. J. Softw. Tools Technol. Transf. 22, 1 (2020), 79–102. https://doi.org/

10.1007/s10009-019-00531-5

[15] MÃąrton BÃžr, GÃąbor SzilÃągyi, AndrÃąs VÃűrÃűs, and DÃąniel VarrÃş. 2018.

Distributed Graph Queries for Runtime Monitoring of Cyber-Physical Systems.

In Fundamental Approaches to Software Engineering (Lecture Notes in Computer
Science). Springer, Cham, 111–128. https://doi.org/10.1007/978-3-319-89363-1_7

[16] Luca Catarinucci, Danilo De Donno, Luca Mainetti, Luca Palano, Luigi Patrono,

Maria Laura Stefanizzi, and Luciano Tarricone. 2015. An IoT-Aware Architecture

for Smart Healthcare Systems. IEEE Internet of Things Journal 2, 6 (2015), 515–526.
https://doi.org/10.1109/JIOT.2015.2417684

[17] Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Posenato. 2012. Mod-

elling Temporal, Data-centric Medical Processes. In Proceedings of the 2Nd ACM
SIGHIT International Health Informatics Symposium (IHI ’12). ACM, New York,

NY, USA, 141–150. https://doi.org/10.1145/2110363.2110382 event-place: Miami,

Florida, USA.

[18] Jesús Sánchez Cuadrado and Juan de Lara. 2013. Streaming Model Transforma-

tions: Scenarios, Challenges and Initial Solutions. In Theory and Practice of Model
Transformations - 6th International Conference, ICMT@STAF 2013, Budapest, Hun-
gary, June 18-19, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7909),
Keith Duddy and Gerti Kappel (Eds.). Springer, 1–16. https://doi.org/10.1007/978-

3-642-38883-5_1

[19] Thomas J DiCiccio and Bradley Efron. 1996. Bootstrap confidence intervals.

Statistical science (1996), 189–212.
[20] Wei Dou, Domenico Bianculli, and Lionel Briand. 2017. AModel-DrivenApproach

to Trace Checking of Pattern-Based Temporal Properties. In 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, Austin, TX, 323–333. https://doi.org/10.1109/MODELS.2017.9

[21] IstvÃąn DÃąvid, IstvÃąn RÃąth, and DÃąniel VarrÃş. 2014. Streaming Model

Transformations By Complex Event Processing. In Model-Driven Engineering
Languages and Systems (Lecture Notes in Computer Science). Springer, Cham, 68–83.

https://doi.org/10.1007/978-3-319-11653-2_5 Citation Key Alias: 10.1007/978-3-

319-11653-2_5.

[22] IstvÃąn DÃąvid, IstvÃąn RÃąth, and DÃąniel VarrÃş. 2018. Foundations for

Streaming Model Transformations by Complex Event Processing. Software &
Systems Modeling 17, 1 (Feb. 2018), 135–162. https://doi.org/10.1007/s10270-016-

0533-1

[23] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. 2004. Fundamental Theory

for Typed Attributed Graph Transformation. In Graph Transformations, Second
International Conference, ICGT 2004, Rome, Italy, September 28 - October 2, 2004,
Proceedings (Lecture Notes in Computer Science, Vol. 3256), Hartmut Ehrig, Gregor

Engels, Francesco Parisi-Presicce, and Grzegorz Rozenberg (Eds.). Springer, 161–

177. https://doi.org/10.1007/978-3-540-30203-2_13

[24] Naeem Esfahani, Eric Yuan, Kyle R Canavera, and Sam Malek. 2016. Inferring

software component interaction dependencies for adaptation support. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 10, 4 (2016), 1–32.

[25] Eclipse Foundation. 2020. Eclipse Modeling Framework (EMF). Retrieved Aug 10,

2020 from https://www.eclipse.org/modeling/emf/

[26] Antonio Garcia, Nelly Bencomo, Juan Parra, and Luis H. Garcia-Paucar. 2019.

Querying and annotatingmodel histories with time-aware patterns. In IEEE / ACM
22nd international conference on model driven engineering languages and systems
(MODELS), Marouane Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss,

and Loli Burgue no (Eds.). https://research.aston.ac.uk/en/publications/querying-

and-annotating-model-histories-with-time-aware-patterns

[27] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. 2009. Software

Architecture-Based Self-Adaptation. In Autonomic Computing and Networking.
Springer, 31–55. http://dx.doi.org/10.1007/978-0-387-89828-5_2

[28] Sona Ghahremani, Holger Giese, and Thomas Vogel. 2017. Efficient Utility-Driven

Self-Healing Employing Adaptation Rules for Large Dynamic Architectures. In

Proceedings of the 14th International Conference on Autonomic Computing (ICAC).
[29] Sona Ghahremani, Holger Giese, and Thomas Vogel. 2020. Improving Scalability

and Reward of Utility-Driven Self-Healing for Large Dynamic Architectures. ACM
Trans. Auton. Adapt. Syst. 14, 3 (February 2020). https://doi.org/10.1145/3380965

[30] Holger Giese, StephanHildebrandt, andAndreas Seibel. 2009. Improved Flexibility

and Scalability by Interpreting Story Diagrams. ECEASST 18 (2009). https:

//doi.org/10.14279/tuj.eceasst.18.268

[31] Holger Giese, Maria Maximova, Lucas Sakizloglou, and Sven Schneider. 2019.

Metric Temporal Graph Logic over Typed Attributed Graphs. In Fundamental
Approaches to Software Engineering (Lecture Notes in Computer Science), Reiner
Hähnle and Wil van der Aalst (Eds.). Springer International Publishing, 282–298.

[32] Abel Gómez, Jordi Cabot, and Manuel Wimmer. 2018. TemporalEMF: A Temporal

Metamodeling Framework. In Conceptual Modeling - 37th International Conference,
ER 2018, Xi’an, China, October 22-25, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11157), Juan Trujillo, Karen C. Davis, Xiaoyong Du, Zhanhuai Li,

Tok Wang Ling, Guoliang Li, and Mong-Li Lee (Eds.). Springer, 365–381. https:

//doi.org/10.1007/978-3-030-00847-5_26

[33] Guava. 2020. Google Core Libraries for Java. Retrieved May 17, 2020 from

https://github.com/google/guava

[34] Annegret Habel and Karl-Heinz Pennemann. 2009. Correctness of High-Level

Transformation Systems Relative to Nested Conditions. Math. Struct. Comput.
Sci. 19, 2 (2009), 245–296.

[35] Thomas Hartmann, François Fouquet, Matthieu Jimenez, Romain Rouvoy, and

Yves Le Traon. 2017. Analyzing Complex Data in Motion at Scale with Tem-

poral Graphs. In The 29th International Conference on Software Engineering and
Knowledge Engineering, Wyndham Pittsburgh University Center, Pittsburgh, PA,
USA, July 5-7, 2017, Xudong He (Ed.). KSI Research Inc. and Knowledge Systems

https://doi.org/10.1016/j.jlamp.2020.100563
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.1145/2699444
http://www.easychair.org/publications/paper/62MC
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1007/s10009-019-00531-5
https://doi.org/10.1007/s10009-019-00531-5
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1109/JIOT.2015.2417684
https://doi.org/10.1145/2110363.2110382
https://doi.org/10.1007/978-3-642-38883-5_1
https://doi.org/10.1007/978-3-642-38883-5_1
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1007/978-3-319-11653-2_5
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1007/978-3-540-30203-2_13
https://www.eclipse.org/modeling/emf/
https://research.aston.ac.uk/en/publications/querying-and-annotating-model-histories-with-time-aware-patterns
https://research.aston.ac.uk/en/publications/querying-and-annotating-model-histories-with-time-aware-patterns
http://dx.doi.org/10.1007/978-0-387-89828-5_2
https://doi.org/10.1145/3380965
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.1007/978-3-030-00847-5_26
https://doi.org/10.1007/978-3-030-00847-5_26
https://github.com/google/guava

MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Sakizloglou et al.

Institute Graduate School, 596–601. https://doi.org/10.18293/SEKE2017-048

[36] Klaus Havelund and Doron Peled. 2018. Efficient Runtime Verification of First-

Order Temporal Properties. In Model Checking Software, María del Mar Gallardo

and Pedro Merino (Eds.). Vol. 10869. Springer International Publishing, Cham,

26–47.

[37] Klaus Havelund, Doron Peled, and Dogan Ulus. 2017. First order temporal logic

monitoringwith BDDs. In 2017 FormalMethods in Computer Aided Design, FMCAD
2017, Vienna, Austria, October 2-6, 2017, Daryl Stewart and Georg Weissenbacher

(Eds.). IEEE, 116–123. https://doi.org/10.23919/FMCAD.2017.8102249

[38] Stephan Hildebrandt. 2014. On the performance and conformance of triple graph
grammar implementations. Ph.D. Dissertation. University of Potsdam. http://d-

nb.info/1054564477

[39] Jeffrey O. Kephart and David Chess. 2003. The Vision of Autonomic Computing.

Computer 36, 1 (2003), 41–50. http://portal.acm.org/citation.cfm?id=642200

[40] Ron Koymans. 1990. Specifying Real-Time Properties with Metric Temporal

Logic. Real-Time Syst. 2, 4 (1990), 255–299.
[41] Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. 2010. A Framework for

Rule-Based Dynamic Adaptation. In Proceedings of the 5th International Conference
on Trustworthly Global Computing. Springer-Verlag, Berlin, Heidelberg, 284–300.

[42] Jeff Magee and Jeff Kramer. 1996. Dynamic Structure in Software Architectures.

In Proc. of the 4th Symposium on Foundations of Software Engineering. ACM, 3–14.

https://doi.org/10.1145/239098.239104

[43] Felix Mannhardt and Daan Blinde. 2017. Analyzing the Trajectories of Patients

with Sepsis using Process Mining. In Joint Proceedings of the Radar tracks at
the 18th International Working Conference on Business Process Modeling, Devel-
opment and Support (BPMDS), and the 22nd International Working Conference on
Evaluation and Modeling Methods for Systems Analysis and Development (EMM-
SAD), and the 8th International Workshop on Enterprise Modeling and Information
Systems Architectures (EMISA) co-located with the 29th International Conference
on Advanced Information Systems Engineering 2017 (CAiSE 2017), Essen, Ger-
many, June 12-13, 2017 (CEUR Workshop Proceedings, Vol. 1859), Jens Gulden,
Selmin Nurcan, Iris Reinhartz-Berger, Wided Guédria, Palash Bera, Sérgio Guer-

reiro, Michael Fellmann, and Matthias Weidlich (Eds.). CEUR-WS.org, 72–80.

http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf

[44] Gunasekaran Manogaran, R. Varatharajan, Daphne Lopez, Priyan Malarvizhi

Kumar, Revathi Sundarasekar, and Chandu Thota. 2018. A new architecture of

Internet of Things and big data ecosystem for secured smart healthcare moni-

toring and alerting system. Future Generation Computer Systems 82 (2018), 375 –
387. http://www.sciencedirect.com/science/article/pii/S0167739X17305149

[45] Gabriel A. Moreno, Javier C’amara, David Garlan, and Bradley Schmerl. 2015.

Proactive Self-adaptation Under Uncertainty: A Probabilistic Model Checking

Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 1–12.

[46] Arend Rensink. 2004. Representing First-Order Logic Using Graphs. In ICGT,
Vol. 4. Springer, 319–335.

[47] Andrew Rhodes, Laura E Evans, Waleed Alhazzani, Mitchell M Levy, Massimo

Antonelli, Ricard Ferrer, Anand Kumar, Jonathan E Sevransky, Charles L Sprung,

Mark E Nunnally, et al. 2017. Surviving sepsis campaign: international guidelines

for management of sepsis and septic shock: 2016. Intensive care medicine 43, 3
(2017), 304–377.

[48] Patrice C Roy, Samina Raza Abidi, and Syed Sibte Raza Abidi. 2017. Monitoring

Medication Adherence in Smart Environments in the Context of Patient Self-

management A Knowledge-driven Approach. In Smart Technologies in Healthcare.
CRC Press, 195–223.

[49] Lucas Sakizloglou, Sona Ghahremani, Thomas Brand, Matthias Barkowsky, and

Holger Giese. 2020. Towards Highly Scalable Runtime Models with History. In

15th IEEE/ACM International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS@ICSE 2020, Seoul, South Korea, October, 2020.
IEEE Computer Society. https://arxiv.org/abs/2004.03727

[50] Sven Schneider, Maria Maximova, Lucas Sakizloglou, and Holger Giese. 2020.

Formal Testing of Timed Graph Transformation Systems using Metric Temporal

Graph Logic. Int. J. Softw. Tools Technol. Transf. (2020). To appear.

[51] Sven Schneider, Lucas Sakizloglou, Maria Maximova, and Holger Giese. 2020.

Optimistic and Pessimistic On-the-fly Analysis for Metric Temporal Graph Logic.

In Graph Transformation - 13th International Conference, ICGT 2020, Held as Part
of STAF 2020, Bergen, Norway, June 25-26, 2020, Proceedings (Lecture Notes in
Computer Science, Vol. 12150), Fabio Gadducci and Timo Kehrer (Eds.). Springer,

276–294. https://doi.org/10.1007/978-3-030-51372-6_16

[52] Jolana Sebestyénová. 2007. Case-based reasoning in agent-based decision support

system. Acta Polytechnica Hungarica 4, 1 (2007), 127–138.
[53] United Kingdom National Health Service. 2020. Records Management Code

of Practice for Health and Social Care 2016. Retrieved May 17, 2020 from

https://digital.nhs.uk/data-and-information/looking-after-information/data-

security-and-information-governance/codes-of-practice-for-handling-

information-in-health-and-care/records-management-code-of-practice-for-

health-and-social-care-2016

[54] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

[55] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor Bergmann,

and Dániel Varró. 2014. IncQuery-D: A Distributed Incremental Model Query

Framework in the Cloud. In Model-Driven Engineering Languages and Systems
- 17th International Conference, MODELS 2014, Valencia, Spain, September 28 -
October 3, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8767), Jürgen
Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfrán (Eds.).

Springer, 653–669. https://doi.org/10.1007/978-3-319-11653-2_40

[56] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó,

István Ráth, Zoltán Szatmári, and Dániel Varró. 2015. EMF-IncQuery: An inte-

grated development environment for live model queries. Sci. Comput. Program.
98 (2015), 80–99. https://doi.org/10.1016/j.scico.2014.01.004

[57] Thomas Vogel and Holger Giese. 2010. Adaptation and Abstract Runtime Models.

In SEAMS’10. ACM, 39–48. http://dx.doi.org/10.1145/1808984.1808989

[58] Thomas Vogel, Andreas Seibel, and Holger Giese. 2010. The Role of Models

and Megamodels at Runtime. In Models in Software Engineering - Workshops
and Symposia at MODELS 2010, Oslo, Norway, October 2-8, 2010, Reports and
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 6627), Jürgen
Dingel and Arnor Solberg (Eds.). Springer, 224–238. https://doi.org/10.1007/978-

3-642-21210-9_22

[59] DannyWeyns and Radu Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-

Based System Exemplar. In 10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy,
May 18-19, 2015, Paola Inverardi and Bradley R. Schmerl (Eds.). IEEE Computer

Society, 88–92. https://doi.org/10.1109/SEAMS.2015.27

https://doi.org/10.18293/SEKE2017-048
https://doi.org/10.23919/FMCAD.2017.8102249
http://d-nb.info/1054564477
http://d-nb.info/1054564477
http://portal.acm.org/citation.cfm?id=642200
https://doi.org/10.1145/239098.239104
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X17305149
https://arxiv.org/abs/2004.03727
https://doi.org/10.1007/978-3-030-51372-6_16
https://digital.nhs.uk/data-and-information/looking-after-information/data-security-and-information-governance/codes-of-practice-for-handling-information-in-health-and-care/records-management-code-of-practice-for-health-and-social-care-2016
https://digital.nhs.uk/data-and-information/looking-after-information/data-security-and-information-governance/codes-of-practice-for-handling-information-in-health-and-care/records-management-code-of-practice-for-health-and-social-care-2016
https://digital.nhs.uk/data-and-information/looking-after-information/data-security-and-information-governance/codes-of-practice-for-handling-information-in-health-and-care/records-management-code-of-practice-for-health-and-social-care-2016
https://digital.nhs.uk/data-and-information/looking-after-information/data-security-and-information-governance/codes-of-practice-for-handling-information-in-health-and-care/records-management-code-of-practice-for-health-and-social-care-2016
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1145/1808984.1808989
https://doi.org/10.1007/978-3-642-21210-9_22
https://doi.org/10.1007/978-3-642-21210-9_22
https://doi.org/10.1109/SEAMS.2015.27

	Abstract
	1 Introduction
	2 Foundations
	2.1 Runtime Models for Self-adaptation
	2.2 Efficient Pattern Matching for Queries
	2.3 Runtime Models with History
	2.4 Queries over RTM

	3 InTempo: A Querying Scheme Extended for Self-adaptation
	3.1 Overview of InTempo for Adaptation
	3.2 Case-Study: Smart Healthcare System
	3.3 History-Aware Self-Adaptation

	4 Incremental Matching of Patterns with Temporal Requirements
	4.1 Matches and Their Lifespan
	4.2 Marking Rules for Matches
	4.3 Marking Rules for Aggregating Matches
	4.4 Marking Rules for Temporal Operators
	4.5 GDN Construction and Example

	5 Memory-Efficient RTM
	6 Evaluation
	6.1 Input Logs
	6.2 Implementation Variants IT and IT+P
	6.3 Comparison to State-of-the-art Tool
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

